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Liquid —Liquid Equilibria of Dendrimer in Polar Solvent
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We present the liquidliquid equilibria of a homogeneous dendrimer solution using a lattice cluster theory

and a specific interaction model. We examined the phase behavior of dendrimer solutions by varying the
dendrimer generation number, the number of bonds between two consecutive branch points along a chain,
and the strength of specific interaction among end-groups of dendrimer and solvent molecules. There was
only a slight change in the liquieliquid coexistence curve of dendrimer solutions for various generation
numbers. The critical temperature increases with decreasing generation number and increasing separator length.
Our results show that the coexistence curve shows a great dependence on specific interactions and structure
factors.

Introduction model to account for the specific interaction. In 1990, Veyts-
hers h K ) ~mant? proposed an expression for the contribution of the
In recent years, many researchers have taken an interest in,y qr59en ponds to the free energy of fluid that is valid for the

exploring and developing a variety of uses for dendritic gonera| case. Furthermore, Freed éfals reported a compli-
macromolecules, which are highly branched, tree-like molecules 4o |attice field theory for polymer solutions, which is formally

(dendrimers and hyperbranched polymérsjany application 5 exact mathematical solution of the Fletuggins lattice.

for dendritic polymers have been proposed. These include |y, eyer, most of these lattice theories fail to yield a dependence
nanoscale catalysts and reaction vessels, micelle mimic, mag-y¢ soution properties on the polymer architecture. Recently,
netic resonance imaging agent, immunodiagnostics, agents folyeeq et al-2! developed a systematic expansion of the

delivering drugs into cells, chemical sensors, information- 5 qition function of lattice polymer using well-known lattice

processing materials, high-performance polymer, adhesive andgsier theory (LCT). This model takes into account the effect
coating, separation media, and molecular antennae for absorbing, branching on the thermodynamic properties of polymer

Iight.energy.. These applications are due to the highly branched g tions. Lue and Prausrizemployed the LCT to obtain
chain architecture and numerous chain ends that can begqyent activities and liquidliquid equilibria for homogeneous
functionalized. _ _ dendrimer polymers.

_The standard lattice model of polymers was solved in the | this study, we investigate the effects of specific interactions
simple mean field approximation independently by Ffoapd among end group sites of dendrimer and solvent molecules for
Huggins? and thg treatment of th_e former_is customarily t_ermed the liquic—liquid equilibria (LLE) of dendrimer that has a
the Flory-Huggins theory. Lattice theories have contributed gpecific molecular structure. We also present hypothetical results

much to the understanding of polymer solutions. In addition, for |LE of dendrimer/polar solvent systems that have specific
much work has been done to improve the mathematical solutionjnteractions.

of the lattice model, including chain connectivity and nonrandom
mixing.> However, the mean field approximation has been found

to be quantitatively deficient in some aspects. Theoretical Consideration
The lattice models are supplemented by an entropic contribu- ) .
tion to interaction energies. Barker and Fodveloped a quasi- In the model development of the dendrimer solutions, we used

chemical method to account for the specific interaction. ten the standard lattice model scheme. We placed the polymer
Brinke and Karaszhave developed an incompressible model Selution on a lattice withN total sites. Each monomer or a
of a binary mixture with a specific interaction. Using a quasi- S°Ivent molecule occupies one lattice site and each polymer
chemical approach to treat the nonrandom character of themolecule is assumed to o_ccuM lattice sites. The lattice is
polymer solution, Panayiotou and V&rand Renuncio and assumed to be fully occupied.

Prausnit? have developed an improved Flory-Orwoll-Vrij- Volume fractions of polymerg) and solvent¢,) in solution

Eichinger (FOVE) equation of state model, and Panay#tou &€

and Sanchez and BaldZshave generalized the lattice fluid ¢, =NJN (1)
*To whom correspondence should be addressed. b= NPM/N (2)
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hasz nearest neighboring sites. Attractive interactions in this K (Nd)! K (Na)! Kk piMij
system are characterized by three parameteFs;, andFs,, Q= : v
giVen by 1= k = k =1 )= (M“)I
(Nd; — ZMim)! (Nigg — > Mp)!
€=e€p T ep— 2, ) ™ "~ (6)

The mean field probabiliff that a specific acceptgrwill be
proximate to a given dondris proportional to the volume of
the acceptor group divided by the total system volume;

wheree; is the energy of a solventsolvent contact,; is the
energy of a nonbonded polymer segmesggment contact, and
€12 is the energy of a polymer segmersiolvent contact.
Subscript 1 refers to 1-component (the solvent) and subscript 2
refers to 2-component (the polymela)fl is the free energy of P ~ 1 (7
solvent-solvent specific interaction formation are, is the N

free energy of specific interaction formation between the

polymer end-group and the solvent Furthermore, the bond formation requires that a donor and an

. . ~acceptor adopt a unique spatial orientation with respect to one
We assume that the intermolecular forces are divided into gnother. Formation of the bond is accompanied by a loss of
physical and chemical forces. This assumption implies that the grientational degree of freedom. In general, for a donor

Helmholtz energy of mixing can be added as follows: i—acceptoij pair, the probability is given 5§
A= AT+ A8 @) i
Pi= N (8)

whereA-CT and AS are physical and chemical contributions to
the Helmholtz energy, respectively. This decoupling of the \yhere S is the entropy loss associated with the specific
intermolecular interaction is clearly an approximation. We interaction formation of anif) pair.

employ LCT to calculate the physical contribution of chemical
potential. We reduce the detailed description of LCT model.

Lattice Cluster Theory. Freed et al®2! have proposed an k k
LCT for homogeneous dendrimers. In their model, the free AS= ZZMUF§+
energy is given by a double expansion series mahtde/kgT, =11=
where kg is the Boltzmann constant anfl is the absolute K K eNM
temperature in Kelvin. We use the truncated form of the series kT M. In ! +
at the fourth order in Z/and the second order étkg T. Details ;; I k K
of our calculations are given in the literatufe?! (Nid, — ZMim)(Njaj - ZMnj)
Specific Interaction Contribution to the Free Energy. m= =
Veytsmand? proposed an expression for the contribution of k kM k
hydrogen bonds to the free energy of fluid that is valid for the kT Nd, In(l - Z— + kBTZNjajIn
general case. We applied this model to the specific interaction = ENd, =
contribution.

Consider a volum# divided intoN equal cells. The system  In equilibrium, the free energd® at a givenM; is obtained by
contains molecules of species, and\; is the number ofth minimizing with respect tdv;
kind of molecules. Any molecule of thi& kind hasd, donor
sites anda; acceptor sites. For simplicity, we assume that all k K K k M
donor sites are only one type of donating and acceptor sites are®” = kBTZZMu +kgT ) Nid In[1 — Zm +
only one type of accepting. We assume that association bonds =H= = =20

In the mean-field approximation, we obtain

9)

k Mi'
1—- N —
i= N]- 1

are formed as a specific interaction occurs. A donor site of an k kK M,

i kind molecule can form a specific interaction with an acceptor kBTZN, aIn|1— 0 (10)
. “th L . . . . ]

site of aj" kind molecule if the sites are located in the adjacent = =Ny

cells. Such a bond is referred to &§)(ond and the free energy
of an ,j) bond formation isF;. whereM; values are determined by the set of quadratic equations
The total specific interaction energy is given by <
k k Fi
k K NM; = (N, — ZMim)(Nja‘- - Y M, exg—— (12)
E.= M. ES 5 = = keT,
S Izlz ij=ij ( )
whereF; = E; — TS,
where Eﬁ’ is the favorable energy change on the specific ~ Equations 10 and 11 give the excess free energy due to the
interaction formation between a donor grawgnd an acceptor  specific interaction formation. To apply this model to a
group j. Mj is the number of i(j) pair-specific interaction dendrimer solution, we consider the binary mixture of dendrimer
formations. The number of waf2s of distributing M bonds and solvent. Solvent has both a donor sie £ 2) and an
among the functional groups of the system is proposed for the acceptor sitefy = 1). The dendrimer has only acceptor sites:
general casé ay is equal to the number of end groups of dendrimer molecule.
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Core segments (n)

Figure 1. Schematic description of dendrimer. Key®)(end-groups
that can be functionalized.

For this system, the chemical contribution to the free energy
is

AS = ks T(My; + My,) + kg T[N, In

Nd; — (My; + My Na. In Na, — My, "
s Nsal

Nsdl
Na, — M
P2 12
Npazln(—N 2 )] (12)

p

+ KkgT|

S
NMy; = (Nd; — My; — Myp)(N@a; — Myy) eXF(_%)
(13-1)
Fi
NMy, = (Nd; — My, — M) (Na, — Myy) eXF{_m)
(13-2)
Details of derivation steps are omitted.

Results and Discussion

We examined liquietliquid equilibria of dendritic polymer
solutions. Figure 1 shows a schematic of a dendrimer structure

Jang et al.
5.2
5.0-.
4.8-.
4.6 -
4.4
4.2-.
4.0
k.T/e 1 - s F=-100 K, F, STk =-4.0 K
3.8 —— without specific interaction
36 _' g=4,n=10, n =3
3.4
32
30 -
28]
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

¢, (weight fraction of polymer)

Figure 2. Coexistence curves for the dendrimer/solvent system.
Generation numbegj is 4, separator lengtm) is 10, and core segment
length is 3. The solid line is from the model without specific interaction
formations. The dotted line is from this work{/ks. = —10 K, F3,/ks
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Figure 3. Phase behaviors of dendrimer/solvent systems for change
of end-group-solvent specific interaction free energ*}rfgkg) at fixed
solvent-solvent specific interaction free energ¥;{/ks = —20.0 K).

The generation number is 5 and the separator length is 10. Lines are
calculated from this work.

shows the effect ofF5 ks in liquid—liquid equilibria of a
dendrimer withg = 5, n = 10, andno = 3. Figure 3 shows the
change of coexistence curves of dendrimer solutions for different
polymer—solvent specific interaction free energy at fixed
FfllkB = —20.0 K. Increase of the polymesolvent specific

-interaction induces the miscibility of the system. This result

The dendrimers are characterized by three parameters: themplies that we could control the miscibility of the given system

generation numbegy, the number of bonds between branch
points, and the number of segmentg) petween & generation
points (the nodes).

Figure 2 represents hypothetical liguitiquid coexistence
curves with and without specific interactions. The dotted line
is from the model with specific interactions. The change of free
energy for a solventsolvent specific interaction formation (
F3/ks) is —10.0 Kelvin (K) and that of the polymersolvent
specific interaction formation isF{,/kg) is —4.0 K. The solid
line is computed from the model without specific interactions;
it reduces to the original LCT model and gives much higher
critical temperature and lower critical composition for the
dendrimer-solvent system than that of the model with specific
interactions. This result probably means that the dendrimer,
when in a polar solvent, would be more soluble if its chain-

by changing properties of end-groups.

We present LLEs for various generation numbers in Figure
4. The miscibility of the dendrimer solution decreases with the
generation number because the molecular weight of dendrimer
increases with the generation number. However, more end-
groups are associated with the solvent molecule for higher
generation numbers than those of lower generation numbers,
which makes the system miscible. In this figure, we found that
there is only slight change in the LLE coexistence curve
compared with hydrogen bonding energy change. Figure 4 also
shows the competing effect between the molecular weight
dependence and the hydrogen bonding effect on LLE of
dendrimer solutions.

Figure 5 shows the phase change with different separator
lengths () at a fixed number of hydrogen bonding. The

ends would present some specific interaction sites. Figure 3 miscibility region decreases with the separator length. Critical
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Figure 4. Phase behaviors of dendrimer/solvent systems for different
generation numbers {3) at fixed specific interaction free energies (
F3.. F3,). The separator length is 10 and core segment length is 3.
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Figure 5. Phase behavior of dendrimer/solvent system for different
separator length (410) at fixed specific interaction free energies (

Ffl, Ffz). The generation number is 4 and the core segment length is
3.

temperature increases with the separator length and with
decreasing the generation number. However, the critical con-

centration depends slightly on structure factg;sf. We expect
that it is possible to maintain miscibility for the higher molecular
weight of dendrimer.

Conclusion

We examined the effects of polymer structure and the specific
interactions for the homogeneous dendrimer solutions. This work

shows that liquig-liquid coexistence curve for a homogeneous
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dendrimer solution with specific interactions is much lower than
that of systems without specific interactions.

Calculations for different free energies of dendrimer end-
group/solvent specific interaction§f(2) show enhanced mis-
cibility with increasingFs,. In calculations for different free
energies of specific interaction, the strengthF«ig makes the
system miscible. Phase behaviors of dendrimer solutions greatly
depend on the specific interaction. For the effect of structure
factors, critical temperature increases with the separator length
and with decreasing the generation number. However, the critical
concentration depends slightly on structure factors.

In this study, we show the change of phase behavior for
chemically different segments at the periphery of a dendrimer.
The miscibility of dendrimer solutions depends greatly on the
properties of the end-groups and structure factors. A new model
presented in this study serves as a useful approach to under-
standing dendrimer solutions with specific interactions among
end-groups of dendrimer and solvent molecules.
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