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The electronic dynamic structure factorS(q,ω) of conjugated finite-size oligomers is computed using the
time-dependent Hartree-Fock (TDHF) approach. The resonances observed in electron scattering are analyzed
using the Bloch representation of the single-electron transition density matrices for the corresponding polymers.
The separation of relative and center-of-mass motions of electron-hole pairs, which is expected to hold for
infinite chains, is shown to apply even for relatively small molecules, paving the way for a band-structure
picture of the quasiparticles. Signatures of the exciton coherence sizes in the momentum dependence of the
structure factor are analyzed.

I. Introduction

Electronic excitations of molecules are most commonly
studied by optical spectroscopies which provide a direct look
at their energies and dynamics.1 Visible and UV wavelengths
are typically longer than all relevant molecular lengthscales.
Consequently, the information is contained only in the frequency-
dependence of the signal (e.g., absorption line shape), and the
wavevector can be set to zero. This dipole approximation, which
is justified by the separation of lengthscales, further results in
strict selection rules that make only a very small fraction of the
electronic transitions optically accessible.

The wavevector-dependence of techniques based on short-
wavelength excitations such as X-ray and high-energy electron
scattering carries valuable information that adds a new dimen-
sion to the frequency-profile and provides detailed information
on all states including those forbidden by optical measurements.
Numerous time and frequency resolved techniques are available.
Recent rapid progress in X-ray2-8 and electron pulse gener-
ation9-12 had opened up new possibilities for coherent short
wavelength measurements. A similar state of affairs exists in
vibrational spectroscopy where wavevector-dependent neutron
scattering13 eliminates the selection rules of infrared and Raman
optical techniques.

In this article, we focus on frequency-domain electron energy
loss spectroscopy (EELS), which constitutes a powerful tool
for the studies of electronic excitations in molecules.14 The
approach may be, however, directly applied to time-resolved
X-ray and electron scattering measurements. In an EELS
experiment, hundreds keV electrons are scattered off a thin
(∼100 nm) film of the studied material. The deflected electrons
change their momentum and energy fromk i, εi to kf, εf. The
inelastic scattering cross-section is measured vs the electron-
energy lossω ≡ εi - εf and momentum changeq ≡ k i - kf.
The resonances in the few eV range correspond to the low-
energy electronic excitations. The energy loss is typically∼105

times smaller than the incident electron energy. Wavevectors
of the electronic excitations of interest lie in the region up to 1
Å-1, which means that the momentumq transferred from an

incident electron to a molecule is small, and electron deflection
angles are of the order of a few milliradians. The frequency
and wavevector-dependent electron-scattering cross-section is14

where the dynamic structure factorS(q,ω) is the Fourier
transform of the density-density correlation function:

N is the number of electrons in the sample, andñ(q,t) is the
Fourier transform of the electronic-density operator in the
Heisenberg representation:

EELS spectra in a variety of conjugated organic molecules15-17

have been interpreted in terms of theq dependence of the
lowest-peak integrated intensity. The characteristic peak width
has been associated with the inverse exciton size. However, the
relation between the EELS spectra and the exciton size is not
straightforward, since, due to the momentum conservation, the
transferred momentum in the EELS is related to the center-of-
mass momentum of the created exciton rather than to the
parameters of the relative motion of an electron and a hole.28

In this paper, we apply a time-dependent algorithm based on
the electronic density matrix for computing the dynamic
structure factor.S(q,ω) is expressed as the linear response to
an external potentialE coupled to the electron density, and
closed expressions for the EELS signal are derived in terms of
the eigenmodes of the linearized time-dependent Hartree-Fock
(TDHF) equation,18 known as the collective electronic oscillators
(CEO).19,20 Our analysis can be directly extended to time-
dependent density functional theory (TDDFT), which is formally
equivalent to the TDHF.21

In section II, we derive closed expressions for the dynamic
structure factorS(q,ω) using the TDHF. Details of the derivation
are given in Appendix A. In section III, we present numerical
calculations for elongated carotenoids of different sizes and for* To whom correpondence should be addressed.

dσ
dΩ

∝ 1

q4
S(q,ω) (1.1)

S(q,ω) ) 1
2πpN ∫ dt〈ñ(q,t)ñ(-q,0)〉 exp(-iωt) (1.2)

ñ(q,t) ≡ ∫ dr ñ(r ,t) exp(iq‚r ) (1.3)
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a p-phenylene vinylene (PPV) oligomer. Our calculations
demonstrate that the band picture that is asymptotically exact
for polymers is still valid for surprisingly short oligomers, with,
for example,N ) 10 repeat units. This is in good agreement
with recent experiments showing a quasi-band-structure for
relatively short oligomers.22,23

In Appendix B, we apply the band theory to characterize the
CEO modes in infinite polymer chains. These will be used for
the interpretation of the oligomer calculations. We derive an
equation that allows one to find the CEO (exciton) bands and
compute the structure factor and the EELS signals. This
derivation is based on the INDO approximation, which is also
used in our numerical calculations for finite-size molecules. The
infinite-chain results are used in section III for identifying
polymer-specific features in finite-size oligomers. Classification
of electronic modes into quasi-bands is rather clear in longer
chains, as illustrated by contour plots representing the structure
of the modes. However, this further gives an intuitive way for
classifying the modes even in shorter oligomers where the quasi-
band structure is not so obvious a priori.

In Appendix D, we derive a simple approximate expression
for S(q,ω) for infinite polymers using a simplified PPP-like
Hamiltonian. This uses the linearized TDHF equation in the
molecular-orbital representation developed in Appendix C.
Using the results of Appendices C and D, we discuss in section
IV the possibility of extracting information related to exciton
size from EELS measurements. Specifically, we show that even
though the width of the momentum dependence of the lowest
inelastic peak in the spectrum may not be associated with the
exciton size, it still provides an indirect measure of the
momentum dependence of that size.

II. TDHF Calculation of the Dynamical Structure Factor

We assume that the electronic-density operatorn̂(r) is coupled
to an external time-dependent potentialE(r ,τ) by an interaction
Hamiltonian

By expanding the expectation value of the Heisenberg
electronic-density operatorñ(r ,τ) to first order in the potential
we have

whereR is the density-density response function:

In the frequency domain, we define the linear density-density
polarizability

In Appendix A, we show that the dynamic structure factor
S(q,ω) may be expressed in terms ofR(ω;r ,r ′):

R(ω;r ,r ′) can be computed using the TDDFT or the TDHF
approaches.

The linearized TDHF Liouville-space operatorL that defines
the eigenmodes (collective electronic oscillators)êR through the

eigenvalue problemLêR ) ΩRêR is given by:19,20

where t is the hopping matrix,V is the tetradic operator
representing the Coulomb interactions, andFj is the ground-
state density matrix. Using an orthogonal and real basis set of
single-electron atomic orbitalsæm(r ), the TDHF response
function assumes the form:

whereêV are the eigenmodes of the linearized TDHF equation
with positive frequenciesΩV, Γ is a dephasing rate, andµ(r ) is
a matrix in the single-electron space with matrix elements

Substituting eq 2.7 into eq 2.5 finally yields

with

Equations 2.9 and 2.10 express the dynamic structure factor in
terms of the single-electron orbitals and the eigenmodes of the
linearized TDHF equations. The linear optical absorption line
shape is given by theq f 0 limit of these equations, since the
first nonvanishing term in the power series expansion of
Tr[µj(q)êV

†] at small q is proportional to the expectation value
of the dipole moment. Selection rules greatly restrict the number
of optically accessible transitions. In contrast, theq-dependent
EELS signals probe the entire band of excitations. It should be
noted that these results apply for arbitrary molecular geometry
and translational invariance was not assumed.

The CEO modes represent the joint motion of electron-hole
pairs. For periodic structures such as infinite polymers, they
can be factorized into the relative-motion and the center-of-
mass contributions. The latter have the particle-in-a-box wave
functions characterized by a momentumq which becomes a
good quantum number. The modes and their frequencies thus
become momentum-dependent and the molecular dynamic
structure factor per unit cell can be recast in the form (see
Appendix B):

whereµ̃(q), ễ(V)†(q‚R), andΩ(V)(q‚R) are the Bloch representa-
tion for the dipole-moment operator and for the eigenmode and
an eigenvalue of the Liouville equation for the infinite periodic
molecule, respectively.R is the lattice vector representing the
displacement between neighboring unit cells. Closed expressions
for all of these quantities are given in Appendix B.

Band structure is commonly used to describe the motion of
a single quasiparticle (an electron, a hole, or Frenkel exciton)
in a periodic potential, using the Bloch theorem. Here we
consider a composite quasiparticle (exciton) whose center-of-

Lê ) [t + VFj,ê] - [Fj,Vê] (2.6)

R(ω;r ,r ′) )

∑
V

{Tr[µ(r )êV
†]Tr[µ(r ′)êV]

ω + ΩV + iΓ
-

Tr[µ(r )êV]Tr[µ(r ′)êV
†]

ω - ΩV + iΓ } (2.7)

µmn(r ) ) æm(r )æn(r ) (2.8)

S(q,ω) ) ∑
V

|Tr[µj(q)êV
†]|2 2Γ

(ω - ΩV)
2 + Γ2

(2.9)

µjmn(q) ≡ ∫ dræm(r )æn(r ) exp(-iq‚r ) (2.10)

S(q,ω) ) ∑
V

|Tr[µ̃(q)ễ(V)†(q‚R)]|2 2Γ

[ω - Ω(V)(q‚R)]2 + Γ2

(2.11)

Ĥint(τ) ≡ - ∫ drE(r ,τ)n̂(r ) (2.1)

〈ñ(r ,τ)〉 ) ∫0

∞
dtR(t;r ,r ′)E(r ′,τ - t) (2.2)

R(t;r ,r ′) ) i
p

〈[ñ(r ,t), ñ(r ′,0)]〉 (2.3)

R(ω;r ,r ′) t ∫0

∞
dtR(t;r ,r ′) exp(iωt) (2.4)

S(q,ω) ) 2 Im[∫ drdr ′R(ω;r ,r ′) exp[iq‚(r - r ′)]] (2.5)
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mass motion is described as a particle-in-a-box and the relative
motion is quantized, with different states forming different
bands. Let us compare eqs 2.9 and 2.11 for a molecule withM
electrons andN repeat units, each described by a basis set ofK
orbitals. In eq 2.9,µj andêV areNK × NK matrixes. There are
altogetherNV ) (NK - M)M positive-frequency modesV ) 1,
..., NV and theêV matrices are of rankNV. In eq 2.11, we have
a different structure.ễ(V) have onlyNK2 distinct elements (K ×
K matrices that depend onN). Each element is a function ofq
and there areN values ofq. EachΩ(V)(q‚R), ễ(V)(q‚R) for a
given V and varying values ofq form a band.

III. CEO Modes and Structure Factor in Elongated
Carotenoids and PPV Oligomers

We have computedS(q,ω) for three elongated carotenoids
[CAR(N)] with N ) 10, 20, and 40 repeat units; [CAR(10)
resembles the naturalâ-carotene]. We further considered an
oligomer ofp-phenylene vinylene PPV(10) (see Figure 1).

In an infinite polymer chain, the dynamic structure factor
S(q,ω) (eq 2.11) has resonance peaks atω ) Ω(V)(q‚R). Ω(V)

form distinct bands labeled by the band indexV. The following
calculations show that the maxima ofS(q,ω) (eq 2.9) form bands
ω(q) even in medium-size oligomers, with the difference that

the CEO mode frequenciesΩV can only assume discrete
q-independent values. The appearance of a distinct band
structure, characteristic of infinite polymer chains, even for small
oligomers, indicates an approximate factorization of the electron-
hole relative and center-of-mass motions. This is further
confirmed by the following 2D plots of the collective electronic
oscillators which show a separation of the diagonal (center-of-
mass) with the off-diagonal (relative) motions.

Ground-state geometries optimized at the AM1 level using
Gaussian9424 were taken from ref 20. We used the INDO/S
semiempirical Hamiltonian, as parametrized by Zerner and co-
workers in the ZINDO code.25,26 The ground-state Hartree-
Fock single-electron density matrixFjmn was computed, and the
eigenmodesêV,mn of the linearized TDHF equation (eq 2.6) were

Figure 1. Molecular geometry and atom numbering for an elongated
carotenoid CAR(N) and a PPV oligomer PPV(N) with N repeat units.

Figure 2. Calculated dynamic structure factorS(q,ω) (eq 2.9) of
CAR(20) plotted vs the energy lossω for different momentum transfer
q parallel to the molecular axis andΓ ) 0.01 eV.

Figure 3. CalculatedS(q,ω)/q2 for q directed along the molecular axis
andΓ f 0. Each CEO mode gives a series of peaks at frequencyω )
ΩV but with different values ofq. The radius of each circle is
proportional to the peak intensity. Normalization for each frequency
(horizontal lines) is performed for clarity. (For translationally invariant
system, each CEO mode will give a single peak at a particular value
of q.) Top panel: 26 lowest-frequency electronic modes of CAR(10);
middle panel: 50 lowest modes of CAR(20); bottom panel: 50 lowest
modes of CAR(40).
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Figure 4. Lowest-frequency modesêV,nm of CAR(20) plotted on a logarithmic scale. Thex andy axes are labeled by the carbon atoms to which
the mth or nth atomic orbitals belong. Mean-square averaging is performed over all pairs ofmth andnth atomic orbitals corresponding to each
particular pair of atoms (see ref 29). The carbon atom numbering is given in Figure 1. Shown are the lowest 19 modes.
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Figure 5. The lowest 50 modes of CAR(40). For details see Figure 4.
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Figure 5 (continued)
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then obtained using the oblique Lanczos algorithm.27 S(q,ω)
(eq 2.9) was computed using 50 lowest-frequency CEO modes
êV,mn. In all calculations,q was directed along the molecular
axis. The momentum-space electron densityµmn(q) was calcu-
lated using eq 2.10, neglecting the overlap of electronic orbitals
centered at different atoms, and expanding the exponential factor
to first order in r around the center of the atom to which a
particular atomic orbital belongs.

Figure 2 depicts the variation of the frequency-dispersed
S(q,ω) of CAR(20) with q. We note that the largest peaks of
S(q,ω) for eachω form a curveq(ω) that shows approximate
periodicity with period≈2.6 Å-1. This is in good agreement
with the half-widthπ/R of the Brillouin zone of the correspond-
ing polymer where the lattice constant isR ≈ 2.45 Å.

In Figure 3 we displayS(q,ω)/q2 which is proportional to
the EELS signal vsq and ω for CAR(10), CAR(20), and
CAR(40) in a different format. We divide byq2 because it
follows from eqs 2.9 and 2.10 thatS(q,ω) ∝ q2 for q f 0 [cf.
also eqs D17 and D19]. The values ofS(q,ω)/q2 are normalized
separately for eachω to best illustrate theq-dependence for
each CEO mode; the relative oscillator strengths of the modes
depicted in Figure 2 are thus not shown. Each CEO mode has
resonances at different values ofq represented by circles whose
radii are proportional to the peak intensities. The range ofq in
Figure 3 roughly covers the first Brillouin zone of the infinite
polymer chain. The figure demonstrates how the band structure
of elongated carotenoids becomes more pronounced with

increasing N where the CEO modes form a more dense
manifold. Three lowest bands with band-edges at≈2.2,≈3.8,
and≈4.6 eV are clearly identified for CAR(20) and CAR(40).

Many CEO modes can be assigned to a particular band
according to the location of the maxima in theq dependence
of S(q,ω) at ω ) ΩV using Figure 3. However, for frequencies
higher than the second band-edge, we find that modes from
different bands but with close frequencies may be mixed. In
this case, Figure 3 may not be sufficient for a unique classifica-
tion of the modes.

The bands and CEO modes can be further characterized using
2D contour plots of the single-electron transition density
matrixesêV,mn. Figure 4 showsêV,mn for the 19 lowest-frequency
modes of CAR(20), with the axes labeled by the carbon atoms
to which themth (nth) atomic orbitals belong (Figure 1). The
plots span 3 orders of magnitude on a logarithmic scale from
red (large) to blue (small), with the absolute values ofêV,mn

normalized to the maximum. Comparing Figures 3 and 4 shows
that the number of nodes (or peaks) in the antidiagonal direction
in the 2D plot ofêV,mn is fixed for a given band, while in the
diagonal direction the number increases withq within the same
band. This suggests that the relative and center-of-mass motions
of the electron-hole pairs are virtually independent, i.e.,êV,mn

may be factorized as expected for infinite polymer chains (eq
B3).

It is clearly seen from Figure 4 that theV ) 1-6, 9, 11, 13,
16, 19 modes have a single peak in the antidiagonal direction

Figure 5 (continued)
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Figure 6. The lowest 50 modes of CAR(10). For details see Figure 4.
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Figure 6 (continued)
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and thus belong to the first band. The number of peaks along
the diagonal direction uniquely distinguishes the various modes
of the first band; this number characterizes the momentum of
the exciton’s center of mass, resembling a particle in a 1D box.
The higher the momentum, the more peaks and nodes are found
in the diagonal direction, and the higher the frequency of the
mode. TheV ) 7, 8, 10, 12, 14, 17 modes have two peaks in
the antidiagonal direction, indicating that they belong to the
second band where a different pattern of the particle-hole
relative motion is realized. TheV ) 15 and 18 modes belong
to the third band and have three peaks in the antidiagonal
direction.

The band structure of the CEO modes becomes more sharply
defined for longer oligomers where edge effects are less
pronounced and the separation of the particle-hole center-of-
mass and relative motions is more justified. This is illustrated
for CAR(40) in Figure 5. Modes from the six lowest-frequency
bands are easily recognizable among the 50 lowest modes
shown. Comparing the modes of CAR(20) and CAR(40), we
note that the frequency of a mode belonging to a particular band
is mainly determined by the distance between the nodes in the
diagonal direction (“particle-in-the-box” motion). For instance,
in the lowest band the frequencies of the first, second, and third
modes for CAR(20) (2.30, 2.60, and 2.93 eV) are close to those
of the second, fourth, and sixth modes for CAR(40) (2.33, 2.66,
and 3.00 eV, respectively) that correspond to the distances
between nodes of 20, 10, 62/3 repeat units (neglecting the end

groups). In the second band, the frequencies of the first, second,
and third modes for CAR(20) (3.80, 3.92, and 4.09 eV) almost
coincide with those of the second, fourth, and sixth modes of
the second band for CAR(40) (3.79, 3.91, and 4.08 eV,
respectively), as well as the internode distances. It then follows
that we can view the (2n)th mode in a particular band for
CAR(40) as a combination of twonth modes in the same band
for CAR(20), with negligible interaction between them. The
density of states of CAR(40) is thus almost twice that of
CAR(20).

Once two or more modes from different bands mix, they may
no longer be rigorously assigned to a particular band. Neverthe-
less, they can be effectively described by taking into account
the exciton scattering effects at the ends of the molecule.
However, provided exciton scattering is not too strong, we can
still approximately assign the mode to one of the bands
according to the node structure of its transition density matrix.
For example, theV ) 6 mode in Figure 4 has a small component
of the first mode from the second band, but the main contribu-
tion is definitely from the sixth mode of the first band. The
pairs of modes 37, 38, and 42, 43 in Figure 5 are good examples
of strong mixing of nearly degenerate modes from the first and
fourth bands.

Understanding the classification of bands and CEO modes
for relatively long oligomers should help identify the same
pattern for smaller carotenoids such as CAR(10) (Figure 6)
which is closer to the naturalâ-carotene molecule. Since the

Figure 6 (continued)
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mode frequency spacing is twice that of CAR(20), we have more
bands in the frequency range of the lowest 50 modes and a
wider variety of mode types. Mixing of modes belonging to
different bands complicates the mode classification at high
frequencies. An interesting feature of the modes at the top of a
band is that the number of nodes in the diagonal direction
increases as the frequency is lowered from the upper band-edge,
which is similar to the behavior near the lower band-edge. This
is clearly seen in Figure 6 where the 24, 23, 20, 16, 13, ... modes
form the top of the first band. We further see modes from new
bands (not shown in Figure 3) which have no nodes in the
antidiagonal direction, like the modes from the first band.
However, the pattern of the electronic excitation in the unit cell
is markedly different (see e.g., the modes withV ) 21 and 25).

We have also calculated the 50 lowest-frequency CEO modes
for thep-phenylene vinylene PPV(10) (Figure 1). This oligomer
has a richer band structure compared to carotenoids. The top
panel of Figure 7 displaysS(q,ω)/q2, in the same way as in
Figure 3. The momentum transferq is again directed along the
molecular axis. The range ofq in Figure 7 corresponds to the
first Brillouin zone. We can distinguish several bands, some
have their top atq ) 0. There is a flat band in the frequency
region around 4 eV with the effective exciton mass almost 3

orders of magnitude less than for the first band. (The effective
exciton mass was estimated atq ≈ 0 based on the curvature of
the quasi-band at that point.) Another flat band lying just below
5 eV is concave (i.e., has the maximum-frequency mode atq
) 0) with exciton effective mass 2 orders of magnitude less
than the first band. In these bands, the atoms bridging the phenyl
rings weakly participate in the excitation while the induced
density matrix still shows coherences between the phenyl rings
and between the phenyl rings and these bridges. These two bands
are displayed on an expanded frequency scale in the middle
and bottom panels of Figure 7.

Most of the 50 lowest-frequency CEO modes for PPV(10)
shown in Figure 8 can be easily assigned to a specific band in
Figure 7. However, for frequenciesω g 5 eV mode mixing
belonging to different bands makes such classification more
difficult. We further note that besides the number of nodes in
the antidiagonal direction, the CEO modes belonging to different
bands may be distinguishable by the electronic excitation pattern,
as was demonstrated for short carotenoids in Figure 6.

Discussion
We have recently demonstrated that for intermediate-size

molecules where spectral resolution is high and the EELS peaks
related to different excitons are well resolved, the momentum
dependence of the lowest peak integrated intensity only carries
information on the molecule size.28 Additional information on
the dependence of the exciton size on its momentum may be
extracted from the relative integrated intensities of the higher
EELS peaks. It is, however, sometimes possible to extract
meaningful information on exciton properties from the momen-
tum dependence of the lowest peak intensity. This is the case
for sufficiently long oligomers where exciton lines overlap. The
lowest peak then represents many overlapping excitons, rather
than the lowest-energy one. The momentum dependence of this
collective peak provides information on the higher-momentum
excitons. The situation becomes very clear in infinite polymers
where the exciton momentum is a good quantum number and
the lowest peak in the spectrum is represented by the lowest
exciton with a given momentum (i.e., the exciton from the
lowest band) rather than by the absolutely lowest-energy exciton.

To gain insight into the behavior ofS(q,ω) in this limit, we
consider a simple model of an infinite polymer chain with two
orbitals per unit cell and a simplified Pariser-Parr-Pople (PPP)
type Hamiltonian. This model, which describes qualitatively the
π-orbitals of an elongated carotenoid, is analyzed in Appendix
D for the limit of weak bond alteration, whereby the bond
alternation parameter (eq (D1))ú , 1, and weak Coulomb
interaction when the exciton sizele . ú-1. In this case the
problem may be reduced to a 1D particle on a lattice. The
electronic eigenmodes are expressed in terms of the particle
wave function (eqs C4, D8, D13, and D14). The calculation is
based on the effective mass approximation and neglecting
processes that do not conserve the number of electron-hole
pairs. Both assumptions are valid whenle . ú-1.

It follows from eqs D17, D19, and D14, that the integrated
EELS signal

can be expressed as a product of two factors:

wheres) q‚R. The first factor shows the change of the structure
factor on a typical momentum scales ∼ ú related to the bond

Figure 7. Top panel: same as Figure 3 but for 50 lowest-frequency
modes of PPV(10) (Γ f 0). The middle and bottom panels show the
two “flat” bands of the top panel on an expanded frequency scale. Their
frequency dispersion is 2-3 orders of magnitude smaller than for the
other bands.

I(q) ≡ 1

(q‚R)2 ∫ dω
2π

S(q,ω) (4.1)

I(q) ) 1

ú2 + s2
|g(0;s)|2 (4.2)
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Figure 8. Fifty lowest-frequency modesêV,mn of the PPV(10) (see caption to Figure 4 for details). The carbon atoms numbering is given in Figure
1.
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Figure 8 (continued)
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alternation. The second factor is the square of the relative motion
wave functionsg(n;s) of an exciton at the origin (n ) 0) that
depends parametrically on the center-of-mass momentums. I(q)
thus contains indirect information on the dependence of the
exciton size on its momentum. The first factor in eq 4.2 is a
simple Lorentzian whose width is determined by the bond
alternation parameterú. The deviation from the Lorentzian form
provides the momentum dependence of the relative-motion
exciton wave function when an electron and a hole occupy the
same site (n ) 0). Since the latter is directly related to the
exciton size, the signal carries indirect information on the
momentum dependence of the exciton size.

Acknowledgment. The support of the National Science
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Appendix A: Density Response and the Structure Factor

We assume that the system is coupled to an external potential
E′(τ) via an interaction HamiltonianĤ′int(τ) ) -E′(τ)P̂(q,æ)
where P̂(q,æ) is an effective charge density operator that
depends parametrically on the wavevectorq and a phaseæ:

and n̂(q) is the Fourier transform of the electronic-density
operatorn̂(r ) (eq 1.3). Note thatĤ′int(τ) differs from that used

in section II. Includingæ allows us to manipulate the response
and connect it with the structure factor. The corresponding time-
domain linear response functionRh is defined by expanding the
expectation value of the Heisenberg-picture operatorñ(-q,τ)e-iæ

in powers of the effective driving potential:

We further introduce a frequency-domain linear response
function Rj(ω;q,æ) that also depends parametrically onq and
æ:

The spectral decomposition of the linear response function
Rj(ω;q,æ) is

Figure 8 (continued)

〈ñ(-q,τ)〉e-iæ ) ∫0

∞
dt Rh(t;q,æ)E′(τ - t) + ... (A2)

Rj(ω;q,æ) ≡ ∫0

∞
dt Rh(t;q,æ) exp(iωt) (A3)

Rj(ω;q,æ) ) ∑
V

|〈0|n̂(q)|V〉|2

ω + ΩV + iΓ
- ∑

V

|〈V|n̂(q)|0〉|2

ω - ΩV + iΓ
+

∑
V

〈0|n̂(-q)|V〉〈0|n̂(q)|V〉

ω + ΩV + iΓ
exp(-2iæ) -

∑
V

〈0|n̂(-q)|V〉〈0|n̂(q)|V〉

ω - ΩV + iΓ
exp(2iæ) (A4)

P̂(q,æ) ) n̂(q)eiæ + n̂(-q)e-iæ (A1)
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the spectral decomposition of the dynamic structure factor (eq
1.2) gives

whereΓ is a relaxation rate. Comparing eqs A4 and A5 we
obtain

It follows immediately from eqs 2.1 and A1 that

Substituting eq A7 into eq A6 we obtain eq 2.5.

Appendix B: Dynamical Structure Factor In Infinite 1D
Lattices

In this appendix, we derive expressions for the dynamic
structure factor of polymers of infinite length with 1D discrete
translational symmetry. The generalization to 2D and 3D discrete
translational symmetry is straightforward. We will rely on the
INDO (intermediate neglect of differential overlap) approxima-
tion, without alluding to a specific Hamiltonian parametrization.
For better numerical precision, one might want to use a higher-
level approach, such as ab initio calculations described in refs
30-32. Various approaches that were successfully used for
calculating polymer response were extensively analyzed and
compared in ref 33, which included discussion of TDDFT
computations in polymers and numerical convergence issues
for different algorithms.

Each unit cell is represented by a basis set ofK atomic orbitals
æm(r ) (K is generally larger than the number of atoms in a unit
cell). Introducing the annihilation (creation) operatorsĉm,j(ĉm,j

+ )
of an electron on themth orbital in the jth unit cell, the
Hamiltonian assumes the form:

where tmn(j) describe electron hopping from orbitaln of unit
cell j′ to orbital m of unit cell j′ + j. This matrix element is
independent ofj′ because of translational symmetry. The
Coulomb matrix elements in eq B1 are obtained by neglecting
the overlaps of atomic orbitals on different atoms. This is known
in quantum chemistry as the INDO approximation. The Hamil-
tonian parameters are, therefore, aj-dependent hopping matrix
tmn(j) and tetradic Coulomb matrixUmnkl(j). The ground-state
density matrixFjm,j′+j;n,j′ is translationally invariant as well and
can be represented as

HereFjmn;j is a matrix-valued function of an integer argumentj
(a j-dependent matrix). Translational symmetry also implies that
each eigenmode of eq 2.6 has a circular momentums with s +
2π ) s and is expressed in terms of aj-dependent matrixễmn,j:

The modes are, therefore, represented byj-dependent matrixes
ễ(V)(s) that depend parametrically on the momentums, andV

labels the modes for a given momentum. Using this notation,
eq 2.6 adopts the form:

where the operatorL(s) acts in the space ofj-dependent matrixes
ễmn;j. Substituting eqs B2 and B3 into eq 2.6 yields, after some
straightforward transformations:

In eq B5, we have introduced the deformed commutator:

V(s) is an operator acting in the space ofj-dependent matrixes
that further depend parametrically ons:

Uh mnkl(s) is a Fourier transform ofUmnkl(j):

h is an analogue of the Fock matrix:

wheret̃mn;j ≡ tmn(j). We have also chosen the coefficientsUmnkl(j)
such that

Using the above notation, we can recast eq 2.9 for the
dynamic structure factorS(q,ω) in the form of eq 2.11. We
further need to introduce a Bloch functionµ̃(q) for the Fourier
transform of the electronic-density function, which is defined
similarly to eq B3:

whereµj(q) is given by eq 2.10 except that each atomic orbital
is labeled by two indicesm andj (rather than one). It is easy to
see from eqs 2.10 and B11 that if we neglect the overlap of
orbitals belonging to different atoms thenµ̃mn;j(q) ∝ δ0j,
consequently, we only need to knowµj(q) within the 0th unit
cell of the polymer.

The normalization of the modes in a translationally invariant
polymer adopts a form:

This immediately yields for the positive-frequency modes:

With the ễ(V) andΩ(V) found from eq B4,ễ(V) being normalized
according to eq B13, and withµ̃(q) defined by eqs B11 and

S(q,ω) ) ∑
V

|〈V|n̂(q)|0〉|2 2Γ

(ω - ΩV)
2 + Γ2

(A5)

S(q,ω) ) 2∫0

2π dæ
2π

Im[Rj(ω;q,æ)] (A6)

Rj(ω;q,æ) ) ∫ drdr ′R(ω;r ,r ′){exp[iq‚(r - r ′)] +

exp[iq‚(r + r ′) - 2iæ]} (A7)

Ĥ ) ∑tmn(j)ĉm,j′+j
+ ĉn,j′ + 1

2∑Umnkl(j)ĉm,j′+j
+ ĉn,j′

+ ĉk,j′ĉl,j′+j (B1)

Fjm,j′+j;n,j′ ) Fjmn;j (B2)

êm,j′+j;n,j′(s) ) exp(isj′)ễmn;j(s) (B3)

L(s)ễ(V)(s) ) Ω(V)(s)ễ(V)(s) (B4)

L(s)ễ ) [h,ễ]s + [F̃,V(s)ễ]s (B5)

([ễ,η̃]s)mn;j ≡ ∑
n′,k

(ễmn′;j-kη̃n′n;k - exp[is(j - k)]η̃mn′;kễn′n;j-k)

(B6)

[V(s)ễ]mn;j ) ∑
m′n′

[δ0jUh mn′nm′(s) - Umn′nm′(j)]ễm′n′;j (B7)

Uh mnkl(s) ) ∑
j

Umnkl(j) exp(-isj) (B8)

h ) t̃ + V(0)F̃ (B9)

Unmlk(-j) ) Umnkl(j) (B10)

µjm,j′+j;n,j′(q) ) exp[-i(q‚R)j′] µ̃mn;j(q) (B11)

Tr{ê(µ)†(s)[Fj,ê(V)(s′)]} ) -2π sgn(Ω(V)(s))δµVδ(s - s′) (B12)

∑
mn,j

ễmn;j
(µ/)(s) ([F̃,ễ(V)(s)]s)mn;j ) -sgn(Ω(V)(s))δµV (B13)

2002 J. Phys. Chem. A, Vol. 105, No. 10, 2001 Chernyak et al.



2.10, we can calculate the dynamic structure factor given by
eq 2.11.

Appendix C: Linearized TDHF Equation in Infinite
Chains: Molecular-Orbital Representation

In this appendix, we recast the linearized TDHF equation (eqs
2.6 and B5) in infinite chains using the molecular orbitals basis
set. We start with the Bloch representation of orbitals:

whereR parametrize molecular orbitals with momentums. The
molecular orbitals are the eigenstates of the single-particle
Hartree-Fock Hamiltonianhmn;j introduced in eq B9:

wherehhmn(s) is the Fourier transform ofhmn;j:

The CEO modesễmn;j may be recast using the molecular orbitals:

Equation C4 represents a CEO mode with parametric
dependence on momentumsas a superposition of contributions
whereby an electron from orbitalâ with the momentums′ - s
is moved to orbitalR and momentums′.

The inverse transformation [i.e., fromễ to f(s)] has a form

We further introduce the function sgn(R) ≡ 1(-1) if the orbital
R is occupied (unoccupied).

The operatorL(s) in the molecular-orbital representation is
obtained by substituting eqs C4 and C5 into eq B5 and making
use of eq C2 which yields:

where we have used the matrix elements of the Coulomb
interaction in the molecular orbitals basis set:

Since the modes do not have intraband components,fRâ(s′;s) *
0 only if sgn(R) * sgn(â).

The expressions for the Hartree-Fock Hamiltonian (eq C2)
and for the Liouville operator (eqs C6 and C7) written in the

molecular orbital representation will be further used in Appendix
D for studying a model of an infinite periodic molecule.

Appendix D: Signatures of Exciton Sizes in EELS
Spectroscopy

In this appendix, we consider a simple model of an infinite
polymer chain with two orbitals per unit cell and a Pariser-
Parr-Pople (PPP) type Hamiltonian. This model will be used
in section IV to establish some qualitative analytical criteria
for the possibility of extracting exciton size information from
EELS measurements. Higher level computations on polymers
can be found in ref 34. We will analyze the limit of weak bond
alteration whereby the bond alternation parameterú , 1. It will
be instructive to consider the case of weak Coulomb interaction
when the exciton sizele . ú-1 where the analysis can be made
analytically. The molecular-orbital representation of the linear-
ized TDHF equation will be used here, which is described in
Appendix C.

We first note that in this case we can neglect the Coulomb
contribution to the single-electron Hamiltonianh. Assuming
nearest-neighbor hopping, we have the following nonzero
elements ofh:

wheret is the average hopping andú , 1 is the bond alternation
parameter. Equation D1 yields forhh(s) defined by eq C3

Denoting the upper (lower) electron bands by+(-) we obtain
upon the substituting of eq D2 into eq C2

and

We will show later that the relevant momenta in the problem
ares - ú. Equations D3 and D4 then adopt the form:

Consider now a CEO mode with positive frequencyΩ. It is
determined by a pair of functionf+-(s′;s) and f-+(s′;s) where
the operatorL(s) is given by eq C6. When the Coulomb
interaction is weak, we can neglectf-+(s′;s) in the equation for
a positive frequency eigenmode. Denotingf+(s′;s) ≡ f+-(s′;s),
we obtain the normalization

We now find the value ofs′ for which the kinetic energy
ε+(s′) - ε-(s′ - s) of an electron-hole pair has a minimum:

ψh m,j;R(s) ) exp(isj)ψmR(s) (C1)

∑
n

hhmn(s)ψnR(s) ) εR(s)ψmR(s) (C2)

hhmn(s) ≡ ∑
j

hmn;j exp(-isj) (C3)

ễmn;j(s) ) ∑
Râ

∫ ds′

2π
ψmR(s′)ψnâ

/ (s′ - s)fRâ(s′;s) exp(is′j) (C4)

fRâ(s′;s) ) ∑
j

∑
mn

ψmR
/ (s′)ψnâ(s′ - s)ễmn;j(s) exp(-is′j) (C5)

L(s)fRâ(s′′;s) ) [εR(s′′) - εâ(s′′ - s)]fRâ(s′′;s) -

[sgn(R) - sgn(â)] ∑
R′â′

∫ ds′

2π
[VhRâR′â′(s′′,s′;s) -

VhRR′ââ′(s′′,s′′ - s;s′′ - s′)]fR′â′(s′;s) (C6)

VhRâR′â′(s′′,s′;s) ≡
∑

mnm′n′
Uh mnm′n′(s′′ - s′)ψm′R′(s′)ψn′â′

/ (s′ - s) ×

ψmR
/ (s′′)ψnâ(s′′ - s) (C7)

h12;0 ) h21;0 ) (1 - ú
2)t

h12;1 ) h21;-1 ) (1 + ú
2)t (D1)

hh12(s) ) hh21
/ (s) ) [(1 - ú

2) + (1 + ú
2) exp(-is)]t (D2)

ε((s) ) (t[ú2 + 2(1 - ú2)(1 + coss)]1/2 (D3)

ψ1((s) ) 1

x2ε((s)
hh12(s), ψ2((s) ) 1

x2
(D4)

ε((s) ) (t(ú2 + s2)1/2

ψ1((s) ) ( -ú + is

x2(ú2 + s2)1/2
(D5)

∫-π

π ds′
2π

|f+(s′;s)|2 ) 1 (D6)
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Whens is not too large (i.e.,s ∼ ú) this yieldss′0 ) s/2. We
then look for the solution of the eigenmode in a form

wherefh(s′;s) is substantially nonzero for|s′| ∼ le-1 , |s| ∼ ú.
Substituting eq D8 into eq C6 and neglecting the momentum

dependence ofψmR(s̃) in eq C7 (i.e., settings′ ) s′′ ) s/2 in ψ
when computingVh in eq C6 using eq C7) yields:

where

Note that for smalls′ we haveVh (0)(s′;s) ∼ ln|s′| andV(1)(s) has
a finite value ats f 0. For relevant values ofs′ we also have

with the s-dependent exciton mass

Equation D9 may be solved by introducing the Fourier transform
g(n;s) of fh(s′;s):

It then adopts a form:

with

and

The eigenvalue problem eq D14 is equivalent to a 1D particle
on a lattice with potentialV(0)(n;s) + Vh (1)(s)δ0n. The structure
factor S(q,ω) assumes the following form:

where

It follows from eq D5 that for the relevant momentum

Equations D17, D19, and D14 describe the momentum de-
pendence of the dynamic structure factorS(q,ω).
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d
ds′[ε+(s′) + ε+(s′ - s)] ) 0 (D7)

f+(s′;s) ) fh(s′ - s;s) (D8)

[εe(s′;s) - Ω] fh(s′;s) + ∫ ds′′
2π

Vh (0)(s′′ - s′;s) fh(s′′;s) +

Vh (1)(s) ∫ ds′′
2π

fh(s′′;s) ) 0 (D9)

εe(s′;s) ≡ ε+(s2 + s′) + ε+(- s
2

+ s′)
Vh (0)(s′;s) ≡

- ∑Uh mnm′n′(2s′)ψm′+(s2)ψn′-
/ (- s

2)ψm+
/ (s2)ψn-(- s

2) (D10)

Vh (1)(s) ≡ ∑Uh mnm′n′(s) ψm′+(s2)ψn′-
/ (- s

2)ψm+
/ (s2)ψn-(- s

2)

εe(s′;s) ) ε0(s) + 1
2
meff

-1(s)(s′)2 (D11)

meff
-1(s) )

[ú2 + (s/2)2]3/2

ú2
(D12)

g(n;s) ≡ ∫ ds′
2π

fh(s′;s) exp(is′n) (D13)

1
2

J(s)[g(n + 1;s) + g(n - 1;s)] - Ω(s)g(n;s) +

V(0)(n;s)g(n;s) + Vh (1)(s)δn,0 g(0;s) ) 0 (D14)

V(0)(n;s) ≡ ∫ ds′
2π

Vh (0)(s′;s) exp(is′n) (D15)

J(s) ) [meff(s)]
-1 (D16)

S(q,ω) ) 2Γ
[ω - Ω(q‚R)]2 + Γ2

A(q‚R)|g(0;q‚R)|2 (D17)

A(s) ) |ψ1+
/ (s)ψ1-(s) + ψ2+

/ (s)ψ2-(s)|2 (D18)

A(s) ) s2

ú2 + s2
(D19)
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