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A combination of quantum mechanics, semiclassical mechanics, and nonlinear classical dynamics is used to
extract the detailed internal molecular motions that underly the quantum eigenstates of acetylene with 16
quanta of total bend excitation. No potential energy surface is used; rather, the states are represented by an
algebraic effective Hamiltonian that has been extensively refined against experimental data. The classical
mechanical analysis reveals widespread chaos, but the quantum mechanical structure is surprisingly regular.
Specifically, all 81 quantum states can be assigned a pair of semiclassical quantum numbers that reveal the
underlying classical motions associated with each state. These classical motions range continuously between
limiting-case motions that we refer to as local bend (one hydrogen bending) and counter-rotation (the two
hydrogens undergoing circular motions in planes perpendicular to the CC axis). The first reason that the
regularity in the quantum structure was previously undetected is that the identification of regular nodal
coordinates, if any exist, of quantum wave functions in a multidimensional (i.e., greater than two dimensions)
space is generally a difficult task; our success here was made possible by the identification in a reduced
two-dimensional (2D) space of two families of periodic orbits (dynamic modes) which evolve with energy.
Every quantum state reflects the quantization of the two dynamic mode system. The second reason for the
undetected regularity is that the regular sequences of quantum levels that we have identified are interspersed

among each other in energy, thus giving the appearance of a complex, unassignable spectrum.

1. Introduction dynamics using quantum, semiclassical, and/or classical
_ ) _ mechanics;”1+13 and each of these has noted that the dynamics
The bending dynamics of acetylene have been subjected t0js quite complicated near 10 000 chof bend excitation. The
intense scrutiny in the past 10 years in a series of experimentalgpservations that have led to this conclusion have included a
and theoretical studiés** In a number of these studies, it has  complex eigenstate level structure and associated complicated
been noted that the acetylene bending dynamics is particularlyquantum wave packet dynamilszomplex classical mechanics,
complicated at roughly 10 000 cthof bend excitation. Inthe  yjith new classes of periodic orbits being born and classical
early work of Jonas and co-worketsyhich made the first steps  cpaos increasing in prominen®éi213and of particular sig-
toward interpreting the complex stimulated emission pumping pjficance to this paper, the inability to assign conventional
and dispersed fluorescence spectra of acetylene, it was notedpectroscopic quantum numbers (either normal mode or local
that the ab|||ty to fit a Dunham eXpanSion to the observed mode) to many of the bending eigenstates with-18 quanta
sequence of (trans) bending states fundamentally broke downgf excitation?:1!
at 14-16 quanta of excitation, which corresponds~&0 000 The fundamental reason for the complex dynamics with
cm* of vibrational energy. They attributed this breakdown o around 10 000 crri- of bend excitation, as has been sketched
the onset of rapid intramolecular vibrational energy flow, gyt previously:7-1113and will be elaborated upon below, is that,
specifically due to a Darling-Dennison bend resonance. Sub- py this energy, the effective trans and cis bend frequencies have
sequent work has refined this understanding of the mechanismsyecome nearly equal. That is, the low-energy dynamics are
of vibrational energy flow, and a spectroscopic effective gominated by the normal modes of vibration, in the sense that
Hamiltonian has been developed that reproduces all relevantthe vibrational Hamiltonian is approximately separable in the
experimental data up to 15000 chwith 1.5 cntt preci- normal modes at low energy. However, when the trans and cis
sion! 811 bend frequencies become nearly degenerate, which occurs at
However, the ability to fit data to an appropriate model should roughly 12 quanta of excitation, they become unstable and the
not be confused with an understanding of the molecular anharmonic couplings begin to dominate the dynamics. As a
dynamics. To this end, a number of theoretical studies have result, the dynamics of the system change radically, although
appeared which have analyzed models of acetylene bendingnot all at once. Chaos gradually increases in prominence, and
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new classes of stable and unstable classical periodic orbitimplies that the energy level spacings of the quantum progres-
motions emerge. sions are highly nonuniform.

In a previous study of acetylene bending dynanaﬁfbghmh 4. Finally, although the classical dynamics is dominated by
focused on the semiclassical assignment of bending states withchaos, the regular quantum progressions exist because certain
22 quanta of total bend excitation, we performed a preliminary slightly unstable periodic orbits organize the quantum structure
analysis of the evolution of the classical bending dynamics of more effectively than we expected. At many energies within
acetylene with bend excitation, and determined that classicalthe Np = 16 polyad, the classical phase space is almost totally
chaos was maximally prominent at10 000 cni! of bend chaotic, and the quantizing periodic orbits are unstable, although
excitation (16 quanta). Our expectation was that this energy only slightly so, such that many trajectories when in the vicinity
regime might be a good one for investigating possible quantum of these periodic orbits mimic their motion. The result is that
signatures of classical chaos (such studies abound in thethe quantum mechanics “sees” near these periodic orbits regions
literature but those that focus on real molecular systems, asOf sufficient order and dynamic attractiron the scale ok to
opposed to model systems, are relatively rare). This expectation give rise to “scarred” quantum stats.
however, was not fulfilled. Instead, the major, surprising Because our semiclassical assignment scheme is relatively
conclusion of this work is that, despite the dominance of chaos €asily understood without understanding the quantum, semi-
in the classical dynamicsll of the bending eigenstates of classical, and nonlinear classical methodologies we used to
acetylene with a total of 16 quanta of bend excitation can be uncover it; because these methodologies are discussed in ref
assigned semiclassical guantum numbers, which from the 13 and similar methodologies are, individually and in various
simplest viewpoint represent the number of nodes along two combinations, discussed in other published wérks’"-*fand
families of periodic orbits (which are unstable at many energies). because many of the probable audience for this paper are not

The success of the semiclassical assignment scheme implied/€rSed nor wish to be immersed in the details of all these
that there exists a regularity in the quantum structure that was Methodologies, this paper will start with a simple, didactic
previously undetected and unsuspected. Why have we succeedefverview of our results and how we obtained them. The
in assigning the eigenstates here, while they previously seemed&lationship between our method of analysis and others reported
to be intrinsically unassignable? The answer to this question is " the literature ywll be also clarlflgd. Detglls of our model and
multifaceted, and we enumerate several key issues below: methodology will follow, along with detailed results fok, =

1. Our semiclassical scheme assigns the eigenstates in terms
of a dynamic set of coordinates defined by periodic offfits, 2. Overview of Semiclassical Assignments

and is thus much more flgxible than traditional assignments in =~ assignment scheme is motivated by the classical periodic
terms of orthogonal coordma_te systems, such as normal or localg it structure that is associated with the pure bend polixad (
modes. Normal mode coordinates are of course guaranteed ta_ 16,1 = 0) which comprises all states with a total of 16 quanta

be appropriate for making assignments at sufficiently 10w ¢ yonq excitation and zero total vibrational angular momentum.
vibrational excitation, and local mode coordinates have led to ag oytiined in the vertical middle of Figure 1, the periodic orbits

assignments for many eigenstates at higher enetgis.  \inin this polyad can be organized into two families, which

However, normal and local modes only represent limiting case g gye as a function of energy, and merge at the energy extremes
behaviors for the non!lnear, nonlntegrable wbragonal dynamics, ¢ ihe polyad. The periodic orbit motion at the very lowest
as has been emphasized in our previous stédjich revealed  oarqy within the polyad can be described as a pure “local bend”
a rich variety of periodic motions near 15 000 chof bend (one hydrogen bending, the other stationary) while the top of
excitation, many of which could not easily be categorized as yq holyad is associated with counter-rotation (both hydrogens
normal or local mode motions. undergoing circular motions in planes perpendicular to the CC
2. Our approach exploits the existence of approximate axis, in opposite directions). The periodic motions at intermedi-
constants of motions (polyad numbers) to reduce the dimen-ate energies are more complicated and vary continuously
sionality of the acetylene bending system from 4 (two doubly petween local bend and counter-rotation.
degenerate bends) to 2 degrees of freedom. The constants of Qur semiclassical scheme assigns a pair of quantum numbers,
motion areNp, the total number of quanta of bend excitation, which we write generically asn{, n,), to each eigenstate,
andl, the total vibrational angular momentum. The latter of according to its structure along the relevant periodic orbits from
these is rigorously conserved in the absence of Coriolis each family at the energy in question. In some cases, the
interactions, while the former is approximately conserved by quantum number assignments can be made using EBK quan-
the molecule (on a time scale of at least a few picosed8nds  tization, which is possible only when tori (regions of regular
and rigorously conserved by the model that we employ. The classical dynamics that surround stable periodic orbits in phase
ability to study the dynamics in two dimensions makes possible space) exist; in this case,comes from the loop integrals of
the use of surfaces of section, to gain a complete, detailedthose tori when the loop integrals are integer multiplegi.of
overview of the classical mechanics, as well as direct visual For many states, EBK quantization is not possible, because
comparison of periodic orbits and wave functions, to establish classical chaos dominates in the middle of the polyad and the
the assignments. The coordinates in the reduced two-dimensionaprbits are either unstable or only weakly stable (in the sense
(2D) space are rather abstract and do not have obvious physicathat they are surrounded by small torus bundles). Nonetheless,
meanings, although we can (approximately) reconstruct sucha|| of the eigenstates can be assigned semiclassically by visual
meaning by a mathematical transformation that we call a “lift”.  inspection. In the case of librational states (restricted motion),
3. In retrospect, it is clear why the eigenstate spectrum the quantum numberrepresents a node count along the relevant
appeared to be unassignable. The eigenstates are quantized alomqggriodic orbit, while for rotational states,represents a phase
two families of periodic orbits, and the resulting progressions advance along the orbit. Note that here “rotation” does not refer
of quantum levels are interspersed in energy. In addition, the to a physical rotation of the molecule or the hydrogens, but
underlying periodic orbits evolve rapidly with energy; the rather to unrestricted motion in the abstract space of classical
associated variation of the frequencies of the periodic orbits angles in which we perform our analysis; see below.
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Figure 1. Summary of the classical mechanics in thhe= 16,| = 0 polyad. Central column: Schematic overview of the periodic orbits within

the polyad. The periodic orbits can be grouped into two “families”, which connect smoothly from the highest to the lowest energy within the
polyad. A solid line indicates a stable orbit, while a dashed line indicates an unstable orbit. Columns 4 and 6: Surfaces of section; the various
coordinates for these plots, and the intersection conditions, are shown at the bottom of the diagram. Columns 3 and 7: Selected periodic orbits in
the abstract space of classical angles, (/). Columns 1, 2, 8, and 9: Periodic orbit motions depicted as physical displacements of the hydrogens
from the CC axis, as determined from the “|ift” procedure.

Figures 2 and 3 summarize the semiclassical assignmentsSuch “axis switching” states are located in the lower right corner
Ideally, these figures would be rotated by’ 4®ith the highest of the figures.
and lowest energy eigenstates at the top and bottom of the page, Up to this point we have simply stated that we can assign a
respectively. The states which are assignednasQ) and (O, pair of quantum numbers to each eigenstate according to the
n,) (excitation along only one of the families of periodic orbits) number of quanta of excitation along the relevant Family 1 and
are on the outer edges of the diagram. Along both series of 2 periodic orbits. Having organized the quantum states as in
states, the underlying classical motion varies from local bend Figures 2 and 3, we could simply label states in particular
at the bottom to counter-rotation at the top, although the sequences according to their energy rank. We choose instead
evolution of the dynamics occurs in different ways for each to label the states usinguantum numbers whosealues
family. In Family 2, the motion that starts out as pure local represent the leel of quantum excitation along particular
bend gradually acquires increasing excitation in the second periodic orbit motions Because each Family is composed of
(initially stationary) hydrogen, in a plane perpendicular to the several separate periodic orbits that are connected through
first. Eventually, the amplitude of the two bends becomes equal; bifurcations, the appropriate quantum labels change with energy.
guantum states associated with this “cross” bending motion areWe have already suggested above that the classical dynamics
located in the upper left corner of Figures 2 and 3. From this are maximally simple at the energy extremes of the polyad, and
point, the motion continues to evolve by gradually incorporat- thus the low- and high-lying states are labeled by two sets of
ing increasing rotational character, and thus increasingly numbersif 1, for local bend-like motions anac;/, for counter-
resembling a perfect counter-rotation. In Family 1, the initial rotation) which increase toward the center of the polyad (upper
local bend motion evolves by once again acquiring increasing left and lower right corners of the diagram). The multiple
excitation in the second hydrogen, except this time primarily quantum assignments appearing at the top of the diagrams reflect
in the same plane as the first. The intermediate motions for the transitional nature of the phase space structures in the middle
Family 2 are somewhat more difficult to visualize than for of the polyad between simpler structures (and associated
Family 1, but the hydrogens tend to oscillate about some axis motions) at lower and higher energies. As a result, the nodal
for a period of time before switching to an orthogonal axis. coordinates of these eigenfunctions can be interpreted in
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Figure 2. Semiclassical assignments for roughly half of the quantum eigenstateblyvittl6 andl = 0. The lower left corner depicts those states
that can be labeled witin(;, n.2) quantum numbers, and witht- andu— symmetry. The upper right corner includes all states which can be labeled
with (nc1, Nez) quantum numbers, and which hage or u+ symmetry. In some cases, thg, or n, quantum numbers provide a more physically
meaningful assignment tham,; see the text for details.

different ways, depending on whether they are viewed as ences. Interestingly such accidental degeneracies were also noted

progressing from low to high energy or vice ver$aat is, the in ref 18 which like here used nonlinear dynamics and the
middle states admit multiple quantum state labels, although eachclassical quantum correspondence to help assign highly excited
state retains a single dynamical interpretation. states in the water molecule. In ref 18 it was pointed out that

We have neglected to discuss several important details, suchthese complicated wave functions could have been mistaken in
as the axes of the wave function plots, which are classical anglesthe past for functions whose phase space transforms lie in a
We also note briefly that certain wave functions seem out of chaotic region of phase space.
place in the figure, such as those connected by the dotted lines. With the above caveat in mind, we conclude that the
These wave functions occur in accidental near degeneraciesassignment of each state in the polyad can be given in the sense
and the more complicated nodal patterns are caused by interferthat every state has as many quantum numbgrsy, Ny, | =
ences between the semiclassically “pure” states. With a little 0) as there are degrees of freedom, and that each state has a
practice, it is usually possible to visually untangle the interfer- corresponding visualizable classical internal molecular motion
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Figure 3. The arrangement of this figure is nearly identical to that of Figure 2, but with different symmetry classes. Specificaiiy, the)(
assignments are provided for the- andu+ symmetry states, and thed, nc2) assignments for thg— andu— symmetry states.

that when quantized yields its eigenenergy. The quantum review the approach that makes the assignments possible,
numbers have dynamic meaning and are not just “indices” in a leaving details for the sections that follow. The first critical point
parametrized formula that gives the energy. The following is that no potential energy surface has been used. Rather, the
sections demonstrate that this assignment can only be fullydynamics of the system are represented by an algebraic
accomplished by utilizing simultaneously methods of nonlinear spectroscopic effective Hamiltonian that has been fitted to
classical mechanics, quantum mechanics, and semiclassicaéxperimental data with up to 15000 ckof vibrational
excitation!! In fact, no PES exists with sufficient accuracy, but
Having provided an overview of the results, we now briefly even if one did exist, the effective Hamiltonian approach (which

mechanics.
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trivially yields an action/angle classical Hamiltonian) possesses where matrix elements of complicated operators are computed
a critical advantage over performing variational quantum and/ in a basis of simple unperturbed states.

or classical periodic orbit analysis on a potential energy surface.

Specifically, in an action/angle Hamiltonian, every constant of 3. Hamiltonian and Methodology

the motion can be used in a canonical transformation to reduce  The model of the acetylene bend degrees of freedom that is
the dimension of the problefi.*231Reduced dimensionality  gy,died in this paper is an effective Hamiltonian that has been
is helpful not only for computational expediency but also can gemonstrated to reproduce all observed “pure bending” vibra-
be critical to a successful semiclassical analysis. Generically it tionq| levels of acetylene up to 15 000 chto a root-mean-
is difficult to visualize the wave functions and to visualize and  gquare accuracy of better than 1.5 ¢ This Hamiltonian
calculate the periodic orbit structures in more than two dimen- qqe| has resulted from years of work on acetylene by a number
sions. This is not to say that by using certain well-chosen of researchers, notably by P&} Herman and co-workefsand
orthogonal coordinates, e.g., normal or local modes, that Somere|d and co-worker& Both the quantum Hamiltonian and the
wave functions will not reveal nodal patterns that infer the rocedure for converting it to a classical (action/angle) Hamil-
dynamicst! However, a complete coordinate-independent analy- tgnian have been detailed previoudhp,1113.17.1&0 we provide
sis cannot be done in this way; in the context of this work, we only a brief review here. The quantum effective Hamiltonian
found that only states at the top and bottom of the polyads s defined in terms of the shift operators for the two-dimensional
yielded to such a visual analysis. harmonic oscillator, and contains 16 empirically fitted param-
We also wish to mention briefly a somewhat more subtle eters:
advantage of the action/angle approach in this particular study. A - A N
As mentioned briefly above, the two families of periodic orbits Ho = H'(g‘ + Hg“h+ Hgt (1)
merge at the top and bottom of the polyad. This is not a
coincidence. The classical phase space contracts to a point athere
both energy extremes, and two periodic orbits must emerge (in o
the sense of a periodic orbit bifurcation diagram) out of each Hg‘ = w40, + wsis (2)
point (which give rise to the two families of periodic orbits).
The classical dynamics is thus guaranteeq tq be sjmple at bpthﬂaonhz XaaDaDs + XasDaDs + XesVsDs + YaaaDalalla +
the top and bottom, and although the periodic orbits evolve in 5+ 5 e + s+ a il +
more complicated ways in the middle of the polyad, the phase YaagVaVals T YassaVsVs T YosstsUs’s T daalala T
space structure never becomes too complicated. We found the Gaslals + Gsslsls (3)
ability to follow the periodic orbits from both the top and bottom
of the polyad to be a great advantage in this study. In contrast, H)' = Sys(8ly &lAs sy T Auduiedly) +
when using a potential energy surface, the classical phase space o A A 5 al afa
contracts to a point only at zero energy, and there are no (15 + Faae?s = 1) F N5~ 1)](QagBag Besg T
con.stri.ctions. at higher gnergies, making the identification of a}da%anagg) +%[r35+ FaadDy — 1)+
periodic orbits more difficult? T oAt A n
The weakest point of our analysis is that the transformation  "'sas(Us = 1) + 20,5] * (84g 849850859 T Bag QugBs sy
betwe_en the_ a_lctlor_l-a_ngle variables and_ the physical space é4d;§4dégdégd + é4ga4géggagg) (4)
coordinates is in principle not known. [This would not be the
case if the effective Hamiltonian had been derived by high- The values of the various parameters in this model are listed in
order perturbation theory (Van Vletkr GustavsoH or as in Table 2 of ref 10.
refs 20-22) from a suitable potential energy surface; the  Note that we have divided the effective Hamiltonian into three
perturbation theory approach solves for the action/angle vari- parts. The superscript “lin” refers to the harmonic (linear)
ables of the system in terms of the original physical coordinates diagonal terms and “anh” to the anharmonic (nonlinear)
of the molecule and hence effectively solve the Hamilton-Jacoby contributions to the zero-order energies. The resonant interaction
equations for the systef As such, the periodic orbits in the  terms, which generate the off-diagonal matrix elements, are
action/angle space can be represented only approximately asontained in the “int” term. This term in particular looks very
physical motions of the molecule; here we have done so by complicated, but in fact it simply encodes harmonic oscillator
employing a low order normal mode expansion for the action- scaling relationships for three important mechanisms for ex-
angle and physical space variables. The justification for this changing energy and vibrational angular momentum between
approximation is as follows: First, there are examples where the cis and trans bend modes; these resonances are called Darling
the perturbation theory expressions for the actions and anglesDennison I/1l and vibrationdiresonance. A critical point about
were worked out to high order and the approximation was seenthis effective Hamiltonian is that its matrix representation is
to be quite accuratg]!’ certainly accurate enough for the block diagonal in the zero-order normal mode number repre-
pictorial description of the motions given here. Additionally, sentation, and each block of the matrix can be uniguely labeled
the results from effective Hamiltonian models compare well to by a pair of conservegdolyadquantum numberbl, = v4 + vs
eigenvectors oH = T + V computed on usual (e.g., DVR) (the total number of quanta of bend excitation) anel 4 + Is
basis set$*2” On a deeper level the resulting high order (the total vibrational angular momentum), which we here restrict
perturbation theory expressions for the spectral Hamiltonian (thatto | = 0. These polyad numbers correspond to constants of
look like egs 710 below) are complex functions tife original motion in the classical Hamiltonian.
simple action and angle variables. As such the Hamiltonian, The classical Hamiltonian is derived from the quantum
the resulting trajectories and the expressions for the effective Hamiltonian in a two step process:
frequencies carry the burden of complexity that allows the final 1. The quantum effective Hamiltonian, expressed in terms
action and angle variables to remain simple and near the originalof shift operators, is converted to a classical action/angle
ones. Similar things are seen in higher order perturbation theory Hamiltonian, using standard correspondence rules. [For those
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who are unfamiliar with action/angle Hamiltonians, a few brief

comments. Classical Hamiltonians are often written in terms
of kinetic and potential energy with positions and momenta as
the variables, but using actions and angles provides more

transparent quantum-classical correspondence. The quantum
analogue of an action is a quantum number; the classical angles,

as will be seen below, contain information about resonances.]
Specifically, the transformation is generated by the Heisenberg
correspondence relations

®)
(6)

g — Jljexpt-ig)
& — iexpttig)

2. A canonical transformation is performed to transform the
classical Hamiltonian from the initial action/angle coordinates
(4d, 5d, 4g, 5g) to a new set of action/angle coordinates. The
new actions we label by, J», Ks, andKp, and the conjugate
[corresponding] angles we calta, b, 02 and 6p. The new
actions are chosen such th&f and Ky, correspond (up to a
multiplicative factor, and neglecting zero-point corrections) to
the quantum polyad numbebly, andl; that is,K, and K, are
constants of the motion (they do not change during any classical
trajectory), and we can consider the classical Hamiltonian to
dependparametrically on these conserved actions. Thus, by
exploiting the existence of the two conserved quantities, we
redue a 4 degree of freedom problemd 2 degree of freedom
problem, which is described by the actiods, (Jy) and angles

(wa, wb)
The final classical Hamiltonian takes the form:

He = HI + HIM+ HI' — E° (7)

HE = 2w ,(K, + J,) + 20K, — J,) (8)
HE™ = dx,(Ka + ) + xo(Kq + 3K, — ) +
Axs5(Ky — ‘]a)z + 8YudKy + ‘Ja)3 +
8Yaas(Ka T 3)°(Ka — J2) + 8YaseKa + J) (K, — 3)° +
8Ysse(Ka — J2)° + 40,,(K, — 3p)° +
49,5(Kp, — I)(Kp, + Jp) + 40s5(K;, + ‘Jb)z )

HE' = 25, (K3 — Kp)* + (3 — 3)° —

2(K2 + KJ)(3% + 3D — 8K K. 3] % cosp,) +

20rgs + ra2K, +3) — 1)+
aas(2(Ky = ) = D] - [(KZ = Ki)* + (B — 3p)* —
2(K2 + K (2 + 3 — 8K K, I, costpy) +
AT+ 2045+ g 2(Ky + ) — 1] +
aad2(Ka = ) = 1}+{[(Ka + Kp)®* —
(Ja = I cos@a = yi) + [(Ky = Kp)* =
(2 + 3)°] cos@a + ¥} (10)

Here we have introduced&® to account for the quantum
mechanical zero-point energy. Note that the diagonal harmonic
and anharmonic terms from the quantum effective Hamiltonian
are expressed solely in terms of the classical actignahich

corresponds t@, — vs, andJ,, which corresponds th — Is.
The “interaction” terms, which are the classical analogues of
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Figure 4. The classical frequencies of the zero-order normal mode
motions, as a function of the number of quanta of excitation (classical
action). The crossing of the frequencies N ~ 12 results in a
restructuring of the classical mechanics.

the quantum resonance terms (off-diagonal matrix elements),
involve the classical angles in addition to the actions.

In the Introduction, we suggested that thg = 16 polyad
was particularly interesting, and challenging, from the standpoint
of semiclassical analysis due to the prominence of chaos, which
in turn is due to the near degeneracy of the trans and cis bend
frequencies. Having defined our Hamiltonian, we can now
justify this assertion from a classical mechanical point of view.
Specifically, in classical mechanics, the frequency of a particular
type of motion can be obtained as

0@ =1 (11)

whereH is the classical Hamiltonian (the classical energy) and
J represents some classical action. The quantum mechanical
analogue of the action is a quantum number, and thus we can
obtain nominal frequencies for the bend modes in the context
of the effective Hamiltonian as

oH
o(vy) o0, (12)
whereb is 4 or 5. These quantities are plotted in Figure 4. Note
how the frequencies cross & ~ 12. When the classical
frequencies become equal, the individual modes become
maximally susceptible to perturbations (i.e., the coupling terms
in HNY), In practice, the classical mechanics begins to change
even before the normal-mode frequencies become equal, but
past the point at which they cross, the classical mechanics
undergoes a fundamental change. One of the symptoms of this
transition is an explosion of classical chaos in the middle of
the polyads, which is particularly prominent I = 16 (the
dynamics gradually becomes more regular at higher bend
excitation).

4. Classical Dynamics

From this point onward we will be concerned exclusively
with N, = 16 andl = 0. In terms of classical mechanics, our
primary task is to elucidate the periodic orbit structure, which,
as has been suggested above, constitutes the critical framework
for investigating quantum-classical correspondence.

An essential tool for identifying the periodic orbits are
surfaces of section, which are slices through the classical phase
space. Note that the exploitation of the polyad quantum numbers
makes possible the use of surfaces of section. As explained
above, the bending system of acetylene has 4 degrees of freedom
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(two doubly degenerate bend modes), but the 2 conserved polyad .
guantum numbers reduce the effective dimensionality to 2 “cross bending" counter—rotation
degrees of freedom, which corresponds to a four-dimensional
phase space (a position and momentum for each degree of e — é
freedom, or in our case, an action and an angle). However, - =

energy conservation effectively constrains the dynamics to three |} €<——>

dimensions within the phase space. Thus, to reduce the dynamics v A

to a 2D plot, we need only to specify the value of one of the . 5
coordinates. In practice, various surfaces of section (slices) can

be taken along the different coordinates to be sure that one has P23
a full view of the dynamics. The power of surfaces of section local bend :
is that they immediately allow one to identify (1) the extent of - ‘® ®
chaos at a given energy (chaos looks like randomly scattered — — 52 saddle max
points on the surface) and (2) the stable periodic orbits, which P 0 — o
are located in the middle of the sets of concentric circles, which | | | 7 ] s
result from trajectories that lie on “torus bundles”: regular @ min
regions of phase space that surround the central periodic orbit - T T
- h14
fiber. x 0 v, 2r

Quantum mechanically, the finite number of eigenstates of a
polyad span a finite energy range. Similarly, once the conserved Figure 5. The physical molecular motions associated with the three
quantitiesK, and Ky (classical polyad numbers) have been Ig‘etﬁep??;?rﬁ?r%zg‘isgftra&’{’t%iﬁ)thagle:aéoégg mcgcgﬁfcﬁoggﬁ |
specified, Or.“y a finite range of classical energy is accessible. motion; (0,x), the sad%)lle point, Whi(?h ﬁ/fts to a motion in which the
The accessible energy range for any given polyad can bewg hydrogens bend with identical amplitudes but in orthogonal planes;
obtained by a straightforward but tedious calculation, as and (r, ), the maximum energy point, which lifts to the counter-
described in ref 13. In the analysis below, we take advantage rotational motion. The periodic orbits at other energies within the polyad
of the fact that, at the extreme high and low energies of the vary smoothly between these three limiting types of motion.
polyad, only a single point in the space of classical angjes (
Yp) IS accessible; this can only occur once the classical
frequencies of the trans and cis bend motions come into
resonance. Having found these limiting energies, we focus on
enumerating the important periodic orbits that exist within the
polyad as a function of energy. We present a schematic
“pbifurcation diagram” in the center of Figure 1 which sum-
marizes the periodic orbit structure. The word “bifurcation”
refers to events in which new periodic orbits are born and/or
where existing periodic orbits cease to exist. Bifurcations are
thus of primary importance in the context of describing the
overall classical structure, and by implication, to understanding

the quantum structure from the standpoint of quantum'dass'caldisplacements of the two hydrogens from the CC axis.

correspo.n_dence. L . Repeated reference to Figures 1 and 5 will be useful from
In addition to the surfaces of section in Figure 1, which are here on. In fact, for the reader interested in just the flavor of
the “raw” classical data, and the bifurcation diagram, which \yhat is done and pictures of the resulting motions, a study of
summarizes the periodic orbit structure, we present two other yhese figures may serve as substitute for a detailed reading of
types of plots in our overview of the classical dynamics. Each he rest of this section.
of these two types of plots represents the classical motions pefore proceeding further, we examine the “lift” associated
associated with the periodic orbits. The first projects this motion \ith three special points in thepg, yu) plane: (0, 0), £, 7),
onto the {4, y1) plane. The advantage of this representation is anq (0,7). As mentioned above, at the energy extremes of the
that it is two-dimensional, and as will be seen below, is optimal polyad, the classical phase space contracts to single points in
for establishing correspondence with the quantum mechanicalipg @a ¥b) plane. Specifically, at the low energy extreme of
eigenfunctions, which will be projected into the same space. e polyad, the phase spaces contracts around (0, 0), while the
The disadvant.age of thig representation is that it is highly point (z, 7) plays the analogous role at the top of the polyad.
abstract. That is, motions in the'{, p) space do nothave any  The point (0,7), on the other hand, which becomes accessible
obvious interpretation in terms of the physical motions of the gt E = 10322 cntt (in the middle of the polyad), can be
two hydrogens in acetylene. considered a saddle point of the dynamics, because the second
However, as mentioned in section 2, it is possible to derivative of the energy with respect t@, is negative while
reconstruct the physical molecular motions from the abstract- that with respect tapy, is positive at this point.
space dynamics by a mathematical transformation that we call The significance of each of these three points will be
a ‘lift". This lift essentially corresponds to undoing the considered in some detail below. For now, we simply state that
dimensionality reduction and the canonical transformation that each of these points “lifts” to a particularly simple molecular
defined the abstracé/b coordinates in terms of the more motion, and these three motions play special roles in the
physically intuitive cis and trans bend (dimensionless) normal semiclassical assignments. As can be seen in Figure 5, the point
coordinates. We refer readers interested in a detailed derivation(0, 0) lifts to a local bend motion. That is, at the lowest possible
of the lift procedure to ref 13. It should be noted that the lift energy within the polyad, the only classical motion that is
cannot specify the precise bond lengths or angles of the possible is a perfect local bend, in which one hydrogen bends

molecule. This is not a deficiency of the mathematical trans-
formation but rather a generic deficiency of fitted spectroscopic
effective Hamiltonians, in which the coordinates are not
explicitly defined. This is not a serious problem, however. Our
concern is not, e.g., whether the hydrogens bend Byw6Esus

70° in a particular type of motion, but rather with the qualitative
aspects of the motion: How are the motions of the two
hydrogens correlated? Do they bend through linearity (only
possible if they have zero angular momentum) or do they
undergo circular motions? Does one hydrogen undergo much
larger amplitude motion than the other? From a practical
standpoint, we plot the “lifted” motions as dimensionlessyj
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while the other is perfectly stationary. At the top of the polyad, change their topology radically (e.g., from librators to rotators)
the point (r, ) lifts to a counter-rotation motion, in which the  as energy increases in the polyad, the dynamical evolution of
hydrogens undergo perfect circular motions, and the molecule the modes in the full, physical space is gradual and seemingly
never passes through linearity (note that the two hydrogens mustcontinuous on the scale of quanta of energy.

rotate in opposite directions to maintain zero vibrational angular ~ Many of the qualitative changes in the classical mechanics

momentum). Finally, the saddle point (@), lifts to a motion in in the middle of the polyad can be understood in terms of the
which the two hydrogens vibrate with identical amplitudes but topology of the abstracty(, 1) configuration space as a
in orthogonal planes. function of energy. Near the extreme high and low energy

The contraction of the accessible( 1) configuration space  points, the dynamics is constrained to remain nearrd) and
at the top and bottom of the polyad implies that the classical (0, 0), respectively. In the middle of the polyad, however, all
mechanics will be particularly simple near these points, and thus values ofy, andy, become accessible, leading to much more
we begin our overview of the dynamics in tNg = 16 polyad complicated dynamics. Starting from the bottom of the polyad
at its two energy extremes, before working inward toward the and working upward in energy, the accessibility of the config-
complicated middle of the polyad. In the immediate vicinity of uration space opens up in two steps. Firsg at 10 322 cm'?,
the extremal points in the polyad, the energy is nearly qua- all values ofy, become accessible. SecondEat 10 434 cn?,
dratically dependent on the classical angles. In analogy with a all values ofy, become accessible (and thus all of configuration
2D oscillator, there are two stable motions that emerge from space is accessible).
both the top and bottom of the polyad, and these run along the The saddle point aty(a = 0, yp = =), which becomes
12 andyp coordinates (oscillating about (0, 0) at the bottom of accessible & = 10 322 cntl, is the most important organizing
the polyad and aboutr( ) at the top). That is, the pairs of  center for the dynamics in the middle of the polyad. On a real
periodic orbits that emerge from the extremal points are in some 2D potential energy surface, a saddle point would be associated
way analogous to the normal modes of a 2D oscillator. As we with two “normal modes”, one with an imaginary frequency
have already emphasized, the dynamics irelbespace is quite ~ which runs along the direction with the negative second
abstract, but the lift procedure can again give us insight into derivative, and one with a real frequency along the orthogonal
the physical motions of the molecule associated with the periodic coordinate with the positive second derivative. The situation
orbits near but not aEnin Or Emax here is analogous. THe periodic orbit, which runs alongy,

Consider first the two periodic orbits that emerge from the begins to rotate alongy at E = 10 322 cm* (this would be
point (a = 0, 9, = 0) at the bottom of the polyad, which we analogous to the mode with the imaginary frequency). Simul-
labelL; andL,. The label L. ” stands for “local bend”, since it ~ taneously, a new periodic orbl¥l, is born at the saddle point
can be anticipated that, and L, must both be closely related ~ Which, at least initially, undergoes bounded motion in he
to the local bending associated with the extremal point (0, 0). direction (this corresponds to the mode with the real, positive
TheL, periodic orbit, which runs along,, differs from a pure  frequency). [In a technical sense, we say thais homoclinic
local bend in that the second hydrogen, which in the perfect to Mz when itis born. Also, it should be noted tHatbecomes
local bend does not move at all, gains a small amount of unstable at 10 281 cmd and in rapid succession a number of
vibrational excitation, in the same plane as the first hydrogen. Very similar and mostly unstable periodic orbits are born; we
TheL, periodic orbit, which runs alongy, also involves a small  refer to these collectively ds,, and those that rotate &5.]
amount of excitation in the second hydrogen, but this time in ~ As M, begins to sample regions of configuration space further
an orthogonal direction to the motion of hydrogen 1. Thus, the from the saddle point, the physical motion of the hydrogens
L, and L, periodic orbits each describe an “imperfect” local increasingly acquires rotational character. This is significant
bending motion [in a technical sense, they can be referred to asbecause it anticipates the connectionMy with C,, which is
normal modes of the deviation from pure local bending primarily “counter-rotational” in character. The connection
behavior]. As energy increases abd¥gi,, and the periodic between these orbits is actually quite simple in the abssfact
orbits sample regions of thep§, ) configuration space that — space. At 10 434 cri, all values ofy, become accessible, and
are further from (0, 0), the corresponding lifted motions become slightly above this energy (10 503 c#) the M, motion is no
increasingly imperfect; the fate of these motions will be longer trapped near (G;) but instead starts rotating along,
considered below. (we rename itM, to reflect this fact). This rotating motion

Similarly, at the top of the polyad, th€; and C; periodic persists until 11 183 cm, which is the highest energy at which
orbits represent imperfect counter-rotation motions. The perfect all of configuration space is accessible. In contrast to the case
counter-rotation involves the hydrogens tracing out perfect at the bottom of the polyad, where rotational motion in he

circles in planes perpendicular to the CC axis. BothGhand direction became possible before rotational motion in¢he
C, periodic orbits involve an elongation of the motion into an direction, at the top of the polyad both directions become
ellipse which precesses with time. accessible (or inaccessible, for decreasing energy) at once, which

We now turn to the more complicated dynamics in the interior 0Ccurs atE = 11183 cn’. At this energy, the rotatin/;
of the polyad, and in particular examine how the periodic orbits Periodic orbit connects with the librating [about, (z) ] C; orbit.
at the top and bottom of the polyads are linked to each other. In the above discussion of the Family 2 orbits, we omitted
When examining the surfaces of section, the “raw data”, it is many details of the classical dynamics, such as the stabilities
not immediately obvious that the low and high energy periodic of the periodic orbits. Thevl;, periodic orbit, for example, is
orbits link to each other in any simple way. A number of initially unstable; as can be inferred from the surfaces of section,
bifurcations occur in the intermediate energy regime, and at mostclassical chaos dominates Bt~ 10 500 cnT’. However,M,
energies chaos dominates. However, within the chaos there exisbecomes stable at higher energi&s> 10 690 cnt?l), and in
slightly unstable periodic orbits that can be followed numeri- fact organizes the only sizable stable region within the classical
cally, and it is found thalt; connects withC; andL; links with chaos (EBK quantization will be applied to this torus in the
C, (mediated by other periodic orbits that are born out of next section). For a more detailed discussion of the classical
bifurcations). Moreover, although the periodic orbits in 2D dynamics, the reader is referred to ref 13; this paper treats the
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Np = 22 polyad and noll, = 16, but key qualitative aspects of 2
the classical dynamics are similar.
The connection betweely and C; proceeds along similar 1 -
lines as the connection betweén and C,, but one major
difference is that the point/; = 7, yp = 0), unlike (0,7), is 0 ~
: ; SR
not a saddle point. Thud/;, which indirectly connects; to - Im(‘P) B

Cy, is not born in the same mannerhs, which was associated
with the saddle point. Thé&; periodic orbit rotates foE >

10 490 cmt andC; can rotate folE < 11 015 cml. The M} -2
periodic orbit, however, does not directly connect theand L
C; orbits, which run in orthogonal directions. Rather it connects 05 — |
L1 With C14, which are born out of bifurcations with the original )
L, andC; orbits, and which are more complicated motions that 0 - |
run roughly, but not exactly, along, andy, respectively. The
; e . . .
M3 motion itself is very complicated, although it can clearly be -0.5 Re(‘{’) =

considered a compromise between thaendC motions, in the

sense that the hydrogens tend to oscillate along one of two -1
orthogonal directions, but with superimposed rotational motion In
(and periodic switching of the dominant axis).

2n 4 Phase -

5. Semiclassical Eigenstate Assignments
At the end of this section we perform EBK quantization on ™ B
certain of the stable tori in the classical mechanics to establish 0 - [

rigorous, numerical quantum-classical correspondence. This will

not assign the majority of states but will act as a check on our -

prime method of assignment which is node counting along '

periodic orbits. Carrying out the node counting is not always a T 2n

visually obvious procedure. We now outline what we actually Wa

do. We first establish quantum-classical correspondence qua”'Figure 6. The real and imaginary parts of the wave functigf{

tatively between wave functions and periodic orbits (which are alongya with v, = 7, as well as the phase advance, which provides

motions) by plotting wave functions and isoenergetic (account- the assignment, (along the rotating periodic orbN1Y).

ing for zero-point energy) periodic orbits in the same set of

coordinates. Various sets of coordinates in principle could be onto a two-dimensional torus defined by the classical angles

chosen. The quantum effective Hamiltonian is defined in terms (y,, yy). That is, the wave functions are periodic in both

of shift operators for the 2D harmonic oscillator, which may coordinates from 0 tos2, but in Figures 2 and 3, we choose to

be represented in either rectilineax, (/) or radial (o, ¢) show a larger range on both axes so as not to cut the wave

coordinates. The radial coordinates are somewhat more con-functions at inconvenient points. This is particularly important

venient, because conservation of angular momentum impliesbecause, as will be seen below, the eigenfunctions tend to have

that only three coordinatesp4 ps, ¢ = ¢4 — ¢s), are needed  their probability localized near one of the three fixed points of

to represent the wave functions. Such coordinates were used irthe classical mechanics, (0, 0), (), and (, 7). For further

an earlier, quantum mechanical study of the acetylene benddetails of our semiclassical eigenfunctions, please refer to section

modest! An example of quantum-classical correspondence in Vv of ref 13.

these coordinates is provided in Figure 6 of ref 14, butin general  The semiclassical eigenfunctions for all of the states in the

it is inconvenient to attempt to compare orbits and eigen- N, = 16 polyad are represented in Figures 2 and 3 (some of

functions in a three-dimensional space. the states are actually represented twice; the layout of these
A better choice of coordinates is the two-dimensional abstract figures will become clear below). The eigenstates are arranged

space of ¢, ). The periodic orbits have already been according to their symmetries and their semiclassical assign-

represented in this space, and it is straightforward to representyents. Below, we use the notatie{" I~ to label the eigen-
the quantum eigenfunctions in this space as well, by introducing states. The superscript indicates the symmetry of the state and

(=)

a semiclassical basis set defined by the subscript indicates the energy rank of the state among all
) ) other states within the polyad of the same symmetry. There are
D = exp(jaia) explivin) (13) four symmetry classes of states, which are described bg/the

symmetry (with respect to the center of inversion of the
wherej, andjp are semiclassical quantum numbers; the canonical molecule) andt/— parity.
transformation that we have utilized to convert from the original Our Strategy for making the eigenstate assignments once again
normal mode coordinates to the abstralttspace implies that  jnvolves working inward from the energy extremes of the
polyad. Given that the classical dynamics near the energy
extremes is largely regular, confined to a relatively small region

Ja= 4 (14) of phase space, and dominated by a handful of periodic orbits,
it is unsurprising that the semiclassical assignments, which can
Iy =15 be checked by using the EBK method, are straightforward in

o= 4 (15) these energy regimes. The lowest and highest energy eigenstates

in the polyad are of course localized around (0, 0) andn,
The wave functions should really be viewed as being wrapped respectively; somewhat less obvious is that the high- and low-
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lying eigenstates can be grouped into symmetry pairs. The pairswhich clearly reflects th&;, periodic orbit, which bends away

of eigenstateE%* (Figure 2) anoE‘lJ+ (Figure 3), for example,
both look simply like two-dimensional Gaussians centered
around (0, 0), and their eigenenergies differ by only 4076
cm~L. Many of the other low-lying eigenstates within the polyad

from theyyp, = 0 axis; that is, most of the probability density in

this state is localized near the turning points of the orbit.
Once the effects of semiclassical state “mixing” and other

distortions of the eigenfunctions are taken into account, all of

can also be organized into symmetry pairs with the same parity the eigenstates within thi, = 16 polyad can be organized

but oppositeg/u symmetry. The eigenstates with the highest

according to the number of quanta of excitation along the two

energies within the polyad, on the other hand, occur for pairs families of periodic orbits. The symmetry pairings aid in the

with both opposite parityand oppositeg/u symmetry.
This symmetry pairing has been explained previously. In ref

assignment process, although the energy splittings are larger in
the middle than at the energy extremes of the polyad. In addition,

11, simple symmetry arguments are used to predict that local as will be discussed below, several of the eigenstates have also

bend states should appeargr-/u+ and g—/u— pairs, while
counter-rotational states should occurgft/u— and g—/u+

been rigorously assigned using EBK quantization. Our confi-
dence in the assignments, however, ultimately rests on the

pairs. The argument with respect to the local bend states is fairly regularity that can be observed in the progressions of eigenstates
simple. Classically, the local bend motion corresponds to a singlein Figures 2 and 3.

hydrogen bending, but the indistinguishability of the hydrogens

Several of the eigenstates are multiply assigned, such as

in quantum mechanics implies that the eigenstates must beEj,. This eigenstate shows little probability density in the

symmetric @) or antisymmetric ) combinations of the two

equivalent local bends. The argument with respect to counter-

immediate vicinity of either (0, 0) ort, ;r), and can be assigned
nearly equally well as eithen{; = 3, n, = 1) or (nc1 = 3,

rotation is somewhat more complicated and relies on the nc; = 1). This double assignment should not be seen as a

indistinguishability of the two senses of rotation (clockwise vs

deficiency of the semiclassical approach. Rather, the ability to

counterclockwise). These symmetry arguments were extendedprovide two assignments for several eigenstates simply reflects
and generalized in ref 13, where it was shown that any the fact that thé. andC periodic orbits connect with each other

eigenfunctions with probability density localized primarily near
¥p = 0 will appear ing/u pairs, while those localized negf,
= s appear in pairs with opposite parity agéh symmetry.

in a smooth manner. A state such BY clearly can be
assigned asng; = 1, nc, = 3) but is also doubly assigned as
(nL1 = 3, n2 = 2), because it can be considered to continue

This more general argument implies that states localized nearthe series of states with , = 2.

the saddle point (07) (see below) will also appear in symmetry
pairs.
In addition to the very lowest energy eigenstatlé%f and

The role of the saddle point, and that of 1110[I@/M'2 periodic
orbits, in connecting between theandC assignments deserves
careful consideration. Starting from low energy, the series of

Eﬁ*, a handful of other low-lying eigenstates can be assigned states witm;; = 0 and increasing,» gradually begin to probe

trivially by inspection of their nodal patterns. For example,
EY” andE]" can be assigned as { = 1, n_» = 0); that is, they
have one node along tHg periodic orbit, which runs along
the vy, direction, and no nodes in the orthogonal coordinate.
The symmetry pair&2 /Ey" andEZ"/E}" do not have such an

the vicinity of the saddle point. At energies above that of the
saddle point, thé, periodic orbit can begin to rotate along the
yp direction, but the classical motion proceeds most slowly at
the saddle point, causing the quantum probability density to
accumulate there. The st provides a very clear example

obvious assignment. This can be explained in terms of an of this effect. This state can be assignedms € 0, n.2 = 5),

accidental near-degeneracy of the semiclassical states=
0, ni2 = 2) and i1z = 1, n, = 0), which mix to yield the

because five nodes can be counted algpdetween—mz and
7. However, this state can also clearly be assigned as the “zero-

more complicated eigenstates [that is, adding and subtractingpoint level” associated with the saddle point, since it is very
the mutually perturbed pairs of states yields states with nearly strongly localized around (0r). This particular state, and its
perfect semiclassical assignments]. These types of mixings aresymmetry partneEZ", demarcate the transition between state
also observed at higher energies, in the middle of the polyad assignments using theyg, n.2) and the Qci, ncy) labels. In

(E3, andEJ; are another easily identifiable mutually perturb-
ing pair).

the immediate vicinity of the saddle point energy, however,
assignments in terms of timg:, periodic orbit, which is born at

The assignments of other states at low energy, even whenthe saddle point, are appropriate. The stfe, for example,

such mixings do not play a role, are not always immediately
obvious on a first viewing, but can be firmly established upon
careful inspection, particularly by the usedices through the
eigenfunctions along the periodic orhitf\s an example,
consider the symmetry paliy /Eg , which is assigned asy(;

= 2, n2 = 1). It is not immediately obvious that there are 2
nodes along the; periodic orbit, which runs along the,
direction, primarily due to the small amplitude of the middle
lobes and their distortion from a straight line. Slices through

can be labeled witmy, = 1, although it should be noted that

it can also be formally labeled ag, = 6, by following the
series of counter-rotation states downward in energy (the latter
assignment provides less physical insight).

Thus, the assignments in termshdf andC, can be connected
with each other, and through the saddle point, they can be
connected with the assignments in termsLef We have not
explicitly considered at this point assignments in terms of the
M, periodic orbit. This is simply the rotating orbit that links

the wave function however make the assignment clear. The Mz with C,, and in some sense providing assignments in terms

distortions of the wave function are not due to accidental

of M}, would seem superfluous. However, the rotating charac-

mixings in this case. Rather, these distortions reflect the ter of this orbit changes the nature of the assignments. At this

underlying classical mechanics. Theorbit becomes unstable
just slightly aboveEnin and undergoes a series of bifurcations,
the most important of which gives birth to the, orbit. The

point, a more careful discussion of the semiclassical basis set
is in order.
First, note that the zero-order normal mode states, which

quantum eigenstates reflect some averaged contribution fromconstitute the basis set of the effective Hamiltonian, all have a
the various closely related Family 1 periodic orbits that exist at completely “flat” probability distribution in theiy,, 1) plane

this energy. This type of effect is more extreme in, e,

(using the definition of the semiclassical basis in eq. 13). That
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is, there is an equal probability of finding the system at any space decay too rapidly to chaos for the EBK method to be
chosen value ofy, andy,. The normal mode states can only feasible. At the top of the polyad, at the energy of the symmetry
be distinguished by inspecting the real and imaginary portions doubletES!/Ej,, there is one and only one torus structure, for
of the wave functions. The eigenstates of the Hamiltonian, which both loop integrals are very nearly equatt(i.e., only
however, have probability localized in various portions of the *“zero-point” excitation). EBK quantization can also be carried
(va ) space due to the anharmonic resonant interactions thatout to confirm our assignments for several other states near the
mix the zero-order, normal mode states. For example, the top of the polyad. At other energies, there are no torus structures
Darling-Dennison | resonance, which is parametrizedpand of appreciable size, particularly between the energies-of
exchanges 2 quanta of trans and cis bend excitation, createg0 300-10 700 cnt?, and the EBK quantization method cannot
localization along thep, coordinate (in the classical Hamilto-  be applied. However, with unstable periodic orbits, one can still

nian, it is the term that involves cog,). The vibrational carry out the loop integral in one dimension (along the unstable
I-resonance, which exchanges vibrational angular momentumorbit), even though it is not possible to carry out the integral in
between the normal modes, creates localization alangThe the transverse direction, as in the EBK method. For example,

Darling-Dennison Il resonance creates localization along both we have carried out the loop integrals along the unstible
coordinates, but is numerically less important than the other periodic orbit near the saddle point energy. The doublet pair
two resonances.] EZ"/Ey, which represents the zero-point level associated with
The net effect of these resonances is to localize the low-lying the saddle point, lies at an energy which is very close to the
eigenstates near (0, 0) and the high-lying eigenstates near (- energy wherévl, has actiort/,. Similarly the doublet paiE*/

7); that is, the resonances are responsible for lowering the energygu- occurs at an energy where the action\bf has the value
of the point (0, 0) and raising that ofr( ), such that these 3,

points represent the energy extremes of the polyad. In the middle

of the polyad, all of the angle space is accessible, and theg conclusion

eigenstates need not localize near any of the stationary points. ] _ )

Many of the states do continue to localize around one of the ~ The pure bending eigenstates of acetylene with 16 quanta of

Stationary points' but a notable exception are states such aéotal bend excitation have been aSSIgned semiclassical quantum

E9 andEY,, which have probability localized almost exactly numbers in terms of the number of nodes along two families of
mli%I-way l;étween the saddle point (@), and (7, 7). periodic orbits. That is, we have associated with the eigenstates

Although these states can be (doubly) assigned in terms of¢lassical bending motions, which vary continuously between
the number of quanta of excitation aloMy [around (0,7) ] local bend and counter-rotation. The ability to semiclassically
and C, [around (r, ) ], a more physically mear,lingful assignall of the quantum eigenstates in this way implies that
assignment can be obtained in terms of the number of quantatl€'e exists a very large degree of regularity in the quantum
along M. These assignments we list as M, is a rotating structure, which is surprising given that chaos dominates the
orbit, whzich by definition exists only when allzvaluesng are classical phase space. This regularity in the quantum structure

accessible, and probability density accumulates along the Orbity;ast'pr.ewottrjlsly unldetectgdl for 3’."0 tmaJF;r reasc;ns: Ft'rSt’
preferentially at those points where the motion is slowest, which identifying the reguiar nodal coordinates, 1t any, of guanturm
is somewhere between 0 anddepending on the precise energy. wave fl_mCt'onS Ina mult|Q|menS|onaI _(|.e., greater }han two
However, the localization of the probability density in these dimensions) space Is a.dn‘flcult t?Sk n ge.neral, th|§ task is
states is rather weak along tipe, direction; that is, although however made much easier by the identification of the important

these states are highly localized alopg they are nearly plane periodic orbits in the classical mechanics, which often form the
waves alongya. In a qualitative sense, this implies that the “backbone” of the quantum structure. Second, there exist two

vibrationall-resonance plays a strong role in “shaping” these ;am!:]es Off qugn(;ym %genstzt;ahs, assouatl'teq ;N'tlh thg twc; trrr:a]or
wave functions but that the Darling-Dennison resonances do amilies ot periodic orbits, and the enérgetic interieaving ot these

not (that is, these eigenstates can be assigned the normal modi¥'° faml_l|es of states makes it difficult to identify regular
quantum numbers, andus, but notl, or Is). From the standpoint prc_nrgt]]ressmr_lsl. ical . f th . .
of semiclassical assignment, this fact implies that the states are e semiclassical assignment of the quantum eigenstates in

best assigned by examining the real and imaginary parts of thethis pzpea althdoug_h by Pohmeans trivial, vc\j/as made fr]ccalati(\j/ely
wave function alongy,. Specifically, the assignment is provided easy by the reduction of the system to 2 degrees of freedom,

by the phase advanae of the wave function, defined by which was accomplish_ed by exploiting the existence of polya_d
guantum numbers, which are exactly conserved by the Hamil-

R tonian model and approximately conserved (on the time scale
tano = (16) of at least several picoseconds) by the real molecular system.
Im(¥) The semiclassical assignment scheme will of course become
substantially more difficult in more dimensions. However, we
whereW is the complex valued wave function. We choose to helieve that by projecting eigenstates onto various 2D axis
definen. = Aa/z, whereAa. is the change in phase from, = systems defined by the important periodic orbits, it will be
0 toya = 27. The quantum numbers obtained from this scheme possible to perform similar analyses in higher dimensionality
can be either positive or negative. An example of the phase systems, although the analysis may by necessity be less detailed
advance assignment is given in Figure 6, for the eigenstatethan that performed here. Indeed, the semiclassical approach

E%r which is assigned as = +2. will undoubtedly be of even greater importance for complicated,
To verify these assignments we have successfully quantizedhigh-dimensionality systems.

by the EBK method the tori associated wit} and found that Finally, we reiterate that the analysis that we have performed

the loop integralsS = § Judy./27 take the values, for the here has been based uporedfiectve Hamiltonianmodel, which

states in question. The EBK guantization method can also beis defined in terms of shift operators for the normal modes.
applied at higher energies and at slightly lower energies; at the Performing such an analysis using a potential energy surface
bottom of the polyad, however, the regular structures in phase would be much more difficult, due to the difficulties associated
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with finding the needed action-angle variables analytically by (2) Yamanouchi, K.; Ikeda, N.; Tsuchiya, S.; Jonas, D. M.; Lundberg,
solving the Hamilton-Jacobi equations. However, if a sufficiently J- K:; Adamson, G. W.; Field, R. Wi. Chem. Phys1991, 95, 6330.
accurate potential energy surface is available (this is not the W.;(\‘:’grﬂgﬂgﬁbﬁ" '\Q.‘;' ?gﬂgﬁi'ysa" g_,Bé’hzﬁ{égr?;ﬁé'ggoghg?%%b{' Field, R.
case _for acetyleng), then two strategies are possible. First, an ) Solina, S. A. B.; O'Brien, J. P.; Field, R. W.; Polik, W. &.Phys.
effective Hamiltonian can be fitted to the eigenspectrum that is chem.1996 100, 7797.
computed from the potential surfateSecond, perturbation (5) Rose, J. P.; Kellman, M. B. Chem. Phys1996 105 10743.
theory can be used to construct a (generally very high-order)  (6) McCoy, A. B.; Sibert, E. L., 1l1J. Chem. Phys1996 105 459.
effective Hamiltonian from the potential energy surface (three ~ (7) Sibert, E. L., lll; McCoy, A. B.J. Chem. Phys1996 105 469.
approaches are possible: canonical van Vleck perturbation . _(8) Abbouti Temsamani, M.; Herman, M.; Solina, S. A. B.; O'Brien,
theory can be used to generate a quantum mechanical effective‘]' P Field, R. W.J. Chem. Phys1996 105, 11357. '

; . ! - (9) O'Brien, J. P.; Jacobson, M. P.; Sokol, J. J.; Coy, S. L.; Field, R.
Hamiltonian, Gustavson perturbation thergr the classical W. J. Chem. Phys1998 108, 7100.
perturbation theories in refs 2@2, can be used to generate a (10) Jacobson, M. P.; O'Brien, J. P.; Silbey, R. J.; Field, RIWChem.
classical action-angle Hamiltonian). One advantage of the Phys.1998 109 121.
perturbational approach, versus fitted effective Hamiltonians, (1?4 SJaCObSO”v M. P.; Silbey, R. J.; Field, R. W.Chem. Phys1999
is that exact (to a given order_of perturbaﬂon_theory) relatlons (12) van Ede van der Pals, P.: Gaspard) FChem. Phys1999 110,
are obtained that relate the action-angle coordinates to a physicakgig.
coordinate system for the molecule. (13) Jacobson, M. P.; Jung, C.: Taylor, H. S.; Field, R. JWChem.

Lastly, there exist more sophisticated semiclassical quantiza-Phys.1999 111, 600.

tion schemes that quantize even when tori are breaking down (14) Jacobson, M. P.; Field, R. W. Phys. Chem. 200Q 104, 3073.
and under certain conditions in the chaotic region. A prime (15 Taylor, H. S.; Zakrzewski, Phys. Re. A 1988 38, 3732.
example of this is given in ref 28 and references therein. We ~ (16) Heller, E. JPhys. Re. Lett. 1984 53, 1515.

have not needed these advanced tools in this analysis but Welgég)lngc’%%‘ﬁM'; Grebenshchikov, S.Y.; Schinke, RChem. Phys.

are sure that we will use them in the future. (18) Keshavamurthy, S.; Ezra, G. $.Chem. Phys1997, 107, 156.

(19) Prosmiti, R.; Farantos, S. G. Chem. Phys1995 103 3299.
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