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Electron transfer (ET) in different solvents is investigated for systems consisting of donor, bridge, and acceptor.
It is assumed that vibrational relaxation is much faster than the ET. ET rates and final populations of the
acceptor state are calculated numerically and in an approximate fashion analytically. In wide parameter regimes
these solutions are in very good agreement. The theory is applied to the ET in H2P-ZnP-Q, with free-base
porphyrin (H2P) being the donor, zinc porphyrin (ZnP) the bridge, and quinone (Q) the acceptor. It is shown
that the ET rates can be controlled efficiently by changing the energy of the bridging level, which can be
done by changing the solvent. The solvent effect is determined for different models. PACS numbers: 31.70.Hq,
34.70.+e, 82.20.Rp

I. Introduction

Electron transfer (ET) is a very important process in biology,
chemistry, and physics.1-5 The most well-known ET theory is
the one of Marcus.6 Of special interest is the ET in configura-
tions where a bridge (B) between donor (D) and acceptor (A)
mediates the transfer. On this kind of ET we will focus in this
paper. The primary step of ET in bacterial photosynthetic
reaction centers is of this type,7 and a lot of work in this direction
was done after the structure of the protein-pigment complex
of the photosynthetic reaction centers of purple bacteria was
clarified in 1984.8 Many artificial systems, especially self-
organized porphyrin complexes, have been developed to model
this bacterial photosynthetic reaction center.3,9,10

Bridge-mediated ET reactions can occur via different
mechanisms:4,11-13 incoherent sequential transfer in which the
bridge level is populated, or coherent superexchange14,15 in
which the mediating bridge level is not populated but neverthe-
less necessary for the transfer. Changing a building block of
the complex9,16,17or changing the environment16,18can modify
which mechanism is mainly at work. Actually, there is still a
discussion in the literature as to whether sequential transfer and
superexchange are limiting cases of one process19 or whether
they are two processes that can coexist.7 To clarify which
mechanism is present in an artificial system one can systemati-
cally vary the energetics of the complex. In experiments this is
done by substituting parts of the complexes9,10,16,17,20or by
changing the polarity of the solvent.16 Also the geometry and
size of the bridge block can be varied, and in this way the length
of the subsystem through which the electron has to be
transferred9,11,20-23 can be changed.

Superexchange occurs because of coherent mixing of the three
or more states of the system.14,15,24,25The ET rate in this channel
depends algebraically on the differences between the energy
levels9,10 and decreases exponentially with increasing bridge
length.14,23,25 When incoherent effects such as dephasing
dominate, the transfer is mainly sequential,12,23that is, the levels

are occupied mainly in sequential order.5,12,13,16The dependence
on the differences between the energy levels is exponential.9,10

An increase of the bridge length induces only a small reduction
in the ET rate.5,21,23,25,26This is why sequential transfer is the
desired process in molecular wires.23,27

In the superexchange case the dynamics is mainly Hamilto-
nian and can be described on the basis of the Schro¨dinger
equation. The physically important results can be obtained by
perturbation theory14,28and, most successfully, by the semiclas-
sical Marcus theory.6 The complete system dynamics can be
directly extracted by numerical diagonalization of the Hamil-
tonian.23,29 In case of sequential transfer the influence of an
environment has to be taken into account. There are quite a
few different ways of how to include an environment modeled
by a heat bath. The simplest phenomenological descriptions are
based on the Einstein coefficients or on the imaginary terms in
the Hamiltonian,30,31 as well as on the Fokker-Planck or
Langevin equations.30,31The most accurate but also numerically
most expensive way is the path integral method.30 This has been
applied to bridge-mediated ET, especially in the case of bacterial
photosynthesis.32 Bridge-mediated ET has also been investigated
using Redfield theory,13,33by propagating a density matrix (DM)
in Liouville space,12 and other methods.25,29,34-36

The purpose of the present investigation is to present a simple,
analytically solvable model based on the DM formalism37,38and
apply it to a porphyrin-quinone complex, which is taken as a
model system for the bacterial photosynthetic reaction center.
The master equation that governs the DM evolution as well as
the appropriate relaxation coefficients can be derived from such
basic information as system-environment coupling strength and
spectral density of the environment.37-45 In the present model,
relaxation is introduced in a way similar to Redfield theory but
in site representation, not in eigenstate representation. A
discussion of advantages and disadvantages of these representa-
tions has been given elsewhere.46 The equations for the DM
are the same as in the generalized stochastic Liouville equation
(GSLE) model47,48 for exciton transfer, which is an extension
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of the Haken-Strobl-Reineker (HSR) model49,50 to a model
with a quantum bath. Here we give an analytic solution to these
equations. The present equations for the DM obtained are also
similar to those of ref 11, where relaxation is introduced in a
phenomenological fashion but only a steady-state solution is
found, in contrast to the model introduced here. In addition,
the present model is applied to a concrete system. A comparison
of the ET time with the bath correlation time allows us to regard
three time intervals of system dynamics: the interval of memory
effects, the dynamical interval, and the kinetic, long-time
interval.49 In the framework of DM theory one can describe
the ET dynamics in all three time intervals. However, often it
is enough to find the solution in the kinetic interval for the
explanation of experiments within the time resolution of most
experimental setups, as has been done in refs 11 and 51. The
master equation is analytically solvable only for simple models,
for example, refs 31 and 52. Most investigations are based on
the numerical solution of this equation.12,26,40,43Here we perform
numerical as well as approximate analytical calculations for a
simple model. Because the solution can be easily obtained, the
influence of all parameters on the ET can be examined.

The paper is organized as follows. In the next section the
model of a supermolecule that we use to describe ET processes
is introduced. The properties of an isolated supermolecule are
modeled in subsection II A, as well as the static influence of
the environment. The dynamical influence of bath fluctuations
is discussed and modeled by a heat bath of harmonic oscillators
in section II B. The reduced DM equation of motion (RDMEM)
describing the excited-state dynamics is presented in subsection
II C. In subsection II D the system parameter dependence on
the solvent dielectric constant is discussed for different models
of solute-solvent interaction. In subsection II E the system
parameters are determined. The methods and results of the
numerical and analytical solutions of the RDMEM are presented
in section III. Dependencies of the ET rate and final acceptor
population on the system parameters are given for the numerical
and analytical solutions in subsection IV A. The analysis of
the physical processes in the system is also performed there. In
subsection IV B we discuss the dependence of the ET rate on
the solvent dielectric constant for different models of solute-
solvent interaction and compare the calculated ET rates with
the experimentally measured ones. The advantages and disad-
vantages of the presented method in comparison with the GSLE
model47,48 and the method of Davis et al.11 are analyzed in
subsection IV C. In the conclusions the achievements and
possible extensions of this work are discussed.

II. Model

A. System Part of the Hamiltonian.The photoinduced ET
in supermolecules consisting of three sequentially connected
molecular blocks indicated by indexM, that is, donor (M ) 1),
bridge (M ) 2), and acceptor (M ) 3), is analyzed. The donor
is not able to transfer its charge directly to the acceptor because
of their spatial separation. Donor and acceptor can exchange
their charges only through the bridge. In the present investigation
the supermolecule consists of free-base tetraphenylporphyrin
(H2P) as donor, zinc-substituted tetraphenylporphyrin (ZnP) as
bridge, andp-benzoquinone (Q) as acceptor.16 In each of those
molecular blocks we consider only two molecular orbitals (m
) 0,1), the highest occupied molecular orbital (HOMO,m )
0) and the lowest unoccupied molecular orbital (LUMO,m )
1).53 Each of these orbitals can be occupied by an electron or
not, denoted by|1〉 or |0〉, respectively. This model allows us
to describe four states of each molecular block, the neutral

ground state |1〉HOMO|0〉LUMO, the neutral excited state
|0〉HOMO|1〉LUMO, the positively charged ionic state|0〉HOMO|0〉LUMO,
and the negatively charged ionic state|1〉HOMO|1〉LUMO. cMm

+ )
|1〉Mm〈0|Mm, cMm ) |0〉Mm〈1|Mm, andn̂Mm ) cMm

+ cMm describe the
creation, annihilation, and number of electrons in orbitalMm,
respectively, whereasn̂M ) ∑mn̂Mm gives the number of electrons
in a molecular block. The number of particles in the whole
supermolecule is conserved,∑Mn̂M ) const.

Each of the electronic states has its own vibrational substruc-
ture. As a rule for the porphyrin-containing systems the time
of vibrational relaxation is 2 orders of magnitude faster than
the characteristic ET time.16 Because of this we assume that
only the ground vibrational states play a role and we do not
include the vibrational substructure. A comparison of the models
with and without vibrational substructure has been given
elsewhere.54

Below we consider the evolution of single charge-transfer
exciton states in the system. For the full description of the
system one also should include photon modes to describe for
example the fluorescence from the LUMO to the HOMO in
each molecular block transferring an excitation to the electro-
magnetic field. But the rates of fluorescence and recombination
are small in comparison to other processes for porphyrin-type
systems.16,55When fluorescence does not have to be taken into
account, all states except|D*BA 〉 (excited electron at siteM )
1), |D+B-A〉 (excited electron at siteM ) 2), and|D+BA-〉
(excited electron at siteM ) 3) remain essentially unoccupied,
whereas those three take part in the intermolecular transport
process (see Figure 1). In this case the number of states coincides
with the number of sites in the system and we label the states
|D*BA 〉, |D+B-A〉, |D+BA-〉 with the indicesµ ) 1, 2, 3,
respectively. Thus that the index of stateµ reflects the
localization of the excited electron at siteM. This coincidence
is used below for labeling the number operatorn̂ for the
electrons, the interblock hopping termV̂, etc.

For the description of the ET and other dynamical processes
in the system placed in a dissipative environment we introduce
the Hamiltonian

whereĤS describes the supermolecule,ĤB the dissipative bath,
andĤSB their interaction. We are interested in the kinetic limit
of the excited-state dynamics here. For this limit we assume

Figure 1. Schematic presentation of energy levels in the H2P-ZnP-Q
complex. The three states in the boxes play the main role in ET, which
can happen either sequentially or by a superexchange mechanism.
Dashed lines refer to sequential transfer, curved solid line to superex-
change, dot-dashed to energy transfer followed by ET, dotted line
optical excitation, and straight solid lines either fluorescence or
irradiative recombinations.

Ĥ ) ĤS + ĤB + ĤSB (1)
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that the relaxation of the solvent takes only a very short time
compared to the system times of interest.

The effect of the solvent is twofold. On one hand the system
dynamics is perturbed by the solvent-state fluctuations, inde-
pendent of the system states.ĤSB shall only reflect the dynamical
influence of the fluctuations leading to dissipative processes,
as discussed in the next subsection. On the other hand the system
states are shifted in energy,56

because of the static influence of the solvent, which is
determined by the relaxed value of the solvent polarization and
in general also includes the nonelectrostatic contributions such
as van der Waals attraction, short-range repulsion, and hydrogen
bonding.57,58In eq 2 the energy of free and noninteracting blocks
Ĥ0 ) ∑MmEMmn̂Mm, is given by the energiesEMm of orbitalsMm
in the independent electron approximation.4,59 The EMm are
chosen to reproduce the ground-state-excited-state transitions,
for example, Df D*, which change only a little for different
solvents16 and are assumed to be constants here. To determine
EMm one starts from fully ionized double bonds in each
molecular block,59 calculates the one-particle states, and fills
these orbitals with two electrons each, starting from the lowest
energy. By exciting, removing, and adding the last electron to
the model system one obtains the energy of the excited, oxidized,
reduced molecular block in the independent particle approxima-
tion.

The interblock hopping term

in eq 2 includes the operators of electron hoppingV̂µν )
cN1

+ cM1 from the excited state (LUMO) at siteM to the excited
state (LUMO) at siteN and the coherent couplingsυµν. As
aforementioned, the indexµ can also be used to denote the
location of the excited electron. Because of the analogy of the
site indexM and state indexµ, the operatorn̂µ represents the
number of electrons at siteM. We assumeυ13 ) 0 because
there is no direct connection between donor and acceptor. The
scaling ofυµν for different solvents is discussed in subsection
II D.

The electrostatic interactionĤes enters into the system part
of the Hamiltonian eq 2. It scales like the energies in a system
of charges surrounded by a medium with static dielectric
constantεs according to the classical reaction field theory.60 Here
we consider two scaling models. In the first model each
molecular block is in an individual cavity in the dielectric. For
this case the electrostatic energy reads

takes the electron interaction into account while bringing an
additional charge onto the blockµ and thus describes the energy
to create an isolated ion. This term depends on the characteristic
radiusrµ of the molecular block. The interaction between the
ions

depends on the distance between the molecular blocksrµν. Both

distancesrµ andrµν are also used in Marcus theory.6 The term
Hel + Hion reflects the interaction of charges inside the
supermolecule, which is weakened by the reaction field accord-
ing to the Born formula61

In the second model, considering the supermolecule as one
object placed in a single cavity of constant radius, one has to
use the Onsager term.61 This term is state-selective; it gives a
contribution only for the states with nonzero dipole moment,
that is, charge separation. Defining the static dipole moment
operator as

we obtainĤes ) SHp̂2/r13, with Onsager scaling

B. Microscopic Motivation of System-Bath Interaction
and Thermal Bath. One can express the dynamic part of the
system-bath interaction as

HereD̂µν(rb) denotes the field of the electrostatic displacement
at pointrb induced by the system transition dipole momentp̂µν

) pbµν(V̂µν
+ + V̂µν).31 The field of the environmental polariza-

tion is denoted asP̂(rb) ) ∑nδ(rb - rbn)d̂n, whered̂n is the nth
dipole of the environment andrbn its position. Only fluctuations
of the environment polarization∆P̂(rb) influence the system
dynamics. Averaged over the angular dependence the interaction
reads56

The dynamical influence of the solvent is described with a
thermal bath model. The deviation∆|d̂n| of dn from its mean
value is determined by temperature-induced fluctuations. For
unpolar solvents described by a set of harmonic oscillators the
diagonalization of their interaction yields a bath of harmonic
oscillators with different frequenciesωλ and effective masses
mλ. In the case of a polar solvent the dipoles are interacting
rotators as, for example, used to describe magnetic phenom-
ena.62,63The elementary excitation of each frequency can again
be characterized by an appropriate harmonic oscillator. So we
use generalized coordinates of solvent harmonic oscillator modes

Q̂λ ) xp(2mλωλ)
-1(âλ + âλ

+) for polar as well as unpolar
solvents. The occupation of theith state of theλth oscillator is
defined by the equilibrium DMFλ,ij ) exp[-pωλi/(kBT)]δij.

All mutual orientations and distances of solvent molecules
have equal probability. An average over all spatial configurations
is performed. The interaction Hamiltonian (eq 7) is written in
a form that is bilinear in system and bath operators:

pµνKλ denotes the interaction intensity between the bath mode

ĤS ) Ĥ0 + Ĥes+ V̂ (2)

V̂ ) ∑
µν

Vµν(V̂µν
+ + V̂µν)[(n̂µ - 1)2 + (n̂ν - 1)2]

Ĥes) SH(εs) (Ĥel + Ĥion) (3)

Ĥel ) ∑
µ

|n̂µ - 1|e2(4πε0rµ)
-1

Ĥion ) ∑
µ
∑

ν

(n̂µ - 1)(n̂ν - 1)e2(4πε0rµν)
-1

SH ) 1 +
1 - εs

2εs
(4)

p̂ ) ∑
µν

(n̂µ - 1)(n̂ν - 1)rbµνe

SH )
1 - εs

2εs + 1
(5)

ĤSB ) - ∫ d3rb∑
µν

D̂µν( rb)∆P̂( rb) (6)

ĤSB ) - ∑
µνn

1

4πε0
(23)1/2|p̂µν|∆|d̂n|

| rbn|3
(7)

ĤSB ) [∑
µν

pµν(V̂µν + V̂µν
+ )][∑

λ

Kλ(âλ
+ + âλ)]SSB (8)
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aλ of frequencyωλ and the quantum transition between the
LUMOs of moleculesµ and ν with frequencyωµν ) (Eµ -
Eν)/p. The scaling functionSSB reflects the properties of the
solvent. Explicit expressions for the solvent influence are still
under discussion in the literature.57,58

C. Reduced Density Matrix Approach.The interaction of
the system with the bath of harmonic oscillators describes the
irradiative energy transfer from the system to the solvent as
modeled by eq 8. Radiative processes are neglected here because
of the much longer time scales. For the description of the
dynamics we use the reduced DM, which can be obtained from
the full DM F by tracing over the environmental degrees of
freedomσ ) TrBF38 with the evolution operator technique,18,64

restricting ourselves to the second-order cumulant expansion.65

At this point we recall that the electrostatic interactionĤes is
included in the energies of the system states. The electronic
couplingV̂ between the states is not included into the projection
procedure. This approximation has been performed for the sake
of simplicity. For the transitions between Schro¨dinger and
Heisenberg pictures as used in the evaluation of the RDMEM,
one needs the explicit form of the system Hamiltonian, which
is much simpler in the limitV̂ f 0. In principle one can
eliminateV̂ by diagonalizingĤS. This method is referred to as
the adiabatic approach or eigenstate representation.46 In general
to apply it, the eigenvalues have to be calculated numerically.
Instead, we use the site representation (diabatic approach), that
is, while evaluating the RDMEM,V̂ is set to 0. The condition
of applicability of the diabatic approach,υµν

0 , pωµν, is
discussed in subsection IV C.

After tracing out the bath, we apply the Markov approxima-
tion, that is, we restrict ourselves to the limit of long times.
Furthermore, the discrete set of bath modes is replaced with a
continuous one. To do so one has to introduce the spectral
density of bath modesJ(ω) ) π∑λK2

λ(ω - ωλ). Finally one
obtains the following master equation

wheren(ω) ) [exp(pω/kBT) - 1]-1 denotes the Bose-Einstein
distribution. The damping constant

reflects the coupling of the transition|µ〉 f |µ〉 to a bath mode
of the same frequency. It depends on the density of bath modes
J at the transition frequencyωµν and on the transition dipole
momentspµν. A RDMEM of similar structure was used for the
description of exciton transfer in the HSR model49,50 and the
GSLE model.47,48 The HSR method originating from the
stochastic bath model is valid only in the high-temperature
limit.48 The GSLE method47,48 is a model with a quantum bath
and system-bath coupling of the formĤSB ∼ V̂+V̂(âλ

+ + âλ),
which modulates the system transition frequencies. In refs 47
and 48 the equations for exciton motion are derived using the
projection operator technique. Taking the different system-bath
coupling we have derived the RDMEM, which coincides with
the GSLE.47,48Both GSLE and our RDMEM are able to describe
correctly finite temperatures. Below, we neglect the last term

of eq 9 corresponding to theγj term in the HSR and GSLE
models because the rotating wave approximation is applied.

For the sake of convenience of the analytical and numerical
calculations we replaceΓµν and the population of the corre-
sponding bath moden(ωµν) with the dissipative transitionsdµν
) Γµν|n(ωµν)| and the corresponding dephasingsγµν ) ∑κ(dµκ

+ dκν)/2. With this, one can express the RDMEM (eq 9) in the
form

The parameters controlling the transitions between the
selected states are discussed in subsection II E.

D. Scaling of Damping Constants.The relaxation coef-
ficients of eq 10 include the second power of the scaling function
SSB because second-order perturbation theory in the system-
bath coupling is used. The physical meaning ofHSB is similar
to the interaction of the system dipole with the surrounding
media. That is why it is reasonable to use the Onsager expression
(eq 5) for SSB. In the work of Mataga et al.66 the interaction
energy between the system dipole and the media scales in
leading order is

whereε∞ denotes the optical dielectric constant. From a recent
paper of Georgievskii et al.57 we extract

for the multiple cavities model assumingεω ) ε∞. In terms
of a scaling function it can be expressed as

As we have already argued in ref 54, the coherent coupling
υµν between two electronic states scales withεs and ε∞ too,
because a coherent transition in the system is accompanied by
a transition of the environment state, which is larger for solvents
with larger polarity. As discussed above, we neglect the
vibrational substructure of each electronic state because the
vibrational relaxation is about 2 orders of magnitude faster than
the characteristic ET time. But in contrast to the model with
vibrational substructure, the present model does not involve any
reaction coordinate. To reproduce the results of the more
elaborate model with vibrational substructure, one has to scale
the electronic couplingsυµν with the Franck-Condon overlap
elementsFFC(µ,0,ν,0) between the vibrational ground states of
each pair of electronic surfaces

whereυµν
0 is the coupling of electronic states of the isolated

molecule. For the calculation of the Franck-Condon factors
one has to introduce the leading (mean) environment oscillator
frequencyωvib. Hereωvib ) 1500 cm-1 is used, which is similar
to the frequency of the C-C stretching mode. With this scaling
one implicitly introduces a reaction coordinate into the model.

σ̆κλ ) -
i

p
([ĤS, σ])κλ + 2δκλ∑

µ

{Γµκ[n(ωµκ) + 1] +

Γκµn(ωκµ)}σµµ - ∑
µ

{Γµκ[n(ωµκ) + 1] + Γκµn(ωκµ) +

Γµλ[n(ωµλ) + 1] + Γλµn(ωλµ)}σκλ + {Γλκ[2n(ωλκ) + 1] +
Γκλ[2n(ωκλ) + 1]}σλκ (9)

Γµν ) SSB
2 p-2J(ωµν)pµν

2 (10)

σ̆µµ ) -i/p∑
ν

(υµνσνµ - σµνυνµ) -

∑
ν

dµνσµµ + ∑
ν

dνµσνν (11)

σ̆µν ) (-iωµν - γµν)σµν - i/pυµν(σνν - σµµ) (12)

SSB ) -[2(εs - 1)

2εs + 1
-

2(ε∞ - 1)

2ε∞ + 1 ] (13)

Γ ∼ 1
εs

- 1
ε∞

SSB ) (1/εs - 1/ε)1/2 (14)

υµν ) υµν
0 FFC(µ, 0, ν, 0) (15)
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E. Model Parameters. The dynamics of the system is
controlled by the following parameters: energies of system
statesEµ, coherent couplingsυµν, and damping constantsΓµν.

On the basis of the spectral data62 and takingEDBA ) 0 as
reference energy we determineED/BA ) 1.82 eV (in CH2Cl2).
We take the energy of the state with ET to Q from ref 16:
ED+BA- ) 1.42 eV.68 Further, Rempel et al.16 estimate the
coupling of initially excited and charged bridge states
〈D*BA |H|D+B-A〉 ) υ12

0 ) 65 meV) 9.8× 1013 s-1 and the
coupling of the two states with charge separation
〈D+B-A|H|D+BA-〉 ) υ23

0 ) 2.2 meV) 3.3 × 1012 s-1. The
values of the couplings are essentially lower than the energy
differences between the relevant system states

This is the reason to remain in site representation instead of
eigenstate representation.46 The damping constants are found
with help of the analytical solution derived at the end of the
next section to beΓ21 ) Γ23 ) 2.25 × 1012 s-1. The typical
radius of the porphyrin ring is aboutrµ ) 5 ( 1 Å,17 while the
distancerµν between the blocks of H2P-ZnP-Q reachesr12 )
12.5 ( 1 Å,16,17 r23 ) 7 ( 1 Å, r13 ) 14 ( 1 Å. The main
parameter that controls ET in a triad is the energy of the state
ED+B-A. This state has a big dipole moment because of its charge
separation and is therefore strongly influenced by the solvent.
Because of the special importance of this value we calculate it
for the different solvents as a matrix element of the system
Hamiltonian (eq 2). The calculated values of the energies of
the D+B-A state for some solutions are shown in Table 1.

III. Results

The time evolution of the ET in the supermolecule is
described by solving eqs 11 and 12 numerically and analytically.
As an initial condition, the donor population is set to one, which
can be reached by aπ pulse of appropriate frequency.

For the numerical simulation we express the system of eqs
11 and 12 in the formσ̆ ) Aσj, whereσj is a vector of dimension
32 for the model with 3 system states and the superoperatorA
is a matrix of dimension 32 × 32. We find an exponential growth
of the acceptor population

where for the solvent 2-methyltetrahydrofuran (MTHF)kET =
3.59× 108 s-1 andP3(∞) = 0.9994. The populationP2, which
corresponds to charge localization on the bridge, does not exceed
0.005. This means that in this case the superexchange mecha-
nism dominates over the sequential transfer mechanism. Besides,
it ensures the validity of characterizing the system dynamics
with P3(∞) and

The alternative analytical approach is performed in the kinetic
limit

In Laplace space the inequality (eq 19) readss , min(γµν),
wheresdenotes the Laplace variable. It is equivalent to replacing
the factor 1/(iωµν + γµν + s) in the Laplace transform of eqs
11 and 12 with 1/(iωµν + γµν). This trick allows us to substitute
the expressions eq 12 for nondiagonal elements of the DM into
eq 11. After this elimination we describe the coherent transitions
to which the nondiagonal elements contribute by redefinition
of the diagonal RDMEM (eq 11)

The transition coefficientsgµν contain dissipative and coherent
contributions

Now it is assumed that the bridge is not populated. This
allows us to find the acceptor population in the form of eq 17,
where

The value ofΓµν ) SSB
2 p-2J(ωµν)pµν

2 can be found compar-
ing the experimentally determined ET rate and eq 22. To
calculateJ(ωµν) would require a microscopic model. To avoid
a microscopic consideration we simply take the sameΓµν for
all transitions between excited states. The value of ET for H2P-
ZnP-Q in MTHF is found by Rempel et al.16 to bekET ) 3.6
( 0.5× 108 s-1. In the systems considered here the coefficients
g21,g23 are of order of magnitude 1012 s-1, g12 of order 108 s-1,
andg32 of order 106 s-1. If the bridge state has a rather high
energy, one can neglect thermally activated processes (d12 )
d32 ) 0). For the deactivation processes the dissipative terms
are stronger than the coherent ones (g21 ) d21, g23 ) d23). The
couplingυ23 is negligibly small with respect toυ12. In this case
eq 22 reads

With the relationΓ21 ) Γ23 and the experimentalkET, one
obtainsΓ21 ) Γ23 = 2.25× 1012 s-1. The fit of the numerical
solution of eqs 11 and 12 to the experimentalkET in MTHF
gives the same value. So the damping constants are fixed for a
specific solvent, and for other solvents they are calculated with
the scaling functions. With this method the ET was found to
be dominated by the superexchange mechanism with rates 4.6
× 106 s-1 for cyclohexane (CYCLO) and 3.3× 108 s-1 for
CH2Cl2.

IV. Discussion

A. Sequential Versus Superexchange.To discuss how the
transfer mechanism depends on the change of parameters we
calculate the system dynamics varying one parameter at a time.
The dependencies ofkET andP3(∞) on υ12, υ23 andΓ21, Γ23 are
shown in Figures 2 and 3. The change of each parameter
influences the transfer in a different way. In particular,kET

depends quadratically onυ12 from 1015 s-1 to 1012 s-1 in Figure

TABLE 1: Energy of Charged Bridge State in Different
Solvents and Corresponding ET Rates

solution CH2Cl2 MTHF CYCLO

εs, ref 67 9.08 6.24 2.02
ED+B-A, eV 3.12 3.18 3.59
kET, 107 s-1, numericala 33 36 0.46
kET, 107 s-1, analyticala 33 36 0.46
kET, 107 s-1, experimental16 23 ( 5 36( 5 0 + 3

a For calculations, born scaling (eq 4) of energy and Marcus scaling
(eq 14) of dissipation are used.

pωµν . υµν
0 (16)

P3(t) ) P3(∞)[1 - exp(-kETt)] (17)

kET ) P3(∞){∫0

∞
[P3(∞) - P3(t)]dt}-1 (18)

t .1/min(γµν) (19)

σ̆µµ ) -∑
ν

gµνσµµ + ∑
ν

gνµσνν (20)

gµν ) dµν + υµνυνµγµν[p
2(ωµν

2 + γµν
2)]-1 (21)

kET ) g32 + g23(g12 - g32)(g21 + g23)
-1 (22)

P3(∞) ) g12g23[(g21 + g23)kET]
-1 (23)

kET ) υ12
2 Γ21Γ23(p

2ω21
2 + Γ21

2 )-1(Γ21 + Γ23)
-1 (24)
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2. Below it saturates at the lower boundkET ∝ 3 × 105 s-1.
This corresponds to a crossover of the ET mechanism from
superexchange to sequential transfer. But, because of the big
energy difference between donor and bridge states, the sequential
transfer efficiency is extremely low. This is displayed byP3(∞)
= 0. In the regionυ12 ≈ υ13 both mechanisms contribute to
kET. The decrease ofP3(∞) in this region corresponds to coherent
back transfer. The ET rate depends onυ23 in a similar way. At
rather high values ofυ12, υ23 = 1015 s-1, the relation (eq 16) is
no longer valid. For this regime one has to use eigenstate instead
of site representation because the wave functions are no longer
localized.46

The variationΓ21, Γ23 near the experimental values shows
similar behavior ofkET(Γ21) andkET(Γ23) (see Figure 3). Here
we independently varyΓ21 andΓ23. BothkET(Γ21) andkET(Γ23)
increase linearly until the saturation value 7× 108 s-1 at Γ >
1012 s-1 is reached. The numerical and analytical values agree
qualitatively. In eq 18 infinite time is approximated by 10-5 s
and so one cannot obtain ET rates lower than this limit.

The physical meaning of the ET rate dependence onΓ seems
to be transparent. At small values ofΓ a part of the population
coherently oscillates back and forth between the states. The
increase of the dephasingγµν quenches the coherence and makes
the transfer irreversible. So transfer becomes faster up to a
maximal value. For the whole range ofΓ, depopulationsd12,
d23 and thermally activated transitionsd12, d32 always remain
smaller than the coherent couplings; therefore they do not play
an essential role.

Next, the similarity of the dependencies onΓ21 andΓ23 will
be discussed on the basis of eq 22. In the limitkBT/pωµν f 0
thermally activated processes withωµν < 0 vanish and so
|n(ωµν)| ) 0, wherever depopulations withωµν > 0 remain
constant|n(ωµν) ) 1. The conditionωµν . γµν allows us to
neglectγµν

2 in comparison withωµν
2 . With these simplifications

eq 22 becomes

that is, symmetric with respect toΓ21 andΓ23.
To the largest extent the mechanism of transfer depends on

the bridge energyED+B-A as presented in Figure 4. In different
regions one observes different types of dynamics. For large
bridge energiesE21 ) ED+B-A - ED/BA . 0 the numerical and
analytical solutions do not differ from each other. The transfer
occurs with the superexchange mechanism. The ET rate reaches
a maximal value of 1011 s-1 for low bridge energies.

While the bridge energy approaches the donor energy, the
sequential transfer starts to contribute to the ET process. The
traditional scheme of sequential transfer is obtained when donor,
bridge, and acceptor levels are arranged in a cascade. In this
region the analytical solution need not coincide with the
numerical solution because the used approximations are no
longer valid. For equal bridge and acceptor energieskET displays
a small resonance peak in Figure 4a. When the bridge energy
is lower than the acceptor energy the population gets trapped
at the bridge. The finite value ofkET for E21 < E31 does not
mean ET becauseP3(∞) f 0. For the dynamic time intervalt<
γµν

-1 a part of the population tunnels force and back to the
acceptor withkET. The analytical solution (eq 22) gives a
constant rate for the regimeE21 < E31, whereas the numerical
solution of eqs 11 and 12 is instable. This is because coherent
oscillations of the population cannot be described by eqs 17
and 18. In Figure 4 the regimeE21 < E31 occurs for smallE21

while E31 is kept constant and for largeE31 while E21 remains
constant.

The energy dependence of the final population has a
transparent physical meaning for the whole range of energy. A
large bridge energy ensures the transition of the whole popula-
tion to the acceptor. In the intermediate case, when the bridge
has the same energy as the acceptor, the final population is
equally distributed on these two statesP3(∞) ) 0.5. Lowering
the bridge even more, the whole population remains on the
bridge as the lowest state of the system. The dependence of the
ET rate on the acceptor energyE31 ) ED+BA- - ED/BA in Figure
4 remains constant while the acceptor energy lies below the
bridge energy. Increase ofE31 up to E21 ) 1.36 eV gives the

kET = Γ21Γ23(Γ21 + Γ23)-1(υ12
2 /ω21

2 + υ23
2 /υ23

2 ) (25)

Figure 2. Dependence of ET rate (a) and final acceptor population
(b) on coherent couplingsυ12 (triangles and dashed line,υ23 ) υ23

0 )
2.2 meV),υ23 (dots and solid lineυ12 ) υ12

0 ) 65 meV). Symbols
represent numerical solution of eqs 11 and 12, lines analytical solution
(eqs 22 and 23).

Figure 3. Dependence of ET rate on damping constantsΓ21 (triangles
and dashed line),Γ23 (dots and solid line). The other parameters
correspond to H2P-ZnP-Q in MTHF. Symbols represent numerical
and lines analytical solution.
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maximal kET ∝ Γ21. WhenE31 increases further, the acceptor
becomes the highest level in the system and therefore the
population cannot remain on it.

B. Different Solvents.For the application of the results to
various solvents and comparison with experiment, one should
use the scaling for energy, coherent couplings, and damping
constants as discussed above. The combinations of the energy
scaling in subsection II A and damping constants scalings in
subsection II D are represented in Figure 5. An increase inεs

from 2 to 4 leads to an increase of the ET rate, no matter which
scaling is used. Further increase ofεs induces saturation for the
Onsager-Mataga scaling and even a small decrease. Within
the applied approximations an increase in the solvent polariz-
ability and, consequently, of its dielectric constant lowers the
bridge and acceptor energies and increases the system-bath
interaction and, consequently, the relaxation coefficients. It
induces a smooth rise of the ET rate for the Onsager-Mataga
scaling. On the other hand, largeεs leads to essentially different
polarizational states of the environment for the supermolecule
states with different dipole moment. This reduces the coherent
couplings (see eq 15), leading for the Born-Marcus scaling to
a small decrease ofkET for largeεs. The ET rate with this scaling
comes closer to the experimental valuekET(εs

CH2Cl2). This gives
a hint that the model of individual cavities for each molecular
block is closer to reality than the model with a single cavity
for the whole supermolecule.

Below we consider Born scaling eq 4 for the system energies
and Marcus scaling eq 14 for the damping constant to compare
the calculated ET rates with the measured ones. For the solvents

CYCLO, MTHF, and CH2Cl2 one obtains the relative bridge
energiesE21 ) 1.77, 1.36, and 1.30 eV, respectively.

The calculated ET rate coincides with the experimental
value16 for H2P-ZnP-Q in CYCLO (see Table 1). For CH2-
Cl2 the numerical ET rate is approximately 30% faster than the
experimental value. It has to be noted that a value for the
damping rates can be chosen such that the calculated curve
almost passes through all three experimental error bars. On the
other hand an error in the present calculation could be due to
(a) absence of vibrational substructure of the electronic states
in the present model; (b) incorrect dependence of system states
energies on the solvent properties; (c) opening of additional
transfer channels not mentioned in the scheme shown in Figure
1. Each of these possibilities needs some comments.

ad (a): The incorporation of the vibrational substructure will
result in a complication of the model13,54 giving a more
complicated ET rate dependence on the energy of the electronic
states and dielectric constant. It should yield the maximal ET
rate for nonequal energies of electronic states, namely for the
activationless case when the energy difference equals the
reorganization energy. For a comparison of the models with
and without vibrational substructure see ref 54.

ad (b): Effects such as the solvation shell69 do need a
molecular dynamics simulation. The total influence of the
solvent is probably reflected in an energy shift between the
spectroscopically observable statesED/BA andEDB/A.16

ad (c): A solvent with largeεs can bring high-lying system
states closer to the ones included in Figure 1; for example,
because of its large dipole moment,|D-B+A〉 is strongly
influenced by the solvent.

C. Comparison with Similar Theories. In the present
calculations we have used the site representation (diabatic
approach). There is some discussion in the literature about the
precision of the results obtained within this approach.46 Nev-
ertheless, one uses the diabatic approach rather often40,41because
it is less expensive numerically.70 The applicability of the
diabatic approach depends on the relations between coherent
couplings and energy separations. The formalism derived in this
paper has been applied to different regions of coupling values.
One region corresponds to the variation of the coupling values

Figure 4. Dependence of ET rate (a) and final acceptor population
(b) on energy of BE21 ) ED+B-A - ED/BA (triangles and dashed line,
E31 ) -0.4 eV) and AE31 ) ED+BA- - ED/BA (dots and solid line,E21

) 1.36 eV). Symbols represent numerical and lines analytical solution.
υ12 ) 65 meV,υ23 ) 2.2 meV,Γ21 ) Γ23 ) 2.25× 1012 s-1.

Figure 5. ET ratekET versus dielectric constant. The energies of the
bridge and acceptor scale in accordance with Born expression (eq 4)
(triangles and solid line), Onsager expression (eq 5) (diamonds and
dashed line). Coherent couplings and damping constants scale in
accordance with Mataga’s expression (eq 13) (diamonds and dashed
line), Georgievskii-Marcus expression (eq 14) (triangles and solid line).
Symbols represent numerical and lines analytical solution. Solid crosses
with error bars give experimental values.16 Note that by using a different
value of the damping parameterΓ, curves can be calculated that almost
pass through all three experimental error bars.
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in Figure 2. This region is rather broad and includes those values
that have been used for H2P-ZnP-Q with and without the
scaling ansatz forυµν. The relationpωµν > υµν holds for the
whole region of coupling values presented in Figure 2. In most
of the parameter range,υµν is even much smaller thanpωµν.
For the largest values of the coherent couplings presented in
Figure 2 the site representation becomes problematic and the
eigenstate representation is more appropriate. The error due to
the application of the site representation for large values of the
coupling has been estimated by Davis et al.46 In their calculations
the difference between dynamics in site and eigenstate repre-
sentations remains rather small, even for large couplings. This
difference disappears for high temperatures. Describing H2P-
ZnP-Q without the scaling ansatz the values of the energies
and couplings determined in subsection II E satisfypωµν .
υµν. Thus one can use the site representation in this case.
Applying the scaling function for the coherent coupling, one
immediately finds that this function is always smaller than unity.
Therefore in this case the coherent couplings are significantly
smaller than the energy detuning.

As discussed above, the RDMEM are very similar to those
of the GSLE model. This is an extension of the HSR theory in
which a classical bath is used and for which analytical solutions
are available.48,49 We are not aware of any analytical solution
of the GSLE model as presented here. Also, this model has not
been applied to similar ET processes.

The numerical steady-state method used by Davis et al.11 is
an attractive one because of its simplicity, but unlike our method
it is not able to give information about the time evolution of
the system. We use a similar approach derived within a Redfield-
like theory. But we consider dephasing and depopulation
between each pair of levels. In contrast, Davis et al. incorporate
relaxation phenomenologically only to selected levels; dephasing
γ occurs between excited levels, whereas depopulationk takes
place only for the sink from acceptor to the ground state. The
advantage of the approach of Davis et al. is the possibility to
investigate the ET rate dependence for the bridge consisting of
more than one molecular block. This was not the goal of the
present work, but it can be extended into this direction. We are
interested in the ET in a concrete molecular complex with
realistic parameter values and realistic possibilities to modify
those parameters. Our results, as well as the results of Davis,
show that ET can occur as coherent (with the superexchange
mechanism) or dissipative processes (with the sequential transfer
mechanism).

V. Conclusions

We have performed a study of the ET in the supermolecular
complex H2P-ZnP-Q within the DM formalism. The deter-
mined analytical and numerical ET rates are in reasonable
correspondence with the experimental data. The superexchange
mechanism of ET dominates over the sequential transfer. We
have investigated the stability of the model varying one
parameter at a time. The qualitative character of the transfer is
stable with respect to a local change of system parameter. The
crossover between the two transfer mechanisms can be induced
by lowering the bridge energy. The relation of the theory
presented here to other theoretical approaches to ET has been
discussed.

The calculations performed in the framework of the present
formalism can be extended in the following directions: (a)
Considerations beyond the kinetic limit. The vibrational sub-
structure has to be included into the model as well as solvent
dynamics and, probably, non-Markovian RDMEM. (b) Enlarge-

ment of the number of molecular blocks in the complex; (c)
initial excitation of states with rather high energy should open
additional transfer channels.
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