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Relativistic effects for NMR shielding constants have been calculated using the zero order regular approximation
(ZORA) for relativistic effects. Isotropic NMR shielding constants were obtained using density functional
theory with gauge including atomic orbitals (GIAO) in a spin-free formalism for the metal nuclei in transition
metal oxides M@~ (M = Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and carbonyl complexes MgI®) = Cr,

Mo, W). The ZORA isotropic shieldings are compared with results from an extended version of the relativistic
method employing the Pauli Hamiltonian developed earlier by Schreckenbach and Ziegler. Comparison between
ZORA and Pauli shieldings, employing the restrictions necessary for the Pauli appfaazn cores, restricted

basis sets in the core regieshow the ZORA shieldings to be significantly different from Pauli ones, but the
chemical shifts of the metal oxides with respect to the carbonyl complexes do not differ much. However,
extending the ZORA calculations (no frozen core, extended basis sets) gives significant changes, proving the
limitation to frozen cores and restricted basis sets of the Pauli method to be unwarranted. Comparison to
experiment shows that the errors of the most precise ZORA chemical shifts are ca. 10% (in the order of a few
100 ppm) for both the light and heavy transition metals. Error sources may be, apart from deficiencies of the
density functional, the neglect of sptorbit coupling and the neglect of solvent effects.

1. Introduction bach and Ziegler treat relativistic effects using the so-called
) ) o ) quasi-relativistic method based on the Pauli Hamiltonian, which
_NMR spectroscopy is W|_dely _applled in c_hemlstry and has some well-known problems coming from the use of an
biochemistry. Calculations in this field are important for expansion parameter that becomes singular close to the nuclei.
correlating measurements of the chemical shift with the mo- This makes all-electron calculations on heavy systems impos-
lecular structure. The theoretical determination of NMR pa- Sib|e' because the Pauli Hamiltonian has no lower bound and
rameters is of general interest, but lately special attention is the necessary tight functions will lead to variational collapse.
also being given to relativistic effects in NMR shielding of heavy The quasi-relativistic method can therefore only be applied with
nuclei!~® The relativistic effects are not only important for the 3 frozen core approximation that avoids variational collapse by
NMR shielding of the heavy atom themselves but also for light the orthogonality constraint on the core. In addition, the basis
ligands. For the chemical shifts of the latter especially, the-spin  set needs to be restricted, in the sense that, in a heavy metal
orbit coupling turned out to be importaht'® For the heavy  complex for instance, tight functions are to be avoided at the
atoms, the scalar relativistic effects are particularly important. metal nucleus as well as large flexible basis sets on the ligands.
In order to enable applications to large systems containing heavy  The zeroth-order regular approximation (ZOR®Ppresents
atoms, an accurate and efficient method is required, for which g good alternative, giving a two-component relativistic method
DFT-based methods offer good prospects. Significant progresswhich is variationally stable and can be used in all-electron
in the application of DFT for shielding tensor calculations has calculations. A first application of the ZORA NMR method has
been made by Schreckenbach and Ziegler using a densityalready been published by Wolff etl.
functional theory (DFT) method with gauge including atomic e will make a detailed comparison between the application
orbitals (GIAO)!*°by Malkin, Malkina, and Salahuy,*"also o the quasi-relativistic Pauli method for NMR and the ZORA,
using DFT methods but with independent gauge for localized which we use in its spin-free (one-component) form. First, in
orbitals (IGLO) and by Wolff and Zieglet; who also include  section 2, the derivation of the expressions for the shielding
spin—orbit coupling. tensors will be treated for both the quasi-relativistic Pauli method
Malkin and co-workers used relativistic pseudopotentials and and the ZORA method. We will identify some relativistic terms
did therefore not calculate heavy atom shieldings. Schrecken-in the Pauli method which were neglected by Schreckenbach
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and Ziegler. These terms have been included to make a fair X=i 14+ E-V\L. @)
assessment of the Pauli method. In section 3, applications are 2c 22 op

presented for a series of transition metal oxides,MGM =

Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os), as well as for the The textbook approaéh?®now is to expand these equations in
hexacarbonyl complexes M(C)A detailed comparison be-  (E — V)/2c? resulting in the first-order Pauli Hamiltonian
tween ZORA and Pauli shieldings and chemical shifts is made ) .

in section 3.2. This comparison has necessarily to be performed HPauli—\/ + P~ _ P AV + ia-ﬁv <Pl (5)
within the restrictions imposed by the Pauli method (frozen 2 8% 82 4¢

cores, restricted basis sets). Although the differences for the

shieldings are not negligible, they tend to be similar for different consisting of the nonrelativistic Hamiltonian, the masslocity
complexes such as the oxides and carbonyl complexes investerm, the Darwin term and the sphorbit coupling term. This
tigated here. This implies that the ZORA and Pauli chemical expansion is, however, only valid if the velocity of the electrons
shifts are not so different. However, the results are, due to theis everywhere small compared to the velocity of light{ V
restrictions on the basis sets, not close to the basis set limit. A< 2mc?). This condition is not satisfied for a Coulombic
distinct advantage of the ZORA method is the possibility to potential like the nuclear potential. The singularities that arise
perform all-electron calculations in extended basis sets, including in approximate two-component theories in a Coulomb potential
special tight functions to describe the core orbitals and have been discussed by Kutzelnigg and otA&r.

particularly the core tails of valence orbitals accurately.  Following van Lenthe et al828 the problems are avoided
Extensive ZORA investigations of the frozen core approximation by using an expansion i&/(2c> — V) which is regular even
and basis set effects are presented in section 3.3. Section 4ear the singularity of a Coulombic potential. Up to zeroth order

summarizes the results. this regular approximation (ZORM)gives for the Hamiltonian
2. Theory HPORA = v + a-ﬁgﬁ-ﬁ =V+ T)'gﬁ + 5'[%(}( 2 l) x P
We begin by deriving relativistic Hamiltonians for an electron (6)

moving in a molecule that is a placed in an external magnetic
field. We then follow the procedure outlined by Schreckenbach where
and Ziegle?'42%and obtain the shielding tensor as the second

derivative of the electronic energy with respect to both the K= (7)
external and the internal (arising from the nuclear magnetic 1— v
moments) magnetic field. The resulting expressions are formu- 2c?

lated in a Hamiltonian-independent way, which allows us to L ) ) ]

treat the nonrelativistic, Pauli, and ZORA Hamiltonians within The scalar relativistic effects are incorporated in the first two

the same formalism. In this formalism, we use the GIAO method €rmsV + p-9(K/2)p. This Ham(;ltonl_an was derived earlier by

to avoid unphysical dependencies on the gauge-origin of the Chang et af® and Heully et af® Notice that in the cask = 1

external magnetic field and allow for the definition of frozen We get the nonrelativistic Hamiltonian. . .

core orbitals (section 2.3). Although the spir-orbit coupling can be quite considerable
2.1. Relativistic Hamiltonians. As a starting point for our ~ for heavy elements, and in fact affects the shielding of light

relativistic calculations, we use the Dirac equation for a one- ligand nucleii®*'we will in this paper concentrate on the scalar

electron system in atomic units relativistic effects on NMR shielding of heavy metal nuclei using

the spin-free relativistic theory. The terms in the Hamiltonian
V. CoP \(¢\ = E[p (1) linear in the spin are therefore ignored. o
(Cz,—’-‘p’ vV — 202)(%) (X) We now include the magnetic field in the Hamiltonian by

means of minimal substitution

which contains the large componenand the small component A

x. The effective one-electron potenti&ln our density functional pP—pt— (8)

calculations is the sum of the external nuclear potential, the ¢

Hartree (Coulomb) potential from the electron density, and the The vector fieldA is given by

exchange-correlation potential.

The traditional reduction of the four-component Dirac = 1—e iwxTy
formalism to an approximate (or exact, see Fellyouthuysen A= E(B X Ty + ;3 ©)
transformatiof!) two-component one starts with elimination of N

the small component to give the following equation for the

containing the applied external magnetic fige, the nuclear
large componenp

magnetic momenfi of the atom under consideration, the
1 E_\\-1 positionTy relative to the considered atom and the positign
Vo + Ea-ﬁ(l + —2\/) 0Py = Eop 2) relative to the gauge origiRy of the vector potential of the
2c external magnetic field. The vectorfield satisfies the Coulomb
. . . . gauge, i.e.V-A= 0.
Since the large component is not normalized we introduce a ™ thq gauge origin can in principle be chosen arbitrarily, since
two-component normalized functio® = O¢ with O a this choice does not affect the magnetic field. The calculated
normalization operator, which can be chosen as shielding tensor does, however, depend on the chosen gauge
unless a complete basis set is used. Since we will consider a
O=vV1+XX 3) finite basis set consisting of atomic orbitals (AOs), this may
result in a gauge origin dependence of the calculated shielding
with tensor. This problem is overcome by using gauge including
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atomic orbitals (GIAOs), also called London orbitals, introduced
in NMR by Ditchfield®® and first used by Londof? With this

choice of basis set the calculated shielding tensor becomes

invariant for the change of gauge origin. For convenience we
choose the gauge origin to be equal to the origin of the
coordinate system and drop the subscript g in the following.

After minimal substitution the scalar relativistic Hamiltonians
become

2
p,pA
+2C+

Ap
> +

HZ2(A) = v + o

oo A 4 s Az A
8c2(2p (p c) * 2(p c)p M c?

and
HER™(A) =V + PP +

In the Pauli Hamiltonian we ignored terms higher than quadratic
in the vector field that come from the masgelocity operator.
The Darwin term gives no extra terms when applying minimal
substitution.

We derived the spin-free Pauli Hamiltonian (10) by applying
minimal substitution to the one-component field-free equations.
This is the simplest approach that directly gives a spin-free
formalism. A more rigorous approach would be to apply the
minimal substitution to the original Dirac equation before
carrying out the transformation to a two-component form. We
will not include the resulting extra, mainly spin-dependent, terms
in our present spin-free calculations. A more extensive discus-
sion of these and other relativistic terms in the Pauli Hamiltonian
can be found in the paper by Fukui et’al.

2.2. Shielding Tensor.At a nucleus, an applied external
magnetic fieldB®is shielded by the electrons moving around

the nucleus. The effective field the nucleus experiences can be

written as®

B = B*(1 — &) (12)
whered is the nuclear magnetic shielding tensor.

In practice one usually measures the chemical shifthich
is related to the resonance frequencies of the samed of
a reference samplees

dlppm= sl

(13)

ref

The resonance frequencies are determined by the Zeeman
splitting caused by the nuclear magnetic moment. Since a

resonance frequency is linear with 1 — o, whereo is the
isotropic shielding Tr§)/3, the chemical shift will be for small
shieldings ¢ < 1)

olppm= 10°(0,¢ — 0 (14)

To calculate the magnetic shielding tensor we use that in lowest

order the energy of the system is linear in both the external
magnetic field and the nuclear magnetic moment. Therefore,
the shielding tensor is in lowest order

°E

O™ o |Boncii= (15)
st angtalut Bext=i=0

which by means of the generalized Hellmarffeynman theo-

Bouten et al.
rem?* can be written as
) BJ HEXxb 8H(§9Xtiﬁ) _'extD
Ou= B |—|._, |¥(B 16
# gt O g e [PEOL, (9

where the Hamiltonian contains the applied external magnetic
field B='and the nuclear magnetic momenof the atom under
considerationW(B®Y) depends only on the external magnetic
field and is the ground-state eigenfunction of
H(EeXt)‘P(EeXt) — E(Eext)lp(‘B’ext) (17)

where there is no term dependent on the nuclear magnetic
moment in the Hamiltonian.

One generally splits the shielding tensor (eq 16) in a
diamagnetic shielding® and a paramagnetic shielding where
the diamagnetic shielding contains the zeroth order (with respect
to the magnetic field) wave function and the paramagnetic
shielding contains the first order wave function. The terms can
be individually kept gauge invariant.

For the magnetic shielding we need to know the first-order
response to the magnetic field of the wave functi(B).
We suppose we already solved the eigenvalue problem (eq 17)
for B®t = 0, i.e., no magnetic field included, giving solutions
W0 written as a linear combination of atomic orbitals

lIJ|0 = zdviXV (18)

To avoid gauge-origin dependence we introduce gauge including
atomic orbitals (GIAO), also called London orbitals
XV(_B’ext _ e—(i/20)(§e>“>< R)T % (19)

Whereﬁv is the position of the nucleus at whigh is centered.
By using GIAOs the choice of the origin will not affect the
shielding tensor. _

As a basis for the eigenfunctions ¢f(B®Y) we use the
solutions (18) of the nonmagnetic equation, where the atomic
orbitals are now replaced by the GIAOs

®,(B%) = ) d,,(B™)

Following Pople et at® the wave function can now be written
as

Wi(B™) = Yy (B™) (20)
J

which is up to first order in the magnetic field equal to

Ziﬁ“- T

- [ -
IIIi(Bext = III? + z_dviBEXt.(T X RII)X’V +
7~ 2C ]
(21)
This first-order wave function is normalized to first order in
the magnetic field. Since the operators depending on B are
imaginary we tookujli'S (8/6iBSY)u; to make the first-order
coefficients real.
We get for thes-component of;

1s —

Uim = — %31. ® (22)
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|:lS 511 the Coulomb and exchange-correlation potentials that feature
U= —, forj=i (23) in the Hamiltonian, the fully relativistic Dirac density is used.
, By using GIAOs the orthogonalization coefficients,
) become dependent on the external magnetic 881l introduc-
with ing extra terms in the shielding tensor, ®ematrix and the~!
matrix. The introduction of GIAOs in NMR shielding tensors
glivs =9 D, Fovg (24) and the effects of it on the frozen core approximation have been
E)lBe"t treated earlier by Schreckenbach and Zie#fér.
The extra terms caused by the frozen core approximation
Text follow easily from the definitions of th&' and F! matrix and
", |H(B I PiBeco (25) the shielding tensor, using the first-order correction coming from
the b coefficients in the orthogonalized valence functions (eq

If we write out the expressions qu}'s andF;}*, we obtain 28). We define the function

1s _
Fi*=

ext
s

Myal Mecore

xR (26) W) = Z%Z b 0) (29)

uJ VI

(—w)—(—w)

REXH
0 oH(B™)
J

external magnetic field in thé coefficients only. From the

which is the first-order response of the wave function to the
H+ definition of theS! matrix (24) follows

Fi*= Zd de@

;t v

B0 W°U(27) §°= Bext [0, Borp — (W NWITH (W7 W0 (30)

3B
with the first term given by (26). From (25) we get
whereM is the number of molecular orbitals, both occupied

and virtual andH(0) is the field free Hamiltonian. Th&! matrix Fls — (. |H(B®Y | D. @) oY WO H-

is a consequence of the introduction of GIAOs, just as the first ! 3,Be><t IHE I PifGowg — BV IHONY,

term in theF! matrix and the second term in the wave function o by

(eq 21). In the limit of a complete basis the net effect of these [W/H(O)Wis 0 (31)

terms will be zero.

2.3. Frozen Core Approximation.To save computing time
it is often desirable to use a frozen core approximation. The
MOs close to a nucleus are believed to change only very little
in going from a free atom to an atom in a molecule and have

with the first term given by (27).
2.4. Nonrelativistic Shielding Tensor.By introducing the
nonrelativistic Hamiltonian

2 = A 2
a negligible overlap with each other. In addition one can assume HNR(,&) =V+ B + p-A + iz (32)
that the response of the tightly bound core electrons to the 2 2c
applied magnetic field is negligible, so that their paramagnetic for th ic shieldi
contribution to the shielding can be ignored. With these ON€ gets for the magnetic shielding tensor
assumptions we can keep the core AOs frozen during the
p : J Ot = ogt + o5, (33)

molecular calculation so that they can be excluded from the
matrix equations that are to be solved. In the quasi-relativistic
method based on the Pauli Hamiltonian the frozen core approach
has to be used anyway, when dealing with heavy atoms, since

The diamagnetic core contribution is the only core contribution
in the total shielding and is given by

otherwise variational collapse will occur. 1 Nowe
Since only the valenf:e orbitals _need to be represented in a Gcor%( z/‘dr Pcore (r T — iy A() (34)
frozen core approximation the basis set can be reduced to a set

of Mya valence functlon%"a' only. These functions are in

general, however, not orthogonal to the frozen core orbitals. Wherep@ore is the core density located at nucleus A.
This can be remedied by introducing core orthogonalization  The diamagnetic valence part is
functionsy=°®. The new valence functiong® then become
XVD(35)
functions in the valence basis set are orthogonal to the frozenWith
core AOs. Note that the core orthogonalization functions are [
N -

OCC
Mecore vaI zn deB‘ ‘ (I‘ N I‘ 68( I‘N
single STOs that are not identical to the original core AOs that ROINR — aiHNR(Z\Néen_u 0= 1 r_3 p] (36)
t

10¢c¢e
1, OINR
;u 1/I h

x (RV — Rﬂ)

whereMcore is the number of core orbitals (and the number of Z”
1.9 and the coefficientd,, are taken such that these new

;{val _X:}/al + Z bv ;:tore (28)
u
are expressed in a large atomic basis set. In the Pauli molecular ' Ut - Clr
calculations we have the additional complication that we always
have to use nonrelativistic atomic core orbitals, since the Pauli  The diamagnetic shielding is determined by the zeroth-order
approach precludes the determination of Pauli core orbitals. Forwave function. The summations over the occupied orbitals are
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over the valence orbitals only. The introduction of GIAO core orbitals enter only via the change in orthogonalization
orbitals, securing gauge invariance, leads to the second termcoefficients (the last two terms of (41)).

This term gives no further diamagnetic core contribution, since 2 5. Pauli Shielding Tensor.To include scalar relativistic

it comes from the first-order magnetic response of the orbitals effects the shielding tensor has to be based on the scalar
and we assumed the core orbitals to be independent of there|ativistic Hamiltonian (eq 10). Schreckenbach and Ziégler
magnet|c field. For the same reason there will be no contribution argue that relativistic terms Only have to be taken into account
from the core orbitals to the paramagnetic shielding, since it is explicitly in the first-order magnetic orbitals. This means that
determined by the first-order wave function in the magnetic rejativistic contributions to most shielding terms only enter

field. The first term in eq 35 is inversely proportional to the indirectly through the relativistic change in orbitals (hence

by the most localized orbitals around the NMR nucleus. contributions to the diamagnetic shielding would only arise
The nonrelativistic paramagnetic shielding is indirectly from the use of relativistic orbitals. There is then only
qocc an explicit relativistic correction to thE! matrix appearing in
— _zn R « RV hOlNR D+ P08 | the expression for the occupiedirtual part of the paramagnetic
& ”' Ay st shielding (eq 39). This procedure is substantiated by statements

in the literaturé® that one can either use third-order perturbation
theory with one of the perturbations being the relativistic terms
in the Pauli Hamiltonian, or second-order perturbation theory
(magnetic fields only) with relativistic orbitals. This would be
correct if the perturbations were truly independent and the
Hamiltonian would consist of pure relativistic and pure magnetic
terms. Equation 10 has also some mixed relativistic-magnetic
oce terms, however, and they give additional scalar relativistic
Og{owoc — zniajlsm;,“hOlNRpij (38) cgntributions to the shielding tens_or_ (eq 16). Schreckenbaph and
Ziegler®include the mixed relativistic-(external magnetic field)
term but exclude others. We will include all scalar terms that
The St matrix is independent of the Hamiltonian and is given contribute to first order in the relativistic perturbation.
by (eq 30) and is completely due to the GIAOs. The occupied  For the Pauli relativistic corrections to thé matrix we refer
virtual part is the most important term since this is the only 5 5chreckenbach and ZiegRér2 The additional terms that we
term that is not a result from the introduction of the GIAOS. It gptain for the shielding tensor when using the Pauli Hamiltonian
is given by in eq 16 are for the diamagnetic shielding

Ugtoc—wr_i_ogt,bl (37)

which is determined by the first-order wave function and in
which the first term comes from the GIAO introduction. The
occupied-occupied part in the paramagnetic shielding is also
a gauge correction

occ vir

poc—wr OlNR occ
=2y n Yy IR @) e B,(O)’

and the frozen core contribution is

9
( ( A2p2 + p2 A2
9B\  8c*

‘Pi(O)D

AR || =0 oo
occC

== nmw i w0 (40)
I

occ
. : : = __ZHH‘(O)‘ Iy rp’ +
which contains the first-order response of the orthogonalization
coefficientsb,, that also come from the GIAO introduction. Ty
. g ; o o
Theu. coefficients have been defined earlier in eq 23 vith p _(rN, Fo,, —ryf )+ 2l— x| x P). +
following from (31)

'n TN t
TN
Fjli,S__ZdwEH ——xV d,;d,; 2(T x p)q P “Pi(O)D(M)
Mn t
1
(Rv R )] el D‘ELJ(“)) + V’ and for the paramagnetic shielding

(l'bl)D occ
\% lpi,s (41) AOp rel Zn IIJ (Bext)

In the derivation equal occupation numbers for all occupied
orbitals were assumed. The relations (b’-,_&)pz)

i(Ty x PU(T x R = i(T x R)(Fy x P), =

a1,
- —(FPA +
t

Bex1:0
o\ 4c
lIfi(O)D-F cc

7i=0,Bex=0

—FyRIg+ I R (42 oce - T
N st NSRT ( ) — _Zn Hiqji(BeXt) Bexo p2 _3 % r) +
U +ut= -5 (43) - n t
have also been used. Furthermore, the summations over the 3 x P cc (45)

occupied orbitals are again over the valence orbitals. The frozen 'n
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which can be included in the paramagnetic shieldln{’d élso occupied part in the paramagnetic shielding is a gauge correction
has to be changed in eq 35 for the diamagnetic shielding) given
01NR
earlier (eqs 37#40) by changindy, ™ (eq 36) to oRococ — nsl SB, , (r X ), IPiD (51)
9 . Y[Tn - Cr
hOl,PauI|= _Hpau“(A)lﬁen:*:o == xp| -
t Iy ! ¢ FN3 t the occupied-virtual part is

ip2 rN Xﬁ Ex‘p’ p2 (46) occ vir
ac?\\r,° O A oo = z zu W [ih MM w0 (52)

This makes the inclusion of these extra terms in the paramag- N
netic shielding very straightforward. The core density enters jn 2nd the frozen core contribution

eq 34 and gives a constant contribution to the shielding that oce

drops out in the calculated chemical shifts. Although this =_ Zm‘_qp b1)|,h01ZORA]1pD (53)
contribution is therefore not relevant for most applications, it

is of interest when comparing methods that calculate the absolute
shielding. In the quasi-relativistic Pauli method one cannot With
calculate this term directly because the core density cannot be

t

obtained with the Pauli Hamiltonian. We use the four-component h?*#OR = iHZORA(K)Eext:ﬁ o= L3(TN x P), +
Dirac atomic density in this expression, so this term will also g 2cry
include relativistic effects. _
2.6. ZORA Shielding Tensor.We start from the ZORA (P x p)t er 5 (54)
Hamiltonian (eq 11), which forKk = 1 is equal to the v

nonrelativistic Hamiltonian. The expressions will therefore look
very similar to those of the nonrelativistic shielding tensor from
section 2.4, but contain K that damps the singularities near
the nuclei.

The shielding tensor is again split in a diamagnetic and a
paramagnetic part

Again we take in the summations over the occupied orbitals
only the valence orbitals.

The St matrix in (51) has been given earlier (eq 30) and is
independent of the Hamiltonian. TIé matrix, however, does
depend on the Hamiltonian and is now given by

i

+Q'ET’ P —
~ R IO4[ x (R,

K
meﬂm@ V-

where ol . is the core density located at nucleus A, and a K IP-(l'bl)D(SS)
valence part PP Eis

iK

d 1 v
Oy = 0yt 05 (47) Fjli's = _Tﬂ x Pls+[-T, x E]SZ

MJ Vi

Here the diamagnetic part consists of a core part

Ll Vl
Nnue i

O-gort:St Zfdr Pcore (r T 6st N rAt) (48)
2c e

)]sp

functions are real.
The core contribution to the diamagnetic shielding contains
the core density. Like in the Pauli approximation this term could
D be calculated directly from the Dirac equation without using
the ZORA core orbitals. However, when comparing all-electron
(49) and frozen core calculations it will be necessary for consistency
to use the ZORA orbitals also for the calculation of the core
which is again determined by the zeroth-order wave function. density.
The last term comes from the introduction of GIAO orbitals to Furthermore, it can be checked that takitgr 1 indeed gives
make the diamagnetic shielding gauge-independent. Like in thethe nonrelativistic shielding tensor, as we stated earlier. In
Pauli approximation the other possible core contributions vanish practice, the nonrelativistic terms in the Pauli shielding tensor

when using the orthogonality between core and valence orbitalsand the nonrelativistic terms in the ZORA shielding tensor (with
and the assumption that the core orbitals of different atoms dok = 1) are not equal when using numerical integration even

D+ following from (31). In this derivation we used that the wave

OCC
znzdv.ﬂv\ (T 0a .

OCC

T, x (R, = Ry x Bz,

,ul vl
I

not overlap. ) ) though they can be shown to be equal analytically by means of
The paramagnetic part is partial integration. To compare the different approximations
discussed, numerical integration errors should thus be mini-

OCC

/u VI

D+ mized. For the calculations we make use of the Amsterdam
Density Functional package (ADF98) developed in our research

‘ group38-42 The default integration accuracy in this program,

0RO 4 BTV - agibl (50) which approaches an accuracy of 4 significant digits in all

integrals (Accint 4 in ADF), is insufficient in this case. The

The paramagnetic shielding is determined by the first-order wave differences in the total isotropic shieldings of the metals for
function and also contains some GIAO terms. The occupied the two discussed alternatives, due to numerical integration error,

K .
4 _3[R/4 X Rv]s(?N X Tj)t Xy
ary,
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go as high as 12 ppm for the heaviest molecules. On a totalthat makes a direct comparison with experimental results
shielding of a few thousand ppm for the heavy molecules this difficult. We already mentioned that we ignore the sparbit
is not very much, so for most purposes this default integration coupling.
accuracy will suffice. However, for comparing the different Al calculations were performed using the Amsterdam Density
approximations as we do here, a higher integration accuracy isFunctional package (ADF98) developed by Baerends &t 4.
needed. When we approach an accuracy of 7 significant digits ADF uses the numerical integration scheme by te Velde‘@tal.
in all integrals (Accint 7 in ADF) the observed numerical Added to ADF98 were the modified NMR code from Schreck-
differences between the two ways of calculating the nonrela- enbach and Zieglet429and our ZORA NMR code. Unless
tivistic result diminish dramatically. They are all at most 0.02 stated otherwise, basis sets are used that are {rijolethe upper
ppm. This integration accuracy will be used for all calculations valence orbitals and doublin the subvalence region. These
involving a comparison of different NMR methods, thereby pasis sets are included in the ADF package (basis set V). Note
making sure that the differences coming from the numerical that the basis sets used in the Pauli and the ZORA calculations
integrations are negligible. will be different as both of them were optimized separately.
The Pauli calculations employ nonrelativistic basis sets. Both
the Pauli and ZORA basis set contain a single STO core
orthogonalization function per frozen core orbital. These STOs
describe the core tails of the valence orbitals. For the 5d metals
the ZORA basis sets contain an extra tight 1s STO, in order to
describe the core tails of the valence orbitals better. The accuracy
of the numerical integration used has been discussed earlier
(AcclInt 7 in ADF). The density functional used has been based
on the local density approximation with density-gradient cor-
rections to the exchange according to Becke (Beckéag)d
%iensity-gradient corrections to the correlation energy according
0

3. Isotropic Shieldings of Transition Metal Oxides

The theory of the previous sections will be used in calcula-
tions on the shieldings of the metal nuclei in the transition metal
oxides MQ"™ (M = Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os). We
will first make an assessment of the magnitude of the relativistic
effects on the NMR shielding, where direct and indirect
relativistic effects may be distinguished. The direct relativistic
effects are associated with explicit relativistic terms in the
expressions for the NMR shielding (eq 16). However, relativity
is also known to considerably affect the energies and the shape Perdevf?
of the atomic orbital$®“3 These changes alone will already o i L
affect the NMR shielding, even if the relativistic terms in the ~ 3-1. Relativistic Effects Using ZORA The relativistic effects
shielding would not be taken into account. These may be called ©" the NMR shielding can be large for the heavy atoms in the
indirect effects. It is interesting to know to what extent these Molecule, but also for their ligandg®*"4*For the ligands this
direct and indirect contributions are important for the NMR 1S mainly a consequence of spiorbit coupling:® Since we
shielding. consider only scalar relativistic calculations, we will focus our

Next, the two relativistic methods, Pauli and ZORA, are @ttention on the NMR shielding of the heavy atoms dfly.
compared. Before actually comparing the results, the additional Here we will investigate the order of magnitude of these
terms in the Pauli NMR shielding that we have identified ((44) relativistic effects as well as their origin. They can come either
and (45)) are studied. As it turns out, these terms cannot befrom a change in the molecular orbitals and their energies
neglected. The results quoted as “Pauli” will therefore contain, determined during the SCF calculation (indirect relativistic
apart from the terms implemented by Schreckenbach ande€ffect), or from using a relativistic Hamiltonian in the shielding
Ziegler51420these additional relativistic terms. The two con- tensor (eq 16) (direct relativistic effect). In the calculations the
tributions to the total isotropic shielding, the diamagnetic and approximation used in the SCF part can be chosen independent
the paramagnetic shielding, are considered separately. Thisfrom the approximation used in the NMR shielding calculation,
makes comparison simpler because the diamagnetic shieldingthereby separating the indirect and the direct contributions. The
is mostly determined by the core orbitals, while the paramagnetic following cautioning remark should however be made.
shielding is mostly determined by the valence orbitals. Chemical The generalized HellmantFeynman theorem, used to get
shifts of the metals in the metal oxides with respect to metal to eq 16, assumes the wave function to be optimized for the
carbonyls are also considered. zeroth-order Hamiltonian. If we take the SCF and the NMR

A distinct advantage of the ZORA method over the quasi- method to be different this requirement is not fulfilled. As a
relativistic Pauli method is the variational stability of the former. consequence, expression (16) for the NMR shielding is not
It is therefore possible to perform all-electron calculations and complete in that case. Although a rigorous analysis is now
to use extended basis sets, including very tight functions. Suchformally not possible, we can still make a qualitative analysis
calculations will be performed in order to investigate the in order to know how significant the direct relativistic effects
effectiveness of the frozen core approximation. Basis set are that come from the use of a relativistic Hamiltonian in eq
extension is also important to obtain a better description of the 16, leading to explicit relativistic terms in the expression for
core tails of the valence orbitals. It has been ar§ubdt the  the shielding. These effects can be compared to the effect of
frozen core approximation is adequate, but that a high-quality using a relativistic (either Pauli or ZORA) versus a nonrelativ-
representation of the core tails of the valence orbitals is istic SCF procedure.

important.

In Table 1 the total isotropic shieldings of the metals in some

For our calculations we used experimental geometries as alsarransition metal oxides M@~ (M = Cr, Mn, Fe, Mo, Tc, Ru,

used by Kaupp, Malkina, and Malkitt.For iron oxide we will
use their prediction for the FeO distance of 1.58 A. For the

W, Re, Os) are shown using for the SCF and NMR method
(SCF/NMR) either the nonrelativistic (NR) limit or the ZORA

calculation of the chemical shifts we used as a reference themethod. The frozen core approximation was used and the table

isotropic shieldings of the transition metal carbonyls M(gO)
with experimental geometrig8. The experimental chemical

shows up to which orbital the orbitals are kept frozen for the
metals. For the oxygen atoms (and the carbon atoms in the

shifts, which are used later, are from measurements on moleculegarbonyl complexes), only the 1s orbital is kept frozen. The
in a solvent. Gas-phase data do not exist to our knowledge. Wesizes of the frozen cores will be the same in all frozen core
will ignore the possible solvent effects. This is a second reason calculations. We start by comparing the results in Table 1 from
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TABLE 1: Isotropic Shielding (in ppm) of M in MO 4"~ (M
= Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and of M in M(CO)s
(M = Cr, Mo, or W) Using for the SCF and the NMR
Method Both the Nonrelativistic (NR) and the ZORA
Method
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TABLE 2: Valence Contribution to Diamagnetic Isotropic
Shieldings (in ppm) of M in MO "~ (M = Cr, Mn, Fe, Mo,
Tc, Ru, W, Re, Os) and of M in M(CO)s (M = Cr, Mo, or
W) Using Pauli SCF with Pauli NMR, Excluding and
Including the Extra Relativistic Term in the Diamagnetic

Shielding (Eq 44)

SCF NR ZORA
LExcl JIncl JExcl JIncl
NMR frozen core NR ZORA NR ZORA o o Ag® SCF o o Ag®
_ CrOs# 265 264 —-1.3 WO2 716 709 -7.0
Crog? 2p —2358  —2375  —2285 —2303 MnO. 304 303 —15 R(%* 754 746 -7.9
MnO,~ 2p —3515 —3533 -—3440 —3460 FeQ, 346 344 —18 0sQ 795 786 —8.7
el > A0 AR T T MoOZ 215 213 —2.0 Cr(CO} 282 281 —12
TCOi 3d 1066 —1070 —929 —o52 TcO4 240 237 —2.2 Mo(CO} 226 224 —-1.9
4 RuQ, 267 264 —2.6 W(CO} 725 718 —-7.0
RuOy 3d —1668 —1693 —1654 —1690
\évo“f ig 72733 710131(? 12102258 115195 TABLE 3: Paramagnetic Isotropic Shieldings (in ppm) of M
eQ g in MO 4~ (M = Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and of
OsQ 4 —922 -1718 421 263 M in M(CO) s (M = Cr, Mo, or W) Using Pauli SCF with
Cr(CO) 2p 535  -548 487  —501 Pauli NMR, Excluding and Including the Extra Relativistic
Mo(CO)s 3d 1479 1393 1671 1571 Term in the Paramagnetic Shielding (Eq 45)
W(CO) 4d 4275 3359 6641 5100

Gp,Ech ap,lncl AoP SCF Gp,Ech op,lncl AoP
—4095 —4076 19 WQ* —7581 —6788 793

completely nonrelativistic calculations (NR/NR) with completely  CrO.*
ZORA calculations (ZORA/ZORA). For the 3d metals (Cr, Mn, MnO,” —5360 —5338 22 ReQ —8989 —8118 871
and Fe) the relativistic effects are relatively small, less than 100 FeQy o —9985 —5961 24 OsQ —10088 —9225 862

. 0042~ —4219 —4098 121 Cr(CQ) —2308 —2297 10
ppm. For the 4d metals (Mo, Tc, and Ru) they are only a little TcO, —5075 —4948 126 Mo(CQ) —2416 —2324 92
larger, but for the 5d metals (W, Re, and Os) the relativistic ruo, -5830 —5715 115 W(CQ) —4238 —3651 587
effects are large, on the order of 1000 ppm. One has to keep inorbitals to the external magnetic field, resulting in only a change
mind that the total chemical shielding is the sum of two large of the u' matrix. In this trgatment the diamg ne'[icyshielding
contributions with opposite sign, the diamagnetic and paramag- : ) S amag >hielding

therefore only contained indirect relativistic contributions,

netic shielding which approach for the 5d metals plus and minus whereas the paramagnetic shielding contained both indirect and
10000 ppm, respectively (see below). The resulting total NMR . € pa gnetic 9 .
direct relativistic contributions. To investigate the relevance of

shielding is much smaller than each individual contribution. A the extra terms the Pauli NMR implementation of Schrecken-
small relative change in either contribution due to relativity can bach and Ziealer has been extengled with the terms (44) and
res.ult ip alarge relgtive change in the total chemical shielding, (45). Table 2 gnd Table 3 show the results of calculations with
which 'S_ observed in Table 1. . . and without these terms for the diamagnetic and paramagnetic
i L fr_om calculations with the SCF and parts, respectively. Clearly, the effect of the extra terms on the
the N.MR m_ethod chosen d|ﬁer?ntly _(NR_/%ORA and ZORA/ valence contribution to the diamagnetic shielding in Table 2 is
NR), in particular those for the “relativistic® 5d elements, the small (we will comment below on the omitted core contribution

following observa_lti_on_s can be made. In the_ f”$t pIace,_the to the diamagnetic shielding). The magnitude of the additional
change to a relativistic (ZORA) SCF calculation is large, i.e., term (45) on the paramagnetic shielding, however, is much

indirect relativistic effects are very signifiqant, up to 2000 ppm. larger, about 800 ppm for the 5d metals. This is quite large
In the second place, comparing for a given SCF method the compared to the total shieldings as given in Table 1. We

ZORA with the NR NMR calculation, we see that the direct conclude that the additional terms should therefore be taken

ﬁéatggé'c ef;e;:ts f;re Ia_rge (up tcl)l 808 ppm) in tlhe_bclzas:e ofa into account in calculations of absolute shieldings using the Pauli
» and for the oxides smaller but nonnegligible (larger approximation. A fair assessment of the Pauli approximation

tEan d.lf?O ppm)t;‘or ZORAhSCF' We gavef nr(])t f(jqrther alna'ly.ze'd in a comparison with, e.g., the ZORA method will also require
this difference between the magnitude of the direct relativistic ;. ;sion of these terms.

effects for the two SCF methods, but leave it at the conclusion We have not included in Table 2 the core contribution to the
that, while the indirect relativistic effects are clearly larger than diamagnetic shielding. This contribution is large (on the order

the Qirect effects, neither of them can be neglected for 4d and of 10 000 ppm for the 5d metals, see Table 7), and the effect of
particularly 5d me_tals. ] the additional term (eq 44) is also large (¢a&2000 ppm for

In the next section, the ZORA method for the calculation of {he 59 metals). These contributions come mostly from the inner
relat[V|st|c gﬁects.o_n Fhe NMR shielding is compared to the ¢ore orbitals, which remain practically unaltered (exactly so in
Pauli (quasi-)relativistic method. the frozen core approximation). These diamagnetic core con-

3.2. ZORA Method versus the Pauli Approximation. In tributions are therefore irrelevant for chemical shifts. It is
section 2 we discussed two possible relativistic approximations, interesting to observe in Table 2, by comparing the Cr, Mo,
the Pauli approximation and the ZORA method. The isotropic and W shieldings of the oxides with those of the carbonyl
shieldings obtained with these methods for the metal oxides complexes, that the valence contributions to the diamagnetic
will be compared as well as the chemical shifts with respect to shieldings exhibit only small shifts (:20 ppm), while the
the metal carbonyl complexes. Just as in the last section, relativistic termAod is practically equal in the oxides and the
different combinations of SCF and NMR methods will be carbonyl complexes, yielding a negligible contribution to the
considered. We will start, however, with a discussion regarding chemical shift. However, the paramagnetic shielding (Table 3)
the Pauli approximation. is evidently very important for the chemical shifts, exhibiting

We have discussed some relativistic terms (eqs 44 and 45)differences of a few thousand ppm between oxides and
in the NMR shielding which Schreckenbach and Ziegler did carbonyls. Also the relativistic termo? has a nonnegligible
not include in their calculations. As a result, the only relativistic contribution to the chemical shift. Indeed, we see a small
contributions were in the first-order response of the molecular difference (less than 1 ppm) between the additional relativistic
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TABLE 4: Valence Contribution to Diamagnetic Shielding tails is another point in favor of the ZORA method. We will
gfé ngg)) :rﬁdMolanMi(r? Iclrl](_c(gl) :(MCE '\érr‘ I\IjI% '\é'roi/\g Coggé\]{\gr come back to this point in the next section where even more
’ 6 — I ) i 1 i i i
the SCF and the NMR Method Both the Pauli tight funpnons are mcllude.d in thg ba5|§ set. - .
Approximation and the ZORA Method We will start by considering the isotropic valence diamagnetic
SCE  Pauli Pauli ZORA SCE  Pauli Pauli ZORA shielding for the transition metal oxides M’O (M = Cr, Mn,
NMR Pauli ZORA ZORA NMR Pauli ZORA ZORA Fe, Mo, Tc, Ru, W, Re, Os) and the transition metal hexacar-

Cro7 2638 2646 2638 W@ 7086 7137 7126 oIS M(CO} (with M = Cr, Mo, W). The results are given
MnO,~ 302.9 303.9 3029 ReO 7462 7519 7504 in Table 4. The ZORA shieldings are quite close to the Pauli

FeQy  343.8 3450 3438 OsO 786.3 792.6 791.0 ones (less than 5 ppm difference, with 8 ppm for W(£&y
MoOg2~ 2127 2139 209.7 Cr(C®) 280.9 2817 281.0 the only exception). We do not include core contributions, since
TcO,~ 2373 2387 233.7 Mo(C@)2245 2256 222.7 in the Pauli case we cannot calculate quasi-relativistic Pauli core
RuQ, 2643 2659 2620 W(C@) 7178 7229 7258 orbitals due to the variational stability problem. The choice of

. . : . A
TABLE 5: Paramagnetic Shielding (in ppm) of M in MO}~ core orbital and density'¥(i(0) in eq 44 ando, in eq 34)

(M = Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and of M in therefore becoi\nes arbitrar){ (options are: nanelativistic or
M(CO)s (M = Cr, Mo, or W) Using for the SCF and the ZORA, or, for pg,. the atomic Dirac core density). The core
I\N/lheﬂtﬁo'\c{lletmd Both the Pauli Approximation and the ZORA contributions are irrelevant for the chemical shifts anyway.

The direct relativistic effect on the valence contributions to
SCF  Pauli Pauli ZORA ~ SCF  Pauli Pauli ZORA the diamagnetic shielding was already shown to be small (Table
NMR Pauli ZORA ZORA NMR Pauli ZORA ZORA 2) in the Pauli case. In the ZORA method the direct relativistic

CrO2~ —4076 —4088 —4095 WQ?~ —6788 —7234 —6871 contribution can be calculated as the difference with shieldings

MnO,~ —5338 —5351 —5360 ReQ™  —8118 —8593 —7925 obtained withK = 1 in the expressions for the shielding tensor,

;%%42, :iggé :2?;2 :2383 8?803 :ggsg :gggg :ggi’g while still using the ZORA orbitals and energies. The direct

TcO, —4948 —5026 —5051 Mo(CO) —2324 —2383 —2412 relativistic effect has been found to be also small for ZORA

RuQ, —5715 —5785 —5921 W(CO) —3651 —3969 —3682 calculation. The observations we made concerning the small

contribution in the Pauli case of the valence diamagnetic

TABLE 6: Diamagnetic, Paramagnetic, and Total Chemical shieldings to the chemical shifts of the metal nuclei in the oxides

Shifts (in ppm) of M in MO ; * Relative to M(CO)s (M = Cr, with respect to the carbonyls can be extended to the ZORA
Mo, or W) for the SCF and the NMR Method Both the case. These valence diamagnetic chemical shifts are given in
Pauli Approximation and the ZORA Method 2 : g g

Table 6, which reveals very small contributions to the chemical

I\?ﬁg Egﬂ:: ;ggg égsﬁ experimerfe shifts of up to 20 ppm in both the Pauli and ZORA cases.
- . . Since the diamagnetic contributions to the chemical shifts
Croy d:rr:r?]gnit;ic 171779 171g 4 1%5 are very small, the total chemical shifts are almost entirely
tpotal ’ 1796 1801 1802 1795 determined by the paramagnetic contributions to the shieldings.
MoO,~  diamagnetic 12 12 13 For the metals in the oxo and carbonyl complexes these are
paramagnetic 1774 1789 1797 given in Table 5. This time there are large differences caused
, ol 1786 1801 1810 1857 by the different NMR methods (compare Pauli/Pauli with Pauli/
WOu g:rr;r?]%gigic 31397 3225 31:;9 ZORA) and also large differences caused by the different SCF
total 3147 3274 3202 3505 methods (compare Pauli/ZORA with ZORA/ZORA). So even
. o . ] if the orbitals and energies are the same (from the Pauli SCF
As an indication some experimental results are given. for instance, comparing Pauli/Pauli and Pauli/ZORA), the ZORA

diamagnetic contributiondo® for the metals in the different ~ equations for the NMR shielding yield significantly different
m0|ecu|esy but a difference of up to 200 ppm between the results from the Pauli equations. ThiS, we fee', Imp“es an
additional paramagnetic contributionsy® for tungsten. important caveat against the Pauli NMR shielding expressions.
In the rest of the calculations the additional relativistic terms When the ZORA shielding expressions are used, Table 5
of egs 44 and 45 will be included in the Pauli calculations to displays a significant difference between Pauli and ZORA SCF
get a consistent comparison with the ZORA method. calculations. The reason for this is that, since the relativistic
In Tables 46, the Pauli approximation and the ZORA contributions arise mainly in the nuclear neighborhébthe
method can be compared at the level of full Pauli (Pauli/Pauli) core tails of the valence orbitals become important for the
and full ZORA (ZORA/ZORA) calculations, i.e., the same relativistic effects on the paramagnetic shielding. The ZORA
approximation is used for both the SCF and the NMR calcula- SCF uses a different basis set than the Pauli SCF, in particular
tion. These results will also be compared with calculations using for the 5d metals, since the ZORA basis sets for these atoms
Pauli SCF with ZORA NMR (Pauli/ZORA). Performing ZORA ~ contain an extra tight 1s STO, in order to describe the core tails
SCF with Pauli NMR (ZORA/Pauli) gives poor results, since Of the valence orbitals better. The Pauli basis sets cannot include
the ZORA basis sets contain tight functions. These functions such tight basis functions, as we mentioned earlier.
are localized around nuclei where the Pauli approximation The large differences in the paramagnetic contributions to
breaks down. In SCF calculations with the Pauli Hamiltonian the shieldings between the various cases, as displayed in Table
such tight functions cannot be used since they lead to variational5, cancel for a large part in the chemical shifts, just as for the
collapse, and apparently the problematic nature of the Pauli diamagnetic shieldings. Table 6 gives the paramagnetic contri-
approximation in the nuclear neighborhood also adversely affectsbutions to the chemical shifts for the three metals in /MO
the Pauli NMR calculation with tight basis functions. These relative to M(CO}, from which we see that a full Pauli and a
functions are needed, however, in the ZORA SCF calculations full ZORA calculation only gives a maximum difference of
for a good description of the core tails of the valence orbitals. about 50 ppm. The total chemical shifts are given in Table 6,
Beside the possibility to do all-electron calculations, the ability together with experimental data. The differences in the chemical
to use tight basis functions for an accurate description of core shifts using the Pauli approximation or the ZORA method are



NMR Shielding Constants in Transition Metal Oxides J. Phys. Chem. A, Vol. 104, No. 23, 2008609

at this point rather small. The theoretical results are in quite TABLE 7: Diamagnetic ZORA Shielding (in ppm) of the
reasonable, but not excellent, agreement with experiment for Transition Metals from All-electron and Frozen Core

both approximations. Calculations?

At this point we cannot yet draw definite conclusions. Of _ ZORAfc  ZORAae ZORAfc  ZORAae
course, from this very limited set of examples it is not possible basis set IV-val IV-ae 12IQZ-ae  TZ/QZ-ae
to jump to the conclusion that the observed cancellation of the CrOs*~ 1796 1799 1789 1789
shielding differences between the various methods for the oxo "\:/':g“ %ggg %gg? %ggg %ggg
and .car'bonyl complexes WI'|| alwgys happen, i.e., that Pauli/ MoO.2~ 3990 3993 3975 3974
Pauli will always give chemical shifts close to ZORA/ZORA.  T¢o,~ 4120 4123 4108 4107
In this case, however, the results are close and a comparison RuQ, 4254 4258 4242 4242
with experiment cannot be used to decide on a preference for WO# 8852 8851 8837 8837
one method over the other. However, we should keep in mind ReQ~ 9022 9021 9010 9010
that the ZORA/ZORA results are not converged with respect 830‘ 9195 9193 9183 9183

- . . - . r(CO) 1813 1821 1798 1801
to the baS.IS set size. As we will see in the next section, the Mo(CO) 4003 4010 3992 3990
basis set limit results for ZORA still differ considerably from  w(C0) 8865 8863 8854 8855

tf:ce rr]Jre;e()r]éXneS. ,I:\Sda_matter_of lfacﬁ th? Irr}lportant advantage aUsed were a triplé: basis set IV and a large basis set TZ/QZ.
of the ZORA method Is precisely that it allows to remove aggitional frozen core calculations were performed using the all-
approximations that are inherent to the Pauli method. The basiSelectron basis for the valence orbitals (valence basis TZ/QZ-ae).
sets in the Pauli method cannot be extended, so a basis set limit _ o _
result cannot be obtained. Nevertheless, an accurate representdABLE 8: Paramagnetic ZORA Shielding (in ppm) of the
tion of core tails of the valence orbitals is crucial. In the second 'ransition Metals from All-electron and Frozen Core

] . . . . Calculations?
place the frozen core approximation cannot be lifted in the Pauli

approximation. In the next section, the possibility offered by , ZORAfc ZORAae ZORAfc ZORAfc ZORAae
the ZORA method to investigate the significance of these Pasisset IVval  IV-ae  IV-ae TZ/QZ-ae TZ/QZ-ae
approximations will be exploited. CrOZ~ —4094 —4108  —4113  —4348 —4342
3.3. All-Electron versus Frozen Core Calculationsin this Menc?f :gggg :ggg; :gg;g :g;gg :ggég
section we will consider all-electron (ae) and frozen core (fc) \Mo0,2~  —4208  —4711  —4734  —4790  —A4766
calculations. We first comment on the core densitigs to be TcO,~ —5049  -5683 5721 5757  —5730
used in the frozen core approximation. In a relativistic calcula- RuQ —5919  —6617  —6654 —6759  —6720
tion the core densities and the core potentials are calculatedWO“Z: —6874 —7970  —8260 —8415 —8102
A . . . . ReQy —7929 —9223  —9512 —9667 —9340

from delnsmeSpcolre.that have peen obtained in atomic Dlraq 0sQ, _8847 —10341 -10631 —10861 —10523
calculations, but it is also possible to use the ZORA method in cr(CO)y  —2309  —2329 -2328  —2427  —2419
these atomic calculations. Since the core contribution to the Mo(CO) —2412 —2722  —2758  —2782 —2746
diamagnetic shielding contains the core density (see eq 34), thisW(CO)%  —3684 ~ —4318  —4588  —4670  —4340

contribution to the shielding is directly affected by the method  aysed were a triplé: basis set IV and a large basis set TZ/QZ.
used to obtain the core density. The paramagnetic shielding onlyAdditional frozen core calculations were performed using the all-
experiences indirect effects from the resulting changes in the electron basis for the valence orbitals (valence basis IV-ae and TZ/
SCF calculation. QZ-ae).

A few calculations were performed using the ZORA method orbitals, not the (frozen) core orbitals themselves. The latter
for the core density. As expected, using the ZORA core densitiesgre taken from separate atomic calculations using very large
instead of Dirac core densities has practically no effect on the (converged) basis sets. The all-electron basis ae (IV-ae) has the
orbital energies of the valence orbitals and on the valence same STOs in the valence space but is dodbile-the core.
orbitals themselves. The resulting change in the paramagneticFrozen core calculations with the ae basis (IV-ae) simply have
shielding is only a few ppm for the three heaviest atoms (W, more tight functions available to describe the core wiggles of
Re, and Os). The effect on the diamagnetic shielding is, the valence orbitals. The frozen core orbitals themselves are
however, not negligible. For the heaviest atoms, the diamagneticthe same atomic orbitals as in the frozen core calculations with
shielding increases with about 80 ppm on a total of close 0 the basis IV-val. An extended basis set TZ/QZ, which is
10 000 ppm. Since the increase is caused by the core, the Use@‘uadrumeé in the valence region and tr|p@|.n the core region'
core method has a totally negligible effect on the chemical shifts. has also been used. This basis also contains additional polariza-
However, to study the frozen core approximation, i.e., to tion functions, such as a 4f set on the 3d and 4d metals, and a
compare frozen core and all-electron calculations with the 5f set on the 5d metals. Frozen core calculations with the TZ/
ZORA method, the core density will in the following be Qz-ae basis employ the same frozen core orbitals, but have
calculated using the ZORA method, since this is necessary tothree STOs available for each core wiggle of the valence orbitals.
get a consistent comparison between all-electron and frozen core Taple 7 shows that the all-electron and the frozen core
calculations. calculations using basis set IV give practically the same

In Tables 7 and 8 the two contributions to the total isotropic diamagnetic shielding. This indicates that for the diamagnetic
shielding, the diamagnetic and the paramagnetic shieldings, areshielding the frozen core approximation is justified. The lack
given for the calculated transition metal complexes for both the of significant change between the frozen core and all-electron
frozen core and the all-electron calculations using several basiscalculations, which effectively employ somewhat different basis
sets. The standard basis set IV for ZORA frozen core calcula- sets for the valence orbitals, also suggests that basis IV-ae is
tions (basis IV-val) is triplez in the valence region, doublg- adequate for the diamagnetic shielding. These inferences are
in the subvalence, and singlein the core region, except for  corroborated by the calculations with the larger TZ/QZ basis.
an additional very tight 1s function in the 5d metals. The core The frozen core calculations and the all-electron calculations
functions only have to describe the core wiggles of the valence using the same extended basis set TZ/QZ-ae are virtually



5610 J. Phys. Chem. A, Vol. 104, No. 23, 2000 Bouten et al.

TABLE 9: ZORA Chemical Shifts (in ppm) of M in MO 2~ changes in the shielding ef100 to—200 ppm, for the transition
Relative to M(CO)s (M = Cr, Mo or W) Using Frozen Core metals from each row, in both the fc and the ae calculations.
and All-Electron Calculations® The basis set [V-ae is therefore not yet converged for NMR

basis ZORAfc ZORAfc ZORAae ZORAfc ZORA ae shielding calculations. We note that the difference between

set  IV-val  IV-ae  IV-ae TZ/QZ-ae TZ/QZ-ae expt® frozen core and all-electron calculations is very similar for the
CrO2~ 1802 1801 1801 1930 1935 1795 present TZ/QZ-ae calculations as found earlier for the 1V-ae
MoOs~ 1809 1991 2007 2025 2036 1857  calculations, i.e., no difference for 3d metals and-€200 ppm
WO,2~ 3203 3683 3664 3762 3780 3505

change from fc to ae for the 5d metals. This confirms that the
2 For the valence orbitals both the frozen core basis and the all- chosen fc approximation (up to 4d) is too severe for the 5d

electron basis was used. Used were a tripleasis set IV and a large metals.

basis set TZ/QZ. The differences between the different calculations (basis set

. ) . ) ) IV to basis set TZ/QZ; fc to ae) are similar for the metal
identical, and very close to the results obtained with basis IV. shieldings in the oxo and carbonyl complexes. There will

For the diamagnetic shielding basis IV appears to be practically {herefore be considerable cancellation in the chemical shifts.
converged, and the frozen core approximation is well justified. Ths is evident from Table 9. Nevertheless, the basis set IV-val
The paramagnetic shielding (Table 8) exhibits, in contrast to has considerable deviation (200 ppm for Mo, 580 ppm for W)
the diamagnetic shielding, large differences between the fc (basisi, the chemical shift from the best results (TZ/QZ-ae). For the
IV-val) and ae (basis IV-ae) calculations, up to 1500 ppm for |v.ae pasis this deviation has been reduced to ca. 30 ppm for
OsQ. A possible cause is that the frozen cores have been chosefg and ca. 100 ppm for W. It is clear that not only for the
too large, but this would also have reflected itself in the apsolute shieldings but also for chemical shifts a large basis
diamagnetic shielding. Another possibility is that the paramag- set, with sufficient flexibility in the core region (tight functions),
netic shielding is sensitive to the basis set, and the increaseds required for precise results. Given a sufficiently flexible basis
flexibility of the basis set IV-ae as compared to 1V-val for the set, the frozen core approximation appears to be acceptable in
(core tails of the) valence orbitals induces the observed large chemical shift calculations: compare the ZORA fc and ZORA
changes. In order to investigate this possibility frozen core g calculations in the TZ/QZ-ae basis.
calculations were performed using as the basis set the all-  5q for the comparison to experiment, we note that our most

electron basis set (IV-ae), while _the frozen core is_treated_ as precise results (ZORA ae, TZ/QZ-ae) for the chemical shifts in
before. The results (ZORA fc, basis IV-ae) are given in the third 151,16 g exhibit discrepancies with respect to experiment on the

data column in Table 8. Compared to the earlier frozen core o qar of 200 ppm. This is already a quite useful accuracy.
calculations, the only difference is the larger basis set used for g riher improvement would require investigation of several
the vale_nce orbitals in the core region, such that now t_WO STOs possible influences. In the first place we note that effects of
are available for each core wiggle of the valence orbitals. The spin—orbit coupling have been neglected, as well as environ-

paramagnetic shieldings are seen to change very much frompy a4 (solvent) effects. In the second place the dependency of

the fc calculations in basis IV-val, and are now much closer t0 e regyits on the density functional would have to be considered.
the all-electron results. Apparently, it is not primarily the frozen

core approximation but the quality of the valence basis that is
the crucial factor here. We have noted that the all-electron basis
set allows a better description of the core tails of the valence Relativistic effects on NMR shieldings and chemical shifts
orbitals. Since relativity becomes mainly important close to the have been studied using the zero-order regular approximation
nuclei, these core tails are important for the relativistic contribu- (ZORA) in the spin-free form for transition metal oxides WO
tions to the paramagnetic shielding. Tight functions should (M = Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os), and transition metal
therefore always be included in basis sets when performing carbonyls M(COj (M = Cr, Mo or W). The implementation
relativistic NMR calculations on heavy systems. With respect follows the strategy (GIAOs, numerical integration) of the earlier
to the frozen core approximation we make the following implementation of Schreckenbach and Ziegfébased on the
observation. The fc results are very close to the all-electron Pauli Hamiltonian for the relativistic effects. The relativistic
results in the same basis (IV-ae) for the 3d metals. For the 4d effects are large, on the order-6fL000 ppm on nonrelativistic
metals there are differences in the range-20 ppm, and for shieldings that range from-800 to —900 for W—Os. This
the 5d metals on the order of 300 ppm. For the 5d metals the confirms the importance of the use of relativistic theory when
chosen frozen core (up to 4d) apparently is too large. On the calculating NMR shielding parameters. The Pauli based method
other hand, very similar changes in going from fc to ae that was developed by Schreckenbach and Ziegler neglected
calculations in the IV-ae basis are observed for the carbonyl some relativistic terms that were here shown to contribute
complexes. The chemical shifts of the oxo complexes with significantly to the isotropic shieldings. A comparison of the
respect to the carbonyl complexes will therefore differ only little  Pauli approach including these additional relativistic terms with
between the fc and ae calculations, cf. Table 9. the ZORA approach was made using a frozen core approxima-
The large changes in going from the IV-val to IV-ae basis tion and restricted basis sets, which is imperative for the quasi-
indicate strong basis set sensitivity of notably the paramagneticrelativistic Pauli calculations. There were only small differences
shieldings. We therefore extend the basis set further, to a basisn the valence contributions to the diamagnetic shieldings.
set that is triplez for the core orbitals, and quadrupleor the However, the differences in the paramagnetic shieldings went
valence orbitals (TZ/QZ). The TZ/QZ basis has also been up to 400 ppm for the heaviest atoms considered. Since these
extended with additional polarization functions, such as a set differences in going from Pauli to ZORA were similar in the
of 4f functions on the 3d and 4d metals, 5f functions on the 5d metal oxides and in the carbonyl complexes, there was consider-
metals, and extra polarization functions on C and O. With the able cancellation in the chemical shifts computed for the oxides
all-electron basis sets both frozen core and all-electron calcula-with respect to the carbonyl complexes. Still, the ZORA
tions have been performed; see the last two columns in Tablechemical shift for tungsten differed by about 50 ppm from the
8. Compared to the calculations with the basis IV-ae we find Pauli chemical shift.

4. Summary
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