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A combination of quantum mechanics, semiclassical mechanics, and nonlinear classical dynamics is used to
extract the detailed internal molecular motions that underly the quantum eigenstates of acetylene with 16
quanta of total bend excitation. No potential energy surface is used; rather, the states are represented by an
algebraic effective Hamiltonian that has been extensively refined against experimental data. The classical
mechanical analysis reveals widespread chaos, but the quantum mechanical structure is surprisingly regular.
Specifically, all 81 quantum states can be assigned a pair of semiclassical quantum numbers that reveal the
underlying classical motions associated with each state. These classical motions range continuously between
limiting-case motions that we refer to as local bend (one hydrogen bending) and counter-rotation (the two
hydrogens undergoing circular motions in planes perpendicular to the CC axis). The first reason that the
regularity in the quantum structure was previously undetected is that the identification of regular nodal
coordinates, if any exist, of quantum wave functions in a multidimensional (i.e., greater than two dimensions)
space is generally a difficult task; our success here was made possible by the identification in a reduced
two-dimensional (2D) space of two families of periodic orbits (dynamic modes) which evolve with energy.
Every quantum state reflects the quantization of the two dynamic mode system. The second reason for the
undetected regularity is that the regular sequences of quantum levels that we have identified are interspersed
among each other in energy, thus giving the appearance of a complex, unassignable spectrum.

1. Introduction

The bending dynamics of acetylene have been subjected to
intense scrutiny in the past 10 years in a series of experimental
and theoretical studies.1-14 In a number of these studies, it has
been noted that the acetylene bending dynamics is particularly
complicated at roughly 10 000 cm-1 of bend excitation. In the
early work of Jonas and co-workers,2 which made the first steps
toward interpreting the complex stimulated emission pumping
and dispersed fluorescence spectra of acetylene, it was noted
that the ability to fit a Dunham expansion to the observed
sequence of (trans) bending states fundamentally broke down
at 14-16 quanta of excitation, which corresponds to∼10 000
cm-1 of vibrational energy. They attributed this breakdown to
the onset of rapid intramolecular vibrational energy flow,
specifically due to a Darling-Dennison bend resonance. Sub-
sequent work has refined this understanding of the mechanisms
of vibrational energy flow, and a spectroscopic effective
Hamiltonian has been developed that reproduces all relevant
experimental data up to 15 000 cm-1 with 1.5 cm-1 preci-
sion.1,8,11

However, the ability to fit data to an appropriate model should
not be confused with an understanding of the molecular
dynamics. To this end, a number of theoretical studies have
appeared which have analyzed models of acetylene bending

dynamics using quantum, semiclassical, and/or classical
mechanics,5,7,11-13 and each of these has noted that the dynamics
is quite complicated near 10 000 cm-1 of bend excitation. The
observations that have led to this conclusion have included a
complex eigenstate level structure and associated complicated
quantum wave packet dynamics;11 complex classical mechanics,
with new classes of periodic orbits being born and classical
chaos increasing in prominence;5,7,12,13 and of particular sig-
nificance to this paper, the inability to assign conventional
spectroscopic quantum numbers (either normal mode or local
mode) to many of the bending eigenstates with 14-16 quanta
of excitation.7,11

The fundamental reason for the complex dynamics with
around 10 000 cm-1 of bend excitation, as has been sketched
out previously2,7,11,13and will be elaborated upon below, is that,
by this energy, the effective trans and cis bend frequencies have
become nearly equal. That is, the low-energy dynamics are
dominated by the normal modes of vibration, in the sense that
the vibrational Hamiltonian is approximately separable in the
normal modes at low energy. However, when the trans and cis
bend frequencies become nearly degenerate, which occurs at
roughly 12 quanta of excitation, they become unstable and the
anharmonic couplings begin to dominate the dynamics. As a
result, the dynamics of the system change radically, although
not all at once. Chaos gradually increases in prominence, and

681J. Phys. Chem. A2001,105,681-693

10.1021/jp002803e CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/03/2001



new classes of stable and unstable classical periodic orbit
motions emerge.

In a previous study of acetylene bending dynamics,13 which
focused on the semiclassical assignment of bending states with
22 quanta of total bend excitation, we performed a preliminary
analysis of the evolution of the classical bending dynamics of
acetylene with bend excitation, and determined that classical
chaos was maximally prominent at∼10 000 cm-1 of bend
excitation (16 quanta). Our expectation was that this energy
regime might be a good one for investigating possible quantum
signatures of classical chaos (such studies abound in the
literature but those that focus on real molecular systems, as
opposed to model systems, are relatively rare). This expectation,
however, was not fulfilled. Instead, the major, surprising
conclusion of this work is that, despite the dominance of chaos
in the classical dynamics,all of the bending eigenstates of
acetylene with a total of 16 quanta of bend excitation can be
assigned semiclassical quantum numbers, which from the
simplest viewpoint represent the number of nodes along two
families of periodic orbits (which are unstable at many energies).

The success of the semiclassical assignment scheme implies
that there exists a regularity in the quantum structure that was
previously undetected and unsuspected. Why have we succeeded
in assigning the eigenstates here, while they previously seemed
to be intrinsically unassignable? The answer to this question is
multifaceted, and we enumerate several key issues below:

1. Our semiclassical scheme assigns the eigenstates in terms
of a dynamic set of coordinates defined by periodic orbits,15

and is thus much more flexible than traditional assignments in
terms of orthogonal coordinate systems, such as normal or local
modes. Normal mode coordinates are of course guaranteed to
be appropriate for making assignments at sufficiently low
vibrational excitation, and local mode coordinates have led to
assignments for many eigenstates at higher energies.5,7,11

However, normal and local modes only represent limiting case
behaviors for the nonlinear, nonintegrable vibrational dynamics,
as has been emphasized in our previous study,13 which revealed
a rich variety of periodic motions near 15 000 cm-1 of bend
excitation, many of which could not easily be categorized as
normal or local mode motions.

2. Our approach exploits the existence of approximate
constants of motions (polyad numbers) to reduce the dimen-
sionality of the acetylene bending system from 4 (two doubly
degenerate bends) to 2 degrees of freedom. The constants of
motion areNb, the total number of quanta of bend excitation,
and l, the total vibrational angular momentum. The latter of
these is rigorously conserved in the absence of Coriolis
interactions, while the former is approximately conserved by
the molecule (on a time scale of at least a few picoseconds10)
and rigorously conserved by the model that we employ. The
ability to study the dynamics in two dimensions makes possible
the use of surfaces of section, to gain a complete, detailed
overview of the classical mechanics, as well as direct visual
comparison of periodic orbits and wave functions, to establish
the assignments. The coordinates in the reduced two-dimensional
(2D) space are rather abstract and do not have obvious physical
meanings, although we can (approximately) reconstruct such
meaning by a mathematical transformation that we call a “lift”.

3. In retrospect, it is clear why the eigenstate spectrum
appeared to be unassignable. The eigenstates are quantized along
two families of periodic orbits, and the resulting progressions
of quantum levels are interspersed in energy. In addition, the
underlying periodic orbits evolve rapidly with energy; the
associated variation of the frequencies of the periodic orbits

implies that the energy level spacings of the quantum progres-
sions are highly nonuniform.

4. Finally, although the classical dynamics is dominated by
chaos, the regular quantum progressions exist because certain
slightly unstable periodic orbits organize the quantum structure
more effectively than we expected. At many energies within
theNb ) 16 polyad, the classical phase space is almost totally
chaotic, and the quantizing periodic orbits are unstable, although
only slightly so, such that many trajectories when in the vicinity
of these periodic orbits mimic their motion. The result is that
the quantum mechanics “sees” near these periodic orbits regions
of sufficient order and dynamic attraction15 on the scale ofp to
give rise to “scarred” quantum states.16

Because our semiclassical assignment scheme is relatively
easily understood without understanding the quantum, semi-
classical, and nonlinear classical methodologies we used to
uncover it; because these methodologies are discussed in ref
13 and similar methodologies are, individually and in various
combinations, discussed in other published works,5,7,12,17,18and
because many of the probable audience for this paper are not
versed nor wish to be immersed in the details of all these
methodologies, this paper will start with a simple, didactic
overview of our results and how we obtained them. The
relationship between our method of analysis and others reported
in the literature will be also clarified. Details of our model and
methodology will follow, along with detailed results forNb )
16.

2. Overview of Semiclassical Assignments

Our assignment scheme is motivated by the classical periodic
orbit structure that is associated with the pure bend polyad (Nb

) 16, l ) 0) which comprises all states with a total of 16 quanta
of bend excitation and zero total vibrational angular momentum.
As outlined in the vertical middle of Figure 1, the periodic orbits
within this polyad can be organized into two families, which
evolve as a function of energy, and merge at the energy extremes
of the polyad. The periodic orbit motion at the very lowest
energy within the polyad can be described as a pure “local bend”
(one hydrogen bending, the other stationary) while the top of
the polyad is associated with counter-rotation (both hydrogens
undergoing circular motions in planes perpendicular to the CC
axis, in opposite directions). The periodic motions at intermedi-
ate energies are more complicated and vary continuously
between local bend and counter-rotation.

Our semiclassical scheme assigns a pair of quantum numbers,
which we write generically as (n1, n2), to each eigenstate,
according to its structure along the relevant periodic orbits from
each family at the energy in question. In some cases, the
quantum number assignments can be made using EBK quan-
tization, which is possible only when tori (regions of regular
classical dynamics that surround stable periodic orbits in phase
space) exist; in this case,n comes from the loop integrals of
those tori when the loop integrals are integer multiples ofp.
For many states, EBK quantization is not possible, because
classical chaos dominates in the middle of the polyad and the
orbits are either unstable or only weakly stable (in the sense
that they are surrounded by small torus bundles). Nonetheless,
all of the eigenstates can be assigned semiclassically by visual
inspection. In the case of librational states (restricted motion),
the quantum numbern represents a node count along the relevant
periodic orbit, while for rotational states,n represents a phase
advance along the orbit. Note that here “rotation” does not refer
to a physical rotation of the molecule or the hydrogens, but
rather to unrestricted motion in the abstract space of classical
angles in which we perform our analysis; see below.

682 J. Phys. Chem. A, Vol. 105, No. 4, 2001 Jung et al.



Figures 2 and 3 summarize the semiclassical assignments.
Ideally, these figures would be rotated by 45°, with the highest
and lowest energy eigenstates at the top and bottom of the page,
respectively. The states which are assigned as (n1, 0) and (0,
n2) (excitation along only one of the families of periodic orbits)
are on the outer edges of the diagram. Along both series of
states, the underlying classical motion varies from local bend
at the bottom to counter-rotation at the top, although the
evolution of the dynamics occurs in different ways for each
family. In Family 2, the motion that starts out as pure local
bend gradually acquires increasing excitation in the second
(initially stationary) hydrogen, in a plane perpendicular to the
first. Eventually, the amplitude of the two bends becomes equal;
quantum states associated with this “cross” bending motion are
located in the upper left corner of Figures 2 and 3. From this
point, the motion continues to evolve by gradually incorporat-
ing increasing rotational character, and thus increasingly
resembling a perfect counter-rotation. In Family 1, the initial
local bend motion evolves by once again acquiring increasing
excitation in the second hydrogen, except this time primarily
in the same plane as the first. The intermediate motions for
Family 2 are somewhat more difficult to visualize than for
Family 1, but the hydrogens tend to oscillate about some axis
for a period of time before switching to an orthogonal axis.

Such “axis switching” states are located in the lower right corner
of the figures.

Up to this point we have simply stated that we can assign a
pair of quantum numbers to each eigenstate according to the
number of quanta of excitation along the relevant Family 1 and
2 periodic orbits. Having organized the quantum states as in
Figures 2 and 3, we could simply label states in particular
sequences according to their energy rank. We choose instead
to label the states usingquantum numbers whoseValues
represent the leVel of quantum excitation along particular
periodic orbit motions. Because each Family is composed of
several separate periodic orbits that are connected through
bifurcations, the appropriate quantum labels change with energy.
We have already suggested above that the classical dynamics
are maximally simple at the energy extremes of the polyad, and
thus the low- and high-lying states are labeled by two sets of
numbers (nL1/2 for local bend-like motions andnC1/2 for counter-
rotation) which increase toward the center of the polyad (upper
left and lower right corners of the diagram). The multiple
quantum assignments appearing at the top of the diagrams reflect
the transitional nature of the phase space structures in the middle
of the polyad between simpler structures (and associated
motions) at lower and higher energies. As a result, the nodal
coordinates of these eigenfunctions can be interpreted in

Figure 1. Summary of the classical mechanics in theNb ) 16, l ) 0 polyad. Central column: Schematic overview of the periodic orbits within
the polyad. The periodic orbits can be grouped into two “families”, which connect smoothly from the highest to the lowest energy within the
polyad. A solid line indicates a stable orbit, while a dashed line indicates an unstable orbit. Columns 4 and 6: Surfaces of section; the various
coordinates for these plots, and the intersection conditions, are shown at the bottom of the diagram. Columns 3 and 7: Selected periodic orbits in
the abstract space of classical angles, (ψa, ψb). Columns 1, 2, 8, and 9: Periodic orbit motions depicted as physical displacements of the hydrogens
from the CC axis, as determined from the “lift” procedure.
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different ways, depending on whether they are viewed as
progressing from low to high energy or vice versa. That is, the
middle states admit multiple quantum state labels, although each
state retains a single dynamical interpretation.

We have neglected to discuss several important details, such
as the axes of the wave function plots, which are classical angles.
We also note briefly that certain wave functions seem out of
place in the figure, such as those connected by the dotted lines.
These wave functions occur in accidental near degeneracies,
and the more complicated nodal patterns are caused by interfer-
ences between the semiclassically “pure” states. With a little
practice, it is usually possible to visually untangle the interfer-

ences. Interestingly such accidental degeneracies were also noted
in ref 18 which like here used nonlinear dynamics and the
classical quantum correspondence to help assign highly excited
states in the water molecule. In ref 18 it was pointed out that
these complicated wave functions could have been mistaken in
the past for functions whose phase space transforms lie in a
chaotic region of phase space.

With the above caveat in mind, we conclude that the
assignment of each state in the polyad can be given in the sense
that every state has as many quantum numbers (n1, n2, Nb, l )
0) as there are degrees of freedom, and that each state has a
corresponding visualizable classical internal molecular motion

Figure 2. Semiclassical assignments for roughly half of the quantum eigenstates withNb ) 16 andl ) 0. The lower left corner depicts those states
that can be labeled with (nL1, nL2) quantum numbers, and withu+ andu- symmetry. The upper right corner includes all states which can be labeled
with (nC1, nC2) quantum numbers, and which haveg+ or u+ symmetry. In some cases, thenM2 or nr quantum numbers provide a more physically
meaningful assignment thannC2; see the text for details.
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that when quantized yields its eigenenergy. The quantum
numbers have dynamic meaning and are not just “indices” in a
parametrized formula that gives the energy. The following
sections demonstrate that this assignment can only be fully
accomplished by utilizing simultaneously methods of nonlinear
classical mechanics, quantum mechanics, and semiclassical
mechanics.

Having provided an overview of the results, we now briefly

review the approach that makes the assignments possible,
leaving details for the sections that follow. The first critical point
is that no potential energy surface has been used. Rather, the
dynamics of the system are represented by an algebraic
spectroscopic effective Hamiltonian that has been fitted to
experimental data with up to 15 000 cm-1 of vibrational
excitation.11 In fact, no PES exists with sufficient accuracy, but
even if one did exist, the effective Hamiltonian approach (which

Figure 3. The arrangement of this figure is nearly identical to that of Figure 2, but with different symmetry classes. Specifically, the (nL1, nL2)
assignments are provided for theg+ andu+ symmetry states, and the (nC1, nC2) assignments for theg- andu- symmetry states.
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trivially yields an action/angle classical Hamiltonian) possesses
a critical advantage over performing variational quantum and/
or classical periodic orbit analysis on a potential energy surface.
Specifically, in an action/angle Hamiltonian, every constant of
the motion can be used in a canonical transformation to reduce
the dimension of the problem.5,7,12,13,17Reduced dimensionality
is helpful not only for computational expediency but also can
be critical to a successful semiclassical analysis. Generically it
is difficult to visualize the wave functions and to visualize and
calculate the periodic orbit structures in more than two dimen-
sions. This is not to say that by using certain well-chosen
orthogonal coordinates, e.g., normal or local modes, that some
wave functions will not reveal nodal patterns that infer the
dynamics.11 However, a complete coordinate-independent analy-
sis cannot be done in this way; in the context of this work, we
found that only states at the top and bottom of the polyads
yielded to such a visual analysis.

We also wish to mention briefly a somewhat more subtle
advantage of the action/angle approach in this particular study.
As mentioned briefly above, the two families of periodic orbits
merge at the top and bottom of the polyad. This is not a
coincidence. The classical phase space contracts to a point at
both energy extremes, and two periodic orbits must emerge (in
the sense of a periodic orbit bifurcation diagram) out of each
point (which give rise to the two families of periodic orbits).
The classical dynamics is thus guaranteed to be simple at both
the top and bottom, and although the periodic orbits evolve in
more complicated ways in the middle of the polyad, the phase
space structure never becomes too complicated. We found the
ability to follow the periodic orbits from both the top and bottom
of the polyad to be a great advantage in this study. In contrast,
when using a potential energy surface, the classical phase space
contracts to a point only at zero energy, and there are no
constrictions at higher energies, making the identification of
periodic orbits more difficult.19

The weakest point of our analysis is that the transformation
between the action-angle variables and the physical space
coordinates is in principle not known. [This would not be the
case if the effective Hamiltonian had been derived by high-
order perturbation theory (Van Vleck7 or Gustavson17 or as in
refs 20-22) from a suitable potential energy surface; the
perturbation theory approach solves for the action/angle vari-
ables of the system in terms of the original physical coordinates
of the molecule and hence effectively solve the Hamilton-Jacoby
equations for the system.23] As such, the periodic orbits in the
action/angle space can be represented only approximately as
physical motions of the molecule; here we have done so by
employing a low order normal mode expansion for the action-
angle and physical space variables. The justification for this
approximation is as follows: First, there are examples where
the perturbation theory expressions for the actions and angles
were worked out to high order and the approximation was seen
to be quite accurate,6,7,17 certainly accurate enough for the
pictorial description of the motions given here. Additionally,
the results from effective Hamiltonian models compare well to
eigenvectors ofH ) T + V computed on usual (e.g., DVR)
basis sets.24-27 On a deeper level the resulting high order
perturbation theory expressions for the spectral Hamiltonian (that
look like eqs 7-10 below) are complex functions ofthe original
simple action and angle variables. As such the Hamiltonian,
the resulting trajectories and the expressions for the effective
frequencies carry the burden of complexity that allows the final
action and angle variables to remain simple and near the original
ones. Similar things are seen in higher order perturbation theory

where matrix elements of complicated operators are computed
in a basis of simple unperturbed states.

3. Hamiltonian and Methodology

The model of the acetylene bend degrees of freedom that is
studied in this paper is an effective Hamiltonian that has been
demonstrated to reproduce all observed “pure bending” vibra-
tional levels of acetylene up to 15 000 cm-1 to a root-mean-
square accuracy of better than 1.5 cm-1.10 This Hamiltonian
model has resulted from years of work on acetylene by a number
of researchers, notably by Plı´va,1 Herman and co-workers,8 and
Field and co-workers.10 Both the quantum Hamiltonian and the
procedure for converting it to a classical (action/angle) Hamil-
tonian have been detailed previously,5,10,11,13,17,18so we provide
only a brief review here. The quantum effective Hamiltonian
is defined in terms of the shift operators for the two-dimensional
harmonic oscillator, and contains 16 empirically fitted param-
eters:

where

The values of the various parameters in this model are listed in
Table 2 of ref 10.

Note that we have divided the effective Hamiltonian into three
parts. The superscript “lin” refers to the harmonic (linear)
diagonal terms and “anh” to the anharmonic (nonlinear)
contributions to the zero-order energies. The resonant interaction
terms, which generate the off-diagonal matrix elements, are
contained in the “int” term. This term in particular looks very
complicated, but in fact it simply encodes harmonic oscillator
scaling relationships for three important mechanisms for ex-
changing energy and vibrational angular momentum between
the cis and trans bend modes; these resonances are called Darling
Dennison I/II and vibrationall-resonance. A critical point about
this effective Hamiltonian is that its matrix representation is
block diagonal in the zero-order normal mode number repre-
sentation, and each block of the matrix can be uniquely labeled
by a pair of conservedpolyadquantum numbersNb ) V4 + V5

(the total number of quanta of bend excitation) andl ) l4 + l5
(the total vibrational angular momentum), which we here restrict
to l ) 0. These polyad numbers correspond to constants of
motion in the classical Hamiltonian.

The classical Hamiltonian is derived from the quantum
Hamiltonian in a two step process:

1. The quantum effective Hamiltonian, expressed in terms
of shift operators, is converted to a classical action/angle
Hamiltonian, using standard correspondence rules. [For those

ĤQ ) ĤQ
lin + ĤQ

anh+ ĤQ
int (1)

ĤQ
lin ) ω4V̂4 + ω5V̂5 (2)

ĤQ
anh) x44V̂4V̂4 + x45V̂4V̂5 + x55V̂5V̂5 + y444V̂4V̂4V̂4 +

y445V̂4V̂4V̂5 + y455V̂4V̂5V̂5 + y555V̂5V̂5V̂5 + g44l̂4l̂4 +
g45l̂4l̂5 + g55l̂5l̂5 (3)

ĤQ
int ) s45(â4d

† â4g
† â5dâ5d + â4dâ4gâ5d

† â5g
† ) +

[r°45 + r445(V̂4 - 1) + r545(V̂5 - 1)](â4dâ4g
† â5d

† â5g +

â4d
† â4gâ5dâ5g

† ) + 1
4
[r°45 + r445(V̂4 - 1) +

r545(V̂5 - 1) + 2g45] ‚ (â4d
† â4d

† â5dâ5d + â4g
† â4g

† â5gâ5g +

â4dâ4dâ5d
† â5d

† + â4gâ4gâ5g
† a5g

† ) (4)
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who are unfamiliar with action/angle Hamiltonians, a few brief
comments. Classical Hamiltonians are often written in terms
of kinetic and potential energy with positions and momenta as
the variables, but using actions and angles provides more
transparent quantum-classical correspondence. The quantum
analogue of an action is a quantum number; the classical angles,
as will be seen below, contain information about resonances.]
Specifically, the transformation is generated by the Heisenberg
correspondence relations

2. A canonical transformation is performed to transform the
classical Hamiltonian from the initial action/angle coordinates
(4d, 5d, 4g, 5g) to a new set of action/angle coordinates. The
new actions we label byJa, Jb, Ka, andKb, and the conjugate
[corresponding] angles we callψa, ψb, θa, and θb. The new
actions are chosen such thatKa and Kb correspond (up to a
multiplicative factor, and neglecting zero-point corrections) to
the quantum polyad numbersNb and l; that is,Ka andKb are
constants of the motion (they do not change during any classical
trajectory), and we can consider the classical Hamiltonian to
dependparametrically on these conserved actions. Thus, by
exploiting the existence of the two conserved quantities, we
reduce a 4 degree of freedom problem to a 2 degree of freedom
problem, which is described by the actions (Ja, Jb) and angles
(ψa, ψb).

The final classical Hamiltonian takes the form:

Here we have introducedE° to account for the quantum
mechanical zero-point energy. Note that the diagonal harmonic
and anharmonic terms from the quantum effective Hamiltonian
are expressed solely in terms of the classical actionsJa, which
corresponds toV4 - V5, andJb, which corresponds tol4 - l5.
The “interaction” terms, which are the classical analogues of

the quantum resonance terms (off-diagonal matrix elements),
involve the classical angles in addition to the actions.

In the Introduction, we suggested that theNb ) 16 polyad
was particularly interesting, and challenging, from the standpoint
of semiclassical analysis due to the prominence of chaos, which
in turn is due to the near degeneracy of the trans and cis bend
frequencies. Having defined our Hamiltonian, we can now
justify this assertion from a classical mechanical point of view.
Specifically, in classical mechanics, the frequency of a particular
type of motion can be obtained as

whereH is the classical Hamiltonian (the classical energy) and
J represents some classical action. The quantum mechanical
analogue of the action is a quantum number, and thus we can
obtain nominal frequencies for the bend modes in the context
of the effective Hamiltonian as

whereb is 4 or 5. These quantities are plotted in Figure 4. Note
how the frequencies cross atNb ≈ 12. When the classical
frequencies become equal, the individual modes become
maximally susceptible to perturbations (i.e., the coupling terms
in Hint). In practice, the classical mechanics begins to change
even before the normal-mode frequencies become equal, but
past the point at which they cross, the classical mechanics
undergoes a fundamental change. One of the symptoms of this
transition is an explosion of classical chaos in the middle of
the polyads, which is particularly prominent atNb ) 16 (the
dynamics gradually becomes more regular at higher bend
excitation).

4. Classical Dynamics

From this point onward we will be concerned exclusively
with Nb ) 16 andl ) 0. In terms of classical mechanics, our
primary task is to elucidate the periodic orbit structure, which,
as has been suggested above, constitutes the critical framework
for investigating quantum-classical correspondence.

An essential tool for identifying the periodic orbits are
surfaces of section, which are slices through the classical phase
space. Note that the exploitation of the polyad quantum numbers
makes possible the use of surfaces of section. As explained
above, the bending system of acetylene has 4 degrees of freedom

âj f xIjexp(-iφj) (5)

âj
† f xIjexp(+iφj) (6)

HC ) HC
lin + HC

anh+ HC
int - E° (7)

HC
lin ) 2ω4(Ka + Ja) + 2ω5(Ka - Ja) (8)

HC
anh) 4x44(Ka + Ja)

2 + 4x45(Ka + Ja)(Ka - Ja) +

4x55(Ka - Ja)
2 + 8y444(Ka + Ja)

3 +

8y445(Ka + Ja)
2(Ka - Ja) + 8y455(Ka + Ja)(Ka - Ja)

2 +

8y555(Ka - Ja)
3 + 4g44(Kb - Jb)

2 +

4g45(Kb - Jb)(Kb + Jb) + 4g55(Kb + Jb)
2 (9)

HC
int ) 2s45[(Ka

2 - Kb
2)2 + (Ja

2 - Jb
2)2 -

2(Ka
2 + Kb

2)(Ja
2 + Jb

2) - 8KaKbJaJb]
1/2 cos(ψa) +

2[r°45 + r445(2(Ka + Ja) - 1) +

r545(2(Ka - Ja) - 1)] ‚ [(Ka
2 - Kb

2)2 + (Ja
2 - Jb

2)2 -

2(Ka
2 + Kb

2)(Ja
2 + Jb

2) - 8KaKbJaJb]
1/2 cos(ψb) +

1/2{r°45 + 2g45 + r445[2(Ka + Ja) - 1] +

r545[2(Ka - Ja) - 1]}‚{[(Ka + Kb)
2 -

(Ja - Jb)
2] cos(ψa - ψb) + [(Ka - Kb)

2 -

(Ja + Jb)
2] cos(ψa + ψb)} (10)

Figure 4. The classical frequencies of the zero-order normal mode
motions, as a function of the number of quanta of excitation (classical
action). The crossing of the frequencies atNb ≈ 12 results in a
restructuring of the classical mechanics.

ω(J) ) ∂H
∂J

(11)

ω(Vb) ) ∂Ĥ
∂Vb

(12)
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(two doubly degenerate bend modes), but the 2 conserved polyad
quantum numbers reduce the effective dimensionality to 2
degrees of freedom, which corresponds to a four-dimensional
phase space (a position and momentum for each degree of
freedom, or in our case, an action and an angle). However,
energy conservation effectively constrains the dynamics to three
dimensions within the phase space. Thus, to reduce the dynamics
to a 2D plot, we need only to specify the value of one of the
coordinates. In practice, various surfaces of section (slices) can
be taken along the different coordinates to be sure that one has
a full view of the dynamics. The power of surfaces of section
is that they immediately allow one to identify (1) the extent of
chaos at a given energy (chaos looks like randomly scattered
points on the surface) and (2) the stable periodic orbits, which
are located in the middle of the sets of concentric circles, which
result from trajectories that lie on “torus bundles”: regular
regions of phase space that surround the central periodic orbit
fiber.

Quantum mechanically, the finite number of eigenstates of a
polyad span a finite energy range. Similarly, once the conserved
quantitiesKa and Kb (classical polyad numbers) have been
specified, only a finite range of classical energy is accessible.
The accessible energy range for any given polyad can be
obtained by a straightforward but tedious calculation, as
described in ref 13. In the analysis below, we take advantage
of the fact that, at the extreme high and low energies of the
polyad, only a single point in the space of classical angles (ψa,
ψb) is accessible; this can only occur once the classical
frequencies of the trans and cis bend motions come into
resonance. Having found these limiting energies, we focus on
enumerating the important periodic orbits that exist within the
polyad as a function of energy. We present a schematic
“bifurcation diagram” in the center of Figure 1 which sum-
marizes the periodic orbit structure. The word “bifurcation”
refers to events in which new periodic orbits are born and/or
where existing periodic orbits cease to exist. Bifurcations are
thus of primary importance in the context of describing the
overall classical structure, and by implication, to understanding
the quantum structure from the standpoint of quantum-classical
correspondence.

In addition to the surfaces of section in Figure 1, which are
the “raw” classical data, and the bifurcation diagram, which
summarizes the periodic orbit structure, we present two other
types of plots in our overview of the classical dynamics. Each
of these two types of plots represents the classical motions
associated with the periodic orbits. The first projects this motion
onto the (ψa, ψb) plane. The advantage of this representation is
that it is two-dimensional, and as will be seen below, is optimal
for establishing correspondence with the quantum mechanical
eigenfunctions, which will be projected into the same space.
The disadvantage of this representation is that it is highly
abstract. That is, motions in the (ψa, ψb) space do not have any
obvious interpretation in terms of the physical motions of the
two hydrogens in acetylene.

However, as mentioned in section 2, it is possible to
reconstruct the physical molecular motions from the abstract-
space dynamics by a mathematical transformation that we call
a “lift”. This lift essentially corresponds to undoing the
dimensionality reduction and the canonical transformation that
defined the abstracta/b coordinates in terms of the more
physically intuitive cis and trans bend (dimensionless) normal
coordinates. We refer readers interested in a detailed derivation
of the lift procedure to ref 13. It should be noted that the lift
cannot specify the precise bond lengths or angles of the

molecule. This is not a deficiency of the mathematical trans-
formation but rather a generic deficiency of fitted spectroscopic
effective Hamiltonians, in which the coordinates are not
explicitly defined. This is not a serious problem, however. Our
concern is not, e.g., whether the hydrogens bend by 65° versus
70° in a particular type of motion, but rather with the qualitative
aspects of the motion: How are the motions of the two
hydrogens correlated? Do they bend through linearity (only
possible if they have zero angular momentum) or do they
undergo circular motions? Does one hydrogen undergo much
larger amplitude motion than the other? From a practical
standpoint, we plot the “lifted” motions as dimensionless (x, y)
displacements of the two hydrogens from the CC axis.

Repeated reference to Figures 1 and 5 will be useful from
here on. In fact, for the reader interested in just the flavor of
what is done and pictures of the resulting motions, a study of
these figures may serve as substitute for a detailed reading of
the rest of this section.

Before proceeding further, we examine the “lift” associated
with three special points in the (ψa, ψb) plane: (0, 0), (π, π),
and (0,π). As mentioned above, at the energy extremes of the
polyad, the classical phase space contracts to single points in
the (ψa, ψb) plane. Specifically, at the low energy extreme of
the polyad, the phase spaces contracts around (0, 0), while the
point (π, π) plays the analogous role at the top of the polyad.
The point (0,π), on the other hand, which becomes accessible
at E ) 10 322 cm-1 (in the middle of the polyad), can be
considered a saddle point of the dynamics, because the second
derivative of the energy with respect toψa is negative while
that with respect toψb is positive at this point.

The significance of each of these three points will be
considered in some detail below. For now, we simply state that
each of these points “lifts” to a particularly simple molecular
motion, and these three motions play special roles in the
semiclassical assignments. As can be seen in Figure 5, the point
(0, 0) lifts to a local bend motion. That is, at the lowest possible
energy within the polyad, the only classical motion that is
possible is a perfect local bend, in which one hydrogen bends

Figure 5. The physical molecular motions associated with the three
fixed points in the abstract (ψa, ψb) space: (0, 0), which corresponds
to the minimum energy within the polyad and lifts to a local bend
motion; (0,π), the saddle point, which lifts to a motion in which the
two hydrogens bend with identical amplitudes but in orthogonal planes;
and (π, π), the maximum energy point, which lifts to the counter-
rotational motion. The periodic orbits at other energies within the polyad
vary smoothly between these three limiting types of motion.
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while the other is perfectly stationary. At the top of the polyad,
the point (π, π) lifts to a counter-rotation motion, in which the
hydrogens undergo perfect circular motions, and the molecule
never passes through linearity (note that the two hydrogens must
rotate in opposite directions to maintain zero vibrational angular
momentum). Finally, the saddle point (0,π) lifts to a motion in
which the two hydrogens vibrate with identical amplitudes but
in orthogonal planes.

The contraction of the accessible (ψa, ψb) configuration space
at the top and bottom of the polyad implies that the classical
mechanics will be particularly simple near these points, and thus
we begin our overview of the dynamics in theNb ) 16 polyad
at its two energy extremes, before working inward toward the
complicated middle of the polyad. In the immediate vicinity of
the extremal points in the polyad, the energy is nearly qua-
dratically dependent on the classical angles. In analogy with a
2D oscillator, there are two stable motions that emerge from
both the top and bottom of the polyad, and these run along the
ψa andψb coordinates (oscillating about (0, 0) at the bottom of
the polyad and about (π, π) at the top). That is, the pairs of
periodic orbits that emerge from the extremal points are in some
way analogous to the normal modes of a 2D oscillator. As we
have already emphasized, the dynamics in thea/b space is quite
abstract, but the lift procedure can again give us insight into
the physical motions of the molecule associated with the periodic
orbits near but not atEmin or Emax.

Consider first the two periodic orbits that emerge from the
point (ψa ) 0, ψb ) 0) at the bottom of the polyad, which we
labelL1 andL2. The label “L ” stands for “local bend”, since it
can be anticipated thatL1 andL2 must both be closely related
to the local bending associated with the extremal point (0, 0).
TheL1 periodic orbit, which runs alongψa, differs from a pure
local bend in that the second hydrogen, which in the perfect
local bend does not move at all, gains a small amount of
vibrational excitation, in the same plane as the first hydrogen.
TheL2 periodic orbit, which runs alongψb, also involves a small
amount of excitation in the second hydrogen, but this time in
an orthogonal direction to the motion of hydrogen 1. Thus, the
L1 and L2 periodic orbits each describe an “imperfect” local
bending motion [in a technical sense, they can be referred to as
normal modes of the deviation from pure local bending
behavior]. As energy increases aboveEmin, and the periodic
orbits sample regions of the (ψa, ψb) configuration space that
are further from (0, 0), the corresponding lifted motions become
increasingly imperfect; the fate of these motions will be
considered below.

Similarly, at the top of the polyad, theC1 and C2 periodic
orbits represent imperfect counter-rotation motions. The perfect
counter-rotation involves the hydrogens tracing out perfect
circles in planes perpendicular to the CC axis. Both theC1 and
C2 periodic orbits involve an elongation of the motion into an
ellipse which precesses with time.

We now turn to the more complicated dynamics in the interior
of the polyad, and in particular examine how the periodic orbits
at the top and bottom of the polyads are linked to each other.
When examining the surfaces of section, the “raw data”, it is
not immediately obvious that the low and high energy periodic
orbits link to each other in any simple way. A number of
bifurcations occur in the intermediate energy regime, and at most
energies chaos dominates. However, within the chaos there exist
slightly unstable periodic orbits that can be followed numeri-
cally, and it is found thatL1 connects withC1 andL2 links with
C2 (mediated by other periodic orbits that are born out of
bifurcations). Moreover, although the periodic orbits in 2D

change their topology radically (e.g., from librators to rotators)
as energy increases in the polyad, the dynamical evolution of
the modes in the full, physical space is gradual and seemingly
continuous on the scale of quanta of energy.

Many of the qualitative changes in the classical mechanics
in the middle of the polyad can be understood in terms of the
topology of the abstract (ψa, ψb) configuration space as a
function of energy. Near the extreme high and low energy
points, the dynamics is constrained to remain near (π, π) and
(0, 0), respectively. In the middle of the polyad, however, all
values ofψa andψb become accessible, leading to much more
complicated dynamics. Starting from the bottom of the polyad
and working upward in energy, the accessibility of the config-
uration space opens up in two steps. First, atE ) 10 322 cm-1,
all values ofψb become accessible. Second, atE ) 10 434 cm-1,
all values ofψa become accessible (and thus all of configuration
space is accessible).

The saddle point at (ψa ) 0, ψb ) π), which becomes
accessible atE ) 10 322 cm-1, is the most important organizing
center for the dynamics in the middle of the polyad. On a real
2D potential energy surface, a saddle point would be associated
with two “normal modes”, one with an imaginary frequency
which runs along the direction with the negative second
derivative, and one with a real frequency along the orthogonal
coordinate with the positive second derivative. The situation
here is analogous. TheL2 periodic orbit, which runs alongψb,
begins to rotate alongψb at E ) 10 322 cm-1 (this would be
analogous to the mode with the imaginary frequency). Simul-
taneously, a new periodic orbit,M2, is born at the saddle point
which, at least initially, undergoes bounded motion in theψa

direction (this corresponds to the mode with the real, positive
frequency). [In a technical sense, we say thatL2 is homoclinic
to M2 when it is born. Also, it should be noted thatL2 becomes
unstable at 10 281 cm-1 and in rapid succession a number of
very similar and mostly unstable periodic orbits are born; we
refer to these collectively asL2, and those that rotate asL2

r .]
As M2 begins to sample regions of configuration space further

from the saddle point, the physical motion of the hydrogens
increasingly acquires rotational character. This is significant
because it anticipates the connection ofM2 with C2, which is
primarily “counter-rotational” in character. The connection
between these orbits is actually quite simple in the abstracta/b
space. At 10 434 cm-1, all values ofψa become accessible, and
slightly above this energy (10 503 cm-1) the M2 motion is no
longer trapped near (0,π) but instead starts rotating alongψa

(we rename itM2
r to reflect this fact). This rotating motion

persists until 11 183 cm-1, which is the highest energy at which
all of configuration space is accessible. In contrast to the case
at the bottom of the polyad, where rotational motion in theψb

direction became possible before rotational motion in theψa

direction, at the top of the polyad both directions become
accessible (or inaccessible, for decreasing energy) at once, which
occurs atE ) 11 183 cm-1. At this energy, the rotatingM2

r

periodic orbit connects with the librating [about (π, π) ] C2 orbit.
In the above discussion of the Family 2 orbits, we omitted

many details of the classical dynamics, such as the stabilities
of the periodic orbits. TheM2

r periodic orbit, for example, is
initially unstable; as can be inferred from the surfaces of section,
classical chaos dominates atE ≈ 10 500 cm-1. However,M2

r

becomes stable at higher energies (E > 10 690 cm-1), and in
fact organizes the only sizable stable region within the classical
chaos (EBK quantization will be applied to this torus in the
next section). For a more detailed discussion of the classical
dynamics, the reader is referred to ref 13; this paper treats the
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Nb ) 22 polyad and notNb ) 16, but key qualitative aspects of
the classical dynamics are similar.

The connection betweenL1 and C1 proceeds along similar
lines as the connection betweenL2 and C2, but one major
difference is that the point (ψa ) π, ψb ) 0), unlike (0,π), is
not a saddle point. Thus,M1

r , which indirectly connectsL1 to
C1, is not born in the same manner asM2, which was associated
with the saddle point. TheL1 periodic orbit rotates forE >
10 490 cm-1 andC1 can rotate forE < 11 015 cm-1. TheM1

r

periodic orbit, however, does not directly connect theL1 and
C1 orbits, which run in orthogonal directions. Rather it connects
L1a with C1a, which are born out of bifurcations with the original
L1 andC1 orbits, and which are more complicated motions that
run roughly, but not exactly, alongψa andψb respectively. The
M1

r motion itself is very complicated, although it can clearly be
considered a compromise between theL andC motions, in the
sense that the hydrogens tend to oscillate along one of two
orthogonal directions, but with superimposed rotational motion
(and periodic switching of the dominant axis).

5. Semiclassical Eigenstate Assignments

At the end of this section we perform EBK quantization on
certain of the stable tori in the classical mechanics to establish
rigorous, numerical quantum-classical correspondence. This will
not assign the majority of states but will act as a check on our
prime method of assignment which is node counting along
periodic orbits. Carrying out the node counting is not always a
visually obvious procedure. We now outline what we actually
do. We first establish quantum-classical correspondence quali-
tatively between wave functions and periodic orbits (which are
motions) by plotting wave functions and isoenergetic (account-
ing for zero-point energy) periodic orbits in the same set of
coordinates. Various sets of coordinates in principle could be
chosen. The quantum effective Hamiltonian is defined in terms
of shift operators for the 2D harmonic oscillator, which may
be represented in either rectilinear (x, y) or radial (F, φ)
coordinates. The radial coordinates are somewhat more con-
venient, because conservation of angular momentum implies
that only three coordinates, (F4, F5, φ ) φ4 - φ5), are needed
to represent the wave functions. Such coordinates were used in
an earlier, quantum mechanical study of the acetylene bend
modes.11 An example of quantum-classical correspondence in
these coordinates is provided in Figure 6 of ref 14, but in general
it is inconvenient to attempt to compare orbits and eigen-
functions in a three-dimensional space.

A better choice of coordinates is the two-dimensional abstract
space of (ψa, ψb). The periodic orbits have already been
represented in this space, and it is straightforward to represent
the quantum eigenfunctions in this space as well, by introducing
a semiclassical basis set defined by

whereja andjb are semiclassical quantum numbers; the canonical
transformation that we have utilized to convert from the original
normal mode coordinates to the abstracta/b space implies that

The wave functions should really be viewed as being wrapped

onto a two-dimensional torus defined by the classical angles
(ψa, ψb). That is, the wave functions are periodic in both
coordinates from 0 to 2π, but in Figures 2 and 3, we choose to
show a larger range on both axes so as not to cut the wave
functions at inconvenient points. This is particularly important
because, as will be seen below, the eigenfunctions tend to have
their probability localized near one of the three fixed points of
the classical mechanics, (0, 0), (0,π), and (π, π). For further
details of our semiclassical eigenfunctions, please refer to section
V of ref 13.

The semiclassical eigenfunctions for all of the states in the
Nb ) 16 polyad are represented in Figures 2 and 3 (some of
the states are actually represented twice; the layout of these
figures will become clear below). The eigenstates are arranged
according to their symmetries and their semiclassical assign-
ments. Below, we use the notationEn

g/u +/-
to label the eigen-

states. The superscript indicates the symmetry of the state and
the subscript indicates the energy rank of the state among all
other states within the polyad of the same symmetry. There are
four symmetry classes of states, which are described by theg/u
symmetry (with respect to the center of inversion of the
molecule) and+/- parity.

Our strategy for making the eigenstate assignments once again
involves working inward from the energy extremes of the
polyad. Given that the classical dynamics near the energy
extremes is largely regular, confined to a relatively small region
of phase space, and dominated by a handful of periodic orbits,
it is unsurprising that the semiclassical assignments, which can
be checked by using the EBK method, are straightforward in
these energy regimes. The lowest and highest energy eigenstates
in the polyad are of course localized around (0, 0) and (π, π),
respectively; somewhat less obvious is that the high- and low-

Φ ) exp(ij aψa) exp(ij bψb) (13)

ja )
V4 - V5

4
(14)

jb )
l4 - l5

4
(15)

Figure 6. The real and imaginary parts of the wave functionE16
g+

alongψa with ψb ) π, as well as the phase advance, which provides
the assignmentnr (along the rotating periodic orbitM2

r ).
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lying eigenstates can be grouped into symmetry pairs. The pairs
of eigenstatesE1

g+ (Figure 2) andE1
u+ (Figure 3), for example,

both look simply like two-dimensional Gaussians centered
around (0, 0), and their eigenenergies differ by only 4× 10-6

cm-1. Many of the other low-lying eigenstates within the polyad
can also be organized into symmetry pairs with the same parity
but oppositeg/u symmetry. The eigenstates with the highest
energies within the polyad, on the other hand, occur for pairs
with both opposite parityand oppositeg/u symmetry.

This symmetry pairing has been explained previously. In ref
11, simple symmetry arguments are used to predict that local
bend states should appear ing+/u+ and g-/u- pairs, while
counter-rotational states should occur ing+/u- and g-/u+
pairs. The argument with respect to the local bend states is fairly
simple. Classically, the local bend motion corresponds to a single
hydrogen bending, but the indistinguishability of the hydrogens
in quantum mechanics implies that the eigenstates must be
symmetric (g) or antisymmetric (u) combinations of the two
equivalent local bends. The argument with respect to counter-
rotation is somewhat more complicated and relies on the
indistinguishability of the two senses of rotation (clockwise vs
counterclockwise). These symmetry arguments were extended
and generalized in ref 13, where it was shown that any
eigenfunctions with probability density localized primarily near
ψb ) 0 will appear ing/u pairs, while those localized nearψb

) π appear in pairs with opposite parity andg/u symmetry.
This more general argument implies that states localized near
the saddle point (0,π) (see below) will also appear in symmetry
pairs.

In addition to the very lowest energy eigenstates,E1
g+ and

E1
u+, a handful of other low-lying eigenstates can be assigned

trivially by inspection of their nodal patterns. For example,
E1

g- andE1
u- can be assigned as (nL1 ) 1, nL2 ) 0); that is, they

have one node along theL1 periodic orbit, which runs along
the ψb direction, and no nodes in the orthogonal coordinate.
The symmetry pairsE2

g+/E2
u+ andE3

g+/E3
u+ do not have such an

obvious assignment. This can be explained in terms of an
accidental near-degeneracy of the semiclassical states (nL1 )
0, nL2 ) 2) and (nL1 ) 1, nL2 ) 0), which mix to yield the
more complicated eigenstates [that is, adding and subtracting
the mutually perturbed pairs of states yields states with nearly
perfect semiclassical assignments]. These types of mixings are
also observed at higher energies, in the middle of the polyad
(E12

g+ andE13
g+ are another easily identifiable mutually perturb-

ing pair).
The assignments of other states at low energy, even when

such mixings do not play a role, are not always immediately
obvious on a first viewing, but can be firmly established upon
careful inspection, particularly by the use ofslices through the
eigenfunctions along the periodic orbits. As an example,
consider the symmetry pairE8

g-/E9
u-, which is assigned as (nL1

) 2, nL2 ) 1). It is not immediately obvious that there are 2
nodes along theL1 periodic orbit, which runs along theψa

direction, primarily due to the small amplitude of the middle
lobes and their distortion from a straight line. Slices through
the wave function however make the assignment clear. The
distortions of the wave function are not due to accidental
mixings in this case. Rather, these distortions reflect the
underlying classical mechanics. TheL1 orbit becomes unstable
just slightly aboveEmin and undergoes a series of bifurcations,
the most important of which gives birth to theL1a orbit. The
quantum eigenstates reflect some averaged contribution from
the various closely related Family 1 periodic orbits that exist at
this energy. This type of effect is more extreme in, e.g.,E14

g+,

which clearly reflects theL1a periodic orbit, which bends away
from theψb ) 0 axis; that is, most of the probability density in
this state is localized near the turning points of theL1a orbit.

Once the effects of semiclassical state “mixing” and other
distortions of the eigenfunctions are taken into account, all of
the eigenstates within theNb ) 16 polyad can be organized
according to the number of quanta of excitation along the two
families of periodic orbits. The symmetry pairings aid in the
assignment process, although the energy splittings are larger in
the middle than at the energy extremes of the polyad. In addition,
as will be discussed below, several of the eigenstates have also
been rigorously assigned using EBK quantization. Our confi-
dence in the assignments, however, ultimately rests on the
regularity that can be observed in the progressions of eigenstates
in Figures 2 and 3.

Several of the eigenstates are multiply assigned, such as
E11

g-. This eigenstate shows little probability density in the
immediate vicinity of either (0, 0) or (π, π), and can be assigned
nearly equally well as either (nL1 ) 3, nL2 ) 1) or (nC1 ) 3,
nC2 ) 1). This double assignment should not be seen as a
deficiency of the semiclassical approach. Rather, the ability to
provide two assignments for several eigenstates simply reflects
the fact that theL andC periodic orbits connect with each other
in a smooth manner. A state such asE16

u+ clearly can be
assigned as (nC1 ) 1, nC2 ) 3) but is also doubly assigned as
(nL1 ) 3, nL2 ) 2), because it can be considered to continue
the series of states withnL2 ) 2.

The role of the saddle point, and that of theM2/M2
r periodic

orbits, in connecting between theL andC assignments deserves
careful consideration. Starting from low energy, the series of
states withnL1 ) 0 and increasingnL2 gradually begin to probe
the vicinity of the saddle point. At energies above that of the
saddle point, theL2 periodic orbit can begin to rotate along the
ψb direction, but the classical motion proceeds most slowly at
the saddle point, causing the quantum probability density to
accumulate there. The stateE3

u- provides a very clear example
of this effect. This state can be assigned as (nL1 ) 0, nL2 ) 5),
because five nodes can be counted alongψb between-π and
π. However, this state can also clearly be assigned as the “zero-
point level” associated with the saddle point, since it is very
strongly localized around (0,π). This particular state, and its
symmetry partnerE5

g+, demarcate the transition between state
assignments using the (nL1, nL2) and the (nC1, nC2) labels. In
the immediate vicinity of the saddle point energy, however,
assignments in terms of thenM2 periodic orbit, which is born at
the saddle point, are appropriate. The stateE7

u-, for example,
can be labeled withnM2 ) 1, although it should be noted that
it can also be formally labeled asnC2 ) 6, by following the
series of counter-rotation states downward in energy (the latter
assignment provides less physical insight).

Thus, the assignments in terms ofM2 andC2 can be connected
with each other, and through the saddle point, they can be
connected with the assignments in terms ofL2. We have not
explicitly considered at this point assignments in terms of the
M2

r periodic orbit. This is simply the rotating orbit that links
M2 with C2, and in some sense providing assignments in terms
of M2

r would seem superfluous. However, the rotating charac-
ter of this orbit changes the nature of the assignments. At this
point, a more careful discussion of the semiclassical basis set
is in order.

First, note that the zero-order normal mode states, which
constitute the basis set of the effective Hamiltonian, all have a
completely “flat” probability distribution in the (ψa, ψb) plane
(using the definition of the semiclassical basis in eq. 13). That
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is, there is an equal probability of finding the system at any
chosen value ofψa andψb. The normal mode states can only
be distinguished by inspecting the real and imaginary portions
of the wave functions. The eigenstates of the Hamiltonian,
however, have probability localized in various portions of the
(ψa, ψb) space due to the anharmonic resonant interactions that
mix the zero-order, normal mode states. For example, the
Darling-Dennison I resonance, which is parametrized bys45 and
exchanges 2 quanta of trans and cis bend excitation, creates
localization along theψa coordinate (in the classical Hamilto-
nian, it is the term that involves cosψa). The vibrational
l-resonance, which exchanges vibrational angular momentum
between the normal modes, creates localization alongψb. [The
Darling-Dennison II resonance creates localization along both
coordinates, but is numerically less important than the other
two resonances.]

The net effect of these resonances is to localize the low-lying
eigenstates near (0, 0) and the high-lying eigenstates near (π,
π); that is, the resonances are responsible for lowering the energy
of the point (0, 0) and raising that of (π, π), such that these
points represent the energy extremes of the polyad. In the middle
of the polyad, all of the angle space is accessible, and the
eigenstates need not localize near any of the stationary points.
Many of the states do continue to localize around one of the
stationary points, but a notable exception are states such as
E19

g+ andE14
u-, which have probability localized almost exactly

mid-way between the saddle point (0,π) and (π, π).
Although these states can be (doubly) assigned in terms of

the number of quanta of excitation alongM2 [around (0,π) ]
and C2 [around (π, π) ], a more physically meaningful
assignment can be obtained in terms of the number of quanta
along M2

r . These assignments we list asnr. M2
r is a rotating

orbit, which by definition exists only when all values ofψa are
accessible, and probability density accumulates along the orbit
preferentially at those points where the motion is slowest, which
is somewhere between 0 andπ, depending on the precise energy.
However, the localization of the probability density in these
states is rather weak along theψa direction; that is, although
these states are highly localized alongψb, they are nearly plane
waves alongψa. In a qualitative sense, this implies that the
vibrational l-resonance plays a strong role in “shaping” these
wave functions but that the Darling-Dennison resonances do
not (that is, these eigenstates can be assigned the normal mode
quantum numbersV4 andV5, but notl4 or l5). From the standpoint
of semiclassical assignment, this fact implies that the states are
best assigned by examining the real and imaginary parts of the
wave function alongψa. Specifically, the assignment is provided
by the phase advanceR of the wave function, defined by

whereΨ is the complex valued wave function. We choose to
definenr ) ∆R/π, where∆R is the change in phase fromψa )
0 toψa ) 2π. The quantum numbers obtained from this scheme
can be either positive or negative. An example of the phase
advance assignment is given in Figure 6, for the eigenstate
E16

g+, which is assigned asnr ) +2.
To verify these assignments we have successfully quantized

by the EBK method the tori associated withM2
r and found that

the loop integralsS ) I Jadψa/2π take the valuesnr for the
states in question. The EBK quantization method can also be
applied at higher energies and at slightly lower energies; at the
bottom of the polyad, however, the regular structures in phase

space decay too rapidly to chaos for the EBK method to be
feasible. At the top of the polyad, at the energy of the symmetry
doubletE25

g+/E20
u-, there is one and only one torus structure, for

which both loop integrals are very nearly equal to1/2 (i.e., only
“zero-point” excitation). EBK quantization can also be carried
out to confirm our assignments for several other states near the
top of the polyad. At other energies, there are no torus structures
of appreciable size, particularly between the energies of∼
10 300-10 700 cm-1, and the EBK quantization method cannot
be applied. However, with unstable periodic orbits, one can still
carry out the loop integral in one dimension (along the unstable
orbit), even though it is not possible to carry out the integral in
the transverse direction, as in the EBK method. For example,
we have carried out the loop integrals along the unstableM2

periodic orbit near the saddle point energy. The doublet pair
E5

g+/E3
u-, which represents the zero-point level associated with

the saddle point, lies at an energy which is very close to the
energy whereM2 has action1/2. Similarly the doublet pairE9

g+/
E7

u- occurs at an energy where the action ofM2 has the value
3/2.

6. Conclusion

The pure bending eigenstates of acetylene with 16 quanta of
total bend excitation have been assigned semiclassical quantum
numbers in terms of the number of nodes along two families of
periodic orbits. That is, we have associated with the eigenstates
classical bending motions, which vary continuously between
local bend and counter-rotation. The ability to semiclassically
assignall of the quantum eigenstates in this way implies that
there exists a very large degree of regularity in the quantum
structure, which is surprising given that chaos dominates the
classical phase space. This regularity in the quantum structure
was previously undetected for two major reasons: First,
identifying the regular nodal coordinates, if any, of quantum
wave functions in a multidimensional (i.e., greater than two
dimensions) space is a difficult task in general; this task is
however made much easier by the identification of the important
periodic orbits in the classical mechanics, which often form the
“backbone” of the quantum structure. Second, there exist two
families of quantum eigenstates, associated with the two major
families of periodic orbits, and the energetic interleaving of these
two families of states makes it difficult to identify regular
progressions.

The semiclassical assignment of the quantum eigenstates in
this paper, although by no means trivial, was made relatively
easy by the reduction of the system to 2 degrees of freedom,
which was accomplished by exploiting the existence of polyad
quantum numbers, which are exactly conserved by the Hamil-
tonian model and approximately conserved (on the time scale
of at least several picoseconds) by the real molecular system.9

The semiclassical assignment scheme will of course become
substantially more difficult in more dimensions. However, we
believe that by projecting eigenstates onto various 2D axis
systems defined by the important periodic orbits, it will be
possible to perform similar analyses in higher dimensionality
systems, although the analysis may by necessity be less detailed
than that performed here. Indeed, the semiclassical approach
will undoubtedly be of even greater importance for complicated,
high-dimensionality systems.

Finally, we reiterate that the analysis that we have performed
here has been based upon aneffectiVe Hamiltonianmodel, which
is defined in terms of shift operators for the normal modes.
Performing such an analysis using a potential energy surface
would be much more difficult, due to the difficulties associated

tanR )
Re(Ψ)

Im(Ψ)
(16)
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with finding the needed action-angle variables analytically by
solving the Hamilton-Jacobi equations. However, if a sufficiently
accurate potential energy surface is available (this is not the
case for acetylene), then two strategies are possible. First, an
effective Hamiltonian can be fitted to the eigenspectrum that is
computed from the potential surface.24 Second, perturbation
theory can be used to construct a (generally very high-order)
effective Hamiltonian from the potential energy surface (three
approaches are possible: canonical van Vleck perturbation
theory7 can be used to generate a quantum mechanical effective
Hamiltonian, Gustavson perturbation theory17 or the classical
perturbation theories in refs 20-22, can be used to generate a
classical action-angle Hamiltonian). One advantage of the
perturbational approach, versus fitted effective Hamiltonians,
is that exact (to a given order of perturbation theory) relations
are obtained that relate the action-angle coordinates to a physical
coordinate system for the molecule.

Lastly, there exist more sophisticated semiclassical quantiza-
tion schemes that quantize even when tori are breaking down
and under certain conditions in the chaotic region. A prime
example of this is given in ref 28 and references therein. We
have not needed these advanced tools in this analysis but we
are sure that we will use them in the future.
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