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An optimal control methodology is applied to find the heat and oxygen flux profiles, distributed along the
length of a plug flow reactor, for the conversion of methanol to formaldehyde. The calculations use models
for the gas-phase and catalytic [MoO3-Fe2(MoO4)3] reactions. The reactor designs show that a distributed
heat flux improves formaldehyde yields, but an oxygen flux does not affect the results. Formaldehyde mass
fractions of over 90% have been achieved in the simulations. The solutions obtained, although not proven to
be globally optimal, are of very high quality. A fully nonlinear robustness analysis of the formaldehyde
production with respect to the catalyst model variables is performed by the use of a high dimensional model
representation. This representation is similar to the ANOVA decomposition used in statistics but does not
require an increase in the number of data points as the dimensionality of the variable space increases. The
most important variables are the catalyst surface area and the rate of formaldehyde desorption. The yield
improvement from employing optimized fluxes is found to be robust to the catalytic model parameter values.

1. Introduction

Formaldehyde is an important chemical used for a wide
variety of purposes. It may be synthesized by partially oxidizing
methanol with air over a metal or metal oxide catalyst in a
temperature range of 400-650°C. Current catalysts are typically
based on copper, silver, molybdenum alloy, or mixed iron and
bismuth molybdates.

In this paper, we utilize an optimal control strategy to suggest
ways to improve the yields of formaldehyde from methanol
partial oxidation through the design of distributed oxygen and
energy fluxes along the length of a plug flow reactor (PFR).
Optimization of the fluxes is carried out using a combined gas-
phase and catalytic reaction model. The gas-phase mechanism
developed by Held and Dryer1 consists of 22 species and 88
reactions. The model of the MoO3-Fe2 (MoO4)3 catalyst is
based on kinetic data from Pernicone,2 Liberti et al.,3 Pernicone
et al.,4 and Batist et al.5 None of the prior efforts at partial
oxidation of methanol has attempted to optimize the distribution
of energy and/or mass along the reactor length. Consequently,
the yields from conventional reactor designs represent a lower
bound on what might be achieved. The application of the optimal
control methodology is very similar to that of Faliks et al.6-8

where high-quality solutions were obtained for the conversion
of methane to acetylene and ethylene as well as the optimal
control of free radical polymerization.

After the optimal control designs are achieved, a fully
nonlinear robustness analysis is applied with respect to the
parameters of the catalysis model. A random sampling-high
dimensional model representation (RS-HDMR) technique is
used for this purpose; it is similar to the analysis of variance
(ANOVA) decomposition used in statistics. The nonlinear
HDMR analysis is needed because the high uncertainty char-
acteristic of the catalysis parameters precludes the use of

traditional linear sensitivity analysis based on small pertubations.
A significant drawback of the ANOVA decomposition is the
need to compute high-dimensional integrals over the parameter
space requiring large numbers of model calculations, with the
effort significantly growing as the dimensionality of the
parameter space increases. The number of model runs needed
for a RS-HDMR analysis is invariant with the dimensionality
thereby producing a very efficient procedure.

In section 2, the reactor model is presented, and in section 3
the gas-phase and catalytic models are described with a base
case set of kinetic parameters. Illustrative optimal control
simulations with the base kinetic model are discussed in section
4. In this section it is shown that heat flux optimization results
in an increased formaldehyde yield relative to a reference
isothermal run. Section 5 presents the results of the nonlinear
catalytic model robustness analyses. First, a robustness analysis
is performed on the optimal formaldehyde yield with respect
to broad scale conservative uncertainties in the parameter values
of the base kinetic model. Then, the benefits of optimization in
the distributed heat flux reactor are shown to be robust to the
kinetic model parameters by separately optimizing 100 random
systems, each with different values for the kinetic parameters.
Finally, conclusions that consider the practical feasibility of the
process are presented in section 6. The Appendices present the
details of the optimal control algorithm and the RS-HDMR
formulation.

2. Physical Formulation of the Flow Reactor

A plug flow reactor (PFR) is chosen as the basic reactor
configuration. The PFR is a cylinder with constant cross
sectional area and lengthL. Control is implemented through
chemical and/or heat flux through the side wall of the reactor
as a function of the positionl along its length. The reactions
are described by the production ratewi of the ith species,i ) 1,
..., n. The control variables are the fluxes of speciesi, denoted
as ji (mass/length-time), and the heat fluxq (energy/length-
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time), as a function of positionl. The mass fraction of species
i in the reactor is denoted asxi(l), and the total mass flow rate
is F(l).

The following assumptions are made in modeling the PFR:
(i) steady one-dimensional plug flow, (ii) instantaneous radial
mixing, (iii) no diffusion along the axis of the reactor, and (iv)
adiabatic reaction conditions. To make the assumptions realistic,
the ratio of the length of the reactor to its radius is chosen to be
greater than 25.

Since there are multiple sources of material flux entering the
system (additionally, co-feed input is coincident withj(0)), the
total mass balance for the flow rate is

By taking a differential control volume at positionl and
balancing the input and output mass and energy, we can arrive
at the equations governing the composition in the reactor.
Considering the conservation of mass, the species balance
equation is

The first term on the left represents the amount of theith species
flowing into the control volume. The second and third terms
represent the amount of the species fluxed in from the side of
the reactor and the amount produced or consumed in chemical
reactions within the volume, respectively. Taking the infini-
tesimal limits of dxi and dl, we arrive at the mass conservation
equation

A similar approach is used to derive the energy conservation
equation

whereq is the heat influx,Hfi is the heat of formation of species
i, andCpi is the corresponding specific heat. The temperature
of the influxed species isT0. Taking the infinitesimal limits of
dxi and dl leads to the energy conservation equation

3. Chemical Reaction Model

The full model consists of combined gas-phase and catalytic
reactions. A summary of the submodels is given below.

A detailed gas-phase mechanism was chosen for methanol
oxidation1 based on data from static reactor, flow reactor, shock
tube and laminar flame experiments. The model covers condi-
tions of temperature 300-2000 K, pressure 0.26-20 atm, and
equivalence ratio 0.05-2.6. The basis of the gas-phase model
is the subset of reactions involving hydrogen and oxygen and
the intermediates and products associated with them. This
submechanism determines the characteristics of the radical pool.
The oxidation of carbon species begins with initiation reactions
that are followed by radical attack on the methanol and
production of small intermediates, and ends with a chain of
steps:9 aldehydef COf CO2. The carbon monoxide/hydrogen/
oxygen gas-phase submechanism used is taken primarily from
Yetter et al.10 The formaldehyde oxidation kinetics are based
on the work of Hochgreb and Dryer11 and Held and Dryer,12

but some rates were changed to accurately reflect relative
formaldehyde and methanol destruction rates in flow reactor
experiments.1 The methanol submechanism includes methoxy
(CH3O) and hydroxymethyl (CH2OH). This submechanism
involves reactions for initiation/decomposition, OH abstraction,
reactions with H, and CH3O/CH2OH isomerization. Other
reactions include formation of minor species such as formic
acid (HCOOH) and 1,2-ethanediol (ethylene glycol) that act as
intermediates. Also included is the creation of some C2

hydrocarbon species due to the small amounts of methyl radicals
that are created during the oxidation and pyrolysis of methanol
and that may undergo recombination.

The catalytic model includes the kinetics of methanol
oxidation over MoO3-Fe2(MoO4)3. The parameters used are
based on flow reactor and pulse reactor studies in the temper-
ature range 180-280°C.2-5 The proposed mechanism consists
of several steps2:

(1) dissociative chemisorption of methanol;
(2) reduction of the catalyst, with formation of chemisorbed

formaldehyde;
(3) water desorption, restoring sites for methanol chemisorp-

tion;
(4) formaldehyde desorption;
(5) catalyst reoxidation.
This process is represented by

where0 is an anionic vacancy in the catalyst and O2- is lattice
oxygen. The reverse rate of reaction 8 is calculated through
equilibrium arguments. This mechanism is similar to one
proposed by Batist et al.5 for the oxidative dehydrogenation of
1-butene over Bi molybdate catalysts. Water desorption has been
shown to be reversible by infrared spectroscopy.13 The rate
parameters used are listed in Table 1, and these will be referred
to as defining the base kinetic model. The results of Pernicone2

indicate that the formaldehyde desorption is the rate-determining
step while not excluding that the catalyst reduction is slow.
These conclusions are supported by the work of Gorokhovatski
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and Evmenenko14,15 and Popov et al.16-19 In particular, Popov
et al.16-19 determined that neither methanol nor oxygen adsorp-
tion are the rate-determining steps. These authors also demon-
strated that catalyst reduction is slower than reoxidation.

If the dissociative chemisorption of methanol is the rate-
determining step, then the reaction rate should show a maximum
versus the partial pressure of the reactants and the reaction rates
should be equal in flow and pulse reactors. Pernicone et al.4

reported that this is not the case. If, on the other hand, desorption
is the slowest step, the reaction rate in the pulse reactor should
be higher than the one in the flow reactor, as is indeed observed
by Pernicone et al.4 If formaldehyde desorption is the slowest
step, the greatest part of the catalytic surface is occupied by
formaldehyde in a flow reactor under stationary conditions.
Therefore, even a large increase in the partial pressure of
formaldehyde should cause only a slight decrease in the reaction
rate. Pernicone et al.4 have experimentally verified that this is
true.

Liberti et al.3 used a pulse microreactor to study the effects
of temperature and flow rates on methanol oxidation over a
MoO3-Fe2(MoO4)3 catalyst. Among their results is the activa-
tion energy of the formaldehyde desorption listed in Table 1.
This activation energy has a small dependence on the flow rate.
The authors also conclude that formaldehyde desorption is the
rate-determining step.

Using the formaldehyde desorption rate at 600 K as the
benchmark, the catalyst reduction rate is chosen to be a factor
of 2 greater. The other reactions, which experimentally have
been shown to be significantly faster, were chosen to be a factor
of 10 greater. Because of the high uncertainty associated with
these parameters, a nonlinear robustness analysis must be
performed to examine the influence of large deviations from
the values chosen.

The catalytic model by itself is incomplete. In the absence
of the gas-phase reactions, formaldehyde is not oxidized and
so its yield simply rises with residence time. Without the
catalytic model, only trivial yields of formaldehyde are achiev-
able. Therefore, both models are necessary. Simulation of the
catalyst was done by treating the anionic vacancies and lattice
oxygen sites as species and distributing them along the reactor.

4. Illustrative Computational Studies

The optimal control design formulation was applied to several
test problems. In each example, an effective strategy for finding
a cost functional minimum involved making a few runs with
increasingly demanding objectives. The optimal flux profiles
of the previous run were found to be good initial points for
subsequent runs. The computer code employed for these
simulations has also been used in previous applications6,7,8,20

and has performed well. It is important to note that the present
work serves to show the potential significance of optimally
controlling the methanol conversion to formaldehyde rather than
attempting to corroborate any specific reaction mechanism or
establish an upper limit on the product yield.

The average iteration took about 29 min of CPU time on an
R4000 IRIS Indigo. Although global optimality could not be

guaranteed, it is evident that good quality solutions are obtained
using the proposed algorithm.

In the examples, the length of the PFR in which the reactions
proceed isL ) 100 cm, with a cross sectional area of 40 cm2.
The optimal inlet flow rate atl ) 0 is determined by trial and
error. The reactor is at a constant pressure of 1 atm. The initial
composition of the feedstock is chosen as 84% helium, 10%
CH3OH, and 6% O2 by mass. Species mass fractions given in
this paper are relative to the methanol co-fed into the reactor.
In the simulations, the number of anionic vacancies and lattice
oxygen sites is 200% of the moles of methanol feed so that it
does not limit conversion.

The first simulation is the reference case with the base kinetic
model of Table 1 under isothermal, 650 K conditions. The
residence time is 1.45 s. The formaldehyde mass fraction at
the reactor outlet is 0.84. The results are shown in Figure 1,
and they are similar to those reported by Pernicone et al.2 The
goal of optimization is to improve upon the formaldehyde yield
of this reference simulation.

A heat flux is the most important control variable, and the
results of a heat flux optimization with the base kinetic model
of Table 1 are shown in Figure 2. The optimized heat flux
consists of two parts. The first part provides an initial pulse of
heat to raise the temperature to the optimal zone for catalysis.
In the second part, energy is then taken out to lower the
temperature so as to slow the production of carbon monoxide
and prevent formaldehyde yields from dropping. The heat flux
optimization results in a significant drop in temperature in the
second half of the reactor but only a modest increase in the
first half. The final formaldehyde mass fraction has increased
to 0.93, and the residence time is 1.13 s.

An oxygen flux does not increase methanol conversion to
formaldehyde. This is consistent with results reported by
Pernicone et al.4 where varying oxygen composition did not
effect methanol oxidation to formaldehyde over the same
catalyst.

5. Robustness Analysis

The simulations of section 4 show that an optimization of
heat flux with the base kinetic model resulted in an improved
formaldehyde yield. The parameter values of the base kinetic
model in Table 1 have considerable uncertainties. This calls
for a thorough assessment of the robustness of the formaldehyde
yield relative to the values chosen for the kinetic model
parameters. This robustness assessment is carried out in two
stages. First, section 5.1 explores the robustness of the form-
aldehyde yields relative to the values of the base kinetic model
and also identifies the important parameters. This analysis is
done in a fully nonlinear manner due to the large uncertainty
ranges of the kinetic parameters.

The robustness analysis in section 5.1 is relative to a single
optimal run with the base kinetic model, which represents the

TABLE 1: Rate Parameters

k1
a ) 1 × 1011 L mol-1 s-1

k2 ) 1.9× 1010 L mol-1 s-1

k3 ) 1 × 1011 L mol-1 s-1

k4 ) 1015 exp[-16500/RT]b s-1

k5 ) 1 × 1011 atm.5 s-1

a The sticking coefficient is 0.5.b Activation energy units are calories.

Figure 1. Mass fraction trajectory for formaldehyde from the 650 K
isothermal reference case (1.45 s residence time).
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best estimated values for the catalytic model parameters.3,4 It
was shown in section 4 that optimization of the heat flux
improved the yield under the base kinetic model. It is important
to show if optimization produces increased yields of formal-
dehyde for different models having other reasonable values for
the kinetics parameters. If this is the case, a laboratory reactor
with feedback optimization should produce an increase in
formaldehyde yields regardless of the true values for the kinetic
model parameters.

To address the latter global robustness issue, section 5.2
considers 100 kinetic systems. Each of these systems has a
different set of random values for the kinetic model parameters.
Each system is separately examined both under 650 K isothermal
reference conditions and with optimization of the heat flux. The
statistics of the reference and optimization behavior for the 100
runs gives very positive conclusions regarding the likelihood
of an optimal distributed heat flux laboratory reactor producing
a significant formaldehyde yield improvement.

5.1. Robustness to Model Uncertainties.The large uncer-
tainties of the catalytic model do not lend themselves to
conventional gradient sensitivity analysis. A new efficient fully
nonlinear technique for robustness analysis may be performed
by the random sampling-high dimensional model representation
(RS-HDMR),29 as presented in the Appendix. This technique
efficiently represents the overall variance as a superposition of
variances due to individual variables and groups of variables.
The analysis is not applied to the gas-phase model, as it is far
more well-defined than the catalytic model. Reasonable linear
changes in the kinetic parameters of the gas-phase model
resulted in no significant changes in the yield.

The catalytic model had nine input variables:k1, k2, k3, k5,
A, Ea, a sticking coefficient, and the number of moles of anionic
vacancies and lattice oxygen sites relative to the number of

methanol moles fed into the reactor. The parametersA andEa

are components ofk4 ) A exp[-Ea/RT]. The following ranges
were used in the robustness analysis: 109 e k1, k3 e 1012 L
mol-1 s-1, 109 e k5 e 1012 atm.5 s-1, 107 e k2 e 1011 L mol-1

s-1, 10 e Ea e 20 kcal, and 1012 e A e 1016 s-1. The sticking
coefficient was allowed to vary from 0 to 1. The number of
moles of anionic vacancies and lattice oxygen sites relative to
the number of methanol moles fed into the reactor was taken
to vary from 0 to 2. The ranges are chosen to cover the data
points of Liberti et al.3 and to encompass large conservative
deviations. The model output treated for robustness analysis is
the mass fraction of formaldehyde in a simulation using the
optimized heat profile shown in Figure 2. Legendre polynomials
up to order 10 are used as the approximating bases for the
expansion shown in eq B.7. A total of 1000 points are generated
for the Monte Carlo integrals to calculate the RS-HDMR
expansion up to second order. The convergence of the expansion
was then tested against 1000 out-of-sample random points in
the parameter space. The output of over 90% of the test points
were predicted to an error of no more than 10% by the RS-
HDMR approximation. The error is due to both the approxima-
tion of integrals using Monte Carlo integration and the truncation
of the RS-HDMR expansion at second order. These tests confirm
adequate convergence of the analysis.

The results of the RS-HDMR robustness analysis are pre-
sented in Table 2. The mean formaldehyde mass fraction is 0.71
compared to the optimal result of 0.93. The total variance is
-0.219 and+0.066, as observed from the statistics of the 1000
Monte Carlo runs. Since yields are high, changes in the catalytic
model parameter values that produce lower yields have a larger
impact than changes that produce higher yields.

The role of each of the variables alone or cooperatively is
captured by a set of robustness indices defined in eq B.18. The
largest global robustness indices belong to the numbers of
anionic vacancies and lattice oxygens. This implies that the most
important variable is the available surface area of the catalyst.
The next largest global robustness indices belong toEa andA.
This is consistent with the fact that the formaldehyde desorption
is the rate-limiting step. The next slowest step is the reduction
of the catalyst and thusk2 also has a large robustness index.
The sticking coefficient has only a modest robustness index and
so it is reasonable to assume that unless the sticking coefficient
is very low, it does not affect the kinetics to a great extent. The
rate constantsk1, k3, and k5 have smaller senstivity indices,
consistent with the fact that their respective reactions are fast.

5.2. Robustness of the Benefits of Optimization.The
simulations in section 4 and the analysis of section 5.1 employed
the base kinetic model with the best estimated values for the

Figure 2. Optimization of heat flux with a 1.13 s residence time. (a)
Mass fraction trajectories for formaldehyde and methyl alcohol. (b)
Temperature profile of optimized solution. (c) Optimal heat flux.

TABLE 2: Largest Partial Variances σi
2 or σij

2 and Global
Robustness Indicesa

variables σi
2 or σij

2
robustness

index variables σi
2 or σij

2
robustness

index

LO 0.022 0.13 SC 0.0064 0.038
AV 0.020 0.12 k2, SC 0.0055 0.033
Ea 0.014 0.095 A, LO 0.0047 0.028
A 0.012 0.081 k3 0.0032 .019
k2 0.011 0.068 Ea, LO 0.0025 0.015
A, Ea 0.010 0.062 AV, LO 0.0020 0.012
k2, AV 0.0096 0.057 Ea, k2 0.0018 0.011
k1, SC 0.0091 0.054 Ea, AV 0.0016 0.0098
k1 0.0066 0.039 A, AV 0.0015 0.0087

a SC is the sticking coefficient, LO is number of lattice oxygen moles
relative to the number of methanol moles in the co-feed, and AV is
the number of moles of anionic vacancies relative to the number of
methanol moles in the co-feed.
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parameters.3,4 As these values have large uncertainties, it is
important to show whether the resulting improvement in
formaldehyde yields through heat flux optimization is robust
to the values of the kinetic model parameters.

To explore this latter issue, 100 systems with random sets of
values for the kinetic model parameters were taken over the
window of variation defined in section 5.1. The optimization
technique of section 4 was then applied to each of these systems.
First, reference simulations were performed under 650 K
isothermal conditions with no optimization. The mean formal-
dehyde mass fraction of these reference systems is 0.67 and
the variance is 0.13. Then, each system was subjected to an
optimal design of heat flux. The optimizations resulted in a mean
increase in mass fraction of 0.073 with a variance of only 0.002.
The small value of the variance around the mean mass fraction
increase implies that each of the 100 widely different kinetic
systems saw essentially the same 7% improvement in formal-
dehyde yield. This result suggests that employment of the reactor
configuration in the laboratory with feedback optimization
should produce a significant improvement in yield in spite of
the lack of full quantitative understanding of the kinetic
processes involved.

In summary, although the formaldehyde yields have signifi-
cant uncertainty, the benefits of optimization are quite robust
to the values assumed for the catalytic model parameters.
6. Conclusion

Optimal control of the conversion of methanol to formalde-
hyde in a PFR was considered in this paper. The chemical
reaction model incorporated a MoO3-Fe2(MoO4)3 catalyst, and
formaldehyde mass fractions of over 90% were achieved with
an optimized heat flux. The improvement in yields from an
optimized heat flux shows considerable robustness to the
parameter values assumed in the catalytic model.

The components of the catalytic model were studied with a
RS-HDMR robustness analysis technique that is more efficient
than the ANOVA methodology in that it does not require a
special sampling of the input for each partial variance. The most
important variables were the catalyst surface area and the rate
of formaldehyde desorption.

Under various conditions convergence to high-quality yields
was achieved. Since global optimality was not guaranteed, better
results are likely possible within the model. However, other non-
modeled physical and chemical processes could alter the yields
in either direction.

The benefits of optimizing distributed fluxes shows that
enhancement of the methanol conversion process can be
achieved by employing special reactor configurations. In the
laboratory, the solution designs can serve as a starting point
for a reactor with feedback control. The output performance of
the reactor will be fed to a learning algorithm, to in turn design
the next experiment in a repeated sequence. This self-optimiza-
tion is independent of any model assumptions and will therefore
bring forth the true yields.
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Appendix
A. Optimal Control Formulation. The goal is to manipulate

j and q, the input fluxes, so as to approach the optimal
composition vectorxf while obeying the conservation equations
described above. Satisfaction of dynamical constraints imposed
by mass and energy conservation is assured by introducing
Lagrange multipliers.

The objective functionJ(xi, j i,q,T) for the optimal control
problem can be formulated in many ways, but it is desirable

that J be a smooth and convex function that is bounded from
below.22 The chosen objective function was

where

L is the total length of the reactor.C consists of four terms.
The first term controls the composition of the mixture at the
end of the reactor. The desired final composition isxf andWf is
a positive weight matrix. The next three terms respectively
minimize the concentrations of undesired species, species fluxes,
and heat flux along the reactor.Wx andWj are penalty weight
matrices.Wq is a scalar penalty weight. The weight matrices
are positive-definite and chosen to be diagonal to avoid any
correlation terms. The equations describing the reactor are
incorporated intoJ through the Lagrange multipliersλi andλT.
Pontryagin’s maximum principle23 then allows us to find the
sufficient conditions for optimality to be

The adjoint equations for the Lagrange multipliers are

whereWxii is the (i,i) element ofWx.
The end point conditions of the adjoint equations are found

to be
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whereWfi is the (i,i) entry in theWf matrix.
The gradient of the objective function, which will be set equal

to zero, can now be calculated:

whereWjii is the (i,i) element ofWj.
The following optimal control algorithm20 for the two-point

boundary value problem, based on the classical approach
discussed in Hicks and Ray24 and Jones and Finch,25 was used:

1. Decide on objective function and choice of influxes.
2. Discretize reactor intoN pointslk, k ) 1 ...N. Assign initial

values forji(lk) andq(lk).
3. Apply cubic spline toji(lk) andq(lk) to get a continuous

representation ofji andq. Knowing xi(0), j(l), andq(l), solve
equations of motion to obtainx(l) andT(l).

4. Knowingx(l), solve for adjoint initial conditions and then
integrate adjoint equations to getλi’s andλT.

5. Knowing x(l), T(l), and λ’s, evaluate gradient at each
discretization point.

6. If the norm of the gradient calculated in the previous step
is less than a tolerance parameter, terminate algorithm. Other-
wise, use gradient in the conjugate gradient minimizer to update
the values ofji(lk) andq(lk) and go back to step 3.

7. Use sensitivity analysis to determine which reactions were
of greatest significance to the solution obtained.

In the calculations, the CONMIN26 code was used as the
conjugate gradient minimizer; the chemical kinetics package
CHEMKIN-II 27 was employed to interface the thermodynamic
and kinetics data, and LSODA28 was used as a differential
equation integrator.

To ensure positive mass flux densitiesji, a transformation to
a new control variablej′i was done whereji ) exp(j′i). The
gradient is then modified to

B. High Dimensional Model Representation Formulation.
The high dimensional model representation (HDMR) technique
captures the input-output relationships of physical systems with
many input variables.29,30 The HDMR assumes a function can
be represented as the following exact hierarchical expansion:

Here f0 is a constant,fi(xi) represents the effect ofxi upon the

output, andfij(xi, xj) represents the cooperatve effect of the
variables xi and xj. The effect of increasing numbers of
cooperating variables acting together is represented by higher
order terms. Experience shows that for many physical systems,
only terms up to second order need be considered.

The analysis of variance (ANOVA) decomposition is used
in statistics to analyze variances by representing multivariate
functions as a superposition of functions of fewer variables.31,32

The component functionsfi1...ip (xi1, ..., xip) are required to be
orthogonal, and this property is assured by the relation

where [0,1] denotes the integration interval.
The component functions of the ANOVA expansion may then

be calculated using the following integrals:

These integrals are determined by Monte Carlo Integration.33

The evaluation of these Monte Carlo approximations requires
sampling the input on a regular net, an expensive, if at all
feasible, procedure.33

A more efficient random sampling-high dimensional model
representation (RS-HDMR) that avoids the latter problem can
be developed.30 The following expansion is used to represent a
multivariate function:

{φi(xj)}i)1
s is a family of approximating bases for the univariate

functions of the variablexj on the unit interval [0, 1].{φijk(xi,
xj)}k)1

s is the approximating family for the bivariate functions.
All these functions have a zero mean to satisfy eq B.1, but the
functions do not have to be orthogonal.

The coefficientsc0, {cij}, and{cijk} are calculated with the
following integrals using the properties of the basis functions
defined above:

Mi[ci1

l
cis ]) [∫[0,1]n

f(x) φi1(xi) dx

l

∫[0,1]n
f(x) φis(xi) dx ] i ) 1, ...,n (B.9)

λT(L) ) 0 (A.9)
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δj i
) Wjii
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1
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i)1

n

λixi - ∫l

L 1

F2(∑i)1

n

λi(wi - xi∑
i)1

n

ji + j i) +

λT

∑Cpi
xi

((T0 - T)∑
i)1

n

Cpi
ji - ∑

i)1

n

Hf i
wi - T∑

i)1

n

Cpi
wi + q)) dl +

λT

F∑Cpi
xi

Cpi
(T0 - T) (A.10)

δJ
δq

) Wqq +
λT

F∑Cpi
xi

(A.11)

δJ(l)

δj′i(l)
) exp(j′i)

δJ
δj i(l)

(A.12)

f(x) ) f0 + ∑
i

fi(xi) + ∑
i<j

fij(xi,xj) + ... + f12....n(x1,x2,...,xn)

(B.1)

∫[0.1]
fi1...ip (xi1

,...,xip
) dxk ) 0 for

k ) i1, i2, ..., ip andp ) 1, 2, ...,l (B.2)

f0 ≡ ∫[0,1]n
f(x) dx (B.3)

fi(xi) ≡ ∫[0,1]n-1f(x)∏
j*i

dxj - f0 (B.4)

fij(xi, xj) ≡ ∫[0,1]n-2
f(x) ∏

k∉{i,j}
dxk - fi(xi) - fj(xj) - f0 (B.5)

fi1...il (xi1
, ..,xil

) ≡ ∫[0,1]n-l ∏
k∉{i1,...,il}

dxk - ∑
j1<...<jl-1⊂{i1,...il}

fj1,...,jl-1
- ∑

j1<...<jl-2⊂{i1,...il}
- fj1,...,jl-2

- ... - ∑
j

fj(xj) - f0 (B.6)

f(x) ) c0 + ∑
i)1

n

∑
j)1

s

cijφij(xi) + ∑
i<j

∑
k)1

s

cijkφijk(xi,xj) + ... (B.7)

c0 ) ∫[0,1]n
f(x) dx (B.8)
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where the matrix families{Mi} and {Mij} have the elements:

If the basis functions used are orthogonal, the following
Monte Carlo approximations may be used:

whereN is the sample size. The error is of the order (1/xN)
and is weakly dependent on the dimension. Thus, unlike the
ANOVA integrals, no costly sampling is required and the
number of model runs needed is invariant with the number of
parameters.

For random inputs consisting of independently distributed
variables, the component functions are uncorrelated and so the
overall variance can be written as a superposition of variances
due to individual variables and groups of variables:

where the individual variances are given by

The global robustness indices27,28,29are defined as

These indices represent the fractional contribution of the input
set{xi1, ... xil} to the variance of the output. Because they do
not rely on small pertubations, these indices may be used for

nonlinear robustness analyses where the input parameters are
characterized by large uncertainty.
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