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We present the liquid-liquid equilibria of a homogeneous dendrimer solution using a lattice cluster theory
and a specific interaction model. We examined the phase behavior of dendrimer solutions by varying the
dendrimer generation number, the number of bonds between two consecutive branch points along a chain,
and the strength of specific interaction among end-groups of dendrimer and solvent molecules. There was
only a slight change in the liquid-liquid coexistence curve of dendrimer solutions for various generation
numbers. The critical temperature increases with decreasing generation number and increasing separator length.
Our results show that the coexistence curve shows a great dependence on specific interactions and structure
factors.

Introduction

In recent years, many researchers have taken an interest in
exploring and developing a variety of uses for dendritic
macromolecules, which are highly branched, tree-like molecules
(dendrimers and hyperbranched polymers).1 Many applications2

for dendritic polymers have been proposed. These include
nanoscale catalysts and reaction vessels, micelle mimic, mag-
netic resonance imaging agent, immunodiagnostics, agents for
delivering drugs into cells, chemical sensors, information-
processing materials, high-performance polymer, adhesive and
coating, separation media, and molecular antennae for absorbing
light energy. These applications are due to the highly branched
chain architecture and numerous chain ends that can be
functionalized.

The standard lattice model of polymers was solved in the
simple mean field approximation independently by Flory3 and
Huggins,4 and the treatment of the former is customarily termed
the Flory-Huggins theory. Lattice theories have contributed
much to the understanding of polymer solutions. In addition,
much work has been done to improve the mathematical solution
of the lattice model, including chain connectivity and nonrandom
mixing.5 However, the mean field approximation has been found
to be quantitatively deficient in some aspects.

The lattice models are supplemented by an entropic contribu-
tion to interaction energies. Barker and Fock6 developed a quasi-
chemical method to account for the specific interaction. ten
Brinke and Karasz7 have developed an incompressible model
of a binary mixture with a specific interaction. Using a quasi-
chemical approach to treat the nonrandom character of the
polymer solution, Panayiotou and Vera8 and Renuncio and
Prausnitz9 have developed an improved Flory-Orwoll-Vrij-
Eichinger (FOVE) equation of state model, and Panayiotou10

and Sanchez and Balazs11 have generalized the lattice fluid

model to account for the specific interaction. In 1990, Veyts-
man12 proposed an expression for the contribution of the
hydrogen bonds to the free energy of fluid that is valid for the
general case. Furthermore, Freed et al.13-15 reported a compli-
cated lattice field theory for polymer solutions, which is formally
an exact mathematical solution of the Flory-Huggins lattice.
However, most of these lattice theories fail to yield a dependence
of solution properties on the polymer architecture. Recently,
Freed et al.16-21 developed a systematic expansion of the
partition function of lattice polymer using well-known lattice
cluster theory (LCT). This model takes into account the effect
of branching on the thermodynamic properties of polymer
solutions. Lue and Prausnitz22 employed the LCT to obtain
solvent activities and liquid-liquid equilibria for homogeneous
dendrimer polymers.

In this study, we investigate the effects of specific interactions
among end group sites of dendrimer and solvent molecules for
the liquid-liquid equilibria (LLE) of dendrimer that has a
specific molecular structure. We also present hypothetical results
for LLE of dendrimer/polar solvent systems that have specific
interactions.

Theoretical Consideration

In the model development of the dendrimer solutions, we used
the standard lattice model scheme. We placed the polymer
solution on a lattice withN total sites. Each monomer or a
solvent molecule occupies one lattice site and each polymer
molecule is assumed to occupyM lattice sites. The lattice is
assumed to be fully occupied.

Volume fractions of polymer (φ2) and solvent (φ1) in solution
are

where,Np andNs are the number of polymer molecules and the
number of solvent molecules in solution, respectively. Each site
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φ1 ) Ns/N (1)

φ2 ) NpM/N (2)
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hasz nearest neighboring sites. Attractive interactions in this
system are characterized by three parametersε, F11

S , andF12
S ,

given by

whereε11 is the energy of a solvent-solvent contact,ε22 is the
energy of a nonbonded polymer segment-segment contact, and
ε12 is the energy of a polymer segment-solvent contact.
Subscript 1 refers to 1-component (the solvent) and subscript 2
refers to 2-component (the polymer).F11

S is the free energy of
solvent-solvent specific interaction formation andF12

S is the
free energy of specific interaction formation between the
polymer end-group and the solvent.

We assume that the intermolecular forces are divided into
physical and chemical forces. This assumption implies that the
Helmholtz energy of mixing can be added as follows:

whereALCT andAS are physical and chemical contributions to
the Helmholtz energy, respectively. This decoupling of the
intermolecular interaction is clearly an approximation. We
employ LCT to calculate the physical contribution of chemical
potential. We reduce the detailed description of LCT model.

Lattice Cluster Theory. Freed et al.16-21 have proposed an
LCT for homogeneous dendrimers. In their model, the free
energy is given by a double expansion series in 1/z andε/kBT,
where kB is the Boltzmann constant andT is the absolute
temperature in Kelvin. We use the truncated form of the series
at the fourth order in 1/z and the second order inε/kBT. Details
of our calculations are given in the literature.12-21

Specific Interaction Contribution to the Free Energy.
Veytsman12 proposed an expression for the contribution of
hydrogen bonds to the free energy of fluid that is valid for the
general case. We applied this model to the specific interaction
contribution.

Consider a volumeV divided intoN equal cells. The system
contains molecules ofk species, andNi is the number ofith

kind of molecules. Any molecule of theith kind hasdi donor
sites andai acceptor sites. For simplicity, we assume that all
donor sites are only one type of donating and acceptor sites are
only one type of accepting. We assume that association bonds
are formed as a specific interaction occurs. A donor site of an
ith kind molecule can form a specific interaction with an acceptor
site of ajth kind molecule if the sites are located in the adjacent
cells. Such a bond is referred to as (i,j) bond and the free energy
of an (i,j) bond formation isFij

S.

The total specific interaction energy is given by

where Eij
S is the favorable energy change on the specific

interaction formation between a donor groupi and an acceptor
group j. Mij is the number of (i,j) pair-specific interaction
formations. The number of wayΩS of distributing Mij bonds
among the functional groups of the system is proposed for the
general case.12

The mean field probability23 that a specific acceptorj will be
proximate to a given donori is proportional to the volume of
the acceptor group divided by the total system volume;

Furthermore, the bond formation requires that a donor and an
acceptor adopt a unique spatial orientation with respect to one
another. Formation of the bond is accompanied by a loss of
orientational degree of freedom. In general, for a donor
i-acceptorj pair, the probability is given by23

where Sij
S is the entropy loss associated with the specific

interaction formation of an (i,j) pair.
In the mean-field approximation, we obtain

In equilibrium, the free energyAS at a givenMij is obtained by
minimizing with respect toMij

whereMij values are determined by the set of quadratic equations

whereFij
S ) Eij

S - TSij
S.

Equations 10 and 11 give the excess free energy due to the
specific interaction formation. To apply this model to a
dendrimer solution, we consider the binary mixture of dendrimer
and solvent. Solvent has both a donor site (d1 ) 2) and an
acceptor site(a1 ) 1). The dendrimer has only acceptor sites:
a2 is equal to the number of end groups of dendrimer molecule.

ε ) ε11 + ε22 - 2ε12 (3)

A ) ALCT + AS (4)

ES ) ∑
i

k

∑
j

k

MijEij
S (5)

ΩS ) ∏
i)1

k (Nidi)!

(Nidi - ∑
m)1

k

Mim)!

∏
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k
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k Pij
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Pij ∼ 1
N

(7)

pij ) eSij
S/R

N
(8)
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i)1
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j)1

k

MijFij
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eNMij
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i)1
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i)1

k Mij

Njaj
) (9)

AS ) kBT∑
i)1

k

∑
j)1

k

Mij + kBT∑
i)1

k

Nidi ln(1 - ∑
j)1

k Mij

Nidi
) +

kBT∑
j)1

k
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i)1

k Mij
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NMij ) (Nidi - ∑
m)1

k

Mim)(Njaj - ∑
n)1

k

Mnj) exp(-
Fij

S

kBT) (11)
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For this system, the chemical contribution to the free energy
is

Details of derivation steps are omitted.

Results and Discussion

We examined liquid-liquid equilibria of dendritic polymer
solutions. Figure 1 shows a schematic of a dendrimer structure.
The dendrimers are characterized by three parameters: the
generation number (g), the number of bonds (n) between branch
points, and the number of segments (n0) between 0th generation
points (the nodes).

Figure 2 represents hypothetical liquid-liquid coexistence
curves with and without specific interactions. The dotted line
is from the model with specific interactions. The change of free
energy for a solvent-solvent specific interaction formation (
F11

S /kB) is -10.0 Kelvin (K) and that of the polymer-solvent
specific interaction formation is (F12

S /kB) is -4.0 K. The solid
line is computed from the model without specific interactions;
it reduces to the original LCT model and gives much higher
critical temperature and lower critical composition for the
dendrimer-solvent system than that of the model with specific
interactions. This result probably means that the dendrimer,
when in a polar solvent, would be more soluble if its chain-
ends would present some specific interaction sites. Figure 3

shows the effect ofF12
S /kB in liquid-liquid equilibria of a

dendrimer withg ) 5, n ) 10, andn0 ) 3. Figure 3 shows the
change of coexistence curves of dendrimer solutions for different
polymer-solvent specific interaction free energy at fixed
F11

S /kB ) -20.0 K. Increase of the polymer-solvent specific
interaction induces the miscibility of the system. This result
implies that we could control the miscibility of the given system
by changing properties of end-groups.

We present LLEs for various generation numbers in Figure
4. The miscibility of the dendrimer solution decreases with the
generation number because the molecular weight of dendrimer
increases with the generation number. However, more end-
groups are associated with the solvent molecule for higher
generation numbers than those of lower generation numbers,
which makes the system miscible. In this figure, we found that
there is only slight change in the LLE coexistence curve
compared with hydrogen bonding energy change. Figure 4 also
shows the competing effect between the molecular weight
dependence and the hydrogen bonding effect on LLE of
dendrimer solutions.

Figure 5 shows the phase change with different separator
lengths (n) at a fixed number of hydrogen bonding. The
miscibility region decreases with the separator length. Critical

Figure 1. Schematic description of dendrimer. Key: (b) end-groups
that can be functionalized.

AS ) kBT(M11 + M12) + kBT[Nsd1 ln

(Nsd1 - (M11 + M12)

Nsd1
)] + kBT[Nsa1 ln(Nsa1 - M11

Nsa1
) +

Npa2 ln(Npa2 - M12

Npa2
)] (12)

NM11 ) (Nsd1 - M11 - M12)(Nsa1 - M11) exp(-
F11

S

kBT)
(13-1)

NM12 ) (Nsd1 - M11 - M12)(Npa2 - M12) exp(-
F12

S

kBT)
(13-2)

Figure 2. Coexistence curves for the dendrimer/solvent system.
Generation number (g) is 4, separator length (n) is 10, and core segment
length is 3. The solid line is from the model without specific interaction
formations. The dotted line is from this work (F11

S /kB. ) -10 K, F12
S /kB

) -4 K).

Figure 3. Phase behaviors of dendrimer/solvent systems for change
of end-group-solvent specific interaction free energy (F12

S /kB) at fixed
solvent-solvent specific interaction free energy (F11

S /kB ) -20.0 K).
The generation number is 5 and the separator length is 10. Lines are
calculated from this work.
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temperature increases with the separator length and with
decreasing the generation number. However, the critical con-
centration depends slightly on structure factors (g, n). We expect
that it is possible to maintain miscibility for the higher molecular
weight of dendrimer.

Conclusion

We examined the effects of polymer structure and the specific
interactions for the homogeneous dendrimer solutions. This work
shows that liquid-liquid coexistence curve for a homogeneous

dendrimer solution with specific interactions is much lower than
that of systems without specific interactions.

Calculations for different free energies of dendrimer end-
group/solvent specific interactions (F12

S ) show enhanced mis-
cibility with increasingF12

S . In calculations for different free
energies of specific interaction, the strength ofF12

S makes the
system miscible. Phase behaviors of dendrimer solutions greatly
depend on the specific interaction. For the effect of structure
factors, critical temperature increases with the separator length
and with decreasing the generation number. However, the critical
concentration depends slightly on structure factors.

In this study, we show the change of phase behavior for
chemically different segments at the periphery of a dendrimer.
The miscibility of dendrimer solutions depends greatly on the
properties of the end-groups and structure factors. A new model
presented in this study serves as a useful approach to under-
standing dendrimer solutions with specific interactions among
end-groups of dendrimer and solvent molecules.
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Figure 4. Phase behaviors of dendrimer/solvent systems for different
generation numbers (3-6) at fixed specific interaction free energies (
F11

S , F12
S ). The separator length is 10 and core segment length is 3.

Figure 5. Phase behavior of dendrimer/solvent system for different
separator length (4-10) at fixed specific interaction free energies (
F11

S , F12
S ). The generation number is 4 and the core segment length is

3.
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