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We demonstrate a simple analytical model for elastic charge transport on the nanometer scale within a single
molecule. It is based on the assumptions usually employed for quantum chemical calculations, except that of
equilibrium between the currents flowing in opposite directions. It allows the possibility of a nonuniform
potential distribution and imbalance between the population of states of opposite momentum. We analyze
two implementable configurations and find the predictions to be consistent with recent experimental results.

Introduction

Since both the speed and the power consumption of an
electronic device tend to improve as it is made smaller, it has
been repeatedly proposed that functional electronic devices will
ultimately consist of a single organic molecule.1-4 Modern
nanofabrication and atomic-scale sensing techniques have
created the possibility of applying two or more electrodes to
an individual molecule, allowing the establishment of a potential
gradient and deviations from equilibrium. There have been
recentreportsof theobservationof theconductancequantization,5-7

which is a particularly simple prediction of the Landauer charge-
transport formalism for the case of metallic nanowires.8-10

Active devices for electronic purposes cannot be constructed
purely from metallic wires but must also contain moieties with
semiconducting nonlinear behavior. Of particular interest are
the asymmetric molecules of the D-σ-A type proposed by
Aviram and Ratner (AR) as a useful molecular device.11

Within the Landauer formalism, the current is given by

where∆p(E,V) is the difference in the Fermi-Dirac occupation
factors of the levels at energyE in the electrodes on the two
sides andτ(E,V) is the corresponding transmission factor, usually
expressed in quantum field-theoretical notation as12-14

whereM is an effective matrix element of the Green’s function
andA1 andA2 are the spectral functions of each electrode.

The basic assumptions of the Landauer formalism are
essentially also those of the molecular orbital (MO) self-
consistent field (SCF) methods most commonly used to analyze
organic molecules. The detailed interactions between each
electron and its neighboring electrons and nuclei are smeared
out and replaced by an average field. Both are one-electron

methods, in which transition to the real world of many electrons
is achieved via the Aufbau principle.

Inelastic processes are ignored. However, in good electronic
materials these processes are only appreciable on length scales
much greater than molecular. The dominant inelastic process
for carriers in semiconductors is scattering from phonons (lattice
vibrations). The mean free path is typically 100 nm,15 signifi-
cantly larger than the size of the average molecule. Even then,
a single scattering event is largely elastic, retaining most of the
carrier energy. Just as for elastic scattering from a charged
impurity,16 its major salient effect is momentum randomization
rather than energy loss. After randomization, the electron is still
hot but does not contribute to the overall current. Inelastic
processes must subsequently occur to cool it toward thermo-
dynamic equilibrium, but the rate of cooling is irrelevant to
current flow and does not affectI-V characteristics. Even in
mesoscopic quantum-well devices, the current flow can be
modeled quite adequately by elastic processes only.17 Other
inelastic processes, for example, the emission of light, are so
rare that they can be treated as a small perturbation.

We do not claim that inelastic processes can always be
ignored for charge transport in organic molecules. They are
important for processes occurring in solution, for hopping
transport, or in systems with pronounced polaronic effects.
However such systems will not be suitable for high-performance
molecular electronics.

In this paper, we demonstrate a model for the transmission
factor τ(E,V) appropriate for an organic molecule and present
approximate analyses of the cases in which one and two
molecular orbitals, respectively, are significant in the conduction
process. These two cases are adequate to describe recent
experimental measurements on actual molecules. The work was
inspired by a circuit analogy, which provides a concrete model
for visualization, access to the considerable literature on circuit
design, and useful results, special cases of which are in
agreement with analyses by Hush and collaborators12 and Datta
and co-workers.14

Circuit Analogy

In usual MO SCF calculations, each electron in a molecule
is associated with a discrete level spread out over the whole
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molecule. The theory leads to a set of simultaneous equations
of the form

wherecs is the coefficient of the atomic orbitalæs. In a chemical
context, the tight-binding Hamiltonian matrix with elementsHrs

is often symbolizedF and called the Fock matrix.S is the
overlap matrix, with general elementSrs giving the overlap
between orbitalsr ands.

For a finite molecule, eq 3 has only countably many nontrivial
solutions, each of which may be labeled with an integeri. The
ith molecular orbital thus has energyEi and atomic orbital
coefficientscsi. To allow the possibility of current flow, the
system must also contain effectively infinite electrodes, in which
case nontrivial solutions exist for a continuum of values of the
energyE.

While most of the atoms in the system belong to the two
electrodes, greatest interest is attached to events happening in
the finite organic molecule located between them. However,
the probability that the electron in any given level is on the
molecule is essentially zero. What is required is a way of
dividing the system into interacting subassemblies. This is
provided by a simple electrical analogue, noting the formal
similarity between eq 3 and the equations for a source-free
circuit network:

whereVs is the voltage at the nodes, andY is the admittance
matrix with general elementYrs linking nodesr and s. The
atomic orbital coefficientscs can be considered to be “electron
wave voltages”. Atoms are “electron wave resonators”. To allow
a molecule to be represented in terms of inductors and
capacitors, we must take the relativistic viewpoint that electrons
have a rest frequency of 124 EHz, with all levels clustered within
terahertz of this value (metric prefixes E and T stand for exa-
and tera-, with values 1018 and 1012, respectively). The nonlinear
variation of admittance with frequency (proportional to energy)
can then be linearized. The scaling factor for impedance is
without physical significance.

Bonds are “electron wave inductors” with an admittance (the
reciprocal of impedance) ofiHrs. Atoms are “parallel electron
wave tuned circuits” formed by the parallel combination of an
electron wave capacitor and an electron wave inductor. When
therth atom has been isolated by “shunting” all other resonators
to ground, it resonates atHrr. At other frequencies/energiesE,
the isolated atom has an “electron wave admittance” ofi(E -
Hrr). Without the shunts, the circuit does not resonate at these
frequencies but instead at those of the molecular allowed states.
Each level has a finite amplitude at any atom. The charge on
an atom is the “electron wave energy” stored in it.

Figure 1 shows a simple conjugated molecule, butadiene, and
its equivalent circuit at the level of Hu¨ckel theory. The value
opposite each circuit element is its immittance (imaginary part
of the admittance). It is readily apparent that the factorτ(E,V)
of eqs 1 and 2 is equal to the power transmission factor of the
analogue circuit. While this analogy does not add anything
beyond eq 3 to the analysis of molecular charge transport
behavior, it is easier to visualize. In molecular electronics the
problem is one of design, and the analogy gives access to the
wealth of literature on electrical wave filters, for example.18

Because of the conservation of charge, the analogue circuit
for a finite molecule cannot have any “electron wave resistors”,
which would be a sink steadily dissipating charge. However,
the lumped analogue circuit for a semi-infinite polymer chain
can. It is well-known that a transmission line has a characteristic
impedanceZ, e.g., 50Ω coaxial cable. If the semi-infinite chain
is replaced by the wave impedanceZ, then the behavior of all
other parts of the circuit is unchanged. The apparent noncon-
servation of charge corresponds to the transfer of charge from
the part modeled in detail to the chain. As shown in Figure 2,
random emergence of charge from the chain in accordance with
the Fermi-Dirac fractional occupation spectrump(f) is repre-
sented by a random “electron wave voltage” sourcec in series
with the wave impedanceZ,19 whose component in the
frequency band fromf to f + ∆f has variance

Appendix A treats the case of a finite moiety weakly coupled
to this semi-infinite chain. It is shown that when equilibrium is
reached, the charge in the molecular level atf0 is essentially
equal toep(f0). This result becomes exact in the limit of infinitely
weak coupling. Despite the absence of anything corresponding
to the Pauli exclusion principle in the one-electron model, this
is the correct quantized occupation of the level. The infinite
size of the system means that the levels are continuous, so that
there is apparently no way of counting their number below a
given energy as required by the Aufbau principle. However, it
can be seen that this way of modeling infinite chains replaces
the latter more usual procedure and additionally takes nonzero
temperature effects into account. Moreover, since a finite
molecule can be coupled to two or more semi-infinite polymer
chains with different Fermi-Dirac distributions, it allows the
possibility of departures from equilibrium and net current flow.

WKB Approximation

We are now ready to compute transmission factorsτ(E,V).
A problem essentially identical to this has long been studied in

Figure 1. Simple conjugated molecule (1,3-butadiene) and its dynamic
circuit analogue at the level of simple Hu¨ckel analysis, as described in
the text.

Figure 2. Dynamic circuit analogue of a semi-infinite polymer chain
(a model for the electrodes).
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the theory of passive electrical filters, and the resulting curve
is known to depend sensitively on interactions between the parts.
However, for present purposes, the detailed behavior of the
transmission factor with energy is not required, as the only result
with directly measurable physical significance is the integral
of the transmission factor times the differential fractional
occupation. Moreover, experimentally poorly controlled factors,
such as molecular conformation and thickness of oxides/
contaminants on electrodes, mean that approximations leading
to errors of an order of magnitude are acceptable, as long as
they provide an intuitive grasp of the intramolecular processes
in play. The well-known WKB approximation20-22 justifies
setting the total attenuation for the whole molecule equal to
the sum of attenuations of each moiety. Equivalently, the total
transmission factor for the whole junction is approximated by
the product of transmission factors for the individual moieties.

Consider the arrangement of Figure 3. Each stage is repre-
sented by a single electronic level of an aromatic moiety and
the tunneling gap to the left. The tunneling gaps are just large
physical separations between electroactive atoms, and in the
circuit analogue they are represented by rather small admit-
tances. In precise modeling, the moiety should be represented
by a collection of interconnected resonators, and near the
frequency of the electronic level, the voltages at input and output
nodes may differ, resulting in a gearbox/transformer ratio term
in the overall transmission factor for the gap-moiety stage.
However, except in pathological cases, this ratio is within an
order of magnitude of unity. It may be neglected at the present
level of approximation, allowing the whole moiety to be
represented by just a single resonator.

The transmission factor is defined as a ratio of electron
currents, i.e., of “electron wave powers” in the circuit analogue.
It is therefore the square of the voltage gain for the stage divided
by the ratio of impedance levels. However, since the impedance
levels in the two metallic electrodes on both sides can be taken
to be the same, and the chain product of the impedance ratios
is unity, the transmission factor for each “stage” (shown between
the dotted lines) can be taken to be just the modulus squared of
the voltage gain.

The stage with the donor moiety consists of a capacitance
for the tunneling gap shunted to ground by a resonator and is
representative for most of the stages. Its transmission factor is
seen to be given to the required accuracy by a Lorentzian:12

This formula gives correctly the transmission factor for energies
far from resonance, and the width of the band over which the
transmission factor is near unity. The Lorentzian form is well-
known for mesoscopic charge transport in, e.g., quantum-well
structures.23

The rightmost stage does not have the same form. Like the
other stages, the link element is the immittance of the tunneling
gap, but in the place of the resonator it has the admittanceκ of
the single mode of the nanowire electrodes. The transmission
factor is given by

The WKB approximation with the transmission factors given
in eqs 6 and 7 becomes exact in the case of a moiety with a
single orbital located symmetrically between the electrodes.12

Current Flow Dominated by a Single Level

The simplest molecular junction consists of a single aromatic
moiety between two metal electrodes and separated from them
by tunneling gaps. We assume that only one level of the moiety
lies between the Fermi levels of the electrodes at any given
time and neglect effects of the field on its electron distribution.

At the required level of approximation, and with the two
tunneling gaps chosen as equal for simplicity, the transmission
factor for the succession of two stages is given by

whereE0 is the energy of the single electronic level.
When the molecule is placed beween two electrodes,E0 varies

as the electrode potential does. At the first level of approxima-
tion, the charge on the moiety can be assumed to be independent
of the applied voltageV, so that the potential on it can be
determined by a simple lever rule. Taking the origin of potential
at the left-hand electrode, the potentialφ at a distancex from it
is given by the “lever rule”:

Note that, even for the equilibrium case of zero applied potential
V, the electrostatic potential of Maxwell’s equations is far from
constant in the region between the electrodes, going negative
at the hard-core radius from electronegative nuclei such as
oxygen, and reaching values near+100 V inside the radius of
the inner shell electrons of each carbon nucleus. The smoothly
varying value given by eq 9 can be considered to be either the
local Fermi potential or the deviation from the potential
distribution of the equilibrium case. The parameterE0 of eq 8
is the position of the moiety level with respect to the Fermi
levels of the electrodes in the equilibrium case.

If temperature effects are ignored, eq 1 gives a current
proportional to the integral of this Lorentzian function between
the two Fermi levels:

where 0e p e 1 is the fractional position of the “center of
gravity” of the moiety within the gap between the electrodes,
andp + q ) 1.

The resulting rounded-step-function current-voltage curve
for an asymmetric case is shown in Figure 4. A similar
characteristic has recently been generated by computer simula-

Figure 3. Sequence of aromatic moieties and tunneling gaps together
with the circuit analogue for the calculation of the transmission factor
in the WKB approximation as a product of transmission factors per
stage.
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tion.24 Hall et al.12 give a particular case of this equation as an
exact result for the case of a single atom placed symmetrically
in the gap (p ) 1/2). Equation 10 gives a good fit to experimental
I-V data from noble metal-Langmuir-Blodgett (LB) mono-
layer-noble metal cells.25

The essential aspects of this curve can be expressed simply.
In the absence of bias the level is normally not at the Fermi
level. Both directions of applied bias will ultimately bring it
between the Fermi levels of the two electrodes. When this is
the case, the passage of current between the electrodes is
facilitated by resonant tunneling. The different voltage thresholds
for conduction in the two directions reflect the asymmetry in
the position of the moiety between the two electrodes.

A molecular junction can be said to be positively biased when
the side on which an acceptor level lies is positive or if the
side on which a donor level lies is negative. Considering the
acceptor moiety to correspond formally to the P region of a PN
junction, and the donor to the N region, positive bias corresponds
to easy PN junction current flow, i.e., lowest voltage for a given
current. This single-moiety case also gives easy current flow
for positive bias.

Current Flow Influenced by Two Levels

The molecule proposed by Aviram and Ratner as a molecular
rectifier11 consists of donor and acceptor moieties, D and A,
respectively, as shown in Figure 3. Each moiety is separated
by tunneling gaps from the two electrodes and from each other.

As above, we assume that only one level of each moiety ever
lies between the Fermi levels of the two electrodes. At the
required level of approximation, and with the three tunneling
gaps chosen as equal for simplicity, the total transmission factor
for the succession of three stages is given by

EA andED are the energies of the single electronic levels of A
and D, respectively, both of which are functions ofV. Novel
behavior is only to be expected if both lie between the Fermi
levels on both sides. Under this condition,∆p ) 1 whenever
τ(E,V) is appreciable, so that eq 1 for the total current simplifies
to

This has the form of a convolution of Lorentzians and is readily
evaluated to be

On the assumption that the variation ofEA andED is described
by the lever rule, the current-voltage relationship is bell-shaped,
with a region of negative differential resistance (NDR) for
voltages beyond that leading to alignment ofEA andED:

whereV0 is the voltage at which the two levels are aligned,δV
is the peak width, andI0 is the peak current. The fact that the
model predicts nonzero current at zero voltage is a consequence
of the approximation made in eq 12.

Experimental results showing NDR have been reported by
Chen et al.26 and have already been explained with the help of
a computer simulation.27 In the latter paper, it is noted that high
molecular conductivity is associated with a particular value of
the molecular charge. However, the salient feature of the
molecule leading to high conductivity is not so much this as
the fact that the LUMO then extends over the whole molecule.
In the present picture this is synonymous with alignment of local
moiety levels.

There are two respects in which a naı¨ve interpretation of eq
14 differs qualitatively from the results of Chen et al. First, the
voltage at which the current peak occurred varied significantly
with temperature. Within the present model, just as for the more
sophisticated computer analysis,27 this temperature dependence
must be explained as the result of thermal expansion and
changes of aggregation. These lead to changes in organic-
organic and organic-metal orbital overlap and hence shifts of
the exact positions of the organic levels with respect to the metal
electrodes. Second, theI-V peak of Chen et al. is not
symmetrical but skewed to low voltages.

Like the single-level result of eq 10, easy current flow for
the two-level case also occurs for positive bias. Note that, in
the original paper by Aviram and Ratner,11 an inelastic process
was considered to occur in addition to the elastic mechanisms
considered here. The direction of easy current flow for this
mechanism was negative.

Refinement of Variations of Potential

An expression showing the skewed behavior observed by
Chen et al.26 can be obtained by refining the lever rule for
determining the potential. This rule is only valid if the changes
of the moiety charges withV are negligible compared to those
on the adjacent electrode surfaces. Clearly, when the doubly
occupied donor state atED approaches the vacant acceptor level
at EA, a significant quantity of charge will be transferred,
changing the electrostatic potentials of both donor and acceptor
from the lever-rule values.

An order of magnitude calculation based on plausible values
for the AR molecule and Poisson’s equation:

shows that the transfer of one electron can under some
circumstances lead to a voltage change of order 100 V. Before
alignment of the energy levels is reached, the direction is such
as to oppose alignment, while beyond this point, the donor and
acceptor charges resume their original, quiescent values.

The present formalism provides information on changes in
charge. As shown in Appendix A, the circuit analogue model

Figure 4. Typical I-V curve for a molecular junction with just one
level near the Fermi level.
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gives the correct Aufbau charge distribution. Under most
circumstances the charge on weakly coupled moieties is
essentially quantized to integer multiples ofe. However, since
the Fermi-Dirac distribution is not completely abrupt but goes
from fully occupied to fully unoccupied in a width of order
kT/e, the transition from one charge state to the next occurs for
a voltage change of this order of magnitude. Although the
present SCF MO models do not handle the instantaneous
Coulomb interaction, all include it as a time and space average,
so that the resultingI-V curve is expected to show the stepped
behavior of the Coulomb blockade.

This may appear surprising in the light of the literature about
the Coulomb blockade (e.g., ref 28), where the usual explana-
tions involve the energyQ2/2C associated with a chargeQ on
a mesoscopic metal particle of capacitanceC. The fact that each
carrier on a metal island sees the same well-defined capacitance
is due to the high polarizability of the metallic electrons. When
the carrier is outside the metal, this polarizability gives rise to
the classical image charge attraction, which must clearly be
incorporated in the MO SCF potential. The smaller stabilization
associated with smaller metal islands is completely equivalent
to their lower image charge attraction. The case of an organic
molecule is expected to be more complicated because of the
reduced screening and less well-defined value of capacitance.
However, Mujica et al.29 have shown that MO SCF formalisms
do predict stepped, Coulomb-blockade-type behavior in mo-
lecular I-V characteristics.

Analysis shows that when a moiety interacts weakly with a
number of electrodes at different potentials, the resultant charge
is just the weighted mean of the charges that would pertain if
the coupling were to only one electrode, with weights equal to
the transmission factors to the different electrodes. For the
D-σ-A case, the resultant characteristic can be derived from
the curve of eq 14 by correcting the voltageV for the additional
amount, proportional toI/(2I0 - I), required to compensate for
the moiety charge:

where, as before,I0 is the peak current. The new sample
parameter∆ is the maximum compensation voltage, occurring
for I ) I0 when the two levelsEA andED are aligned.

Figure 5 showsI-V curves for parameters relevant to the
measurements presented in ref 26. Curve a shows the Lorentzian
shape discussed above for the case when the coefficient∆ of
the voltage offset is zero, i.e., when the moiety potential is
determined essentially by the lever rule. Curve b shows the
relationship when the charges on the moieties change ap-
preciably on current flow, with∆ ) 0.2 V. The re-entrant dashed
portion of the curve is unstable and cannot be obtained
experimentally; instead, the vertical transition shown by a thin
line is observed.

Conclusion

We have presented here two approximate quantum analyses
of the current flow within an individual molecule, based on the
Landauer formalism and molecular-orbital self-consistent-field
methods. The analyses can be understood in an intuitive,
pictorial way that avoids both multidimensional integrals and
the requirement to solve large systems of simultaneous equa-
tions.

When a molecule interacts strongly with metal electrodes in
its vicinity in such a way that coherent current flow becomes
possible, it is challenged with electron energies other than those
of the orbitals of the isolated molecule. To provide a concrete
and more applicable picture of the dynamic electronic behavior
of a molecule in this case, we have presented a circuit analogue.
While firmly based on the Hartree-Fock formalism, this
analogue allows the visualization of the individual character
molecules or moieties retain even when strongly coupled, as
well as intuition as to how this character blends to determine
the behavior of the complete system. In addition, it makes
available for molecular electronics design the wealth of intuition
available in the literature of electric wave filters. We trust that
chemists involved in molecular electronics are more interested
than most in understanding how circuits operate. The analogy
incorporates in an elegant way the correct local average
distribution of electrons in both equilibrium and nonequilibrium
situations.

In the two distinct cases considered, easy current flow occurs
for positive bias with respect to the formal analogy to a PN
junction diode. The opposite direction of easy current flow can
only result from an inelastic mechanism. The present elastic
transport theory agrees with experimental results reported for
noble metal-electroactive Langmuir-Blodgett monolayer-
noble metal structures30 and for ultrathin multilayer structures.31

It is qualitatively in agreement with measurements of nitro-
amine-substituted molecules in a nanometer-size (30 nm) pore.26

Moreover, the analytical derivation gives insights not available
from the results of a computer program. It is rich enough to
include stepped Coulomb-blockade characteristics related to the
quantization of the number of electrons on the molecule.

The picture presented here should allow greater insight into
the active electronic behavior of molecules.
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Appendix A: Occupation of a Moiety

Within the circuit analogy, we derive here the occupation of
a finite moiety linked weakly to an infinite chain in thermo-
dynamic equilibrium.

First we must derive the expression for the energy stored in
a set of pure reactive elements (inductors and capacitors)
connected in an arbitrary pattern, limited initially to the case of
excitation at a given frequency. Note that the impedanceZ and
admittanceY of a circuit are related by

The energy stored in a capacitor is given by

Figure 5. Typical I-V curves for a D-σ-A molecular junction with
(a) negligible change of charge state of the D and A moieties (“lever
rule”, ∆ ) 0) or (b) appreciable change of moiety charge (∆ ) 0.2 V).
The other parameters, chosen to give a fit to ref 26, are for both
curves: V0 ) 1.94 V, δV ) 43 mV, andI0 ) 1.03 nA.

Y ) Z-1 (A1)

U ) 1/2CV2 (A2)

V′ ) V + ∆I/(2I0 - I) (16)
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For a time-dependent voltage, this equation gives the average
energy ifV is taken to be the root-mean-square voltage.

Since the admittance of a capacitor is given by

then the energy may be re-expressed:

Transforming from the purely imaginaryY to Z by use of eq
A1 and noting thatV ) ZI, this equation is equivalent to

which is also appropriate for the energy stored in an inductor,
normally expressed as

If two circuits both obey eq A4, then clearly it is also valid
for their combination in parallel, since both circuits then share
the same voltage and the admittance of the combination is the
sum of the individual values. If two circuits both obey eq A5,
then clearly it is also valid for their combination in series, since
both circuits then share the same current, and the impedance of
the combination is the sum of the individual values. By
induction, these equivalent equations are valid for all combina-
tions of purely reactive elements.

For excitation with an arbitrary waveform, the different
frequency components can be separated by Fourier transforma-
tion, and the average energy stored is the sum of the average
energies over all frequencies.

We now apply these results to the case of a moiety with a
finite number of resonances weakly linked to an infinite polymer
chain with a noise source described by eq 5. First note that the
impedanceZ(f) of a network of inductors and capacitors as a
function of frequency is given by a rational function. All its
zeroes and poles are distinct and lie on the real frequency axis.
Z(f) takes on only purely imaginary values there. As a result, it
may be represented in the following form:32

All the coefficientsRr are real and positive. The resonance
frequenciesfr at which the impedance becomes infinite are the
one-electron levels, within the framework of the MO SCF
picture, of the finite moiety. The effect of the weak linkage is
represented by a very small admittanceC, which merely adds
a term to this equation withfr ) 0.

Let us consider the moiety charge associated with each term
of eq A7.

In the vicinity of fr, the effect of the coupling capacitor, as
well as that of all the other terms, is to add a pure imaginary
amountiX to the impedance.iX varies smoothly in the vicinity
of fr and may be merged with the impedance of the semi-infinite
polymer chain to give a new valueZc. Since iX is pure
imaginary, the amplitude of the noise voltage source is still given
by 4ep Re Zc∆f. Transforming to a Norton equivalent circuit,
the amplitude of the noise current source is 4epG∆f, whereY
) 1/Zc ) G + iB.

The contribution due to the to the average moiety charge in
the frequency band fromf to f + ∆f is given by

The only significant contribution to the charge is in the
immediate vicinity of fr so that the Fermi-Dirac fractional
occupationp, G, andB can be taken to be constant. It is readily
seen that the overall integral of this contribution is independent
of G, B, andR and is equal to

Hence the average charge on the moiety is automatically equal
to the value expected from the Aufbau principle, taking into
account partial occupation due to temperature effects.
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Göpel, W., Ziegler, C., Eds.; VCH: Weinheim, Germany, 1992; pp 195-
208.

(3) Collier, C. P.; Wong, E. W.; Belohradsky, M.; Raymo, F. M.;
Stoddart, J. F.; Kuekes, P. J.; William, R. S.; Heath, J. R.Science1999,
285, 391.

(4) Roth, S.; Blumentritt, S.; Burghard, M.; Curran, S.; Fisher, C. M.;
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