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Electron transfer (ET) in different solvents is investigated for systems consisting of donor, bridge, and acceptor.
It is assumed that vibrational relaxation is much faster than the ET. ET rates and final populations of the
acceptor state are calculated numerically and in an approximate fashion analytically. In wide parameter regimes
these solutions are in very good agreement. The theory is applied to the EP+#ZHP—Q, with free-base
porphyrin (HP) being the donor, zinc porphyrin (ZnP) the bridge, and quinone (Q) the acceptor. It is shown
that the ET rates can be controlled efficiently by changing the energy of the bridging level, which can be
done by changing the solvent. The solvent effect is determined for different models. PACS numbers: 31.70.Hq,
34.70+e€, 82.20.Rp

. Introduction are occupied mainly in sequential ordé#:1316The dependence
. ) o on the differences between the energy levels is exponériflal.
Electron transfer (ET) is a very important process in biology, an increase of the bridge length induces only a small reduction
chemistry, and physics.® The most well-known ET theory is i the ET rate21.23.2526This is why sequential transfer is the
the one of Marcu8.Of special interest is the ET in configura-  gesired process in molecular wiré?

tions where a bridge (B) between donor (D) and acceptor (A) |, the superexchange case the dynamics is mainly Hamilto-
mediates the transfer. On this kind of ET we will focus in this nian and can be described on the basis of the “Rthoer

Paper. The p”“_“afy step of ET in bacterial phot(_)syn_thetic equation. The physically important results can be obtained by
reaction centers is of this tygegnd a lot of work in this direction perturbation theoA#28and, most successfully, by the semiclas-

was done after the structure of the protepigment complex  gjca| Marcus theor§. The complete system dynamics can be
of the photosynthetic reaction centers of purple bacteria was yjrectly extracted by numerical diagonalization of the Hamil-
clarified in 19842 Many artificial systems, especially self- {1ian2329 |n case of sequential transfer the influence of an
organized porphyrin complexes, have been developed to modelgpironment has to be taken into account. There are quite a
this bacterial photosynthetic reaction cerftet? few different ways of how to include an environment modeled
Bridge-mediated ET reactions can occur via different by a heat bath. The simplest phenomenological descriptions are
mechanismé:*13 incoherent sequential transfer in which the based on the Einstein coefficients or on the imaginary terms in
bridge level is populated, or coherent superexchéfigen the Hamiltoniarf®3! as well as on the FokkeiPlanck or
which the mediating bridge level is not populated but neverthe- |angevin equation®31 The most accurate but also numerically
less necessary for the transfer. Changing a building block of most expensive way is the path integral metft@his has been
the comple®1¢17or changing the environmeéfit!8 can modify applied to bridge-mediated ET, especially in the case of bacterial
which mechanism is mainly at work. Actually, there is still a photosynthesi& Bridge-mediated ET has also been investigated
discussion in the literature as to whether sequential transfer andusing Redfield theory333by propagating a density matrix (DM)
superexchange are limiting cases of one prdéemswhether in Liouville space!? and other method,29.34-36
they are two processes that can coeki3o clarify which The purpose of the present investigation is to present a simple,
mechanism is present in an artificial system one can systemati-ana|ytica||y solvable model based on the DM formafég&§and
cally vary the energetics of the complex. In experiments this is apply it to a porphyrir-quinone complex, which is taken as a
done by substituting parts of the compled®s'®17200r by model system for the bacterial photosynthetic reaction center.
changing the polarity of the solvettAlso the geometry and  The master equation that governs the DM evolution as well as
size of the bridge block can be varied, and in this way the length the appropriate relaxation coefficients can be derived from such
of the subsystem through which the electron has to be pasic information as systerenvironment coupling strength and
transferre@!120-23 can be changed. spectral density of the environme¥it45 In the present model,
Superexchange occurs because of coherent mixing of the thregelaxation is introduced in a way similar to Redfield theory but
or more states of the systefht>24.25The ET rate in this channel  in site representation, not in eigenstate representation. A
depends algebraically on the differences between the energydiscussion of advantages and disadvantages of these representa-
level$10 and decreases exponentially with increasing bridge tions has been given elsewhéfeThe equations for the DM
length14.23.25 When incoherent effects such as dephasing are the same as in the generalized stochastic Liouville equation
dominate, the transfer is mainly sequentfed3that is, the levels ~ (GSLE) modet”8 for exciton transfer, which is an extension
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of the Hakenr-StrobReineker (HSR) mod&l5°to a model T -
with a qguantum bath. Here we give an analytic solution to these / 7 DBA|
equations. The present equations for the DM obtained are also

similar to those of ref 11, where relaxation is introduced in a @
phenomenological fashion but only a steady-state solution is 8 - /DM\\
found, in contrast to the model introduced here. In addition, K DBA N .
the present model is applied to a concrete system. A comparison D
of the ET time with the bath correlation time allows us to regard A

three time intervals of system dynamics: the interval of memory *
effects, the dynamical interval, and the kinetic, long-time -

interval®® In the framework of DM theory one can describe
the ET dynamics in all three time intervals. However, often it
is enough to find the solution in the kinetic interval for the ‘ DBA /
explanation of experiments within the time resolution of most
experimental setups, as has been done in refs 11 and 51. Thegyre 1. Schematic presentation of energy levels in the-+HZnP—Q
master equation is analytically solvable only for simple models, complex. The three states in the boxes play the main role in ET, which
for example, refs 31 and 52. Most investigations are based oncan happen either sequentially or by a superexchange mechanism.
the numerical solution of this equatiéf264043Here we perform Dashed lines refer to sequential transfer, curved solid line to superex-
numerical as well as approximate analytical calculations for a change, dotdashed to energy transfer followed by ET, dotted line
simple model. Because the solution can be easily obtained, theﬁf;gzltifgfgggomnﬁinaart'i?mztra'gm solid lineseither fluorescence or
influence of all parameters on the ET can be examined. '

The paper is organized as follows. In the next section the ground state |1llomolOLumo, the neutral excited state
model of a supermolecule that we use to describe ET processes$0omol1llumo, the positively charged ionic stat@iiomo|Ollumo,
is introduced. The properties of an isolated supermolecule areand the negatively charged ionic stat@lomol1lumo. Ciyy =
modeled in subsection Il A, as well as the static influence of |10}, 0|ymm cvm = |0 mm: @andiym = C,\+/|mCMm describe the
the environment. The dynamical influence of bath fluctuations creation, annihilation, and number of electrons in orkifiah,
is discussed and modeled by a heat bath of harmonic oscillatorsrespectivgy, whered$, = ¥ mfivm gives the number of electrons
in section Il B. The reduced DM equation of motion (RDMEM) in a molecular block. The number of particles in the whole
describing the excited-state dynamics is presented in subsectionsupermolecule is conservellyfiv = const.
Il C. In subsection Il D the system parameter dependence on Each of the electronic states has its own vibrational substruc-
the solvent dielectric constant is discussed for different models ture. As a rule for the porphyrin-containing systems the time
of solute-solvent interaction. In subsection Il E the system of vibrational relaxation is 2 orders of magnitude faster than
parameters are determined. The methods and results of theahe characteristic ET tim¥. Because of this we assume that
numerical and analytical solutions of the RDMEM are presented only the ground vibrational states play a role and we do not
in section Ill. Dependencies of the ET rate and final acceptor include the vibrational substructure. A comparison of the models
population on the system parameters are given for the numericalith and without vibrational substructure has been given
and analytical solutions in subsection IV A. The analysis of e|sewheré*
the physical processes in the system is also performed there. In Below we consider the evolution of single charge-transfer
subsection IV B we discuss the dependence of the ET rate onexciton states in the system. For the full description of the
the solvent dielectric constant for different models of sotute  system one also should include photon modes to describe for
solvent interaction and compare the calculated ET rates with example the fluorescence from the LUMO to the HOMO in
the experimentally measured ones. The advantages and disadeach molecular block transferring an excitation to the electro-
vantages of the presented method in comparison with the GSLEmagnetic field. But the rates of fluorescence and recombination
modef’48 and the method of Davis et &.are analyzed in  are small in comparison to other processes for porphyrin-type
subsection IV C. In the conclusions the achievements and systemd®55\When fluorescence does not have to be taken into

possible extensions of this work are discussed. account, all states excej*BA [i(excited electron at sitsl =
1), ID™B~AU(excited electron at sitt = 2), and|D"BA~U
Il. Model (excited electron at sitll = 3) remain essentially unoccupied,

whereas those three take part in the intermolecular transport
process (see Figure 1). In this case the number of states coincides
with the number of sites in the system and we label the states
_ D NAss, ID*BA L[] [ID*B-AL) IDTBA-Owith the indicesu = 1, 2, 3,
!orldge M =2), and ac;ceptorM _.3)’ is analyzed. The donor respectively. Thus that the index of state reflects the

is not able to transfer its charge directly to the acceptor becauselocalization of the excited electron at sit& This coincidence

of their spatial separation. Donor and acceptor can exchange,s sed below for labeling the number operaforfor the

their charges only through the bridge. In the present investigation oo trons. the interblock hopping tefth etc.

the supermolecule consists of free-base tetraphenylporphyrin For the description of the ET and other dynamical processes

(H2P) as donor, zinc-substituted tetraphenylporphyrin (ZnP) as i, yhe system placed in a dissipative environment we introduce
bridge, andp-benzoquinone (Q) as accepiéin each of those the Hamiltonian

molecular blocks we consider only two molecular orbitais (

= 0,1), the highest occupied molecular orbital (HOM® = H=Hg+ Hg + Hgg 1)

0) and the lowest unoccupied molecular orbital (LUM®= . .

1).53 Each of these orbitals can be occupied by an electron or whereHs describes the supermolecults the dissipative bath,
not, denoted by1or |OC) respectively. This model allows us  andHsg their interaction. We are interested in the kinetic limit
to describe four states of each molecular block, the neutral of the excited-state dynamics here. For this limit we assume

A. System Part of the Hamiltonian. The photoinduced ET
in supermolecules consisting of three sequentially connected
molecular blocks indicated by indéw, that is, donor 1 = 1),
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that the relaxation of the solvent takes only a very short time distances, andr,,, are also used in Marcus thedi{The term

compared to the system times of interest. He + Hion reflects the interaction of charges inside the
The effect of the solvent is twofold. On one hand the system supermolecule, which is weakened by the reaction field accord-

dynamics is perturbed by the solvent-state fluctuations, inde- ing to the Born formul&

pendent of the system statéksg shall only reflect the dynamical

influence of the fluctuations leading to dissipative processes, =14 1-« 4)

as discussed in the next subsection. On the other hand the system 2¢

states are shifted in energ¥,

S

. . . . In the second model, considering the supermolecule as one
Hs=Hy+ HetV (2) object placed in a single cavity of constant radius, one has to
o ~ use the Onsager terfh.This term is state-selective; it gives a
because of the static influence of the solvent, which is contribution only for the states with nonzero dipole moment,

determined by the relaxed value of the solvent polarization and that is, charge separation. Defining the static dipole moment
in general also includes the nonelectrostatic contributions suchgperator as

as van der Waals attraction, short-range repulsion, and hydrogen

bonding>"*%In eq 2 the energy of free and noninteracting blocks p= Z(ﬁ/‘ - 1){, - T ,e

Ho = > MmEmmfivm, IS given by the energidSum of orbitalsMm w

in the independent electron approximatiof. The Eyn, are R

chosen to reproduce the ground-stegecited-state transitions, ~We obtainHes = S'p?/r15, with Onsager scaling

for example, D— D*, which change only a little for different 1—

solventd® and are assumed to be constants here. To determine = € (5)

Evwm One starts from fully ionized double bonds in each 2t 1

molecular block? calculates the one-particle states, and fills ) ) o .

these orbitals with two electrons each, starting from the lowest ~B. Microscopic Motivation of System—Bath Interaction

energy. By exciting, removing, and adding the last electron to @nd Thermal Bath. One can express the dynamic part of the

the model system one obtains the energy of the excited, oxidized System-bath interaction as

reduced molecular block in the independent particle approxima- . . .

tion. Hee=— [ d3fz D,,.(T)AP(T) (6)
The interblock hopping term v

S

Y — 9 9 A aN2 s N2 HereD,,(F) denotes the field of the electrostatic displacement
V= ZVU/‘ (V;V * V/‘V)[(n“ 7+ 0, =11 at point?ﬂinduced by the system transition dipole momppt
! = T)ﬂv((/,:ry + \A/,“,).31 The field of the environmental polariza-
in eq 2 includes the operators of electron hoppMg = tion is denoted a®(f) = Y,0(T — Tn)dn, Whered, is the nth
ciaoma from the excited state (LUMO) at sifd to the excited dipole of the environment and its position. Only fluctuations
state (LUMO) at siteN and the coherent couplings,,. As of the environment polarizatiodP(r) influence the system

aforementioned, the index can also be used to denote the dynamics. Averaged over the angular dependence the interaction
location of the excited electron. Because of the analogy of the read$®
site indexM and state index, the operator, represents the

number of electrons at sitkl. We assume;s = 0 because Oo—_ 1 (2 1121, | Ald| .
there is no direct connection between donor and acceptor. The SBT Arre \3 - 3 ™
scaling ofv,,, for different solvents is discussed in subsection o Il

II'D.

The dynamical influence of the solvent is described with a
thermal bath model. The deviatiak|d,| of d, from its mean
value is determined by temperature-induced fluctuations. For
unpolar solvents described by a set of harmonic oscillators the
diagonalization of their interaction yields a bath of harmonic
oscillators with different frequencias, and effective masses
m. In the case of a polar solvent the dipoles are interacting
rotators as, for example, used to describe magnetic phenom-
N " " enab283The elementary excitation of each frequency can again
Hes = §(65) (He + Hion) (3) be characterized by an appropriate harmonic oscillator. So we
use generalized coordinates of solvent harmonic oscillator modes

Q. = Vh(@mw,) (& + &) for polar as well as unpolar
solvents. The occupation of thih state of thelth oscillator is
takes the electron interaction into account while bringing an defined by the equilibrium DNp;j = exp[~hw;i/(ksT)]d;.
additional charge onto the blogkand thus describes the energy All mutual orientations and distances of solvent molecules
to create an isolated ion. This term depends on the characteristichave equal probability. An average over all spatial configurations
radiusr, of the molecular block. The interaction between the is performed. The interaction Hamiltonian (eq 7) is written in

The electrostatic interactioHes enters into the system part
of the Hamiltonian eq 2. It scales like the energies in a system
of charges surrounded by a medium with static dielectric
constantks according to the classical reaction field theétyere
we consider two scaling models. In the first model each
molecular block is in an individual cavity in the dielectric. For
this case the electrostatic energy reads

Ho= IA, — Le¥dneqr,)

ions a form that is bilinear in system and bath operators:
Hon = > (A, — DA, — DE(dreqr,,) Ase =1 PV, + VZV)][ZKa(éI TS (8)

depends on the distance between the molecular blggkBoth p.»Kz denotes the interaction intensity between the bath mode
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a, of frequencyw,; and the quantum transition between the
LUMOs of moleculesu andv with frequencyw,, = (E, —
E,)/h. The scaling functiorSsg reflects the properties of the
solvent. Explicit expressions for the solvent influence are still
under discussion in the literatutéS8 sponding bath mode(w,,) with the dissipative transitiong,,

C. Reduced Density Matrix Approach. The interaction of = I'wIn(w,)| and the corresponding dephasings = ¥ (0.«
the system with the bath of harmonic oscillators describes the + d,,)/2. With this, one can express the RDMEM (eq 9) in the
irradiative energy transfer from the system to the solvent as form
modeled by eq 8. Radiative processes are neglected here because
of the much longer time scales. For the description of the ¢,
dynamics we use the reduced DM, which can be obtained from
the full DM p by tracing over the environmental degrees of
freedomo = Trgp38 with the evolution operator techniqd@é
restricting ourselves to the second-order cumulant expafiion.

At this point we recall that the electrostatic interacttdg is
included in the energies of the system states. The electronic
couplingV between the states is not included into the projection =~ The parameters controlling the transitions between the
procedure. This approximation has been performed for the sakeSelected states are discussed in subsection Il E.
of simplicity. For the transitions between ScHinger and D. Scaling of Damping Constants.The relaxation coef-
Heisenberg pictures as used in the evaluation of the RDMEM, ficients of eq 10 include the second power of the Scaling function
one needs the explicit form of the system Hamiltonian, which Sss because second-order perturbation theory in the system
is much simpler in the limitV — 0. In principle one can  bath coupling is used. The physical meaningef is similar
eliminateV by diagonalizings. This method is referred to as  t0 the interaction of the system dipole with the surrounding
the adiabatic approach or eigenstate representﬁ]ﬂrgener&ﬂ media. That is Why it is reasonable to use the Onsager eXpreSSion
to apply it, the eigenvalues have to be calculated numerically. (€q 5) for Sss. In the work of Mataga et &F the interaction
Instead, we use the site representation (diabatic approach), thag€nergy between the system dipole and the media scales in
is, while evaluating the RDMEMY is set to 0. The condition  leading order is
of applicability of the diabatic approachgffv < hwyy, IS
discussed in subsection IV C. '

After tracing out the bath, we apply the Markov approxima-
tion, that is, we restrict ourselves to the limit of long times.
Furthermore, the discrete set of bath modes is replaced with awheree,, denotes the optical dielectric constant. From a recent
continuous one. To do so one has to introduce the spectralpaper of Georgievskii et &f.we extract
density of bath modes(w) = 75 ;K% (w — w;). Finally one 11

obtains the following master equation r~=—-=
€ €

of eq 9 corresponding to thg term in the HSR and GSLE

models because the rotating wave approximation is applied.
For the sake of convenience of the analytical and numerical

calculations we replac€,, and the population of the corre-

_i/hz(vyvavﬂ - O'/WUV“) -

> d,0,,+ > d,o, (11)

GMV = (_iw,uv - Vluv)O_yV - i/hv/,w(aw - Quﬂ)

12)

20— 1) 2(e,— 1)
2.+ 1 2e,+1

S= (13)

0

for the multiple cavities model assumirg = €. In terms

i
O/d = __([HS’ O])M + Zéki.z{ryk[n(w,uk) + 1] +
h Iz of a scaling function it can be expressed as

rxﬂn(wx‘u)} OMM - Z{rﬂK[n(w‘uK) + 1] + rKan(wKﬂ) +
u

r‘ull[n(w‘u/l) + 1] + r/l/,{n(w/ly)} 01 + {rlk[zn(wlk) + 1] +
rid[zn(wld) + 1]} O (9)

Sip = (Lleg — 1/e)*? (14)
As we have already argued in ref 54, the coherent coupling
v between two electronic states scales withand €., too,
because a coherent transition in the system is accompanied by
a transition of the environment state, which is larger for solvents
with larger polarity. As discussed above, we neglect the
_2 5 vibrational substructure of each electronic state because the
r,= %Bﬁ J(ww)p,w vibrational relaxation is about 2 orders of magnitude faster than
the characteristic ET time. But in contrast to the model with
reflects the coupling of the transitign(0— |u[to a bath mode vibrational substructure, the present model does not involve any
of the same frequency. It depends on the density of bath modesreaction coordinate. To reproduce the results of the more

wheren(w) = [exptw/ksT) — 1]~ denotes the BoseEinstein
distribution. The damping constant

(10)

J at the transition frequency,, and on the transition dipole
momentsp,,. A RDMEM of similar structure was used for the
description of exciton transfer in the HSR moféP and the

GSLE model"4 The HSR method originating from the

stochastic bath model is valid only in the high-temperature

limit.8 The GSLE methotl*8is a model with a quantum bath
and systemtbath coupling of the fornHsg ~ V+V(é.z' + &),

elaborate model with vibrational substructure, one has to scale
the electronic couplings,, with the Franck-Condon overlap
elementdrc(u,0,7,0) between the vibrational ground states of
each pair of electronic surfaces

v‘uv = UngFC(ﬂ' O' v, O) (15)

which modulates the system transition frequencies. In refs 47 Wherevov is the coupling of electronic states of the isolated
and 48 the equations for exciton motion are derived using the molecule. For the calculation of the Frarekondon factors

projection operator technique. Taking the different systeath
coupling we have derived the RDMEM, which coincides with
the GSLE*"#8Both GSLE and our RDMEM are able to describe

one has to introduce the leading (mean) environment oscillator
frequencywyip. Herew,i, = 1500 cnt is used, which is similar
to the frequency of the €C stretching mode. With this scaling

correctly finite temperatures. Below, we neglect the last term one implicitly introduces a reaction coordinate into the model.
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TABLE 1: Energy of Charged Bridge State in Different
Solvents and Corresponding ET Rates

solution CHCI, MTHF CYCLO
€5, ref 67 9.08 6.24 2.02
Eptga, €V 3.12 3.18 3.59
ket, 107 s71, numericad 33 36 0.46
ker, 107 s71, analyticat 33 36 0.46
ker, 107 s71, experimentaf 23+5 36+5 0+3

a For calculations, born scaling (eq 4) of energy and Marcus scaling
(eq 14) of dissipation are used.

E. Model Parameters. The dynamics of the system is
controlled by the following parameters: energies of system
statesE,, coherent couplings,,, and damping constanis,,..

On the basis of the spectral d&and takingEpga = 0 as
reference energy we determifgsga = 1.82 eV (in CHCIy).
We take the energy of the state with ET to Q from ref 16:
Ep+ea- = 1.42 eV® Further, Rempel et dF estimate the
coupling of initially excited and charged bridge states
[D*BA |H|D*B~ALl= 19, = 65 meV= 9.8 x 10'3s ! and the
coupling of the two states with charge separation
[D*B-A[H|D*BA = 19, = 2.2 meV= 3.3 x 10125 L. The

values of the couplings are essentially lower than the energy

differences between the relevant system states

(16)

0
hw/w >y,

This is the reason to remain in site representation instead of

eigenstate representatihhThe damping constants are found
with help of the analytical solution derived at the end of the
next section to bd’; = 'z = 2.25 x 102 sL. The typical
radius of the porphyrin ring is about = 5 4 1 A1 while the
distancer,, between the blocks of ##—ZnP—Q reaches;, =
125+ 1 A17r,3 =7+ 1 A ri3=14+ 1 A The main
parameter that controls ET in a triad is the energy of the state

Ep*s-a. This state has a big dipole moment because of its charge

separation and is therefore strongly influenced by the solvent.
Because of the special importance of this value we calculate it
for the different solvents as a matrix element of the system
Hamiltonian (eq 2). The calculated values of the energies of
the D'B~A state for some solutions are shown in Table 1.

I1l. Results

The time evolution of the ET in the supermolecule is
described by solving egs 11 and 12 numerically and analytically.
As an initial condition, the donor population is set to one, which
can be reached by @ pulse of appropriate frequency.

For the numerical simulation we express the system of eqs
11 and 12 in the forn# = Ao, whereg is a vector of dimension
32 for the model with 3 system states and the superopefator
is a matrix of dimension3x 32. We find an exponential growth
of the acceptor population

P3(t) = Py(0)[1 — exp(—kgrt)]

where for the solvent 2-methyltetrahydrofuran (MTHE) =
3.59x 10® s andP3(«) = 0.9994. The populatioR,, which

17)
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The alternative analytical approach is performed in the kinetic

limit
t>1/min(y,,) (29)

In Laplace space the inequality (eq 19) reads min(y.),
wheres denotes the Laplace variable. It is equivalent to replacing
the factor 1w, + y. + 9) in the Laplace transform of eqs
11 and 12 with 14@,, + ). This trick allows us to substitute
the expressions eq 12 for nondiagonal elements of the DM into
eq 11. After this elimination we describe the coherent transitions
to which the nondiagonal elements contribute by redefinition
of the diagonal RDMEM (eq 11)

G.u/d = _zgluva/,t,u + ngﬂO‘VV (20)

The transition coefficientg,, contain dissipative and coherent
contributions
9o =0, + 0,0, 7,000, 7,07 (1)
Now it is assumed that the bridge is not populated. This
allows us to find the acceptor population in the form of eq 17,
where

Ket = 3o+ 03(012 — G32)(921 + 923)71 (22)

P3(%0) = 91,0,d(%1 + 923)kET]_1

The value ofl,, = Sgh2J(w,.)p%, can be found compar-
ing the experimentally determined ET rate and eq 22. To
calculateJ(w,,) would require a microscopic model. To avoid
a microscopic consideration we simply take the sdmefor
all transitions between excited states. The value of ET #6-H
ZnP—Q in MTHF is found by Rempel et f to beker = 3.6
+ 0.5 x 1 s In the systems considered here the coefficients
01,023 are of order of magnitude 19s1, g1, of order 1§ s7%,
andgs, of order 10 s™L. If the bridge state has a rather high
energy, one can neglect thermally activated procesges<
ds2 = 0). For the deactivation processes the dissipative terms
are stronger than the coherent ongg € d,i1, 023 = d23). The
couplingwv,s is negligibly small with respect to;,. In this case
eq 22 reads

Ker = vizr 21F23(h2w§l + rgl)_l(FZI + rza)_l

With the relationI',; = I',3 and the experimentdder, one
obtainsl'z; = '3 = 2.25 x 102 571, The fit of the numerical
solution of egs 11 and 12 to the experimerkat in MTHF
gives the same value. So the damping constants are fixed for a
specific solvent, and for other solvents they are calculated with
the scaling functions. With this method the ET was found to
be dominated by the superexchange mechanism with rates 4.6
x 10° s71 for cyclohexane (CYCLO) and 3.3 1C st for
CH.Cls.

(23)

(24)

IV. Discussion

corresponds to charge localization on the bridge, does not exceed ) .
0.005. This means that in this case the superexchange mecha- A- Sequential Versus Superexchangélo discuss how the
nism dominates over the sequential transfer mechanism. Besidest,ranSfer mechanism depends on the change of parameters we

it ensures the validity of characterizing the system dynamics
with P3(e0) and

Ker = Py(eo){ f{[Ps(e0) — Py(t)]dlt} (18)

calculate the system dynamics varying one parameter at a time.
The dependencies &t andP3(c) onv1y, vozandl'sy, I'rz are
shown in Figures 2 and 3. The change of each parameter
influences the transfer in a different way. In particulkgr
depends quadratically an, from 10 s 1to 10" s 1in Figure
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2. Below it saturates at the lower boukgr O 3 x 10° s, ' ' ' »
This corresponds to a crossover of the ET mechanism from 10 T
superexchange to sequential transfer. But, because of the big a
energy difference between donor and bridge states, the sequential 9+ 7
transfer efficiency is extremely low. This is displayedPyfc) - L
= 0. In the regionvi, ~ v13 both mechanisms contribute to » g8 /" E
ket. The decrease 3() in this region corresponds to coherent xm &~
back transfer. The ET rate dependswggin a similar way. At = 7L o J
rather high values of1,, v23 = 10'® s71, the relation (eq 16) is 2 ’x"
no longer valid. For this regime one has to use eigenstate instead = g | 2 _
of site representation because the wave functions are no longer M“““““:,/
localized?® 5 C-—=—7~ - ) ,

The variationI'z3, T'23 near the experimental values shows 11 12 13 14 15

similar behavior ofker(I'21) andket(T'23) (see Figure 3). Here

I , s, 109, (Ve S
we independently vary,; andI'zz. Both ker(I'21) andker(I23) 9G;o(Viz» 8 ), 10G;0(Vzs: S )

increase linearly until the saturation valuex710° st atT" > 11 12. 13 14 15
102 s 1is reached. The numerical and analytical values agree 1 .
qualitatively. In eq 18 infinite time is approximated by G
and so one cannot obtain ET rates lower than this limit.
The physical meaning of the ET rate dependencE saems 08 b
to be transparent. At small valuesbfa part of the population
coherently oscillates back and forth between the states. The _ 0.6 |
increase of the dephasityg, quenches the coherence and makes 8
the transfer irreversible. So transfer becomes faster up to a o™ 0.4 |
maximal value. For the whole range Df depopulationsd;,,
dz3 and thermally activated transitioms,, ds; always remain
smaller than the coherent couplings; therefore they do not play 0.2 r A
an essential role. P
Next, the similarity of the dependencies by and >3 will 0 atbesr
be discussed on the basis of eq 22. In the likgit/fiw,, — O Figure 2. Dependence of ET rate (a) and final acceptor population

therma”y activated processes W|ﬂ'ﬂm; < O vanish and -SO (b) on coherent Coup"ngslz (triang|es and dashed linegs = Ug3 =
IN(w,)| = 0, wherever depopulations witf,, > 0 remain 2.2 meV),vss (dots and solid linevy, = v, = 65 meV). Symbols
constant|n(w,,) = 1. The conditionw,, > y,, allows us to represent numerical solution of egs 11 and 12, lines analytical solution
neglecty’, in comparison withw?,. With these simplifications ~ (eds 22 and 23).

eq 22 becomes 10 . .

Ker = Dol pa(I'5; + rzs)_l(vizlaél + v§3/v§3) (25)

that is, symmetric with respect 6;; andI'zs.

To the largest extent the mechanism of transfer depends on -~
the bridge energ¥p+s-a as presented in Figure 4. In different 24
regions one observes different types of dynamics. For large
bridge energie&,; = Ep+g-a — Ep*sa > 0 the numerical and
analytical solutions do not differ from each other. The transfer
occurs with the superexchange mechanism. The ET rate reaches
a maximal value of 18 s* for low bridge energies.

While the bridge energy approaches the donor energy, the 5 ‘

S
w
S
=4
(@)
o

sequential transfer starts to contribute to the ET process. The 8 9 1lo 11 12 13

traditional scheme of sequential transfer is obtained when donor, o1 -1

. f : Iog10(1“21, s )’ |Og10(r23, S )
bridge, and acceptor levels are arranged in a cascade. In this_ _ _
region the analytical solution need not coincide with the Figure 3. Dependence of ET rate on damping constanigtriangles
numerical solution because the used approximations are no2Nd dashed line)lzs (dots and solid line). The other parameters

. . - correspond to BP—ZnP-Q in MTHF. Symbols represent numerical

longer valid. For equal bridge and acceptor enerigigslisplays and lines analytical solution.
a small resonance peak in Figure 4a. When the bridge energy
is lower than the acceptor energy the population gets trapped The energy dependence of the final population has a
at the bridge. The finite value &t for Eoy < Es; does not transparent physical meaning for the whole range of energy. A
mean ET becaus@s(«) — 0. For the dynamic time intervak large bridge energy ensures the transition of the whole popula-
y;j a part of the population tunnels force and back to the tion to the acceptor. In the intermediate case, when the bridge
acceptor withker. The analytical solution (eq 22) gives a has the same energy as the acceptor, the final population is
constant rate for the regint&; < Esj;, whereas the numerical  equally distributed on these two stafegeo) = 0.5. Lowering
solution of eqs 11 and 12 is instable. This is because coherentthe bridge even more, the whole population remains on the
oscillations of the population cannot be described by eqs 17 bridge as the lowest state of the system. The dependence of the
and 18. In Figure 4 the regintg; < Ez; occurs for smalEy; ET rate on the acceptor enerfy; = Ep*ea~ — Ep#sa in Figure
while Eg; is kept constant and for lardes; while E; remains 4 remains constant while the acceptor energy lies below the
constant. bridge energy. Increase &h; up to Ex; = 1.36 eV gives the
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2 \ - / — Born-Marcus, an.
= Ny, N / -~ Onsager-Mataga, an.
=~ 9t “n“““ 1 X Experiment ]
A Born—Marcus, num.
4 Onsager-Mataga, num|
-0.8 0.4 0 04 0.8 1.2 1.6 0 5 4 6 3
E,,, E,,, eV e
-08 -04 0 0.4 0.8 1.2 1.6 Figure 5. ET rateker versus dielectric constant. The energies of the
1 N s bridge and acceptor scale in accordance with Born expression (eq 4)
[ A (triangles and solid line), Onsager expression (eq 5) (diamonds and
b '/ N dashed line). Coherent couplings and damping constants scale in
08 | 4 accordance with Mataga’'s expression (eq 13) (diamonds and dashed
] line), Georgievski-Marcus expression (eq 14) (triangles and solid line).
" Symbols represent numerical and lines analytical solution. Solid crosses
.06t | 1 with error bars give experimental valu€s\ote that by using a different
K |4 value of the damping parametércurves can be calculated that almost
o’ 0.4 | ,' | pass through all three experimental error bars.
|
] CYCLO, MTHF, and CHCI, one obtains the relative bridge
0.2 + ,' A . energiesE,; = 1.77, 1.36, and 1.30 eV, respectively.
/’ The calculated ET rate coincides with the experimental
0 lumdass s . l . valué'® for H,P—ZnP—Q in CYCLO (see Table 1). For GH

Figure 4. Dependence of ET rate (a) and final acceptor population Cl, the numerical ET rate is approximately 30% faster than the
(b) on energy of BE» = Eo's-a — Eoksa (triangles and dashed line, experimental value. It has to be noted that a value for the
Es1 = —0.4 eV) and AEs1 = Ep*sa- — Epea (dots and solid lineEa: damping rates can be chosen such that the calculated curve
= 1.36 eV). Symbols represent numerical and lines analytical solution. @lmost passes through all three experimental error bars. On the
v12 = 65 meV,vz3 = 2.2 meV,[5; = I3 = 2.25 x 1012 sL, other hand an error in the present calculation could be due to
(a) absence of vibrational substructure of the electronic states
maximal ket O T'2;. WhenEg; increases further, the acceptor in the present model; (b) incorrect dependence of system states

becomes the highest level in the system and therefore theenergies on the solvent properties; (c) opening of additional
population cannot remain on it. transfer channels not mentioned in the scheme shown in Figure

B. Different Solvents. For the application of the results to 1. Each of these possibilities needs some comments. _
various solvents and comparison with experiment, one should ad (&): The incorporation of the V|brat|oz1al_s_ubstructure will
use the scaling for energy, coherent couplings, and damping"®Sult in a complication of the modéf* giving a more
constants as discussed above. The combinations of the energy©MPlicated ET rate dependence on the energy of the electronic

scaling in subsection Il A and damping constants scalings in States and dielectric constant. It should yield the maximal ET
subsection Il D are represented in Figure 5. An increas in rate for nonequal energies of electronic states, namely for the

from 2 to 4 leads to an increase of the ET rate, no matter which activationless case when the energy difference equals the

scaling is used. Further increasecginduces saturation for the reorgqmzatlor? energy. For a comparison of the models with
and without vibrational substructure see ref 54.

OnsagerMataga scaling and even a small decrease. Within ; )

the applied approximations an increase in the solvent polariz- m;gcﬁtgr Eﬁr?;:r?iczucs:?mﬁlsattigﬁ S?L\;atlg?alsfﬁﬁzngiegf ihe

ability and, consequently, of its dielectric constant lowers the solvent is pr{)bably reflected in.an energy shift between the

bridge and acceptor energies and increases the sydtath -

. - ) oy spectroscopically observable stafskga and Epgxa.16

interaction and, co.nsequently, the relaxation coefficients. It ad (c): A solvent with larges can bring high-lying system

mdu_ces a smooth rise of the ET rate for the Or_msag@taga states closer to the ones included in Figure 1; for example,

scaling. On the other hand, larggeads to essentially different because of its large dipole momenD-B*Alis strongly

polarizational states of the environment for the supermolecule influenced by the solvent.

states with different dipole moment. This reduces the coherent ~ Comparison with Similar Theories. In the present

couplings (see eq 15), leading for the Beiarcus scalingto  5icijjations we have used the site representation (diabatic

asmall decrease &fr for largees The ET rate with this scaling  grnroach). There is some discussion in the literature about the

comes closer to the experimental vakge(e;°":°"). This gives precision of the results obtained within this appro4Nev-

a hint that the model of individual cavities for each molecular ertheless, one uses the diabatic approach rathefdfidrecause

block is closer to reality than the model with a single cavity i s |ess expensive numericall§. The applicability of the

for the whole supermolecule. diabatic approach depends on the relations between coherent
Below we consider Born scaling eq 4 for the system energies couplings and energy separations. The formalism derived in this

and Marcus scaling eq 14 for the damping constant to comparepaper has been applied to different regions of coupling values.

the calculated ET rates with the measured ones. For the solvent€ne region corresponds to the variation of the coupling values
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in Figure 2. This region is rather broad and includes those valuesment of the number of molecular blocks in the complex; (c)
that have been used for,P=ZnP—Q with and without the initial excitation of states with rather high energy should open
scaling ansatz fop,,. The relationhw,, > v, holds for the additional transfer channels.

whole region of coupling values presented in Figure 2. In most

of the parameter range,, is even much smaller thafw,,. Acknowledgment. D.K. thanks U. Rempel and E. Zenkevich
For the largest values of the coherent couplings presented infor stimulating discussions. Financial support of the DFG is
Figure 2 the site representation becomes problematic and thegratefully acknowledged.
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