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The electronic dynamic structure factSfg,w) of conjugated finite-size oligomers is computed using the
time-dependent Hartred-ock (TDHF) approach. The resonances observed in electron scattering are analyzed
using the Bloch representation of the single-electron transition density matrices for the corresponding polymers.
The separation of relative and center-of-mass motions of elechole pairs, which is expected to hold for

infinite chains, is shown to apply even for relatively small molecules, paving the way for a band-structure
picture of the quasiparticles. Signatures of the exciton coherence sizes in the momentum dependence of the
structure factor are analyzed.

I. Introduction incident electron to a molecule is small, and electron deflection
angles are of the order of a few milliradians. The frequency

Electronic excitations of molecules are most commonly a4 wavevector-dependent electron-scattering cross-sectton is
studied by optical spectroscopies which provide a direct look

at their energies and dynamitisible and UV wavelengths do 0 1
are typically longer than all relevant molecular lengthscales. aQ ElS(q,w)
Consequently, the information is contained only in the frequency-
dependence of the signal (e.g., absorption line shape), and thevhere the dynamic structure fact®(q,w) is the Fourier
wavevector can be set to zero. This dipole approximation, which transform of the densitydensity correlation function:
is justified by the separation of lengthscales, further results in
strict selection rules that make only a very small fraction of the Sq.w) = 1 f dti(q,t)i(—q,0)Texpiwt) (1.2)
electronic transitions optically accessible. 27HN

The wavevector-dependence of techniques based on shortN is the number of electrons in the sample, &ifd.t) is the

wavele_ngth ex_citations such as X-ra_ly and high-energy ele_zctron Fourier transform of the electronic-density operator in the
scattering carries valuable information that adds a new dimen- Heisenberg representation:

sion to the frequency-profile and provides detailed information
on all states including those forbidden by optical measurements. o _ o .
Numerous time and frequency resolved techniques are available. A(a.t) = f dr 7i(r.t) expa-r) (1.3)

Receﬁngapid progress in X-réy and electron pulse gener- EELS spectra in a variety of conjugated organic moleé®iés
atiorP~1? had opened up new possibilities for coherent short paye peen interpreted in terms of thedependence of the
wavelength measurements. A similar state of affairs exists in |oest-peak integrated intensity. The characteristic peak width
vibrational spectroscopy where wavevector-dependent neutronpas heen associated with the inverse exciton size. However, the
scattering® eliminates the selection rules of infrared and Raman q|ation between the EELS spectra and the exciton size is not
optlcalitech.nlques. _ straightforward, since, due to the momentum conservation, the
In this article, we focus on frequency-domain electron energy transferred momentum in the EELS is related to the center-of-
loss spectroscopy (EELS), which constitutes a powerful tool mass momentum of the created exciton rather than to the
for the studies of electronic excitations in molecutég he parameters of the relative motion of an electron and a #ole.
approach may be, however, directly applied to time-resolved  |n this paper, we apply a time-dependent algorithm based on
X-ray and electron scattering measurements. In an EELSthe electronic density matrix for computing the dynamic
experiment, hundreds keV electrons are scattered off a thinstructure factorS(q,w) is expressed as the linear response to
(~100 nm) film of the studied material. The deflected electrons an external potentiaE coupled to the electron density, and
change their momentum and energy fréme; to ks, €. The closed expressions for the EELS signal are derived in terms of
inelastic scattering cross-section is measured vs the electronthe eigenmodes of the linearized time-dependent Harffeek
energy lossy = € — ¢ and momentum changg= ki — K. (TDHF) equation® known as the collective electronic oscillators
The resonances in the few eV range correspond to the low-(CE0)1920 Our analysis can be directly extended to time-
energy electronic excitations. The energy loss is typically® dependent density functional theory (TDDFT), which is formally
times smaller than the incident electron energy. Wavevectors equivalent to the TDHP!
of the electronic excitations of interest lie in the region up tol In section I, we derive closed expressions for the dynamic
A~1, which means that the momentumtransferred from an  structure facto&(q,») using the TDHF. Details of the derivation
are given in Appendix A. In section lll, we present numerical
*To whom correpondence should be addressed. calculations for elongated carotenoids of different sizes and for
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a p-phenylene vinylene (PPV) oligomer. Our calculations
demonstrate that the band picture that is asymptotically exact
for polymers is still valid for surprisingly short oligomers, with,
for example,N = 10 repeat units. This is in good agreement
with recent experiments showing a quasi-band-structure for
relatively short oligomer&23

In Appendix B, we apply the band theory to characterize the
CEO modes in infinite polymer chains. These will be used for
the interpretation of the oligomer calculations. We derive an
equation that allows one to find the CEO (exciton) bands and
compute the structure factor and the EELS signals. This
derivation is based on the INDO approximation, which is also
used in our numerical calculations for finite-size molecules. The
infinite-chain results are used in section Il for identifying
polymer-specific features in finite-size oligomers. Classification
of electronic modes into quasi-bands is rather clear in longer

chains, as illustrated by contour plots representing the structure

of the modes. However, this further gives an intuitive way for

classifying the modes even in shorter oligomers where the quasi-

band structure is not so obvious a priori.

In Appendix D, we derive a simple approximate expression
for §q,w) for infinite polymers using a simplified PPP-like
Hamiltonian. This uses the linearized TDHF equation in the
molecular-orbital representation developed in Appendix C.
Using the results of Appendices C and D, we discuss in section
IV the possibility of extracting information related to exciton
size from EELS measurements. Specifically, we show that even
though the width of the momentum dependence of the lowest
inelastic peak in the spectrum may not be associated with the
exciton size, it still provides an indirect measure of the
momentum dependence of that size.

Il. TDHF Calculation of the Dynamical Structure Factor

We assume that the electronic-density operatoris coupled
to an external time-dependent potenkél,7) by an interaction
Hamiltonian

i) = — [ drE(r,0)A(r)

By expanding the expectation value of the Heisenberg
electronic-density operatdi(r,z) to first order in the potential
we have

2.1)

Fi(r,7)0= |, dtR(tr r)E(r’ T — 1) (2.2)
whereR is the density-density response function:
REEr ) = % A(r 1), [(r,0)]0 (2.3)

In the frequency domain, we define the linear densignsity
polarizability
afwir,r) = j;mdtR(t;r,r’) exp(wt) (2.4)

In Appendix A, we show that the dynamic structure factor
S(g,w) may be expressed in terms a@fw;r,r'):

Sa.0) = 2 Im[ [ drdr'o(w;r ') explig-(r — r')]]

ow;r,r') can be computed using the TDDFT or the TDHF
approaches.

The linearized TDHF Liouville-space operatothat defines
the eigenmodes (collective electronic oscillat@g)hrough the

(2.5)
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eigenvalue problemé&, = Q& is given byi9.20

LE=[t+ Vp.é]l — [b.VE]

where t is the hopping matrix,V is the tetradic operator
representing the Coulomb interactions, ahé the ground-
state density matrix. Using an orthogonal and real basis set of
single-electron atomic orbitalgm(r), the TDHF response
function assumes the form:

(2.6)

o(w;r,r) =
Trlu(n)ETTru(r)E] - Trlu(n)E I Trlu(r)E]
o+ Q, +il w—Q +il

v

whereg, are the eigenmodes of the linearized TDHF equation
with positive frequencie®,, I is a dephasing rate, apdr) is
a matrix in the single-electron space with matrix elements

Hne(1) = @) (1) (2.8)
Substituting eq 2.7 into eq 2.5 finally yields
Saw) =y ITa@é]1® (2.9)
2 (0 —Q)+T?
with
Fin@) = [ dro(rey(r) expeiger)  (2.10)

Equations 2.9 and 2.10 express the dynamic structure factor in
terms of the single-electron orbitals and the eigenmodes of the
linearized TDHF equations. The linear optical absorption line
shape is given by thg — 0 limit of these equations, since the
first nonvanishing term in the power series expansion of
Tr[ﬁ(q)gz] at smallq is proportional to the expectation value
of the dipole moment. Selection rules greatly restrict the number
of optically accessible transitions. In contrast, thdependent
EELS signals probe the entire band of excitations. It should be
noted that these results apply for arbitrary molecular geometry
and translational invariance was not assumed.

The CEO modes represent the joint motion of electrbale
pairs. For periodic structures such as infinite polymers, they
can be factorized into the relative-motion and the center-of-
mass contributions. The latter have the particle-in-a-box wave
functions characterized by a momentymwhich becomes a
good quantum number. The modes and their frequencies thus
become momentum-dependent and the molecular dynamic
structure factor per unit cell can be recast in the form (see
Appendix B):

Sa.w) = 3 Tra@E” (@-R)]?

[w — QYqR)?+ I'?
(2.11)

whereji(q), E01(g-R), andQ®(qg-R) are the Bloch representa-
tion for the dipole-moment operator and for the eigenmode and
an eigenvalue of the Liouville equation for the infinite periodic
molecule, respectivel\R is the lattice vector representing the
displacement between neighboring unit cells. Closed expressions
for all of these quantities are given in Appendix B.

Band structure is commonly used to describe the motion of
a single quasiparticle (an electron, a hole, or Frenkel exciton)
in a periodic potential, using the Bloch theorem. Here we
consider a composite quasiparticle (exciton) whose center-of-
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PPV(N)

Figure 1. Molecular geometry and atom numbering for an elongated
carotenoid CARNl) and a PPV oligomer PPY) with N repeat units.
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Figure 2. Calculated dynamic structure fact&q,w) (eq 2.9) of

CAR(20) plotted vs the energy loasfor different momentum transfer
g parallel to the molecular axis arfd= 0.01 eV.
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mass motion is described as a particle-in-a-box and the relative,:igure 3. CalculatedS(q,w)/c? for q directed along the molecular axis

motion is quantized, with different states forming different
bands. Let us compare egs 2.9 and 2.11 for a moleculeMith
electrons andN repeat units, each described by a basis s&t of
orbitals. In eq 2.9z and§, areNK x NK matrixes. There are
altogetheN, = (NK — M)M positive-frequency modes= 1,

..., N, and the&, matrices are of rank,. In eq 2.11, we have
a different structure£® have onlyNK2 distinct elementsi x

K matrices that depend dx). Each element is a function gof
and there aréN values ofg. EachQW(g-R), &9(g-R) for a
given v and varying values of] form a band.

Ill. CEO Modes and Structure Factor in Elongated
Carotenoids and PPV Oligomers

We have compute®q,w) for three elongated carotenoids
[CAR(N)] with N = 10, 20, and 40 repeat units; [CAR(10)
resembles the naturg@-carotene]. We further considered an
oligomer ofp-phenylene vinylene PPV(10) (see Figure 1).

In an infinite polymer chain, the dynamic structure factor
Sg,w) (eq 2.11) has resonance peaksvat Q) (q*R). QW
form distinct bands labeled by the band index he following
calculations show that the maxima${fj,w) (eq 2.9) form bands
w(q) even in medium-size oligomers, with the difference that

andI’ — 0. Each CEO mode gives a series of peaks at frequerrcy

Q, but with different values ofq. The radius of each circle is
proportional to the peak intensity. Normalization for each frequency
(horizontal lines) is performed for clarity. (For translationally invariant
system, each CEO mode will give a single peak at a particular value
of g.) Top panel: 26 lowest-frequency electronic modes of CAR(10);
middle panel: 50 lowest modes of CAR(20); bottom panel: 50 lowest
modes of CAR(40).

the CEO mode frequencie®, can only assume discrete
g-independent values. The appearance of a distinct band
structure, characteristic of infinite polymer chains, even for small
oligomers, indicates an approximate factorization of the eleetron
hole relative and center-of-mass motions. This is further
confirmed by the following 2D plots of the collective electronic
oscillators which show a separation of the diagonal (center-of-
mass) with the off-diagonal (relative) motions.

Ground-state geometries optimized at the AM1 level using
Gaussian9%* were taken from ref 20. We used the INDO/S
semiempirical Hamiltonian, as parametrized by Zerner and co-
workers in the ZINDO codé>2® The ground-state Hartree
Fock single-electron density matipx,, was computed, and the
eigenmodes§, mn of the linearized TDHF equation (eq 2.6) were
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Q;=230eV Q=2.60eV Q3=293eV Q4 =3.23eV

Qe=3.78eV

Q7=3.80eV

Qg=392eV

Figure 4. Lowest-frequency modes, m of CAR(20) plotted on a logarithmic scale. TReandy axes are labeled by the carbon atoms to which
the mth or nth atomic orbitals belong. Mean-square averaging is performed over all painthaindnth atomic orbitals corresponding to each
particular pair of atoms (see ref 29). The carbon atom numbering is given in Figure 1. Shown are the lowest 19 modes.
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Figure 5. The lowest 50 modes of CAR(40). For details see Figure 4.
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Figure 5 (continued)
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Q1 =494 eV Q=494 eV Qi3 =494eV Q4 =497V

Q47=5.05eV

Figure 5 (continued)

then obtained using the oblique Lanczos algoriffr(q,w) increasingN where the CEO modes form a more dense
(eq 2.9) was computed using 50 lowest-frequency CEO modesmanifold. Three lowest bands with band-edges-at2, ~3.8,
E,mn In all calculations,q was directed along the molecular and~4.6 eV are clearly identified for CAR(20) and CAR(40).
axis. The momentum-space electron density(q) was calcu- Many CEO modes can be assigned to a particular band
lated using eq 2.10, neglecting the overlap of electronic orbitals according to the location of the maxima in thedependence
centered at different atoms, and expanding the exponential factorof q,w) atw = Q, using Figure 3. However, for frequencies
to first order inr around the center of the atom to which a higher than the second band-edge, we find that modes from
particular atomic orbital belongs. different bands but with close frequencies may be mixed. In
Figure 2 depicts the variation of the frequency-dispersed this case, Figure 3 may not be sufficient for a unique classifica-
Sq,w) of CAR(20) with g. We note that the largest peaks of tion of the modes.
Sq,w) for eachw form a curveq(w) that shows approximate The bands and CEO modes can be further characterized using
periodicity with period~2.6 A-L. This is in good agreement 2D contour plots of the single-electron transition density
with the half-widths/R of the Brillouin zone of the correspond- — matrixest, mn. Figure 4 shows, mn for the 19 lowest-frequency
ing polymer where the lattice constantRs~ 2.45 A. modes of CAR(20), with the axes labeled by the carbon atoms
In Figure 3 we displayS(q,w)/g? which is proportional to to which themth (nth) atomic orbitals belong (Figure 1). The
the EELS signal vsq and w for CAR(10), CAR(20), and plots span 3 orders of magnitude on a logarithmic scale from
CAR(40) in a different format. We divide bg? because it red (large) to blue (small), with the absolute values&pfn
follows from egs 2.9 and 2.10 th&q,w) O g2 for g — 0 [cf. normalized to the maximum. Comparing Figures 3 and 4 shows
also eqs D17 and D19]. The values¢fj,w)/q? are normalized that the number of nodes (or peaks) in the antidiagonal direction
separately for eachy to best illustrate the-dependence for  in the 2D plot of&, mn is fixed for a given band, while in the
each CEO mode; the relative oscillator strengths of the modesdiagonal direction the number increases vgjtiiithin the same
depicted in Figure 2 are thus not shown. Each CEO mode hasband. This suggests that the relative and center-of-mass motions
resonances at different valuesepfepresented by circles whose  of the electror-hole pairs are virtually independent, i.€,,mn
radii are proportional to the peak intensities. The range iof may be factorized as expected for infinite polymer chains (eq
Figure 3 roughly covers the first Brillouin zone of the infinite  B3).
polymer chain. The figure demonstrates how the band structure It is clearly seen from Figure 4 that the= 1—6, 9, 11, 13,
of elongated carotenoids becomes more pronounced with16, 19 modes have a single peak in the antidiagonal direction
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Qp=251eV Q> =3.08eV Q3=3.58¢eV Qi=396eV

Qs=4.03eV

Qg=4.31eV

Qg =4.68 eV

Figure 6. The lowest 50 modes of CAR(10). For details see Figure 4.
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Q21 =5.80eV Q»=582eV

Qe =5.95eV Qrg=6.17eV

Figure 6 (continued)
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Figure 6 (continued)

and thus belong to the first band. The number of peaks along groups). In the second band, the frequencies of the first, second,
the diagonal direction uniquely distinguishes the various modes and third modes for CAR(20) (3.80, 3.92, and 4.09 eV) almost
of the first band; this number characterizes the momentum of coincide with those of the second, fourth, and sixth modes of
the exciton’s center of mass, resembling a particle in a 1D box. the second band for CAR(40) (3.79, 3.91, and 4.08 eV,
The higher the momentum, the more peaks and nodes are foundespectively), as well as the internode distances. It then follows
in the diagonal direction, and the higher the frequency of the that we can view the (Bth mode in a particular band for
mode. They = 7, 8, 10, 12, 14, 17 modes have two peaks in CAR(40) as a combination of twmath modes in the same band
the antidiagonal direction, indicating that they belong to the for CAR(20), with negligible interaction between them. The
second band where a different pattern of the partiblele density of states of CAR(40) is thus almost twice that of
relative motion is realized. The = 15 and 18 modes belong CAR(20).
to the third band and have three peaks in the antidiagonal Once two or more modes from different bands mix, they may
direction. no longer be rigorously assigned to a particular band. Neverthe-
The band structure of the CEO modes becomes more sharplyless, they can be effectively described by taking into account
defined for longer oligomers where edge effects are less the exciton scattering effects at the ends of the molecule.
pronounced and the separation of the partitiele center-of- However, provided exciton scattering is not too strong, we can
mass and relative motions is more justified. This is illustrated still approximately assign the mode to one of the bands
for CAR(40) in Figure 5. Modes from the six lowest-frequency according to the node structure of its transition density matrix.
bands are easily recognizable among the 50 lowest modesFor example, the = 6 mode in Figure 4 has a small component
shown. Comparing the modes of CAR(20) and CAR(40), we of the first mode from the second band, but the main contribu-
note that the frequency of a mode belonging to a particular bandtion is definitely from the sixth mode of the first band. The
is mainly determined by the distance between the nodes in thepairs of modes 37, 38, and 42, 43 in Figure 5 are good examples
diagonal direction (“particle-in-the-box” motion). For instance, of strong mixing of nearly degenerate modes from the first and
in the lowest band the frequencies of the first, second, and third fourth bands.
modes for CAR(20) (2.30, 2.60, and 2.93 eV) are close to those Understanding the classification of bands and CEO modes
of the second, fourth, and sixth modes for CAR(40) (2.33, 2.66, for relatively long oligomers should help identify the same
and 3.00 eV, respectively) that correspond to the distancespattern for smaller carotenoids such as CAR(10) (Figure 6)
between nodes of 20, 10%/6repeat units (neglecting the end  which is closer to the naturgi-carotene molecule. Since the
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orders of magnitude less than for the first band. (The effective
exciton mass was estimatedgpdr 0 based on the curvature of
the quasi-band at that point.) Another flat band lying just below
5 eV is concave (i.e., has the maximum-frequency modg at
= 0) with exciton effective mass 2 orders of magnitude less
than the first band. In these bands, the atoms bridging the phenyl
rings weakly participate in the excitation while the induced
density matrix still shows coherences between the phenyl rings
and between the phenyl rings and these bridges. These two bands
are displayed on an expanded frequency scale in the middle
and bottom panels of Figure 7.

Most of the 50 lowest-frequency CEO modes for PPV(10)
shown in Figure 8 can be easily assigned to a specific band in
Figure 7. However, for frequencies > 5 eV mode mixing
belonging to different bands makes such classification more
difficult. We further note that besides the number of nodes in
the antidiagonal direction, the CEO modes belonging to different
bands may be distinguishable by the electronic excitation pattern,
as was demonstrated for short carotenoids in Figure 6.

Discussion

We have recently demonstrated that for intermediate-size
molecules where spectral resolution is high and the EELS peaks
related to different excitons are well resolved, the momentum
dependence of the lowest peak integrated intensity only carries
information on the molecule siZé Additional information on
the dependence of the exciton size on its momentum may be
extracted from the relative integrated intensities of the higher
EELS peaks. It is, however, sometimes possible to extract
meaningful information on exciton properties from the momen-
tum dependence of the lowest peak intensity. This is the case
for sufficiently long oligomers where exciton lines overlap. The
lowest peak then represents many overlapping excitons, rather
than the lowest-energy one. The momentum dependence of this
collective peak provides information on the higher-momentum
excitons. The situation becomes very clear in infinite polymers

_ _ where the exciton momentum is a good quantum number and
Figure 7. Top panel: same as Figure 3 but for 50 lowest-frequency the |owest peak in the spectrum is represented by the lowest
modes of PPV(10)I( —~ 0). The middle and bottom panels show the ayciton with a given momentum (i.e., the exciton from the

two “flat” bands of the top panel on an expanded frequency scale. Their . .
frequency dispersion is-23 orders of magnitude smaller than for the lowest b‘?‘”‘?') r.athe.r than by the apSOIUtely onvest. energy exciton.
To gain insight into the behavior &q,w) in this limit, we

other bands. i ; vigh N
consider a simple model of an infinite polymer chain with two

mode frequency spacing is twice that of CAR(20), we have more Orbitals per unit cell and a simplified Pariseparr-Pople (PPP)
bands in the frequency range of the lowest 50 modes and atype Hamiltonian. This model, which describes qUE\litatiVEly the
wider variety of mode types. Mixing of modes belonging to 7-orbitals of an elongated carotenoid, is analyzed in Appendix
different bands complicates the mode classification at high D for the limit of weak bond alteration, whereby the bond
frequencies. An interesting feature of the modes at the top of a@lternation parameter (eq (D1j) < 1, and weak Coulomb
band is that the number of nodes in the diagonal direction interaction when the exciton size > {™*. In this case the
increases as the frequency is lowered from the upper band-edgeproblem may be reduced to a 1D particle on a lattice. The
which is similar to the behavior near the lower band-edge. This €lectronic eigenmodes are expressed in terms of the particle
is clearly seen in Figure 6 where the 24, 23, 20, 16, 13, ... modeswave function (eqs C4, D8, D13, and D14). The calculation is
form the top of the first band. We further see modes from new based on the effective mass approximation and neglecting
bands (not shown in Figure 3) which have no nodes in the processes that do not conserve the number of electrole
antidiagonal direction, like the modes from the first band. Pairs. Both assumptions are valid whign> {2,
However, the pattern of the electronic excitation in the unitcell It follows from egs D17, D19, and D14, that the integrated
is markedly different (see e.g., the modes witk 21 and 25).  EELS signal

We have also calculated the 50 lowest-frequency CEO modes 1 dw

for the p-phenylene vinylene PPV(10) (Figure 1). This oligomer I(q) = > ZﬂS(q,a)) (4.1)
has a richer band structure compared to carotenoids. The top @R)

panel of Figure 7 display§(q,w)/g? in the same way as in  can be expressed as a product of two factors:

Figure 3. The momentum transfgiis again directed along the 1

molecular axis. The range ofin Figure 7 corresponds to the I(q) = 19(0:9)|2 4.2)

2
first Brillouin zone. We can distinguish several bands, some g+
have their top ag = 0. There is a flat band in the frequency wheres= g-R. The first factor shows the change of the structure
region around 4 eV with the effective exciton mass almost 3 factor on a typical momentum scade~ ¢ related to the bond
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Figure 8. Fifty lowest-frequency modes,m» of the PPV(10) (see caption to Figure 4 for details). The carbon atoms numbering is given in Figure
1.
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Figure 8 (continued)
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Figure 8 (continued)

alternation. The second factor is the square of the relative motionin section Il. Includingp allows us to manipulate the response
wave functiongg(n;s) of an exciton at the originn(= 0) that and connect it with the structure factor. The corresponding time-
depends parametrically on the center-of-mass momesti(ap) domain linear response functidhis defined by expanding the
thus contains indirect information on the dependence of the expectation value of the Heisenberg-picture opefiter,r)e™'¢
exciton size on its momentum. The first factor in eq 4.2 is a in powers of the effective driving potential:

simple Lorentzian whose width is determined by the bond

alternation parametér The deviation from the Lorentzian form [m(_qﬂ)@—ifp — j‘“’ dt _R(t;q,go)E'(r —t)+... (A2
provides the momentum dependence of the relative-motion 0
exciton wave function when an electron and a hole occupy the
same site rf = 0). Since the latter is directly related to the
exciton size, the signal carries indirect information on the
momentum dependence of the exciton size.

We further introduce a frequency-domain linear response
function a(w;q,¢) that also depends parametrically grand
@:
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Appendix A: Density Response and the Structure Factor Hwia.e) s

We assume that the system is coupled to an external potential |0|A(q)|v0P |2|A(q)| 007
E'(r) via an interaction Hamiltoniamd; (t) = —E'(z)P(q,¢) o(w;q,p) = — = —+
where P(q,¢) is an effective charge density operator that ro+Q+il Go—-Q+iT
depends parametrically on the waveveajcand a phase: O|A(—q)|20|A(q) |20

: exp(—2ig) —
P(q.¢) = A(a)é” + A(-q)e (A1) T et il
_ , o [0]A\(—q) | »10|A(q) ]

and f(q) is the Fourier transform of the electronic-density - exp(dp) (A4)
operatorfi(r) (eq 1.3). Note thaH;,(7) differs from that used v w—Q,+il
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the spectral decomposition of the dynamic structure factor (eq labels the modes for a given momentum. Using this notation,
1.2) gives eq 2.6 adopts the form:

ZF =(v v =(v

Sa.0) = ¥ IBIN@)I0FE —————  (A5) L©E(s) = QU(9E)(9) (B4)
g (0= Q) +17 _ _ |

where the operatdi(s) acts in the space ¢pfdependent matrixes

whereT is a relaxation rate. Comparing egs A4 and A5 we &mnj- Substituting egs B2 and B3 into eq 2.6 yields, after some
obtain straightforward transformations:

It follows immediately from egs 2.1 and Al that In eq B5, we have introduced the deformed commutator:

o(w;q,p) = f drdr'a(w;r,r')Y{explig:(r —r")] + ([E-ﬁ]s)mn;j = Z(émn;jfkﬁn'n;k — explis(j — k)]ﬁmn;kén’n;jfk)
n,
explia-(r +1') — 2igl} (A7) (86)
Substituting eq A7 into eq A6 we obtain eq 2.5. V(s) is an operator acting in the spacejafependent matrixes

that further depend parametrically sn
Appendix B: Dynamical Structure Factor In Infinite 1D

Lattices [V(S)‘S]mr;j = ;[(%jumﬁnm(s) - Umr‘fnm(j)]gmn’;j (B7)
In this appendix, we derive expressions for the dynamic n

structure factor of polymers of infinite length with 1D discrete _ . ) )

translational symmetry. The generalization to 2D and 3D discrete Umnk(S) is a Fourier transform olmnk(j):

translational symmetry is straightforward. We will rely on the _

INDO (intermediate neglect of differential overlap) approxima- UnniS) = ZUmnkKj) exp(-isj) (B8)

tion, without alluding to a specific Hamiltonian parametrization. ]

For better numerical precision, one might want to use a higher-

level approach, such as ab initio calculations described in refsh is an analogue of the Fock matrix:

30—32. Various approaches that were successfully used for .

calculating polymer response were extensively analyzed and h=t+ V() (B9)

compared in ref 33, which included discussion of TDDFT .

computations in polymers and numerical convergence issuesWheretmn; = tmd(j). We have also chosen the coefficiebtgn(j)

for different algorithms. such that

Each unit cell is represented by a basis sé& atomic orbitals
@m(r) (K is generally larger than the number of atoms in a unit Upmid =) = Upnili) (B10)
cell). Introducing the annihilation (creation) operatﬁ,rﬁ(é;yj)
of an electron on thenth orbital in thejth unit cell, the Using the above notation, we can recast eq 2.9 for the
Hamiltonian assumes the form: dynamic structure facto8(g,w) in the form of eq 2.11. We

1 further need to introduce a Bloch functi@gq) for the Fourier
N At ~ At At A 4 i . . . . .
H =Y todi)CmyiCap + 5D YnnidiCnjss Eyi Gy (B1) tsri?:”s;ﬁ;rqoo; ;hg;lectromc density function, which is defined

wheretn(j) describe electron hopping from orbitalof unit _ . 1~

cell j' torgzbital m of unit cell j’ +ij.) Tghis matrix element is P40 (@) = €xPEi(@R)T gy (A) (B11)
independent ofj’ because of translational symmetry. The

Coulomb matrix elements in eq B1 are obtained by neglecting Wherez(q) is given by eq 2.10 except that each atomic orbital
the overlaps of atomic orbitals on different atoms. This is known S labeled by two indicem andj (rather than one). It is easy to

in quantum chemistry as the INDO approximation. The Hamil- see from egs 2.10 and B11 that if we neglect the overlap of
tonian parameters are, thereforg;dependent hopping matrix ~ orbitals belonging to different atoms theini(d) O dq;,
tmi(j) and tetradic Coulomb matrikmnj). The ground-state ~ consequently, we only need to kngwq) within the Oth unit

density matrixpm;-+jn; is translationally invariant as well and ~ cell of the polymer. _ _ o
can be represented as The normalization of the modes in a translationally invariant

polymer adopts a form:
pm,i’+j;n,j’ = f’mm‘ (B2) @t o "
Here pmn; is @ matrix-valued function of an integer argumgent THETEpETEMm 27 SgN€T(9))0,,0(5 — 8) (B12)
(aj-dependent matrix). Translational symmetry also implies that
each eigenmode of eq 2.6 has a circular momergwrith s +
27 = sand is expressed in terms of-alependent matrigmnj:

This immediately yields for the positive-frequency modes:

Eng g9 = XDy (9 (63) > 9 (P E NIy = ~snQ S, (B13)
mj'+jnj’\S/) T mnj mny

The modes are, therefore, representeg-tgpendent matrixes ~ With the £@ and Q® found from eq B4£® being normalized
E)(s) that depend parametrically on the momentgnand v according to eq B13, and with(q) defined by eqs B11 and
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2.10, we can calculate the dynamic structure factor given by molecular orbital representation will be further used in Appendix

eq 2.11. D for studying a model of an infinite periodic molecule.
Appendix C: Linearized TDHF Equation in Infinite Appendix D: Signatures of Exciton Sizes in EELS
Chains: Molecular-Orbital Representation Spectroscopy

In this appendix, we recast the linearized TDHF equation (eqs  In this appendix, we consider a simple model of an infinite
2.6 and B5) in infinite chains using the molecular orbitals basis polymer chain with two orbitals per unit cell and a Pariser

set. We start with the Bloch representation of orbitals: Parr—Pople (PPP) type Hamiltonian. This model will be used
in section IV to establish some qualitative analytical criteria
Q,mj_a(s) = exps)) (S (C1) for the possibility of extracting exciton size information from

EELS measurements. Higher level computations on polymers
can be found in ref 34. We will analyze the limit of weak bond
alteration whereby the bond alternation paraméter 1. It will

be instructive to consider the case of weak Coulomb interaction
when the exciton sizk > =1 where the analysis can be made
analytically. The molecular-orbital representation of the linear-

wherea. parametrize molecular orbitals with momentsnThe
molecular orbitals are the eigenstates of the single-particle
Hartree-Fock Hamiltonianhmg; introduced in eq B9:

z 9% na(S) = €6()Wa(S) (C2) ized TDHF equation will be used here, which is described in
n Appendix C.
_ ) ) _ We first note that in this case we can neglect the Coulomb
wherehm(s) is the Fourier transform dfimp;: contribution to the single-electron Hamiltonidn Assuming
_ nearest-neighbor hopping, we have the following nonzero
ho(S) = thm exp(isj) (C3) elements oh:
T
The CEO mode§n,; may be recast using the molecular orbitals: Mi20= Naso = (1 B E)t
hioy=hpy g = (1 + g)t (D1)

- ds i
Enng(9) = Z S ZWm(g)wzﬁ(S’ — 9)f4(s:9) expls]) (C4)
* wheret is the average hopping add« 1 is the bond alternation
Equation C4 represents a CEO mode with parametric Parameter. Equation D1 yields fa(s) defined by eq C3
dependence on momentwsas a superposition of contributions _ _ ¢ £
whereby an electron from orbitlwith the momentuns — s hi(s) = h3,(s) = [(1 - 5) + (1 + E) exp(—is)]t (D2)
is moved to orbitalh and momentuns.

The inverse transformation [i.e., frofto f(s)] has a form Denoting the upper (lower) electron bands-bg) we obtain

_ o upon the substituting of eq D2 into eq C2
fop(S:9 =D D Via(S)ns(S — 9Emei(s) exp(isT) (C5)
T mn €. (9 =Ht[FP+2(1— ) +coss)]?  (D3)

We further introduce the function sgr)(= 1(—1) if the orbital
o is occupied (unoccupied).

The operatol(s) in the molecular-orbital representation is 1 - 1
obtained by substituting eqs C4 and C5 into eq B5 and making P1.(9) = f—hlz(s)' Pou(s) = 7 (D4)
use of eq C2 which yields: 2¢.(9) 2

and

Q) — no_ " e We will show later that the relevant momenta in the problem

L(So(S":9) = [ea(s") — €508 dgs)]f“/’(g ) ares — . Equations D3 and D4 then adopt the form:

sgn(@) — sgn —V,_4,4(S",S:9) —

[san@) = sanfi 5 J 5 Wapap (' $39) (8 = HU(E + D)2

Voapp(s',S" — 58" — S)[fys(s;s) (C6) Pi(e) = + —C+is (D5)
Y 2 1/2
+
where we have used the matrix elements of the Coulomb ﬁ(é SZ)
_ determined by a pair of functiofy_(s’;s) andf_.(s;s) where
Vaﬁa’ﬁ’(s”asl;s)z the operatorL(s) is given by eq C6. When the Coulomb
Umnmn’(S” _ S')T/)ma'(s')wz'ﬂ'(s' —9x interaction is weak, we can negldct.(s’;s) in the equation for

a positive frequency eigenmode. Denotings'’;s) = f+-(S;9),
we obtain the normalization

mnmn’

Vina(SNp(S" = 9) (C7)

ds Q2 —
Since the modes do not have intraband componép(s;;s) = ffﬂ%m(s,sﬂ =1 (D6)
0 only if sgn@) = sgnf).
The expressions for the HartreEock Hamiltonian (eq C2)  We now find the value ofs for which the kinetic energy
and for the Liouville operator (eqs C6 and C7) written in the ¢4(S) — e—(S — ) of an electror-hole pair has a minimum:
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Llen(s) +es — 9] =0 (D7)

Whens is not too large (i.e.s ~ {) this yieldss, = §/2. We
then look for the solution of the eigenmode in a form
f.(s;9=1f(S —s9) (D8)

wheref(s’;s) is substantially nonzero fds| ~ l¢1 < || ~ €.

Substituting eq D8 into eq C6 and neglecting the momentum

dependence afmy(3) in eq C7 (i.e., setting =s’' =92 iny
when computingV in eq C6 using eq C7) yields:

[edsi9) — QAf(:9 + [ TV - 819 T(s's9) +
e f %f(s';s) =0 (D9)
where

e(s:9) = e+(§ + s) + e+(—

S
> —+s)

2
\_/0)(5’ S) =
- ZUmnmn'(ZS )wnf+(§)1/f.§v_(— g)w’,iw(%)wn_(— g) (D10)
10 S0um vl

Note that for smals we haveV©(s:s) ~ In|s| andV(1)(s) has
a finite value ats — 0. For relevant values of we also have

1 -
edS:9) = €9 + 5Mme(9)(S)° (D11)
with the s-dependent exciton mass
B 2 4 (g2Y332
M9 = 5 (012)

Equation D9 may be solved by introducing the Fourier transform

g(n;s) of f(s;9):

a9 = [ SEis9expisn) (013
It then adopts a form:
33609+ 19 + gln — 9] — A9 +

VOMm9gmis) + V(93,0 9(0:5) = 0 (D14)
with

Vg = [ E s expisn)  (D15)

and

IS = [m(9] (D16)

The eigenvalue problem eq D14 is equivalent to a 1D particle

on a lattice with potentialO(n;s) + VA(s)do,. The structure
factor §(q,w) assumes the following form:

2r
[w — Q(q-R)]? + I'?

Sqw) = AG-R)|g(0,q°R)|*  (D17)

Chernyak et al.

where

A®S) = (Y1 (y1-(9) + ¢;+(5)1/)2—(S)|2 (D18)

It follows from eq D5 that for the relevant momentum

S

A=z 2

(D19)

Equations D17, D19, and D14 describe the momentum de-
pendence of the dynamic structure facgqg,w).
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