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In this paper are discussed the quantum mechanical connection and its classical counterpart, as well as the
quantum and classical topological angles. The two were calculated for a model system to see whether they
show any resemblance. The most interesting result we found is that the quantum and the classical topological
phases are each formed due to a single discontinuous jump that occurs at some time during the external
cycle. However, whereas the quantum mechanical topological phase is formed in the usual adiabatic limit,
we had to establish a new parameter which, by allowing it to approach its limiting value, forms the classical
topological phase.

I. Introduction part, the perturbed rotator is treated to some extent; this
L . treatment is accompanied by a series of numerical results. (c)

In two recent publications, Baer et'ed.studied a quantum |, e third part, the numerical findings are analyzed employing
mechanical model that describes the motion of an electron 5, 5nnroximate analytic treatment relevant for the low-frequency
housed by a molecule driven bypariodicexternal perturbation.  .,qe (the only situation for which the classical connection

The study was done by solving the respective Schroedingerpecomes apparent). The conclusions are summarized in the
equation within the two-state approximation, with the aim of ¢, ,th section.

deriving the time-dependent phase of the electronic wave
function related to the initially populated state. This phase is a || Quantum Mechanical Treatment
sum of two terms: the dynamic phaset, and a residual phase ) ) o
termedconnection The connection was the main subject of the  We consider an electronic Hamiltonian closely related to the
above-mentioned papers because, at the adiabatic limit, upon/@hn-Teller modet which is expressed in terms of the Mathieu
completion of a period of the external field, it becomes the eduation;++ namely
topological (Berry) phasgln the present paper the emphasis 5
will be the classical analogue for the quantum connection H=— lEela_ — Gcos(Z — ¢) (1)
function. In contrast to the quantum connection, which is a well- 2 2
defined phase related to a wave function, the meaning of the
classical connection is not self-evident. Harthand Berry Hereq is an angular (periodic) electronic coordinag,andG
suggested identifying this phase with the changes of a periodicare constants, andis a periodic variable related to the external
phase caused by a slowly oscillating external perturbation which field and is assumed to change linearly with time, namely;
affects the periodic system. Thus,dft) is the phase of the  ot, wherew is the periodicity of the external field. We consider
unperturbed periodic system at tirg@® < t < T, whereT is its the equationi = 1)
period, and ifé(z) is the phase of the whole system at time .
then the differencad(z) = 6(z) — q(r — nT), wheren = [¢/T], i(9W/ot) = HW )
in the adiabatic limit, will be termed the classical connection.
Part of this paper is devoted to the analytic derivatior\6{z)
in the adiabatic limit, and once this part is completed, we apply
the formula to a perturbed rotator (which classically is identical
to the above-mentioned model).

The paper is organized in the following way: In the next
section the model, in the quantum framework, is introduced and W = y,(t) cosq + y,(t) sing (3)
a few numerical results for the connection function are
presented. The third section is devoted to the classical approachn what follows eq 2 will be solved for the initial conditions:
and is divided into three parts. (a) In the first part, employing »,(t=0) = 1 andy(t=0) = 0. Replacingyi(t) and y(t) by
the action-angle variables, the general formula for the classical 4, (t) andy_(t) defined a¥
connection in the adiabatic limit is derived. (b) In the second

which will be solved within the first-order approximation in
G/Eq, yielding the ground-state doublet only. In a space
representation this doublet is described in terms of the electronic
functions cog and sim (q is a characteristic electronic
coordinate), and therefol® can be expanded &%

Y0 = 5 exligEat)i = i) )
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we get the corresponding equations for(t) andy—(t):

0y, 1 .
| T =— EG eXp(KD)lll,
L

pn ®)

1 .
= — 2Gexpig)y,

Next we eliminatey— from eqs 5 to obtain a single, second-
order equation forp:

Py, —iw W
ot ot

+58. =0 ©®

Once eq 6 is solved, we can obtaift) — the eigenfunction
for the initially populated state— which is usually a fast
oscillating function oft, where the oscillations are caused by
the “dynamical phase” (1/8t. In what follows we consider
the “smoother” functiom(t) defined as

1(t) = x1(t) exp(-(1/2)iGt) (7
with the aim of studying the time dependence of the phédBe
defined through the expression

n(t) = p(t) exp(iy (1) )
Oncey(t) is derived, there are several ways to extngt}; we
shall use the following one:

0= fil) (%)
where

b _ Mﬂ)

at (@z(t)ma)m (9b)

Here F stands for the imaginary part of the expression in the
parentheses.

A special emphasis will be given tg(t) att = T, whereT is
the period of the external fieldT(= 27/w). The case of an
arbitrary T will be discussed only briefly, and we will be mainly
interested in the adiabatic limit whefleis large, namelyfl' >
G, for which y(t=T) becomes the topological (Berry) phase

B.
The solution of eq 6 (as well as the solution for a similar
equation fory_(t)) can be written in terms of exponential

functions. Returning to the origingl functions, we get for
71(t) the following explicit expressiof?:1°

21(t) = coskt) cos(%wt) + %( sin(kt) sin(%wt) +
i2§k sin(kt) cos(:—zlwt) (10)
wherek, defined as
k= (1/2)(G* + w?)*? (11)

forms, together withw, the two characteristic periodicities of
the system. The functiop(t) is calculated employing eqs 9 and
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Figure 1. Quantum mechanical phagét) as calculated foG = 0.01
au: »-, T=1Cau; ---, T = 10*au;—, T = 10° au.

10, wheredy/dt can be shown to be
dy _G
a2

(%()2 sin(kt) (1 — cos@t)) + %( Sin(&9 sint)

co§(%a)t) + & sin(ak) sint) — (zﬂk)z sinf(kt) cos@t)
(12)

In Figure 1 are shown severa(t) functions as calculated
for a given value of and three values df. It is noticed that,
as T increases, namely, as the adiabatic limit is approached,
y(t) tends to a step function affireaches the value of.

The behavior of(t) in the adiabatic limit can also be obtained
analytically. Following eq 8, we may writé®

(1) =F (In(7(1))

and consider the (adiabatic) case, namely, the casé thato
(or w — 0). It can be shown, employing egs 8 and 10, @&t
takes the forrh1®

lim (y(9)) = {F (In(cos@t2) + O(w)}

(13)

(14)

Having this expression, it is recognized that since cos ¢it/2)
> 0 fort < T/2 and cos (1/2)t < 0 fort > T/2 it follows that
yt)=0for0=<t=< T2 andy(t) = w for T/2 < t < T. This
also implies thaff = xr. Thus, eq 14 describes a time-dependent
step function where the step takes place=atT/2 similarly to

the step presented in Figure 1.

Ill. Classical Treatment

IlI.1. Action —Angle Variables. The classical treatment is
based on the actierangle variable$ and 6,2 and the aim is
to study the effect of a slowly varying (i.e., adiabatic) external
field on the angle). The action variablé is defined as

| = (1/27) [pdq

whereq is the spatial coordinatg,is its conjugate momentum,
andT is the closed path formed by thp,q) trajectory. Since
the system is affected by a time-dependent external field
characterized by a paramefegiit is expected thal will depend

(15)
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on this parameter. Nevertheless, in case the system changewhich takes the form

adiabatically| is a constant of the motiol?.The angled is the

conjugate coordinate df The transformationpq) — (1,60) is _ o ag di
A = [y ]p@)

done employing the generating functiéiiq,||A) defined as 2 oA dt’ t':TDdT
_ Al or
F(ll2) = [ “pdq (16)
As a result of this transformation, a new Hamiltonidih,= A6(1) :aj; ol dt ['=TDjT (22)

H(1,6), is formed, which is related to the old one as follows:
If the external field is presented in terms of a periodic coordinate

fopyg F@iy) L 9F@lid) di ¢ (makingA(t) = ¢(t)) so that
ot oA dt
@ =tw (23)
or
wherew is the periodicity of this external field, then it follows
e ag di from eq 22 that
H_H+p8/1dt a7)
0 39(¢) :
Equation 17 is valid because of the two independent variables Abd¢) = al fo m( ) ¢_¢,Dj§0 (24)

| andq; in the quasi-adiabatic situatiohis a constant of motion
so that onlyg depends explicitly on time. Next we consider the The index “cc” was added to remind us that eq 24 stands for

equation of motion fol. Thus theclassicalanalogue of the quantuoonnectiorfunction. For
. ¢ = 27, eq 24 yields a phase which has been suggested to be
90 _oH _oH 9/ dqdd considered as the classical analogue of the quantum topological
+ (P (18) ; ; :
ot al ol al\" od dt phasée*® In what follows this phase is termed the classical

analogue of the topological phase.
It is important to recognize that the second term yields the rate 1.2, Perturbed Rotator Model. We consider the following
of change off for fixed values ofp andq, due to the external  ¢|assical Hamiltonian:
field. Writing 6 as
. aq di H=E= (1/2)° + G cos(Z — ¢) (25)
o(t) = wt + —(p(t') 99 ) dt = wt+AG(K)  (19) _ N
00l A dtle=r where both the coupling coefficie® and the total energf

. o are expressed in units &t (see eq 1). Using this Hamiltonian,
wherea stands foroH/dl and is the periodicity of the system  {he two coupled equations of motion are

in case/ is fixed (in other words, it is the periodicity of the

(p,g) trajectory, ignoring external perturbation) afd(t) is the ag/ot=p
change off at timet caused by the external time-dependent _ .
perturbation. Being in the adiabatic situation where the system op/ot = 2G sin( — ¢) (26)

completes a cycle of tim& (=2n7/w), while the external field
changes only slightly, we shall calculad®(t) in the following
way.

First is calculated the average value &f(t) (see eq 19),
namely, AG,(A) at a fixed givend for one completed (fast)
cyclella

Equations 26 can be converted into a single second-order
equation which is known to have an analytic solutién.
However, we will solve eqs 26, just as they are, numerically.
All results due to the present study are for positive values of
the total energ¥. Since in this case the range of the coordinate
g is unlimited but with a Z periodicity, we consider the

1 .7 , , fqllpwing range ofg: qo < q =< qo + 27, Whereqo has a given
A0, [(4) =$ﬁ) Al (t'|4) dt' = initial value of g. To calculate the topological phase, the
calculations ofy(t) andp(t) are repeated for @ grid along the
, (0,27) range with fixed values afp. We found that nothing of
T 0 a| P = 9L dtle= dt = interest happens unless closely approaches the value Gf
(see eq 25). Consequently we introduce the paranetefined
9 ifT( ) dt’] asa = E/G, and all results will be discussed as a functiomof
all TJo A dtl= (=1).
In Figure 2a,b are presented the functi@y andq(t) and
or in Figure 2c is presented the functip(g), all calculated for
= 1.01,qo = 0.5 rad, and two values af, namely,¢ = 0.0
A6, (7) = m(t) aq(4) di (20) and 0.5 rad. (The reason for choosimgo be so close to 1 will
a oL dt be discussed later.) The results presented so far (up to a shift)
are dependent on neithernor qo. The period of the trajectory
It is important to emphasize thatis not explicitly dependent  can be calculated independently employing the explicit expres-
on . The only functions that are explicitly dependent/iare sion forl. According to eq 15, the action variable,for this
g andl. To obtainA6(t), we perform the following integration: ~ model is given in the form

A6(t) = ﬁAaaxi(r)) dr (21) | = (Unv/2) f [E— Gcos(@— ¢)]Y?dq  (27)
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Figure 2. Trajectory calculations: (g)(t); (b) q(t); (c) p(g). Calcula-
tions are done fooe = 1.01 andgo = 0.5 rad. Key: —, results forgp
= 0.0 rad; ---, results forp = 0.5 rad.

and the corresponding rotator’'s frequeney, accordingly
defined as

@ = OE/3l = (9I/9E) " (28)

is equal to

= 7(86)"] f; (o~ cos(@ ~ ¢)) o] * (29
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In egs 28 and 29 it was assumed thjgt= 0, but the results
can be shown, analytically, to be independergpin the same
way it can be shown that bothand = are independent ap.
Next we calculateAf.(¢), applying eq 24 with a slight
change: we replac&dl by @(0/0E) so that eq 23 becomes

ro) = [ [y @0

It is important to emphasize that in applying eq @D
derivatives were calculated numerically. In particular we shall
refer to the functiom0,(4) as presented in eq 20, and it will
now be written in the form

26,fg) = o XD @)

where, as before)/dl is replaced by (d/9E). Two derivatives
are involved in evaluatind\@.(¢), and both were carried out
numerically. First, the derivative with respect tp was
calculated, and this was done as follows: For a fixed value of
E we computed(tj|) andq(tj|e), wherej = 0, ...,N so thatto

= 0 andty = T and then a similar set fap + Ag. Next the
following expression was derived:

a(e) N q(p+Ag) — (%)
— EAtS P(e) 31
m - [F J;p,((p; Ao (31)

where
Bi(®) = (V2)p(et+Ap) + pe)

and At is the time step. The differentiation with respectBo
was done in a similar way, namely, performing the above
calculation once foE and once foE + AE and then computing
the derivative in the usual (numerical) way.

In Figure 3 are presented the functioh8.{(¢) as calculated
for o = 1.01 and 1.001. In each part are shown two curves,
calculated for two different initial values af, namely,qo =
1.0 and 2.0 rad. As can be seen, results are presented for
values close to 1. We intended, of course, to calculig(¢)
for arbitrary values ofy, but it was found that in cases that
was too large (in faatt > 1.1) the function\0.(¢) exhibited,
at most, a weak dependence ¢nand therefore, essentially,
they were of no interest. It was only when— 1.0 (0 = 1.0 is
the lowest possible value for this version of our model) that
the interesting features started to emerge. The regian sf
1.0 is the region where the total energy of the syskem G,
namely, the point where the potential reaches its maximal value
and the kinetic energy of the rotator+9.0. It is also important
to mention that in this situatiorm, the periodicity of the
unperturbed rotator, is large.

The following are to be noticed.

(1) The functionsAf.(¢) are strongly dependent @gh(and
on o). In particular, at a specific short range@®t discontinu-
ous step is formed. The sharpness of this sudden increase
becomes more pronounced the cloeegets to 1 (we found
that this unique shape disappears onckeecomes larger than
1.1). It is seen that the discontinuous step occurspfealues
which fulfill

¢ =2q,

namely, for trajectories started at the separatrix (the separartrix
is the location of the highest value of the periodic potential, in
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Figure 3. Classical connection functiod6.{¢), as a function of:
(a) results fora = 1.01; (b) results forr = 1.001. Key: —, o = 1
rad; ---,qo = 2 rad.

other words, the location of the barrier). This case is analyzed

in subsection IlI.3.

(2) As for the classical topological phase, namehc-
(¢p=2n), the following is found: In the cases wheeeis not
too close to 1 the value ohf.(¢p=27) is of no significance,
but oncea — 1.0 this value increases rapidly. Thus, tor=
1.01 the value of the topological phase~8 rad, but fora. =
1.001 it is already~15 rad.

(3) AlthoughA#6.(¢) is seen to be strongly dependentan
the topological phaseAd.{(¢=2r), is not dependent on this
parameter as one should expect.

To get some more insight we present, in Figure 4, the

functionsp(t) andq(t) as calculated foe. = 1.001 and for two
values ofp (both close to the separatrix): onegat= 1.99 rad,

a value ofg just before the above-mentioned abrupt step takes

place, and one ap = 2.01 rad immediately after it (both
calculations were done fapp = 1 rad). Although no unusual

behavior is observed, still it can be seen that within the time

interval 15.0< t < 22.0 au the twa(t) functions approach

zero and they(t) functions hardly change (in both cases their

values are~4 rad; at this value cos(g— ¢) ~ cos(0)~ 1,

namely, at this valug ~ G; see eq 25) so that the kinetic energy

of the (unperturbed) rotator is relatively small.
Since thep(t) andq(t) functions did not show any particularly
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Figure 4. Trajectory calculations: (a)(t); (b) q(t) Calculations are
done foro. = 1.001 andyp = 1 rad. Key: —, results forp = 1.99 rad;
---, results forp = 2.01 rad.
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Figure 5. Average phase\@.(¢), of the perturbed rotator, calculated
as a function ofp for o = 1.001 and for two values afp: —, qo =1
rad; ---,qo = 2 rad.

eq 20, as a function ofp for the two values ofy, (see Figure
5). In both cases the functions present a spiked shape reminiscent

unusual behavior, we decided to get a better understanding byof a Diraco function at the respective poings = 2qo. Thus,

presenting the integrand &fo.{¢), namely,Af6.(¢), given in

we are left with a puzzle: What causes the connection function
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AbO.(¢) to become a step function, and what is the source of
the large values of the respective topological phagek,-
(¢p=27)?

111.3. Analysis of the Classical ResultsInspecting the curves
in Figures 3 and 5, it is noticed that the step takes plage=at
20p. This means the following: Since a calculation of a
trajectory starts aj = g and since the trajectories are calculated
for different ¢ values, we obtain the step for those trajectories
that start aj = o = @/2. From eq 25 it is seen that in such a
case cos(@ — ¢) = 1 so that the trajectory starts at the top of
the (oscillatory) potential where the kinetic energy is close to
zero (because theB ~ G). In what follows we consider the
motion of the unperturbed rotator when a trajectory is started
at that point (the approach to be utilized is reminiscent of studies
of trapped trajectories in the transition region of reactive systems
with barrierd*19. In the vicinity of this initial g value, we
assume the potential to be approximated by

V(dlg) = G cos(2] — ¢) = G(1 — (1/2)(A — ¢))

Having this form for the potential, the equations of motion can
be solved analytically, and we get fgrand p the following
results:

(32)

1/2
— % + (é) (ekt _ e—kt)

p — (6/2)1/2(ekt + e—kl)

q

(33)

wheree = E — G andk = 2./G. The corresponding frequency,
w (=271K), is w, = 47+/G. Equations 33 fulfill att = 0 the
condition thatq = ¢/2 andp = (2¢)2

Next we refer to the integrand in eq 20, which we designate
asJ(t,p):

0

8q(c0)) (34)

dg

where, as above)/dl is replaced byo(d/0E). We are interested
in estimating the values dft,¢) for the situation just described
above. Thus, substituting eqs 33 into eq 34 yields for
J(t~0,p~2qp) the expression

J(t~0,0~2q,) = w(1/32) 4" + ™) (35)
It is noticed that wher — O (and this is the case when—
1) the functionJ(t~0,p~2qy) attains very large values. We
continue by examining the integrand in eq:2@s long asg
< 2qo, the functionAf,(¢) remains almost unchanged because
the integrand,)(t,), never attains significant values. Onge
~ 20qo, the functionAf,(@~2q) attains large values, because
of the significant contributions due @ft,p~2q) att ~ 0. These
contributions become larger the closeis to zero. Next we
consider eq 30 (see also eq 21): As longpathe upper limit
of the integral, does not reachyg the values ofAf.(¢) are
small and of no significance. However, onggasses &, the
function AfB.{(¢) gets contributions from the large values of
ABa(p~20q0) so that it rapidly increases, thus building up its
discontinuous step. The construction of this step is completed
once ¢ passes this region (so thatf.(¢) stays essentially
constant), because of insignificant contributions along the rest
of the ¢ interval.

IV. Discussion and Conclusions

In this paper are discussed the quantum and classical
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types of approaches were applied for a model system to see
whether the corresponding results show any resemblance. Before
going into the analysis of the results, one major difference
between the two approaches has to be emphasized: Whereas
the periodicity,T, of the external perturbation plays an explicit
role in the quantum treatment and therefore it is straightforward
to expose the adiabatic limit, the classical treatment (based on
the “adiabatic invariants” approximation) only implicitly de-
pends onl and therefore it is not simple to find the adiabatic
limit. From previous quantum treatmehtsit is known that,

for a given energ\E, the system becomes more adiabatic the
larger the produciG. In other words, for a givei and E,
increasing the value d& will enhance the adiabaticity of the
system. It seems to us that, to a certain extent, a similar situation
is encountered also within the classical treatment. However,
since, for a given (total positive) ener@ythe value ofG cannot
increase indefinitely, it is limited by the value Bfand therefore

G < E (see eq 25). From the numerical study we found
indications that, indeed, the system becomes more adiabatic the
closerG gets toE. The main outcome that supports this finding

is the fact that both the quantum and the classical topological
phases are formed due to a sindigcontinuous jumghat occurs

at some time during the external cycle (see Figure 1 for the
guantum system and Figure 3 for the classical one).

Although the two frameworks seem to be similar for the main
result, namely, being able to form topological phases at similar
conditions, the two also differ from each other at least in one
respect: Whereas the quantum topological phase converges
systematically tor as G — o (for a givenT), we do not
encounter such a situation for the classical phase because this
phase increases indefinitely as— 1 (without showing any
tendency to converge). The only way to limit this consistent
increase is to impose some kind of (semiclassical) quantization
to inhibit the system from reaching the separatrix. This cannot
be achieved within single-coordinate models; however, it can
be achieved within certain multicoordinate models. Therefore,
it would be of interest to extend both the quantum and classical
treatments to multicoordinate models.
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