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In this paper are discussed the quantum mechanical connection and its classical counterpart, as well as the
quantum and classical topological angles. The two were calculated for a model system to see whether they
show any resemblance. The most interesting result we found is that the quantum and the classical topological
phases are each formed due to a single discontinuous jump that occurs at some time during the external
cycle. However, whereas the quantum mechanical topological phase is formed in the usual adiabatic limit,
we had to establish a new parameter which, by allowing it to approach its limiting value, forms the classical
topological phase.

I. Introduction

In two recent publications, Baer et al.1,2 studied a quantum
mechanical model that describes the motion of an electron
housed by a molecule driven by aperiodicexternal perturbation.
The study was done by solving the respective Schroedinger
equation within the two-state approximation, with the aim of
deriving the time-dependent phase of the electronic wave
function related to the initially populated state. This phase is a
sum of two terms: the dynamic phase,$t, and a residual phase
termedconnection. The connection was the main subject of the
above-mentioned papers because, at the adiabatic limit, upon
completion of a period of the external field, it becomes the
topological (Berry) phase.3 In the present paper the emphasis
will be the classical analogue for the quantum connection
function. In contrast to the quantum connection, which is a well-
defined phase related to a wave function, the meaning of the
classical connection is not self-evident. Hannay4 and Berry5

suggested identifying this phase with the changes of a periodic
phase caused by a slowly oscillating external perturbation which
affects the periodic system. Thus, ifq(t) is the phase of the
unperturbed periodic system at timet, 0 e t e T, whereT is its
period, and ifθ(τ) is the phase of the whole system at timeτ,
then the difference∆θ(τ) ) θ(τ) - q(τ - nT), wheren ) [τ/T],
in the adiabatic limit, will be termed the classical connection.
Part of this paper is devoted to the analytic derivation of∆θ(τ)
in the adiabatic limit, and once this part is completed, we apply
the formula to a perturbed rotator (which classically is identical
to the above-mentioned model).

The paper is organized in the following way: In the next
section the model, in the quantum framework, is introduced and
a few numerical results for the connection function are
presented. The third section is devoted to the classical approach
and is divided into three parts. (a) In the first part, employing
the action-angle variables, the general formula for the classical
connection in the adiabatic limit is derived. (b) In the second

part, the perturbed rotator is treated to some extent; this
treatment is accompanied by a series of numerical results. (c)
In the third part, the numerical findings are analyzed employing
an approximate analytic treatment relevant for the low-frequency
case (the only situation for which the classical connection
becomes apparent). The conclusions are summarized in the
fourth section.

II. Quantum Mechanical Treatment

We consider an electronic Hamiltonian closely related to the
Jahn-Teller model6 which is expressed in terms of the Mathieu
equation,1,2,6-11 namely

Hereq is an angular (periodic) electronic coordinate,Eel andG
are constants, andæ is a periodic variable related to the external
field and is assumed to change linearly with time, namely,æ )
ωt, whereω is the periodicity of the external field. We consider
the equation (p ) 1)

which will be solved within the first-order approximation in
G/Eel, yielding the ground-state doublet only. In a space
representation this doublet is described in terms of the electronic
functions cosq and sinq (q is a characteristic electronic
coordinate), and thereforeΨ can be expanded as2,10

In what follows eq 2 will be solved for the initial conditions:
ø1(t)0) ) 1 and ø2(t)0) ) 0. Replacingø1(t) and ø2(t) by
ψ+(t) andψ-(t) defined as10

† Part of the special issue “William H. Miller Festschrift”.

H ) - 1
2
Eel

∂
2

∂q2
- G cos(2q - æ) (1)

i(∂Ψ/∂t) ) HΨ (2)

Ψ ) ø1(t) cosq + ø2(t) sinq (3)

ψ((t) ) 1
2

exp(i12Eelt)(ø1 ( iø2) (4)
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we get the corresponding equations forψ+(t) andψ-(t):

Next we eliminateψ- from eqs 5 to obtain a single, second-
order equation forψ+:

Once eq 6 is solved, we can obtainø1(t) s the eigenfunction
for the initially populated states which is usually a fast
oscillating function oft, where the oscillations are caused by
the “dynamical phase” (1/2)Gt. In what follows we consider
the “smoother” functionη(t) defined as

with the aim of studying the time dependence of the phaseγ(t)
defined through the expression

Onceη(t) is derived, there are several ways to extractγ(t); we
shall use the following one:

where

HereF stands for the imaginary part of the expression in the
parentheses.

A special emphasis will be given toγ(t) at t ) T̃, whereT̃ is
the period of the external field (T̃ ) 2π/ω). The case of an
arbitraryT̃ will be discussed only briefly, and we will be mainly
interested in the adiabatic limit whereT̃ is large, namely,T̃ .
G-1, for which γ(t)T̃) becomes the topological (Berry) phase
â.

The solution of eq 6 (as well as the solution for a similar
equation forψ-(t)) can be written in terms of exponential
functions. Returning to the originalø functions, we get for
ø1(t) the following explicit expression:2,7,10

wherek, defined as

forms, together withω, the two characteristic periodicities of
the system. The functionγ(t) is calculated employing eqs 9 and

10, where∂γ/∂t can be shown to be

In Figure 1 are shown severalγ(t) functions as calculated
for a given value ofG and three values ofT̃. It is noticed that,
as T̃ increases, namely, as the adiabatic limit is approached,
γ(t) tends to a step function andâ reaches the value ofπ.

The behavior ofγ(t) in the adiabatic limit can also be obtained
analytically. Following eq 8, we may write2,10

and consider the (adiabatic) case, namely, the case thatT̃ f ∞
(or ω f 0). It can be shown, employing eqs 8 and 10, thatγ(t)
takes the form2,10

Having this expression, it is recognized that since cos (1/2)ωt
> 0 for t e T/2 and cos (1/2)ωt < 0 for t g T̃/2 it follows that
γ(t) = 0 for 0 e t e T̃/2 andγ(t) = π for T̃/2 e t e T̃. This
also implies thatâ = π. Thus, eq 14 describes a time-dependent
step function where the step takes place att ≈ T̃/2 similarly to
the step presented in Figure 1.

III. Classical Treatment

III.1. Action -Angle Variables. The classical treatment is
based on the action-angle variablesI andθ,12 and the aim is
to study the effect of a slowly varying (i.e., adiabatic) external
field on the angleθ. The action variableI is defined as

whereq is the spatial coordinate,p is its conjugate momentum,
andΓ is the closed path formed by the (p,q) trajectory. Since
the system is affected by a time-dependent external field
characterized by a parameterλ, it is expected thatΓ will depend

i
∂ψ+

∂t
) - 1

2
G exp(iæ)ψ-

i
∂ψ-

∂t
) - 1

2
G exp(-iæ)ψ+ (5)

∂
2ψ+

∂t2
- iω

∂ψ+

∂t
+ 1

4
G2ψ+ ) 0 (6)

η(t) ) ø1(t) exp(-(1/2)iGt) (7)

η(t) ) F(t) exp(iγ(t)) (8)

γ(t) ) ∫0

t(∂γ
∂t′) dt′ (9a)

∂γ
∂t

) F (〈η(t)|(∂η/∂t)〉
〈η(t)|η(t)〉 ) (9b)

ø1(t) ) cos(kt) cos(12ωt) + ω
2k

sin(kt) sin(12ωt) +

i
G
2k

sin(kt) cos(12ωt) (10)

k ) (1/2)(G2 + ω2)1/2 (11)

Figure 1. Quantum mechanical phaseγ(t) as calculated forG ) 0.01
au: -‚-, T̃ ) 103 au; ---, T̃ ) 104 au; s, T̃ ) 106 au.

dγ
dt

) G
2

×

(1 -
(ω
2k)2

sin2(kt) (1 - cos(ωt)) + ω
4k

sin(2kt) sin(ωt)

cos2(12ωt) + ω
4k

sin(2kt) sin(ωt) - (ω
2k)2

sin2(kt) cos(ωt))
(12)

γ(t) ) F (ln(η(t))) (13)

lim
Tf∞

(γ(t)) ) {F (ln(cos(ωt/2) + O(ω)} (14)

I ) (1/2π)∫Γ

q
p dq (15)
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on this parameter. Nevertheless, in case the system changes
adiabatically,I is a constant of the motion.12 The angleθ is the
conjugate coordinate ofI. The transformation (p,q) f (I,θ) is
done employing the generating functionF(q,I|λ) defined as

As a result of this transformation, a new Hamiltonian,H̃ )
H̃(I,θ), is formed, which is related to the old one as follows:

or

Equation 17 is valid because of the two independent variables
I andq; in the quasi-adiabatic situation,I is a constant of motion
so that onlyq depends explicitly on time. Next we consider the
equation of motion forθ. Thus

It is important to recognize that the second term yields the rate
of change ofθ for fixed values ofp andq, due to the external
field. Writing θ as

where$ stands for∂H/∂I and is the periodicity of the system
in caseλ is fixed (in other words, it is the periodicity of the
(p,q) trajectory, ignoring external perturbation) and∆θ(t) is the
change ofθ at time t caused by the external time-dependent
perturbation. Being in the adiabatic situation where the system
completes a cycle of timeT ()2π/$), while the external field
changes only slightly, we shall calculate∆θ(t) in the following
way.

First is calculated the average value of∆θ(t) (see eq 19),
namely,∆θav(λ) at a fixed givenλ for one completed (fast)
cycle:11a

or

It is important to emphasize thatp is not explicitly dependent
on λ. The only functions that are explicitly dependent onλ are
q andI. To obtain∆θ(t), we perform the following integration:

which takes the form

or

If the external field is presented in terms of a periodic coordinate
æ (makingλ(t) ≡ æ(t)) so that

whereω is the periodicity of this external field, then it follows
from eq 22 that

The index “cc” was added to remind us that eq 24 stands for
theclassicalanalogue of the quantumconnectionfunction. For
φ ) 2π, eq 24 yields a phase which has been suggested to be
considered as the classical analogue of the quantum topological
phase.4,5 In what follows this phase is termed the classical
analogue of the topological phase.

III.2. Perturbed Rotator Model. We consider the following
classical Hamiltonian:

where both the coupling coefficientG and the total energyE
are expressed in units ofEel (see eq 1). Using this Hamiltonian,
the two coupled equations of motion are

Equations 26 can be converted into a single second-order
equation which is known to have an analytic solution.13

However, we will solve eqs 26, just as they are, numerically.
All results due to the present study are for positive values of
the total energyE. Since in this case the range of the coordinate
q is unlimited but with a 2π periodicity, we consider the
following range ofq: q0 e q e q0 + 2π, whereq0 has a given
initial value of q. To calculate the topological phase, the
calculations ofq(t) andp(t) are repeated for aæ grid along the
(0,2π) range with fixed values ofq0. We found that nothing of
interest happens unlessE closely approaches the value ofG
(see eq 25). Consequently we introduce the parameterR defined
asR ) E/G, and all results will be discussed as a function ofR
(>1).

In Figure 2a,b are presented the functionsp(t) andq(t) and
in Figure 2c is presented the functionp(q), all calculated forR
) 1.01,q0 ) 0.5 rad, and two values ofæ, namely,æ ) 0.0
and 0.5 rad. (The reason for choosingR to be so close to 1 will
be discussed later.) The results presented so far (up to a shift)
are dependent on neitheræ nor q0. The period of the trajectory
can be calculated independently employing the explicit expres-
sion for I. According to eq 15, the action variable,I, for this
model is given in the form

F(q,I|λ) ) ∫q0

q(λ)
p dq (16)

H̃ ) H +
∂F(q,I|λ)

∂t
) H +

∂F(q,I|λ)
∂λ

dλ
dt

H̃ ) H + p
∂q
∂λ

dλ
dt

(17)

∂θ
∂t

) ∂H̃
∂I

) ∂H
∂I

+ ∂

∂I(p
∂q
∂λ

dλ
dt ) (18)

θ(t) ) $t + ∫0

t ∂

∂I(p(t′) ∂q
∂λ

dλ
dt |t)t′) dt′ ) $t + ∆θ(t) (19)

∆θav(λ) ) 1
T∫0

T
∆θpert(t′|λ) dt′ )

1
T∫0

T∂

∂I(p(t′)
∂q(λ)
∂λ

dλ
dt |t)t′) dt′ )

∂

∂I[ 1
T∫0

T(p(t′)
∂q(λ)
∂λ

dλ
dt |t)t′) dt′]

∆θav(λ) ) ∂

∂I〈p(t)
∂q(λ)
∂λ

dλ
dt〉 (20)

∆θ(t) ) ∫0

t
∆θav(λ(τ)) dτ (21)

∆θ(t) ) ∫0

t ∂

∂I〈p(τ)
∂q
∂λ

dλ
dt′|t′)τ〉 dτ

∆θ(t) ) ∂

∂I ∫0

t〈p ∂q(λ)
∂λ

dλ
dt′|t′)τ

〉 dτ (22)

æ ) t/ω (23)

∆θcc(φ) ) ∂

∂I ∫0

φ〈p(æ′)
∂q(æ)
∂æ |æ)æ′〉 dæ′ (24)

H ) E ) (1/2)p2 + G cos(2q - æ) (25)

∂q/∂t ) p

∂p/∂t ) 2G sin(2q - æ) (26)

I ) (1/πx2)∫0

2π
[E - G cos(2q - æ)]1/2 dq (27)
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and the corresponding rotator’s frequency,$, accordingly
defined as

is equal to

In eqs 28 and 29 it was assumed thatq0 ) 0, but the results
can be shown, analytically, to be independent ofq0. In the same
way it can be shown that bothI and$ are independent ofæ.

Next we calculate∆θcc(φ), applying eq 24 with a slight
change: we replace∂/∂I by $(∂/∂E) so that eq 23 becomes

It is important to emphasize that in applying eq 30all
derivatives were calculated numerically. In particular we shall
refer to the function∆θav(λ) as presented in eq 20, and it will
now be written in the form

where, as before,∂/∂I is replaced by$(∂/∂E). Two derivatives
are involved in evaluating∆θav(æ), and both were carried out
numerically. First, the derivative with respect toæ was
calculated, and this was done as follows: For a fixed value of
E we computedp(tj|æ) andq(tj|æ), wherej ) 0, ...,N so thatt0
) 0 andtN ) T and then a similar set foræ + ∆æ. Next the
following expression was derived:

where

and ∆t is the time step. The differentiation with respect toE
was done in a similar way, namely, performing the above
calculation once forE and once forE + ∆E and then computing
the derivative in the usual (numerical) way.

In Figure 3 are presented the functions∆θcc(φ) as calculated
for R ) 1.01 and 1.001. In each part are shown two curves,
calculated for two different initial values ofq, namely,q0 )
1.0 and 2.0 rad. As can be seen, results are presented forR
values close to 1. We intended, of course, to calculate∆θcc(φ)
for arbitrary values ofR, but it was found that in cases thatR
was too large (in factR > 1.1) the functions∆θcc(φ) exhibited,
at most, a weak dependence onφ, and therefore, essentially,
they were of no interest. It was only whenR f 1.0 (R ) 1.0 is
the lowest possible value for this version of our model) that
the interesting features started to emerge. The region ofR ≈
1.0 is the region where the total energy of the systemE ≈ G,
namely, the point where the potential reaches its maximal value
and the kinetic energy of the rotator is∼0.0. It is also important
to mention that in this situationT, the periodicity of the
unperturbed rotator, is large.

The following are to be noticed.
(1) The functions∆θcc(φ) are strongly dependent onφ (and

on q0). In particular, at a specific short range ofφ a discontinu-
ous step is formed. The sharpness of this sudden increase
becomes more pronounced the closerR gets to 1 (we found
that this unique shape disappears onceR becomes larger than
1.1). It is seen that the discontinuous step occurs forφ values
which fulfill

namely, for trajectories started at the separatrix (the separartrix
is the location of the highest value of the periodic potential, in

Figure 2. Trajectory calculations: (a)p(t); (b) q(t); (c) p(q). Calcula-
tions are done forR ) 1.01 andq0 ) 0.5 rad. Key: s, results foræ
) 0.0 rad; ---, results foræ ) 0.5 rad.

$ ) ∂E/∂I ) (∂I/∂E)-1 (28)

$ ) π(8G)1/2[∫0

2π
(R - cos(2q - æ))-1/2 dq]-1 (29)

∆θcc(φ) ) $
∂

∂E∫0

f〈p ∂q(æ′)
∂æ′ |æ′)æ

〉 dæ (30)

∆θav(æ) ) $
∂

∂E〈p∂q(æ)
∂æ 〉 (20′)

〈p q(æ)

∂æ 〉 ) ∆t∑
j)0

N

p̃j(æ)
qj(æ+∆æ) - qj(æ)

∆æ
(31)

p̃j(æ) ) (1/2)(pj(æ+∆æ) + pj(æ))

φ ) 2q0
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other words, the location of the barrier). This case is analyzed
in subsection III.3.

(2) As for the classical topological phase, namely,∆θcc-
(φ)2π), the following is found: In the cases whereR is not
too close to 1 the value of∆θcc(φ)2π) is of no significance,
but onceR f 1.0 this value increases rapidly. Thus, forR )
1.01 the value of the topological phase is∼3 rad, but forR )
1.001 it is already∼15 rad.

(3) Although∆θcc(φ) is seen to be strongly dependent onq0,
the topological phase,∆θcc(φ)2π), is not dependent on this
parameter as one should expect.

To get some more insight we present, in Figure 4, the
functionsp(t) andq(t) as calculated forR ) 1.001 and for two
values ofæ (both close to the separatrix): one atæ ) 1.99 rad,
a value ofæ just before the above-mentioned abrupt step takes
place, and one atæ ) 2.01 rad immediately after it (both
calculations were done forq0 ) 1 rad). Although no unusual
behavior is observed, still it can be seen that within the time
interval 15.0< t < 22.0 au the twop(t) functions approach
zero and theq(t) functions hardly change (in both cases their
values are∼4 rad; at this value cos(2q - æ) ≈ cos(0)≈ 1;
namely, at this valueE ≈ G; see eq 25) so that the kinetic energy
of the (unperturbed) rotator is relatively small.

Since thep(t) andq(t) functions did not show any particularly
unusual behavior, we decided to get a better understanding by
presenting the integrand of∆θcc(φ), namely,∆θav(æ), given in

eq 20′, as a function ofæ for the two values ofq0 (see Figure
5). In both cases the functions present a spiked shape reminiscent
of a Diracδ function at the respective pointsæ ) 2q0. Thus,
we are left with a puzzle: What causes the connection function

Figure 3. Classical connection function,∆θcc(φ), as a function ofφ:
(a) results forR ) 1.01; (b) results forR ) 1.001. Key: s, q0 ) 1
rad; ---,q0 ) 2 rad.

Figure 4. Trajectory calculations: (a)p(t); (b) q(t) Calculations are
done forR ) 1.001 andq0 ) 1 rad. Key: s, results foræ ) 1.99 rad;
---, results foræ ) 2.01 rad.

Figure 5. Average phase,∆θav(æ), of the perturbed rotator, calculated
as a function ofæ for R ) 1.001 and for two values ofq0: s, q0 ) 1
rad; ---,q0 ) 2 rad.
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∆θcc(φ) to become a step function, and what is the source of
the large values of the respective topological phases,∆θcc-
(φ)2π)?

III.3. Analysis of the Classical Results.Inspecting the curves
in Figures 3 and 5, it is noticed that the step takes place atæ )
2q0. This means the following: Since a calculation of a
trajectory starts atq ) q0 and since the trajectories are calculated
for differentæ values, we obtain the step for those trajectories
that start atq ) q0 ) æ/2. From eq 25 it is seen that in such a
case cos(2q - æ) ) 1 so that the trajectory starts at the top of
the (oscillatory) potential where the kinetic energy is close to
zero (because thenE ≈ G). In what follows we consider the
motion of the unperturbed rotator when a trajectory is started
at that point (the approach to be utilized is reminiscent of studies
of trapped trajectories in the transition region of reactive systems
with barriers14,15). In the vicinity of this initial q value, we
assume the potential to be approximated by

Having this form for the potential, the equations of motion can
be solved analytically, and we get forq and p the following
results:

whereε ) E - G andk ) 2xG. The corresponding frequency,
ωI ()2πk), is ωI ) 4πxG. Equations 33 fulfill att ) 0 the
condition thatq ) æ/2 andp ) (2ε)1/2.

Next we refer to the integrand in eq 20, which we designate
asJ(t,æ):

where, as above,∂/∂I is replaced by$(∂/∂E). We are interested
in estimating the values ofJ(t,æ) for the situation just described
above. Thus, substituting eqs 33 into eq 34 yields for
J(t≈0,æ≈2q0) the expression

It is noticed that whenε f 0 (and this is the case whenR f
1) the functionJ(t≈0,æ≈2q0) attains very large values. We
continue by examining the integrand in eq 20′: As long asæ
< 2q0, the function∆θav(æ) remains almost unchanged because
the integrand,J(t,æ), never attains significant values. Onceæ
≈ 2q0, the function∆θav(æ≈2q0) attains large values, because
of the significant contributions due toJ(t,æ≈2q0) at t ≈ 0. These
contributions become larger the closerε is to zero. Next we
consider eq 30 (see also eq 21): As long asφ, the upper limit
of the integral, does not reach 2q0, the values of∆θcc(φ) are
small and of no significance. However, onceφ passes 2q0, the
function ∆θcc(φ) gets contributions from the large values of
∆θav(æ≈2q0) so that it rapidly increases, thus building up its
discontinuous step. The construction of this step is completed
once φ passes this region (so that∆θcc(φ) stays essentially
constant), because of insignificant contributions along the rest
of the φ interval.

IV. Discussion and Conclusions

In this paper are discussed the quantum and classical
connections and their corresponding topological phases. The two

types of approaches were applied for a model system to see
whether the corresponding results show any resemblance. Before
going into the analysis of the results, one major difference
between the two approaches has to be emphasized: Whereas
the periodicity,T̃, of the external perturbation plays an explicit
role in the quantum treatment and therefore it is straightforward
to expose the adiabatic limit, the classical treatment (based on
the “adiabatic invariants” approximation) only implicitly de-
pends onT̃ and therefore it is not simple to find the adiabatic
limit. From previous quantum treatments1,2 it is known that,
for a given energyE, the system becomes more adiabatic the
larger the productT̃G. In other words, for a givenT̃ and E,
increasing the value ofG will enhance the adiabaticity of the
system. It seems to us that, to a certain extent, a similar situation
is encountered also within the classical treatment. However,
since, for a given (total positive) energyE, the value ofG cannot
increase indefinitely, it is limited by the value ofE and therefore
G e E (see eq 25). From the numerical study we found
indications that, indeed, the system becomes more adiabatic the
closerG gets toE. The main outcome that supports this finding
is the fact that both the quantum and the classical topological
phases are formed due to a singlediscontinuous jumpthat occurs
at some time during the external cycle (see Figure 1 for the
quantum system and Figure 3 for the classical one).

Although the two frameworks seem to be similar for the main
result, namely, being able to form topological phases at similar
conditions, the two also differ from each other at least in one
respect: Whereas the quantum topological phase converges
systematically toπ as G f ∞ (for a given T̃), we do not
encounter such a situation for the classical phase because this
phase increases indefinitely asR f 1 (without showing any
tendency to converge). The only way to limit this consistent
increase is to impose some kind of (semiclassical) quantization
to inhibit the system from reaching the separatrix. This cannot
be achieved within single-coordinate models; however, it can
be achieved within certain multicoordinate models. Therefore,
it would be of interest to extend both the quantum and classical
treatments to multicoordinate models.
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V(q|æ) ) G cos(2q - æ) ) G(1 - (1/2)(2q - æ)2) (32)

q ) æ
2

+ ( ε

8G)1/2
(ekt - e-kt)

p ) (ε/2)1/2(ekt + e-kt) (33)

J(t,æ) ) $
∂

∂E(p ∂q(æ)
∂æ ) (34)

J(t≈0,æ≈2q0) ) $(1/32ε)1/2(ekt + e-kt) (35)
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