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Relativistic effects for NMR shielding constants have been calculated using the zero order regular approximation
(ZORA) for relativistic effects. Isotropic NMR shielding constants were obtained using density functional
theory with gauge including atomic orbitals (GIAO) in a spin-free formalism for the metal nuclei in transition
metal oxides MO4n- (M ) Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and carbonyl complexes M(CO)6 (M ) Cr,
Mo, W). The ZORA isotropic shieldings are compared with results from an extended version of the relativistic
method employing the Pauli Hamiltonian developed earlier by Schreckenbach and Ziegler. Comparison between
ZORA and Pauli shieldings, employing the restrictions necessary for the Pauli approachsfrozen cores, restricted
basis sets in the core regionsshow the ZORA shieldings to be significantly different from Pauli ones, but the
chemical shifts of the metal oxides with respect to the carbonyl complexes do not differ much. However,
extending the ZORA calculations (no frozen core, extended basis sets) gives significant changes, proving the
limitation to frozen cores and restricted basis sets of the Pauli method to be unwarranted. Comparison to
experiment shows that the errors of the most precise ZORA chemical shifts are ca. 10% (in the order of a few
100 ppm) for both the light and heavy transition metals. Error sources may be, apart from deficiencies of the
density functional, the neglect of spin-orbit coupling and the neglect of solvent effects.

1. Introduction

NMR spectroscopy is widely applied in chemistry and
biochemistry. Calculations in this field are important for
correlating measurements of the chemical shift with the mo-
lecular structure. The theoretical determination of NMR pa-
rameters is of general interest, but lately special attention is
also being given to relativistic effects in NMR shielding of heavy
nuclei.1-8 The relativistic effects are not only important for the
NMR shielding of the heavy atom themselves but also for light
ligands. For the chemical shifts of the latter especially, the spin-
orbit coupling turned out to be important.9-13 For the heavy
atoms, the scalar relativistic effects are particularly important.4

In order to enable applications to large systems containing heavy
atoms, an accurate and efficient method is required, for which
DFT-based methods offer good prospects. Significant progress
in the application of DFT for shielding tensor calculations has
been made by Schreckenbach and Ziegler using a density
functional theory (DFT) method with gauge including atomic
orbitals (GIAO),14,5by Malkin, Malkina, and Salahub,15-17 also
using DFT methods but with independent gauge for localized
orbitals (IGLO) and by Wolff and Ziegler,11 who also include
spin-orbit coupling.

Malkin and co-workers used relativistic pseudopotentials and
did therefore not calculate heavy atom shieldings. Schrecken-

bach and Ziegler treat relativistic effects using the so-called
quasi-relativistic method based on the Pauli Hamiltonian, which
has some well-known problems coming from the use of an
expansion parameter that becomes singular close to the nuclei.
This makes all-electron calculations on heavy systems impos-
sible, because the Pauli Hamiltonian has no lower bound and
the necessary tight functions will lead to variational collapse.
The quasi-relativistic method can therefore only be applied with
a frozen core approximation that avoids variational collapse by
the orthogonality constraint on the core. In addition, the basis
set needs to be restricted, in the sense that, in a heavy metal
complex for instance, tight functions are to be avoided at the
metal nucleus as well as large flexible basis sets on the ligands.

The zeroth-order regular approximation (ZORA)18,19presents
a good alternative, giving a two-component relativistic method
which is variationally stable and can be used in all-electron
calculations. A first application of the ZORA NMR method has
already been published by Wolff et al.8

We will make a detailed comparison between the application
of the quasi-relativistic Pauli method for NMR and the ZORA,
which we use in its spin-free (one-component) form. First, in
section 2, the derivation of the expressions for the shielding
tensors will be treated for both the quasi-relativistic Pauli method
and the ZORA method. We will identify some relativistic terms
in the Pauli method which were neglected by Schreckenbach
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and Ziegler. These terms have been included to make a fair
assessment of the Pauli method. In section 3, applications are
presented for a series of transition metal oxides MO4

n- (M )
Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os), as well as for the
hexacarbonyl complexes M(CO)6. A detailed comparison be-
tween ZORA and Pauli shieldings and chemical shifts is made
in section 3.2. This comparison has necessarily to be performed
within the restrictions imposed by the Pauli method (frozen
cores, restricted basis sets). Although the differences for the
shieldings are not negligible, they tend to be similar for different
complexes such as the oxides and carbonyl complexes inves-
tigated here. This implies that the ZORA and Pauli chemical
shifts are not so different. However, the results are, due to the
restrictions on the basis sets, not close to the basis set limit. A
distinct advantage of the ZORA method is the possibility to
perform all-electron calculations in extended basis sets, including
special tight functions to describe the core orbitals and
particularly the core tails of valence orbitals accurately.
Extensive ZORA investigations of the frozen core approximation
and basis set effects are presented in section 3.3. Section 4
summarizes the results.

2. Theory

We begin by deriving relativistic Hamiltonians for an electron
moving in a molecule that is a placed in an external magnetic
field. We then follow the procedure outlined by Schreckenbach
and Ziegler5,14,20and obtain the shielding tensor as the second
derivative of the electronic energy with respect to both the
external and the internal (arising from the nuclear magnetic
moments) magnetic field. The resulting expressions are formu-
lated in a Hamiltonian-independent way, which allows us to
treat the nonrelativistic, Pauli, and ZORA Hamiltonians within
the same formalism. In this formalism, we use the GIAO method
to avoid unphysical dependencies on the gauge-origin of the
external magnetic field and allow for the definition of frozen
core orbitals (section 2.3).

2.1. Relativistic Hamiltonians. As a starting point for our
relativistic calculations, we use the Dirac equation for a one-
electron system in atomic units

which contains the large componentφ and the small component
ø. The effective one-electron potentialV in our density functional
calculations is the sum of the external nuclear potential, the
Hartree (Coulomb) potential from the electron density, and the
exchange-correlation potential.

The traditional reduction of the four-component Dirac
formalism to an approximate (or exact, see Foldy-Wouthuysen
transformation21) two-component one starts with elimination of
the small componentø to give the following equation for the
large componentφ

Since the large component is not normalized we introduce a
two-component normalized functionΨ ) Oφ with O a
normalization operator, which can be chosen as

with

The textbook approach22,23now is to expand these equations in
(E - V)/2c2 resulting in the first-order Pauli Hamiltonian

consisting of the nonrelativistic Hamiltonian, the mass-velocity
term, the Darwin term and the spin-orbit coupling term. This
expansion is, however, only valid if the velocity of the electrons
is everywhere small compared to the velocity of light (E - V
, 2mc2). This condition is not satisfied for a Coulombic
potential like the nuclear potential. The singularities that arise
in approximate two-component theories in a Coulomb potential
have been discussed by Kutzelnigg and others.24-27

Following van Lenthe et al.,18,28 the problems are avoided
by using an expansion inE/(2c2 - V) which is regular even
near the singularity of a Coulombic potential. Up to zeroth order
this regular approximation (ZORA)18 gives for the Hamiltonian

where

The scalar relativistic effects are incorporated in the first two
termsV + pb‚(K/2)pb. This Hamiltonian was derived earlier by
Chang et al.29 and Heully et al.30 Notice that in the caseK ) 1
we get the nonrelativistic Hamiltonian.

Although the spin-orbit coupling can be quite considerable
for heavy elements, and in fact affects the shielding of light
ligand nuclei,10,11we will in this paper concentrate on the scalar
relativistic effects on NMR shielding of heavy metal nuclei using
the spin-free relativistic theory. The terms in the Hamiltonian
linear in the spin are therefore ignored.

We now include the magnetic field in the Hamiltonian by
means of minimal substitution

The vector fieldAB is given by

containing the applied external magnetic fieldBBext, the nuclear
magnetic momentµb of the atom under consideration, the
position rbN relative to the considered atom and the positionrbg

relative to the gauge originRBg of the vector potential of the
external magnetic field. The vectorfield satisfies the Coulomb
gauge, i.e.,∇B‚AB ) 0.

The gauge origin can in principle be chosen arbitrarily, since
this choice does not affect the magnetic field. The calculated
shielding tensor does, however, depend on the chosen gauge
unless a complete basis set is used. Since we will consider a
finite basis set consisting of atomic orbitals (AOs), this may
result in a gauge origin dependence of the calculated shielding
tensor. This problem is overcome by using gauge including

( V
cσb‚pb

cσb‚pb
V - 2c2)(φø) ) E(φø) (1)

Vφ + 1
2

σb‚pb(1 + E - V

2c2 )-1
σb‚pbφ ) Eφ (2)

O ) x1 + X+X (3)

X ) 1
2c(1 + E - V

2c2 )-1
σb‚pb (4)

HPauli ) V + p2

2
- p4

8c2
+ ∆V

8c2
+ 1

4c2
σb‚[∇BV × pb] (5)

HZORA ) V + σb‚pbK
2

σb‚pb ) V + pb‚K
2

pb + σb‚[∇B(K - 1
2 ) × pb]

(6)

K ) 1

1 - V

2c2

(7)

pb f pb + AB
c

(8)

AB ) 1
2
(BBext × rbg) +

µb × rbN

rN
3

(9)
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atomic orbitals (GIAOs), also called London orbitals, introduced
in NMR by Ditchfield31 and first used by London.32 With this
choice of basis set the calculated shielding tensor becomes
invariant for the change of gauge origin. For convenience we
choose the gauge origin to be equal to the origin of the
coordinate system and drop the subscript g in the following.

After minimal substitution the scalar relativistic Hamiltonians
become

and

In the Pauli Hamiltonian we ignored terms higher than quadratic
in the vector field that come from the mass-velocity operator.
The Darwin term gives no extra terms when applying minimal
substitution.

We derived the spin-free Pauli Hamiltonian (10) by applying
minimal substitution to the one-component field-free equations.
This is the simplest approach that directly gives a spin-free
formalism. A more rigorous approach would be to apply the
minimal substitution to the original Dirac equation before
carrying out the transformation to a two-component form. We
will not include the resulting extra, mainly spin-dependent, terms
in our present spin-free calculations. A more extensive discus-
sion of these and other relativistic terms in the Pauli Hamiltonian
can be found in the paper by Fukui et al.7

2.2. Shielding Tensor.At a nucleus, an applied external
magnetic fieldBBext is shielded by the electrons moving around
the nucleus. The effective field the nucleus experiences can be
written as33

whereσbb is the nuclear magnetic shielding tensor.
In practice one usually measures the chemical shiftδ, which

is related to the resonance frequencies of the sampleνs and of
a reference sampleνref

The resonance frequencies are determined by the Zeeman
splitting caused by the nuclear magnetic moment. Since a
resonance frequencyν is linear with 1 - σ, whereσ is the
isotropic shielding Tr(σbb)/3, the chemical shift will be for small
shieldings (σ , 1)

To calculate the magnetic shielding tensor we use that in lowest
order the energy of the system is linear in both the external
magnetic field and the nuclear magnetic moment. Therefore,
the shielding tensor is in lowest order

which by means of the generalized Hellmann-Feynman theo-

rem34 can be written as

where the Hamiltonian contains the applied external magnetic
field BBext and the nuclear magnetic momentµb of the atom under
consideration.Ψ(BBext) depends only on the external magnetic
field and is the ground-state eigenfunction of

where there is no term dependent on the nuclear magnetic
moment in the Hamiltonian.

One generally splits the shielding tensor (eq 16) in a
diamagnetic shieldingσd and a paramagnetic shieldingσp, where
the diamagnetic shielding contains the zeroth order (with respect
to the magnetic field) wave function and the paramagnetic
shielding contains the first order wave function. The terms can
be individually kept gauge invariant.

For the magnetic shielding we need to know the first-order
response to the magnetic field of the wave functionΨ(BBext).
We suppose we already solved the eigenvalue problem (eq 17)
for BBext ) 0, i.e., no magnetic field included, giving solutions
Ψi

0, written as a linear combination of atomic orbitals

To avoid gauge-origin dependence we introduce gauge including
atomic orbitals (GIAO), also called London orbitals

whereRBν is the position of the nucleus at whichøν is centered.
By using GIAOs the choice of the origin will not affect the
shielding tensor.

As a basis for the eigenfunctions ofH(BBext) we use the
solutions (18) of the nonmagnetic equation, where the atomic
orbitals are now replaced by the GIAOs

Following Pople et al.35 the wave function can now be written
as

which is up to first order in the magnetic field equal to

This first-order wave function is normalized to first order in
the magnetic field. Since the operators depending on B are
imaginary we tookuji

1,s ) (∂/∂iBs
ext)uji to make the first-order

coefficients real.
We get for thes-component ofuji

HSR
Pauli(AB) ) V + p2

2
+ pb‚AB

2c
+ AB‚pb

2c
+ A2

2c2
- p4

8c2
+ ∆V

8c2
-

1

8c2(2p2(pb‚AB
c) + 2(pb‚AB

c)p2 + A2

c2
p2 + p2A

2

c2
+ 4(pb‚AB

c)2) (10)

HSR
ZORA(AB) ) V + pb‚K

2
pb + K

2c
AB‚pb + pb‚AB K

2c
+ K

2c2
A2 (11)

BBeff ) BBext(1 - σBb) (12)

δ/ppm) 106
νs - νref

νref
(13)

δ/ppm) 106(σref - σs) (14)

σst ) ∂
2E

∂Bs
ext

∂µt

|BBext)µb)0 (15)

σst ) ∂

∂Bs
ext〈Ψ(BBext)|∂H(BBext,µb)

∂µt
|µb)0 |Ψ(BBext)〉

BBext)0
(16)

H(BBext)Ψ(BBext) ) ε(BBext)Ψ(BBext) (17)

Ψi
0 ) ∑

ν

dνiøν (18)

øν(BB
ext) ) e-(i/2c)(BBext × RBν)‚ rbøν (19)

Φj(BB
ext) ) ∑

ν

dνjøν(BB
ext)

Ψi(BB
ext) ) ∑

j

ujiΦj(BB
ext) (20)

Ψi(BB
ext) ) Ψi

0 + ∑
ν

i

2c
dνiBB

ext‚( rb × RBν)øν + ∑
j

iBBext‚uji
1Ψj

0

(21)

uii
1,s ) - 1

2
Sii

1,s (22)
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with

If we write out the expressions forSji
1,s andFji

1,s, we obtain

whereM is the number of molecular orbitals, both occupied
and virtual andH(0) is the field free Hamiltonian. TheS1 matrix
is a consequence of the introduction of GIAOs, just as the first
term in theF1 matrix and the second term in the wave function
(eq 21). In the limit of a complete basis the net effect of these
terms will be zero.

2.3. Frozen Core Approximation.To save computing time
it is often desirable to use a frozen core approximation. The
MOs close to a nucleus are believed to change only very little
in going from a free atom to an atom in a molecule and have
a negligible overlap with each other. In addition one can assume
that the response of the tightly bound core electrons to the
applied magnetic field is negligible, so that their paramagnetic
contribution to the shielding can be ignored. With these
assumptions we can keep the core AOs frozen during the
molecular calculation so that they can be excluded from the
matrix equations that are to be solved. In the quasi-relativistic
method based on the Pauli Hamiltonian the frozen core approach
has to be used anyway, when dealing with heavy atoms, since
otherwise variational collapse will occur.

Since only the valence orbitals need to be represented in a
frozen core approximation the basis set can be reduced to a set
of Mval valence functionsøν

val only. These functions are in
general, however, not orthogonal to the frozen core orbitals.
This can be remedied by introducing core orthogonalization
functionsøν

core. The new valence functionsλν
val then become

whereMcore is the number of core orbitals (and the number of
øν

core) and the coefficientsbµν are taken such that these new
functions in the valence basis set are orthogonal to the frozen
core AOs. Note that the core orthogonalization functions are
single STOs that are not identical to the original core AOs that
are expressed in a large atomic basis set. In the Pauli molecular
calculations we have the additional complication that we always
have to use nonrelativistic atomic core orbitals, since the Pauli
approach precludes the determination of Pauli core orbitals. For

the Coulomb and exchange-correlation potentials that feature
in the Hamiltonian, the fully relativistic Dirac density is used.

By using GIAOs the orthogonalization coefficientsbµν
become dependent on the external magnetic fieldBBext, introduc-
ing extra terms in the shielding tensor, theS1 matrix and theF1

matrix. The introduction of GIAOs in NMR shielding tensors
and the effects of it on the frozen core approximation have been
treated earlier by Schreckenbach and Ziegler.14,5

The extra terms caused by the frozen core approximation
follow easily from the definitions of theS1 andF1 matrix and
the shielding tensor, using the first-order correction coming from
the b coefficients in the orthogonalized valence functions (eq
28). We define the function

which is the first-order response of the wave function to the
external magnetic field in theb coefficients only. From the
definition of theS1 matrix (24) follows

with the first term given by (26). From (25) we get

with the first term given by (27).
2.4. Nonrelativistic Shielding Tensor.By introducing the

nonrelativistic Hamiltonian

one gets for the magnetic shielding tensor

The diamagnetic core contribution is the only core contribution
in the total shielding and is given by

whereFcore
A is the core density located at nucleus A.

The diamagnetic valence part is

with

The diamagnetic shielding is determined by the zeroth-order
wave function. The summations over the occupied orbitals are

uji
1,s )

Fji
1,s - εi

0Sji
1,s

εi
0 - εj

0
, for j * i (23)

Sji
1,s ) ∂

∂iBs
ext

〈Φj|Φi〉BBext)0 (24)

Fji
1,s ) ∂

∂iBs
ext

〈Φj|H(BBext)|Φi〉BBext)0 (25)

Sji
1,s )

1

c
∑
µ,ν

M

dµjdνi〈øµ|[ rb

2
× (RBν - RBµ)]

s
|øν〉 (26)

Fji
1,s )

1

c
∑
µ,ν

M

dµjdνi〈øµ|H(0)( rb

2
× RBν)

s
- ( rb

2
× RBµ)

s
H(0)|øν〉 +

〈Ψj
0|∂H(BBext)

∂iBs
ext |BBext)0|Ψi

0〉 (27)

λν
val ) øν

val + ∑
µ

Mcore

bνµøµ
core (28)

Ψl,s
(1,b1)(i) ) ∑

µ

Mval

dµl ∑
τ

Mcore

bµτ
1,søτ

core(i) (29)

Sji
1,s ) ∂

∂iBs
ext

〈Φj|Φi〉BBext)0 - 〈Ψj,s
(1,b1)|Ψi

0〉 + 〈Ψj
0|Ψi,s

(1,b1)〉 (30)

Fji
1,s ) ∂

∂iBs
ext

〈Φj|H(BBext)|Φi〉BBext)0 - 〈Ψj,s
(1,b1)|H(0)|Ψi

0〉 +

〈Ψj
0|H(0)|Ψi,s

(1,b1)〉 (31)

HNR(AB) ) V + p2

2
+ pb‚AB

c
+ A2

2c2
(32)

σst ) σst
d + σst

p (33)

σcorest

d )
1

2c2
∑
A

NNuc∫dτ Fcore
A 1

rN
3
( rbN‚ rbAδst - rNs

rAt
) (34)

σvalst

d )
1

c2
∑

i

occ

ni∑
ν

M

dνi〈Ψi| 1

2rN
3
( rbN‚ rbνδst - rNs

rνt
)|øν〉 +

1

c
∑

i

occ

ni∑
µ,ν

M

dµidνi〈øµ|[ rbν

2
× (RBν - RBµ)]

s
iht

01NR|øν〉 (35)

ht
01NR ) ∂

∂µt
HNR(AB)|BBext)µb)0 ) 1

c[ rbN

rN
3
× pb]

t

(36)
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over the valence orbitals only. The introduction of GIAO
orbitals, securing gauge invariance, leads to the second term.
This term gives no further diamagnetic core contribution, since
it comes from the first-order magnetic response of the orbitals
and we assumed the core orbitals to be independent of the
magnetic field. For the same reason there will be no contribution
from the core orbitals to the paramagnetic shielding, since it is
determined by the first-order wave function in the magnetic
field. The first term in eq 35 is inversely proportional to the
distance to the NMR nucleus and will therefore be determined
by the most localized orbitals around the NMR nucleus.

The nonrelativistic paramagnetic shielding is

which is determined by the first-order wave function and in
which the first term comes from the GIAO introduction. The
occupied-occupied part in the paramagnetic shielding is also
a gauge correction

The S1 matrix is independent of the Hamiltonian and is given
by (eq 30) and is completely due to the GIAOs. The occupied-
virtual part is the most important term since this is the only
term that is not a result from the introduction of the GIAOs. It
is given by

and the frozen core contribution is

which contains the first-order response of the orthogonalization
coefficientsbµν that also come from the GIAO introduction.
The u1 coefficients have been defined earlier in eq 23 withF1

following from (31)

In the derivation equal occupation numbers for all occupied
orbitals were assumed. The relations

have also been used. Furthermore, the summations over the
occupied orbitals are again over the valence orbitals. The frozen

core orbitals enter only via the change in orthogonalization
coefficients (the last two terms of (41)).

2.5. Pauli Shielding Tensor.To include scalar relativistic
effects the shielding tensor has to be based on the scalar
relativistic Hamiltonian (eq 10). Schreckenbach and Ziegler20

argue that relativistic terms only have to be taken into account
explicitly in the first-order magnetic orbitals. This means that
relativistic contributions to most shielding terms only enter
indirectly through the relativistic change in orbitals (hence
density) and orbital energies. In particular, all relativistic
contributions to the diamagnetic shielding would only arise
indirectly from the use of relativistic orbitals. There is then only
an explicit relativistic correction to theF1 matrix appearing in
the expression for the occupied-virtual part of the paramagnetic
shielding (eq 39). This procedure is substantiated by statements
in the literature36 that one can either use third-order perturbation
theory with one of the perturbations being the relativistic terms
in the Pauli Hamiltonian, or second-order perturbation theory
(magnetic fields only) with relativistic orbitals. This would be
correct if the perturbations were truly independent and the
Hamiltonian would consist of pure relativistic and pure magnetic
terms. Equation 10 has also some mixed relativistic-magnetic
terms, however, and they give additional scalar relativistic
contributions to the shielding tensor (eq 16). Schreckenbach and
Ziegler20 include the mixed relativistic-(external magnetic field)
term but exclude others. We will include all scalar terms that
contribute to first order in the relativistic perturbation.

For the Pauli relativistic corrections to theF1 matrix we refer
to Schreckenbach and Ziegler.37,20The additional terms that we
obtain for the shielding tensor when using the Pauli Hamiltonian
in eq 16 are for the diamagnetic shielding

and for the paramagnetic shielding

σst
p )

1

c
∑

i

occ

ni∑
µ,ν

M

dµidνi〈øµ|[12RBµ × RBν]
s
iht

01NR|øν〉 + σst
p,oc-oc +

σst
p,oc-vir + σst

p,b1
(37)

σst
p,oc-oc ) ∑

i,j

occ

niSij
1,s〈Ψi|iht

01NR|Ψj〉 (38)

σst
p,oc-vir ) 2∑

i
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ni∑
a

vir

uai
1,s〈Ψi|iht

01NR|Ψa〉 (39)

σst
p,b1

) -∑
i

occ

ni〈Ψi,s
(1,b1)|iht

01NR|Ψi〉 (40)

Fji
1,s )

1

c
∑

ν

M

dνi〈Ψj|[-
rbν

2
× ∇B]

s
|øν〉 +

1

c
∑
µ,ν

M

dµjdνi〈øµ|[ rb

2
×

(RBν - RBµ)]
s
(p2

2
+ V)|øν〉 -〈Ψj,s

(1,b1)|p2

2
+ V|Ψi〉 + 〈Ψj|p2

2
+

V|Ψi,s
(1,b1)〉 (41)

i( rbN × pb)t( rb × RB)s - i( rb × RB)s( rbN × pb)t )
- rbN‚RBδst + rNs

Rt (42)

(uji
1,s)* + uij

1,s ) -Sij (43)

∆σst
d,rel ) ∑

i
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ni〈Ψi(0)| ∂

∂Bs
ext

∂

∂µt
(-

1

8c4
(A2p2 + p2A2 +

4(pb‚AB)2))|µb)0,BBext)0|Ψi(0)〉
) -

1

8c4
∑

i

occ

ni〈Ψi(0)| 1

rN
3
( rbN‚ rbδst - rNs

rt)p
2 +

p2 1

rN
3
( rbN‚ rbδst - rNs

rt) + 2( rbN

rbN
3
× pb)

t

( rb × pb)s +

2(rb × pb)s( rbN

rbN
3
× pb)

t

|Ψi(0)〉 (44)

∆σst
p,rel ) ∑

i

occ

ni〈 ∂

∂Bs
ext

Ψi(BB
ext)|BBext)0| ∂

∂µt
(-

1

4c3
(p2(pb‚AB) +

(pb‚AB)p2))|µb)0,BBext)0|Ψi(0)〉 + cc

) -
1

4c3
∑

i

occ

ni〈 ∂

∂Bs
ext

Ψi(BB
ext)|BBext)0|p2( rbN

rN
3
× pb)

t

+

( rbN

rN
3
× pb)

t

p2|Ψi(0)〉 + cc (45)
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which can be included in the paramagnetic shielding (ht
01 also

has to be changed in eq 35 for the diamagnetic shielding) given
earlier (eqs 37-40) by changinght

01NR (eq 36) to

This makes the inclusion of these extra terms in the paramag-
netic shielding very straightforward. The core density enters in
eq 34 and gives a constant contribution to the shielding that
drops out in the calculated chemical shifts. Although this
contribution is therefore not relevant for most applications, it
is of interest when comparing methods that calculate the absolute
shielding. In the quasi-relativistic Pauli method one cannot
calculate this term directly because the core density cannot be
obtained with the Pauli Hamiltonian. We use the four-component
Dirac atomic density in this expression, so this term will also
include relativistic effects.

2.6. ZORA Shielding Tensor. We start from the ZORA
Hamiltonian (eq 11), which forK ) 1 is equal to the
nonrelativistic Hamiltonian. The expressions will therefore look
very similar to those of the nonrelativistic shielding tensor from
section 2.4, but contain aK that damps the singularities near
the nuclei.

The shielding tensor is again split in a diamagnetic and a
paramagnetic part

Here the diamagnetic part consists of a core part

where Fcore
A is the core density located at nucleus A, and a

valence part

which is again determined by the zeroth-order wave function.
The last term comes from the introduction of GIAO orbitals to
make the diamagnetic shielding gauge-independent. Like in the
Pauli approximation the other possible core contributions vanish
when using the orthogonality between core and valence orbitals
and the assumption that the core orbitals of different atoms do
not overlap.

The paramagnetic part is

The paramagnetic shielding is determined by the first-order wave
function and also contains some GIAO terms. The occupied-

occupied part in the paramagnetic shielding is a gauge correction

the occupied-virtual part is

and the frozen core contribution

with

Again we take in the summations over the occupied orbitals
only the valence orbitals.

The S1 matrix in (51) has been given earlier (eq 30) and is
independent of the Hamiltonian. TheF1 matrix, however, does
depend on the Hamiltonian and is now given by

following from (31). In this derivation we used that the wave
functions are real.

The core contribution to the diamagnetic shielding contains
the core density. Like in the Pauli approximation this term could
be calculated directly from the Dirac equation without using
the ZORA core orbitals. However, when comparing all-electron
and frozen core calculations it will be necessary for consistency
to use the ZORA orbitals also for the calculation of the core
density.

Furthermore, it can be checked that takingK ) 1 indeed gives
the nonrelativistic shielding tensor, as we stated earlier. In
practice, the nonrelativistic terms in the Pauli shielding tensor
and the nonrelativistic terms in the ZORA shielding tensor (with
K ) 1) are not equal when using numerical integration even
though they can be shown to be equal analytically by means of
partial integration. To compare the different approximations
discussed, numerical integration errors should thus be mini-
mized. For the calculations we make use of the Amsterdam
Density Functional package (ADF98) developed in our research
group.38-42 The default integration accuracy in this program,
which approaches an accuracy of 4 significant digits in all
integrals (AccInt 4 in ADF), is insufficient in this case. The
differences in the total isotropic shieldings of the metals for
the two discussed alternatives, due to numerical integration error,
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go as high as 12 ppm for the heaviest molecules. On a total
shielding of a few thousand ppm for the heavy molecules this
is not very much, so for most purposes this default integration
accuracy will suffice. However, for comparing the different
approximations as we do here, a higher integration accuracy is
needed. When we approach an accuracy of 7 significant digits
in all integrals (AccInt 7 in ADF) the observed numerical
differences between the two ways of calculating the nonrela-
tivistic result diminish dramatically. They are all at most 0.02
ppm. This integration accuracy will be used for all calculations
involving a comparison of different NMR methods, thereby
making sure that the differences coming from the numerical
integrations are negligible.

3. Isotropic Shieldings of Transition Metal Oxides

The theory of the previous sections will be used in calcula-
tions on the shieldings of the metal nuclei in the transition metal
oxides MO4

n- (M ) Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os). We
will first make an assessment of the magnitude of the relativistic
effects on the NMR shielding, where direct and indirect
relativistic effects may be distinguished. The direct relativistic
effects are associated with explicit relativistic terms in the
expressions for the NMR shielding (eq 16). However, relativity
is also known to considerably affect the energies and the shapes
of the atomic orbitals.36,43 These changes alone will already
affect the NMR shielding, even if the relativistic terms in the
shielding would not be taken into account. These may be called
indirect effects. It is interesting to know to what extent these
direct and indirect contributions are important for the NMR
shielding.

Next, the two relativistic methods, Pauli and ZORA, are
compared. Before actually comparing the results, the additional
terms in the Pauli NMR shielding that we have identified ((44)
and (45)) are studied. As it turns out, these terms cannot be
neglected. The results quoted as “Pauli” will therefore contain,
apart from the terms implemented by Schreckenbach and
Ziegler,5,14,20 these additional relativistic terms. The two con-
tributions to the total isotropic shielding, the diamagnetic and
the paramagnetic shielding, are considered separately. This
makes comparison simpler because the diamagnetic shielding
is mostly determined by the core orbitals, while the paramagnetic
shielding is mostly determined by the valence orbitals. Chemical
shifts of the metals in the metal oxides with respect to metal
carbonyls are also considered.

A distinct advantage of the ZORA method over the quasi-
relativistic Pauli method is the variational stability of the former.
It is therefore possible to perform all-electron calculations and
to use extended basis sets, including very tight functions. Such
calculations will be performed in order to investigate the
effectiveness of the frozen core approximation. Basis set
extension is also important to obtain a better description of the
core tails of the valence orbitals. It has been argued5 that the
frozen core approximation is adequate, but that a high-quality
representation of the core tails of the valence orbitals is
important.

For our calculations we used experimental geometries as also
used by Kaupp, Malkina, and Malkin.44 For iron oxide we will
use their prediction for the Fe-O distance of 1.58 Å. For the
calculation of the chemical shifts we used as a reference the
isotropic shieldings of the transition metal carbonyls M(CO)6

with experimental geometries.45 The experimental chemical
shifts, which are used later, are from measurements on molecules
in a solvent. Gas-phase data do not exist to our knowledge. We
will ignore the possible solvent effects. This is a second reason

that makes a direct comparison with experimental results
difficult. We already mentioned that we ignore the spin-orbit
coupling.

All calculations were performed using the Amsterdam Density
Functional package (ADF98) developed by Baerends et al.38-40

ADF uses the numerical integration scheme by te Velde et al.41,42

Added to ADF98 were the modified NMR code from Schreck-
enbach and Ziegler5,14,20 and our ZORA NMR code. Unless
stated otherwise, basis sets are used that are triple-ú for the upper
valence orbitals and double-ú in the subvalence region. These
basis sets are included in the ADF package (basis set IV). Note
that the basis sets used in the Pauli and the ZORA calculations
will be different as both of them were optimized separately.
The Pauli calculations employ nonrelativistic basis sets. Both
the Pauli and ZORA basis set contain a single STO core
orthogonalization function per frozen core orbital. These STOs
describe the core tails of the valence orbitals. For the 5d metals
the ZORA basis sets contain an extra tight 1s STO, in order to
describe the core tails of the valence orbitals better. The accuracy
of the numerical integration used has been discussed earlier
(AccInt 7 in ADF). The density functional used has been based
on the local density approximation with density-gradient cor-
rections to the exchange according to Becke (Becke88)46 and
density-gradient corrections to the correlation energy according
to Perdew.47

3.1. Relativistic Effects Using ZORA.The relativistic effects
on the NMR shielding can be large for the heavy atoms in the
molecule, but also for their ligands.4,36,37,44For the ligands this
is mainly a consequence of spin-orbit coupling.10 Since we
consider only scalar relativistic calculations, we will focus our
attention on the NMR shielding of the heavy atoms only.20

Here we will investigate the order of magnitude of these
relativistic effects as well as their origin. They can come either
from a change in the molecular orbitals and their energies
determined during the SCF calculation (indirect relativistic
effect), or from using a relativistic Hamiltonian in the shielding
tensor (eq 16) (direct relativistic effect). In the calculations the
approximation used in the SCF part can be chosen independent
from the approximation used in the NMR shielding calculation,
thereby separating the indirect and the direct contributions. The
following cautioning remark should however be made.

The generalized Hellmann-Feynman theorem, used to get
to eq 16, assumes the wave function to be optimized for the
zeroth-order Hamiltonian. If we take the SCF and the NMR
method to be different this requirement is not fulfilled. As a
consequence, expression (16) for the NMR shielding is not
complete in that case. Although a rigorous analysis is now
formally not possible, we can still make a qualitative analysis
in order to know how significant the direct relativistic effects
are that come from the use of a relativistic Hamiltonian in eq
16, leading to explicit relativistic terms in the expression for
the shielding. These effects can be compared to the effect of
using a relativistic (either Pauli or ZORA) versus a nonrelativ-
istic SCF procedure.

In Table 1 the total isotropic shieldings of the metals in some
transition metal oxides MO4n- (M ) Cr, Mn, Fe, Mo, Tc, Ru,
W, Re, Os) are shown using for the SCF and NMR method
(SCF/NMR) either the nonrelativistic (NR) limit or the ZORA
method. The frozen core approximation was used and the table
shows up to which orbital the orbitals are kept frozen for the
metals. For the oxygen atoms (and the carbon atoms in the
carbonyl complexes), only the 1s orbital is kept frozen. The
sizes of the frozen cores will be the same in all frozen core
calculations. We start by comparing the results in Table 1 from
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completely nonrelativistic calculations (NR/NR) with completely
ZORA calculations (ZORA/ZORA). For the 3d metals (Cr, Mn,
and Fe) the relativistic effects are relatively small, less than 100
ppm. For the 4d metals (Mo, Tc, and Ru) they are only a little
larger, but for the 5d metals (W, Re, and Os) the relativistic
effects are large, on the order of 1000 ppm. One has to keep in
mind that the total chemical shielding is the sum of two large
contributions with opposite sign, the diamagnetic and paramag-
netic shielding which approach for the 5d metals plus and minus
10000 ppm, respectively (see below). The resulting total NMR
shielding is much smaller than each individual contribution. A
small relative change in either contribution due to relativity can
result in a large relative change in the total chemical shielding,
which is observed in Table 1.

If we include the results from calculations with the SCF and
the NMR method chosen differently (NR/ZORA and ZORA/
NR), in particular those for the “relativistic” 5d elements, the
following observations can be made. In the first place, the
change to a relativistic (ZORA) SCF calculation is large, i.e.,
indirect relativistic effects are very significant, up to 2000 ppm.
In the second place, comparing for a given SCF method the
ZORA with the NR NMR calculation, we see that the direct
relativistic effects are large (up to 800 ppm) in the case of a
NR SCF, and for the oxides smaller but nonnegligible (larger
than 100 ppm) for ZORA SCF. We have not further analyzed
this difference between the magnitude of the direct relativistic
effects for the two SCF methods, but leave it at the conclusion
that, while the indirect relativistic effects are clearly larger than
the direct effects, neither of them can be neglected for 4d and
particularly 5d metals.

In the next section, the ZORA method for the calculation of
relativistic effects on the NMR shielding is compared to the
Pauli (quasi-)relativistic method.

3.2. ZORA Method versus the Pauli Approximation. In
section 2 we discussed two possible relativistic approximations,
the Pauli approximation and the ZORA method. The isotropic
shieldings obtained with these methods for the metal oxides
will be compared as well as the chemical shifts with respect to
the metal carbonyl complexes. Just as in the last section,
different combinations of SCF and NMR methods will be
considered. We will start, however, with a discussion regarding
the Pauli approximation.

We have discussed some relativistic terms (eqs 44 and 45)
in the NMR shielding which Schreckenbach and Ziegler did
not include in their calculations. As a result, the only relativistic
contributions were in the first-order response of the molecular

orbitals to the external magnetic field, resulting in only a change
of the u1 matrix. In this treatment, the diamagnetic shielding
therefore only contained indirect relativistic contributions,
whereas the paramagnetic shielding contained both indirect and
direct relativistic contributions. To investigate the relevance of
the extra terms the Pauli NMR implementation of Schrecken-
bach and Ziegler has been extended with the terms (44) and
(45). Table 2 and Table 3 show the results of calculations with
and without these terms for the diamagnetic and paramagnetic
parts, respectively. Clearly, the effect of the extra terms on the
valence contribution to the diamagnetic shielding in Table 2 is
small (we will comment below on the omitted core contribution
to the diamagnetic shielding). The magnitude of the additional
term (45) on the paramagnetic shielding, however, is much
larger, about 800 ppm for the 5d metals. This is quite large
compared to the total shieldings as given in Table 1. We
conclude that the additional terms should therefore be taken
into account in calculations of absolute shieldings using the Pauli
approximation. A fair assessment of the Pauli approximation
in a comparison with, e.g., the ZORA method will also require
inclusion of these terms.

We have not included in Table 2 the core contribution to the
diamagnetic shielding. This contribution is large (on the order
of 10 000 ppm for the 5d metals, see Table 7), and the effect of
the additional term (eq 44) is also large (ca.-2000 ppm for
the 5d metals). These contributions come mostly from the inner
core orbitals, which remain practically unaltered (exactly so in
the frozen core approximation). These diamagnetic core con-
tributions are therefore irrelevant for chemical shifts. It is
interesting to observe in Table 2, by comparing the Cr, Mo,
and W shieldings of the oxides with those of the carbonyl
complexes, that the valence contributions to the diamagnetic
shieldings exhibit only small shifts (10-20 ppm), while the
relativistic term∆σd is practically equal in the oxides and the
carbonyl complexes, yielding a negligible contribution to the
chemical shift. However, the paramagnetic shielding (Table 3)
is evidently very important for the chemical shifts, exhibiting
differences of a few thousand ppm between oxides and
carbonyls. Also the relativistic term∆σd has a nonnegligible
contribution to the chemical shift. Indeed, we see a small
difference (less than 1 ppm) between the additional relativistic

TABLE 1: Isotropic Shielding (in ppm) of M in MO 4
n- (M

) Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and of M in M(CO)6
(M ) Cr, Mo, or W) Using for the SCF and the NMR
Method Both the Nonrelativistic (NR) and the ZORA
Method

SCF NR ZORA

NMR frozen core NR ZORA NR ZORA

CrO4
2- 2p -2358 -2375 -2285 -2303

MnO4
- 2p -3515 -3533 -3440 -3460

FeO4 2p -4010 -4030 -3952 -3974
MoO4

2- 3d -357 -372 -215 -239
TcO4

- 3d -1066 -1070 -929 -952
RuO4 3d -1668 -1693 -1654 -1690
WO4

2- 4d 798 119 2028 1898
ReO4

- 4d -282 -1030 1125 1011
OsO4 4d -922 -1718 421 263
Cr(CO)6 2p -535 -548 -487 -501
Mo(CO)6 3d 1479 1393 1671 1571
W(CO)6 4d 4275 3359 6641 5100

TABLE 2: Valence Contribution to Diamagnetic Isotropic
Shieldings (in ppm) of M in MO4

n- (M ) Cr, Mn, Fe, Mo,
Tc, Ru, W, Re, Os) and of M in M(CO)6 (M ) Cr, Mo, or
W) Using Pauli SCF with Pauli NMR, Excluding and
Including the Extra Relativistic Term in the Diamagnetic
Shielding (Eq 44)

σd,Excl σd,Incl ∆σd SCF σd,Excl σd,Incl ∆σd

CrO4
2- 265 264 -1.3 WO4

2- 716 709 -7.0
MnO4

- 304 303 -1.5 ReO4
- 754 746 -7.9

FeO4 346 344 -1.8 OsO4 795 786 -8.7
MoO4

2- 215 213 -2.0 Cr(CO)6 282 281 -1.2
TcO4

- 240 237 -2.2 Mo(CO)6 226 224 -1.9
RuO4 267 264 -2.6 W(CO)6 725 718 -7.0

TABLE 3: Paramagnetic Isotropic Shieldings (in ppm) of M
in MO 4

n- (M ) Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and of
M in M(CO) 6 (M ) Cr, Mo, or W) Using Pauli SCF with
Pauli NMR, Excluding and Including the Extra Relativistic
Term in the Paramagnetic Shielding (Eq 45)

σp,Excl σp,Incl ∆σp SCF σp,Excl σp,Incl ∆σp

CrO4
2- -4095 -4076 19 WO4

2- -7581 -6788 793
MnO4

- -5360 -5338 22 ReO4- -8989 -8118 871
FeO4 -5985 -5961 24 OsO4 -10088 -9225 862
MoO4

2- -4219 -4098 121 Cr(CO)6 -2308 -2297 10
TcO4

- -5075 -4948 126 Mo(CO)6 -2416 -2324 92
RuO4 -5830 -5715 115 W(CO)6 -4238 -3651 587

NMR Shielding Constants in Transition Metal Oxides J. Phys. Chem. A, Vol. 104, No. 23, 20005607



diamagnetic contributions∆σd for the metals in the different
molecules, but a difference of up to 200 ppm between the
additional paramagnetic contributions∆σd for tungsten.

In the rest of the calculations the additional relativistic terms
of eqs 44 and 45 will be included in the Pauli calculations to
get a consistent comparison with the ZORA method.

In Tables 4-6, the Pauli approximation and the ZORA
method can be compared at the level of full Pauli (Pauli/Pauli)
and full ZORA (ZORA/ZORA) calculations, i.e., the same
approximation is used for both the SCF and the NMR calcula-
tion. These results will also be compared with calculations using
Pauli SCF with ZORA NMR (Pauli/ZORA). Performing ZORA
SCF with Pauli NMR (ZORA/Pauli) gives poor results, since
the ZORA basis sets contain tight functions. These functions
are localized around nuclei where the Pauli approximation
breaks down. In SCF calculations with the Pauli Hamiltonian
such tight functions cannot be used since they lead to variational
collapse, and apparently the problematic nature of the Pauli
approximation in the nuclear neighborhood also adversely affects
the Pauli NMR calculation with tight basis functions. These
functions are needed, however, in the ZORA SCF calculations
for a good description of the core tails of the valence orbitals.
Beside the possibility to do all-electron calculations, the ability
to use tight basis functions for an accurate description of core

tails is another point in favor of the ZORA method. We will
come back to this point in the next section where even more
tight functions are included in the basis set.

We will start by considering the isotropic valence diamagnetic
shielding for the transition metal oxides MO4

n- (M ) Cr, Mn,
Fe, Mo, Tc, Ru, W, Re, Os) and the transition metal hexacar-
bonyls M(CO)6 (with M ) Cr, Mo, W). The results are given
in Table 4. The ZORA shieldings are quite close to the Pauli
ones (less than 5 ppm difference, with 8 ppm for W(CO)6 as
the only exception). We do not include core contributions, since
in the Pauli case we cannot calculate quasi-relativistic Pauli core
orbitals due to the variational stability problem. The choice of
core orbital and density (Ψi(0) in eq 44 andFcore

A in eq 34)
therefore becomes arbitrary (options are: nonrelativistic or
ZORA, or, for Fcore

A , the atomic Dirac core density). The core
contributions are irrelevant for the chemical shifts anyway.

The direct relativistic effect on the valence contributions to
the diamagnetic shielding was already shown to be small (Table
2) in the Pauli case. In the ZORA method the direct relativistic
contribution can be calculated as the difference with shieldings
obtained withK ) 1 in the expressions for the shielding tensor,
while still using the ZORA orbitals and energies. The direct
relativistic effect has been found to be also small for ZORA
calculation. The observations we made concerning the small
contribution in the Pauli case of the valence diamagnetic
shieldings to the chemical shifts of the metal nuclei in the oxides
with respect to the carbonyls can be extended to the ZORA
case. These valence diamagnetic chemical shifts are given in
Table 6, which reveals very small contributions to the chemical
shifts of up to 20 ppm in both the Pauli and ZORA cases.

Since the diamagnetic contributions to the chemical shifts
are very small, the total chemical shifts are almost entirely
determined by the paramagnetic contributions to the shieldings.
For the metals in the oxo and carbonyl complexes these are
given in Table 5. This time there are large differences caused
by the different NMR methods (compare Pauli/Pauli with Pauli/
ZORA) and also large differences caused by the different SCF
methods (compare Pauli/ZORA with ZORA/ZORA). So even
if the orbitals and energies are the same (from the Pauli SCF
for instance, comparing Pauli/Pauli and Pauli/ZORA), the ZORA
equations for the NMR shielding yield significantly different
results from the Pauli equations. This, we feel, implies an
important caveat against the Pauli NMR shielding expressions.
When the ZORA shielding expressions are used, Table 5
displays a significant difference between Pauli and ZORA SCF
calculations. The reason for this is that, since the relativistic
contributions arise mainly in the nuclear neighborhood,43 the
core tails of the valence orbitals become important for the
relativistic effects on the paramagnetic shielding. The ZORA
SCF uses a different basis set than the Pauli SCF, in particular
for the 5d metals, since the ZORA basis sets for these atoms
contain an extra tight 1s STO, in order to describe the core tails
of the valence orbitals better. The Pauli basis sets cannot include
such tight basis functions, as we mentioned earlier.

The large differences in the paramagnetic contributions to
the shieldings between the various cases, as displayed in Table
5, cancel for a large part in the chemical shifts, just as for the
diamagnetic shieldings. Table 6 gives the paramagnetic contri-
butions to the chemical shifts for the three metals in MO4

n-

relative to M(CO)6, from which we see that a full Pauli and a
full ZORA calculation only gives a maximum difference of
about 50 ppm. The total chemical shifts are given in Table 6,
together with experimental data. The differences in the chemical
shifts using the Pauli approximation or the ZORA method are

TABLE 4: Valence Contribution to Diamagnetic Shielding
(in ppm) of M in MO 4

n- (M ) Cr, Mn, Fe, Mo, Tc, Ru, W,
Re, Os) and of M in M(CO)6 (M ) Cr, Mo, or W) Using for
the SCF and the NMR Method Both the Pauli
Approximation and the ZORA Method

SCF
NMR

Pauli
Pauli

Pauli
ZORA

ZORA
ZORA

SCF
NMR

Pauli
Pauli

Pauli
ZORA

ZORA
ZORA

CrO4
2- 263.8 264.6 263.8 WO42- 708.6 713.7 712.6

MnO4
- 302.9 303.9 302.9 ReO4- 746.2 751.9 750.4

FeO4 343.8 345.0 343.8 OsO4 786.3 792.6 791.0
MoO4

2- 212.7 213.9 209.7 Cr(CO)6 280.9 281.7 281.0
TcO4

- 237.3 238.7 233.7 Mo(CO)6 224.5 225.6 222.7
RuO4 264.3 265.9 262.0 W(CO)6 717.8 722.9 725.8

TABLE 5: Paramagnetic Shielding (in ppm) of M in MO 4
n-

(M ) Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os) and of M in
M(CO)6 (M ) Cr, Mo, or W) Using for the SCF and the
NMR Method Both the Pauli Approximation and the ZORA
Method

SCF
NMR

Pauli
Pauli

Pauli
ZORA

ZORA
ZORA

SCF
NMR

Pauli
Pauli

Pauli
ZORA

ZORA
ZORA

CrO4
2- -4076 -4088 -4095 WO4

2- -6788 -7234 -6871
MnO4

- -5338 -5351 -5360 ReO4
- -8118 -8593 -7925

FeO4 -5961 -5976 -5985 OsO4 -9225 -9680 -8843
MoO4

2- -4098 -4172 -4209 Cr(CO)6 -2297 -2304 -2310
TcO4

- -4948 -5026 -5051 Mo(CO)6 -2324 -2383 -2412
RuO4 -5715 -5785 -5921 W(CO)6 -3651 -3969 -3682

TABLE 6: Diamagnetic, Paramagnetic, and Total Chemical
Shifts (in ppm) of M in MO 4

2- Relative to M(CO)6 (M ) Cr,
Mo, or W) for the SCF and the NMR Method Both the
Pauli Approximation and the ZORA Method a

SCF
NMR

Pauli
Pauli

Pauli
ZORA

ZORA
ZORA experiment48

CrO4
2- diamagnetic 17 17 17

paramagnetic 1779 1784 1785
total 1796 1801 1802 1795

MoO4
2- diamagnetic 12 12 13

paramagnetic 1774 1789 1797
total 1786 1801 1810 1857

WO4
2- diamagnetic 9 9 13

paramagnetic 3137 3265 3189
total 3147 3274 3202 3505

a As an indication some experimental results are given.
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at this point rather small. The theoretical results are in quite
reasonable, but not excellent, agreement with experiment for
both approximations.

At this point we cannot yet draw definite conclusions. Of
course, from this very limited set of examples it is not possible
to jump to the conclusion that the observed cancellation of the
shielding differences between the various methods for the oxo
and carbonyl complexes will always happen, i.e., that Pauli/
Pauli will always give chemical shifts close to ZORA/ZORA.
In this case, however, the results are close and a comparison
with experiment cannot be used to decide on a preference for
one method over the other. However, we should keep in mind
that the ZORA/ZORA results are not converged with respect
to the basis set size. As we will see in the next section, the
basis set limit results for ZORA still differ considerably from
the present ones. As a matter of fact, the important advantage
of the ZORA method is precisely that it allows to remove
approximations that are inherent to the Pauli method. The basis
sets in the Pauli method cannot be extended, so a basis set limit
result cannot be obtained. Nevertheless, an accurate representa-
tion of core tails of the valence orbitals is crucial. In the second
place the frozen core approximation cannot be lifted in the Pauli
approximation. In the next section, the possibility offered by
the ZORA method to investigate the significance of these
approximations will be exploited.

3.3. All-Electron versus Frozen Core Calculations.In this
section we will consider all-electron (ae) and frozen core (fc)
calculations. We first comment on the core densitiesFcore

A to be
used in the frozen core approximation. In a relativistic calcula-
tion the core densities and the core potentials are calculated
from densitiesFcore

A that have been obtained in atomic Dirac
calculations, but it is also possible to use the ZORA method in
these atomic calculations. Since the core contribution to the
diamagnetic shielding contains the core density (see eq 34), this
contribution to the shielding is directly affected by the method
used to obtain the core density. The paramagnetic shielding only
experiences indirect effects from the resulting changes in the
SCF calculation.

A few calculations were performed using the ZORA method
for the core density. As expected, using the ZORA core densities
instead of Dirac core densities has practically no effect on the
orbital energies of the valence orbitals and on the valence
orbitals themselves. The resulting change in the paramagnetic
shielding is only a few ppm for the three heaviest atoms (W,
Re, and Os). The effect on the diamagnetic shielding is,
however, not negligible. For the heaviest atoms, the diamagnetic
shielding increases with about 80 ppm on a total of close to
10 000 ppm. Since the increase is caused by the core, the used
core method has a totally negligible effect on the chemical shifts.
However, to study the frozen core approximation, i.e., to
compare frozen core and all-electron calculations with the
ZORA method, the core density will in the following be
calculated using the ZORA method, since this is necessary to
get a consistent comparison between all-electron and frozen core
calculations.

In Tables 7 and 8 the two contributions to the total isotropic
shielding, the diamagnetic and the paramagnetic shieldings, are
given for the calculated transition metal complexes for both the
frozen core and the all-electron calculations using several basis
sets. The standard basis set IV for ZORA frozen core calcula-
tions (basis IV-val) is triple-ú in the valence region, double-ú
in the subvalence, and single-ú in the core region, except for
an additional very tight 1s function in the 5d metals. The core
functions only have to describe the core wiggles of the valence

orbitals, not the (frozen) core orbitals themselves. The latter
are taken from separate atomic calculations using very large
(converged) basis sets. The all-electron basis ae (IV-ae) has the
same STOs in the valence space but is double-ú in the core.
Frozen core calculations with the ae basis (IV-ae) simply have
more tight functions available to describe the core wiggles of
the valence orbitals. The frozen core orbitals themselves are
the same atomic orbitals as in the frozen core calculations with
the basis IV-val. An extended basis set TZ/QZ, which is
quadruple-ú in the valence region and triple-ú in the core region,
has also been used. This basis also contains additional polariza-
tion functions, such as a 4f set on the 3d and 4d metals, and a
5f set on the 5d metals. Frozen core calculations with the TZ/
QZ-ae basis employ the same frozen core orbitals, but have
three STOs available for each core wiggle of the valence orbitals.

Table 7 shows that the all-electron and the frozen core
calculations using basis set IV give practically the same
diamagnetic shielding. This indicates that for the diamagnetic
shielding the frozen core approximation is justified. The lack
of significant change between the frozen core and all-electron
calculations, which effectively employ somewhat different basis
sets for the valence orbitals, also suggests that basis IV-ae is
adequate for the diamagnetic shielding. These inferences are
corroborated by the calculations with the larger TZ/QZ basis.
The frozen core calculations and the all-electron calculations
using the same extended basis set TZ/QZ-ae are virtually

TABLE 7: Diamagnetic ZORA Shielding (in ppm) of the
Transition Metals from All-electron and Frozen Core
Calculationsa

basis set
ZORA fc

IV-val
ZORA ae

IV-ae
ZORA fc
TZ/QZ-ae

ZORA ae
TZ/QZ-ae

CrO4
2- 1796 1799 1789 1789

MnO4
- 1905 1909 1905 1906

FeO4 2016 2021 2018 2019
MoO4

2- 3990 3993 3975 3974
TcO4

- 4120 4123 4108 4107
RuO4 4254 4258 4242 4242
WO4

2- 8852 8851 8837 8837
ReO4

- 9022 9021 9010 9010
OsO4 9195 9193 9183 9183
Cr(CO)6 1813 1821 1798 1801
Mo(CO)6 4003 4010 3992 3990
W(CO)6 8865 8863 8854 8855

a Used were a triple-ú basis set IV and a large basis set TZ/QZ.
Additional frozen core calculations were performed using the all-
electron basis for the valence orbitals (valence basis TZ/QZ-ae).

TABLE 8: Paramagnetic ZORA Shielding (in ppm) of the
Transition Metals from All-electron and Frozen Core
Calculationsa

basis set
ZORA fc

IV val
ZORA ae

IV-ae
ZORA fc

IV-ae
ZORA fc
TZ/QZ-ae

ZORA ae
TZ/QZ-ae

CrO4
2- -4094 -4108 -4113 -4348 -4342

MnO4
- -5359 -5367 -5370 -5724 -5719

FeO4 -5984 -5992 -5995 -6362 -6358
MoO4

2- -4208 -4711 -4734 -4790 -4766
TcO4

- -5049 -5683 -5721 -5757 -5730
RuO4 -5919 -6617 -6654 -6759 -6720
WO4

2- -6874 -7970 -8260 -8415 -8102
ReO4

- -7929 -9223 -9512 -9667 -9340
OsO4 -8847 -10341 -10631 -10861 -10523
Cr(CO)6 -2309 -2329 -2328 -2427 -2419
Mo(CO)6 -2412 -2722 -2758 -2782 -2746
W(CO)6 -3684 -4318 -4588 -4670 -4340

a Used were a triple-ú basis set IV and a large basis set TZ/QZ.
Additional frozen core calculations were performed using the all-
electron basis for the valence orbitals (valence basis IV-ae and TZ/
QZ-ae).
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identical, and very close to the results obtained with basis IV.
For the diamagnetic shielding basis IV appears to be practically
converged, and the frozen core approximation is well justified.

The paramagnetic shielding (Table 8) exhibits, in contrast to
the diamagnetic shielding, large differences between the fc (basis
IV-val) and ae (basis IV-ae) calculations, up to 1500 ppm for
OsO4. A possible cause is that the frozen cores have been chosen
too large, but this would also have reflected itself in the
diamagnetic shielding. Another possibility is that the paramag-
netic shielding is sensitive to the basis set, and the increased
flexibility of the basis set IV-ae as compared to IV-val for the
(core tails of the) valence orbitals induces the observed large
changes. In order to investigate this possibility frozen core
calculations were performed using as the basis set the all-
electron basis set (IV-ae), while the frozen core is treated as
before. The results (ZORA fc, basis IV-ae) are given in the third
data column in Table 8. Compared to the earlier frozen core
calculations, the only difference is the larger basis set used for
the valence orbitals in the core region, such that now two STOs
are available for each core wiggle of the valence orbitals. The
paramagnetic shieldings are seen to change very much from
the fc calculations in basis IV-val, and are now much closer to
the all-electron results. Apparently, it is not primarily the frozen
core approximation but the quality of the valence basis that is
the crucial factor here. We have noted that the all-electron basis
set allows a better description of the core tails of the valence
orbitals. Since relativity becomes mainly important close to the
nuclei, these core tails are important for the relativistic contribu-
tions to the paramagnetic shielding. Tight functions should
therefore always be included in basis sets when performing
relativistic NMR calculations on heavy systems. With respect
to the frozen core approximation we make the following
observation. The fc results are very close to the all-electron
results in the same basis (IV-ae) for the 3d metals. For the 4d
metals there are differences in the range 20-40 ppm, and for
the 5d metals on the order of 300 ppm. For the 5d metals the
chosen frozen core (up to 4d) apparently is too large. On the
other hand, very similar changes in going from fc to ae
calculations in the IV-ae basis are observed for the carbonyl
complexes. The chemical shifts of the oxo complexes with
respect to the carbonyl complexes will therefore differ only little
between the fc and ae calculations, cf. Table 9.

The large changes in going from the IV-val to IV-ae basis
indicate strong basis set sensitivity of notably the paramagnetic
shieldings. We therefore extend the basis set further, to a basis
set that is triple-ú for the core orbitals, and quadruple-ú for the
valence orbitals (TZ/QZ). The TZ/QZ basis has also been
extended with additional polarization functions, such as a set
of 4f functions on the 3d and 4d metals, 5f functions on the 5d
metals, and extra polarization functions on C and O. With the
all-electron basis sets both frozen core and all-electron calcula-
tions have been performed; see the last two columns in Table
8. Compared to the calculations with the basis IV-ae we find

changes in the shielding of-100 to-200 ppm, for the transition
metals from each row, in both the fc and the ae calculations.
The basis set IV-ae is therefore not yet converged for NMR
shielding calculations. We note that the difference between
frozen core and all-electron calculations is very similar for the
present TZ/QZ-ae calculations as found earlier for the IV-ae
calculations, i.e., no difference for 3d metals and ca.-300 ppm
change from fc to ae for the 5d metals. This confirms that the
chosen fc approximation (up to 4d) is too severe for the 5d
metals.

The differences between the different calculations (basis set
IV to basis set TZ/QZ; fc to ae) are similar for the metal
shieldings in the oxo and carbonyl complexes. There will
therefore be considerable cancellation in the chemical shifts.
This is evident from Table 9. Nevertheless, the basis set IV-val
has considerable deviation (200 ppm for Mo, 580 ppm for W)
in the chemical shift from the best results (TZ/QZ-ae). For the
IV-ae basis this deviation has been reduced to ca. 30 ppm for
Mo and ca. 100 ppm for W. It is clear that not only for the
absolute shieldings but also for chemical shifts a large basis
set, with sufficient flexibility in the core region (tight functions),
is required for precise results. Given a sufficiently flexible basis
set, the frozen core approximation appears to be acceptable in
chemical shift calculations; compare the ZORA fc and ZORA
ae calculations in the TZ/QZ-ae basis.

As for the comparison to experiment, we note that our most
precise results (ZORA ae, TZ/QZ-ae) for the chemical shifts in
Table 9 exhibit discrepancies with respect to experiment on the
order of 200 ppm. This is already a quite useful accuracy.
Further improvement would require investigation of several
possible influences. In the first place we note that effects of
spin-orbit coupling have been neglected, as well as environ-
mental (solvent) effects. In the second place the dependency of
the results on the density functional would have to be considered.

4. Summary

Relativistic effects on NMR shieldings and chemical shifts
have been studied using the zero-order regular approximation
(ZORA) in the spin-free form for transition metal oxides MO4

n-

(M ) Cr, Mn, Fe, Mo, Tc, Ru, W, Re, Os), and transition metal
carbonyls M(CO)6 (M ) Cr, Mo or W). The implementation
follows the strategy (GIAOs, numerical integration) of the earlier
implementation of Schreckenbach and Ziegler5,37 based on the
Pauli Hamiltonian for the relativistic effects. The relativistic
effects are large, on the order of+1000 ppm on nonrelativistic
shieldings that range from+800 to -900 for W-Os. This
confirms the importance of the use of relativistic theory when
calculating NMR shielding parameters. The Pauli based method
that was developed by Schreckenbach and Ziegler neglected
some relativistic terms that were here shown to contribute
significantly to the isotropic shieldings. A comparison of the
Pauli approach including these additional relativistic terms with
the ZORA approach was made using a frozen core approxima-
tion and restricted basis sets, which is imperative for the quasi-
relativistic Pauli calculations. There were only small differences
in the valence contributions to the diamagnetic shieldings.
However, the differences in the paramagnetic shieldings went
up to 400 ppm for the heaviest atoms considered. Since these
differences in going from Pauli to ZORA were similar in the
metal oxides and in the carbonyl complexes, there was consider-
able cancellation in the chemical shifts computed for the oxides
with respect to the carbonyl complexes. Still, the ZORA
chemical shift for tungsten differed by about 50 ppm from the
Pauli chemical shift.

TABLE 9: ZORA Chemical Shifts (in ppm) of M in MO 4
2-

Relative to M(CO)6 (M ) Cr, Mo or W) Using Frozen Core
and All-Electron Calculationsa

basis
set

ZORA fc
IV-val

ZORA fc
IV-ae

ZORA ae
IV-ae

ZORA fc
TZ/QZ-ae

ZORA ae
TZ/QZ-ae expt48

CrO4
2- 1802 1801 1801 1930 1935 1795

MoO4
2- 1809 1991 2007 2025 2036 1857

WO4
2- 3203 3683 3664 3762 3780 3505

a For the valence orbitals both the frozen core basis and the all-
electron basis was used. Used were a triple-ú basis set IV and a large
basis set TZ/QZ.
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Although the differences in the chemical shifts for the Pauli
and ZORA approaches are relatively small in frozen core
calculations with restricted basis sets, this need not be the case
in all-electron calculations with large basis sets. Such calcula-
tions are not feasible with the Pauli Hamiltonian due to its
variational instability. In contrast, the ZORA method is varia-
tionally stable. As a consequence, all-electron calculations are
possible and the basis sets can be extended to include tight basis
functions. These tight basis functions are necessary for a correct
description of the core tails of the valence orbitals, which are
important for the paramagnetic shielding. Removing the frozen
core approximation and extending the basis sets beyond what
is possible in Pauli calculations proved to have considerable
effect. The following conclusions can be formulated regarding
the basis set effects and the frozen core approximation,
respectively. Basis set effects are rather important. A triple-ú
valence basis set with only a single-ú description of the core
wiggles of the valence orbitals is definitely inadequate. For the
5d elements even a triple-ú valence basis set with a double-ú
core description is insufficient, yielding chemical shifts that
differ on the order of 100 ppm from shifts with more complete
basis sets. The frozen core approximation affects the absolute
shieldings significantly (on the order of 300 ppm for the 5d
metals), but the chemical shifts are much less sensitive, the
effects of the frozen core approximation being very similar in
the oxides and in the reference compounds (carbonyl com-
plexes). It is therefore possible to obtain reliable chemical shifts
with frozen core calculations, provided the valence basis set is
sufficiently flexible in the core region so that it can describe
the core wiggles of the valence orbitals accurately.
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