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The utility of a semiclassical initial value representation (SC-IVR) to simulate coherent control is explored.
Specifically, bichromatic control of the state specific ICN photodissociation in the A˜ continuum is investigated
both quantum mechanically and semiclassically, and the ability of the SC-IVR method to reproducephases
of transition matrix element products is examined. Control over the I(2P1/2)/I(2P3/2) product ratio is considerable
and the resultant semiclassical photofragmentation ratios are in good agreement with full quantum dynamics
calculations.

I. Introduction

Understanding, manipulating, and utilizing laser-induced
quantum interference effects in chemical reaction dynamics is
a central problem in the development of the new optical
technology to control atomic and molecular processes. These
quantum mechanical effects require detailed investigation using
new computational techniques for modeling excited state
chemical dynamics. Indeed, quantum mechanics simulations
have already proven useful in understanding and developing
coherent control techniques.1 However, these rigorous compu-
tational methods are currently limited to systems with only a
few degrees of freedom, since they usually require computational
effort and storage space that scales exponentially with the
number of coupled degrees of freedom. Future computations
of larger systems must, in the forseeable future, rely on
developments in semiclassical dynamics techniques.

In this paper we examine the utility of semiclassical initial
value representation SC-IVR techniques for coherent optical
control simulations, and we investigate coherent control of
nonadiabatic ICN photodissociation in the A˜ continuum. Specif-
ically, we consider control of the I/I* ratio in ICN photodisso-
ciation using the bichromatic coherent control scenario.2,3 In
this scenario, two lasers are used to photodissociate ICN,
prepared in a superposition of coherent states. Control can be
achieved by varying the relative phases and intensities of the
two photodissociation lasers, or by varying the expansion
coefficients in the superposition state. This particular coherent
control scenario has yet to be demonstrated experimentally but
has been investigated theoretically, using quantum mechanical
simulations as applied to ICH3 photodissociation dynamics,
demonstrating a broad range of control over the possible
photofragmentation channels.2,3

Of particular interest in this paper is the SC-IVR approach,
which is a generalization of classical molecular dynamics
simulation methods. This approach combines the quantum
superposition of probability amplitudes with real-valued classical
trajectories in the computation of the quantum mechanical
propagator.4-17 These methods aim to provide a tractable
alternative to exact quantum mechanical computations18 as well
as an intuitive understanding of complex quantum dynamics

associated with chemical reactions. In this paper we implement
a SC-IVR approach that is able to describe electronically
nonadiabatic processes through the quantization of the classical
electron-nuclear model Hamiltonian of Meyer and Miller.19

This SC method has been successfully applied to the three
1-dimensional model problems suggested by Tully for testing
nonadiabatic dynamics,20 and to the spin-boson model for
dissipative systems.21,22However, the only applications to date
for a real molecular system have been the studies of ultrafast
photodissociation dynamics of ozone,5 and the nonadiabatic
photodissociation dynamics of ICN in the A˜ continuum.23 The
latter computations demonstrated the capabilities of the SC-
IVR for simulating both the absorption band, and the rotational
distributions of CN photofragments. There remains, however,
the nontrivial question as to whether this method can also be
successfully implemented to simulate coherent control, which
requires quantum phases as well as amplitudes.

In this paper we show that such semiclassical approach can
indeed be effectively implemented to describe the complex
quantum interference terms required in coherent control of ICN
photodissociation dynamics. Specifically, we evaluate the
cumulative ICN state specific photofragmentation amplitudes
using the Herman-Kluk SC-IVR methodology, together with
stationary phase MC methods (see refs 5 and 23). For the sake
of presenting a rigorous comparison between semiclassical and
full quantum mechanical results, we solve first the scattering
problem at the complete state-to-state level, and then compute
the cumulative transition amplitudes by summing over final
states. As a byproduct we also produce the cross sections for
ICN photodissociation into various product channels with
excitation from a variety of initial ICN states.

The ICN Ãcontinuum is a broad absorption band in the 200-
300 nm range.24 Photolysis at approximately 266 nm induces
predominately3Π0+ r X parallel transitions, and produces two
peaks in the translational photofragment spectra. These peaks
are assigned to two photodissociation pathways, indicated below

that produce either iodine atoms in the I*(2P1/2) spin-orbit state,
through adiabatic photodissociation, or iodine atoms in the† Part of the special issue “William H. Miller Festschrift”.

ICN + pω f I*( 2P1/2) + CN(X2Σ+)

f I(2P3/2) + CN(X2Σ+) (1.1)
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I(2P3/2) spin-orbit state, through nonadiabatic dynamics at the
conical intersection between electronic excited states3Π0+ and
1Π1, respectively. Herepω is the photoexcitation energy, and
the CN radicals are produced in the ground electronic state CN-
(X2Σ+). Little vibrational excitation is found in the CN fragment
(>98% inV ) 0), but the rotational distribution of CN involves
highly excited states and exhibits a bimodal structure.25 Experi-
ments have shown that the CN fragment is formed with
rotational distributions that peak at low quantum numbers when
dissociation of the molecule produces excited state iodine atoms
I*( 2P1/2). The channel forming ground state iodine I(2P3/2),
however, produces CN fragments that are rotationally hot.
Experiments have also shown that the I/I* branching ratio in
the CN rotational distribution is not very sensitive to the initial
temperature of the parent molecule but can be strongly controlled
in terms of the photoexcitation wavelength, with I* production
accounting for approximately 62% of the total product at 266
nm, but much less at both lower and higher photoexcitation
energies.26

In this paper we show that the I/I* branching ratio can also
be controlled over a broad range of values, simply by changing
the relative phases of two laser pulses that photoexcite an initial
superposition state to the same final energy state in the A˜
continuum. Considering the longstanding interest in ICN pho-
todissociation, we anticipate considerable experimental interest
in examining this control scenario.

The paper is organized as follows. In section II we first outline
the CC technique based on bichromatic excitation of a super-
position state, and the SC-IVR methods implemented in our
simulations to calculate the degree of yield control in terms of
state-to-state specific transition matrix elements. Section III then
summarizes our semiclassical results, and compares them with
full quantum dynamics simulations. Section IV summarizes and
concludes.

II. Methods

A. Bichromatic Coherent Control. We consider bichromatic
coherent control in a model of ICN photodissociation.2,3 In
accord with this scenario, the system is prepared in an initial
superposition state

where|Φg〉 is the ICN ground electronic state wave function.
Here |ø0(j)〉 is the nuclear eigenstate of energyEj associated
with excitation in the j-th vibrational state of the Jacobi
coordinateR, which represents the distance between the iodine
atom and the CN center of mass. The system is subsequently
photoexcited with two CW lasers with frequenciesωj andωk,
whereωj ) E - Ej, andE represents the final energy of the
system after photoexcitation to the A˜ continuum. That is, we
excite the system with the electric fieldε(t)

whereεjj andεjk are time independent vectors of length|εjj| and
|εjk|. θj and θk are the phases of the two pulses. As a
consequence, both|ø0(j)〉 and |ø0(k) 〉 are raised by the laser
field with frequenciesωj andωk, to states with energyE in the
continuum, denoted|E,ê,J-〉. Here J is the CN angular
momentum andê ) (I1/2 or I3/2), denotes the state of the iodine
product. The CN vibration is ignored since experiments show
little CN vibrational excitation after photodissociation. These
two photoexcitation routes interfere with one another.

Assuming that the field is sufficiently weak to allow the use
of first-order perturbation theory, the relative product ratio
R(ê,ê′,E), of producing product in arrangement channelê to
that in arrangementê′, at energyE, is given by

Here x is the ratio of controllable parametersx ) |(ck|εjk|)/
(cj|εjj|)|, andΦjk(ê,E) is the phase of the cumulative transition
matrix elementµjk(ê,E), where

with µε being the dipole operator along the direction of the field.
Note that the off-diagonalµjk manifest the interference between
components of the continuum wave function which are excited
by independent coherent excitation pathways. The matrix
element〈E,ê,J-|µε|ø0(j)〉 in eq 2.4, is the state-to-state specific
transition matrix element associated with the initial vibrational
state|ø0(j)〉, and the final photodissociation channel correspond-
ing to electronic stateê, CN rotational stateJ, energyE, and
incoming boundary conditions.

Equations 2.3 and 2.4 show that the relative product yield
R(I1/2:I3/2,E) of product in I1/2 to product in I3/2 can be computed
in terms of the state-to-state specific transition matrix elements
〈E,ê,Jh|µε|ø0(j)〉, and can be experimentally controlled by
changing either the initial superposition state, or the relative
phase and amplitude of the CW photoexcitation lasers.

The state-to-state specific transition matrix elements are
obtained in the time dependent picture by evolving each wave
packet component|ø0(j)〉 in the initial superposition times the
dipole function, to obtain|øt(j)〉 as determined by the nonadia-
batic excited state dynamics at timet. We then compute the
desired matrix element as

where 〈K,J,ê|øt(j)〉 is the asymptotic nuclear wave packet, in
the K - J representation, associated with the final electronic
stateê. Note that the integral associated with the rhs of eq 2.5
should include the appropriate Jacobian factors. HereK is the
nuclear momentum conjugate to the Jacobi coordinateR, and
K(E) is its asymptotic value at final energyE and CN rotational
stateJ, given by the formula

where E0(ê) is the asymptotic energy of the electronic state
potential energy surface associated with photodissociation
channelê, M is the reduced mass associated with coordinateR,
andm is the C-N reduced mass.

To obtain 〈K,ê,J|øt(j)〉, we compute the asymptotic wave
function 〈x,R,θ|Ψt(j)〉 that results from nonadiabatic dynam-
ics propagation, after instantaneous photoexcitation of the
|Φg〉|ø0(j)〉 state component in the initial superposition to the
optically active electronic excited state resonant with the
excitation energy. Herex are the electronic degrees of freedom,

|Ψ0(j,k)〉 ) |Φg〉(cj|ø0(j)〉 + ck|ø0(k)〉) (2.1)

εj(t) ) εjje
-i(ωjt+θj) + εjke

-i(ωkt+θk) + c.c. (2.2)

R(ê,ê′,E) ) {|µjj(ê,E)| + x2|µkk(ê,E)| + 2x cos(θj - θk

+ Φjk(ê,E))|µjk(ê,E)|}/{|µjj(ê′,E)| + x2|µkk(ê′,E)| +
2x cos(θj - θk + Φjk(ê′,E))|µjk(ê′,E)|} (2.3)

µj,k(ê,E) ) |µjk(ê,E)|eiΦjk(ê,E)

) ∑
J)0

∞

〈ø0(k)|µε|E,ê,J-〉〈E,ê,J-|µε|ø0(j)〉 (2.4)

〈E,ê,J-|µε|ø0(j)〉 ≡ lim
tf∞

〈K(E),J,ê|øt(j)〉e
iEt/p (2.5)

K(E) ) [2M(E - E0(ê)

p2
-

J(J + 1)

2mr2 )]1/2

(2.6)
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andΘ is the angle between the I to CN distance and the CN
axis. Projecting out the corresponding electronic state|φê〉 gives

and transformingΨê
t(R,θ;j) to theK-J representation according

to

gives the desired〈K,J,ê|øt(j)〉. HereA is a normalization constant,
and the spherical harmonicYJ0(Θ) represents theJ-th rotational
state of the CN fragment. The computational task for predicting
the degree of yield control is therefore reduced to calculating
the cumulative transition matrix elementsµi,j(ê,E), in terms of
the asymptotic state components|Ψt(j)〉 obtained according to
the SC-IVR methodology described in section IIB.

B. State-Resolved Semiclassical Approach.The semiclas-
sical approach considered in this paper computesµi,j(ê,E) from
|øt(j)〉, in accord with eqs 2.4 and 2.5. The|øt(j)〉 are computed
by propagating each state|Ψ0(j)〉 in the initial superposition
according to the semiclassical methodology outlined in ref 23.
Specifically, the Herman-Kluk propagator is used in conjunc-
tion with a stationary phase Monte Carlo method to simulate
nonadiabatic dynamics using the Miller-Meyer Hamiltonian
for the ICN system. This Hamiltonian includes both electronic
and nuclear degrees of freedom.

Semiclassical results were found to be converged with 2×
107 trajectories, using the parallel programming model described
in ref 5. However, we have observed that a good qualitative
description of coherence control can already be obtained with
an ensemble of 2× 106 trajectories. For comparison purposes,
we computed quantum mechanical results using the fast Fourier
transform (FFT) method with an extended grid of 512 points
in both the R and Θ coordinates, defined in the range of
coordinates|R - 9| au < 5 au, and|Θ| < 2π radians.

The initial wave packet componentsΨ0(x,R,θ;j), after
instantaneous photoexcitation of the system, are defined ac-
cording to the Meyer-Miller formalism as a product of
electronic and nuclear wave functions

assuming that the transition dipole that couples the ground
electronic stateg with the optically active electronic excited
state n is independent of nuclear coordinates (Condon ap-
proximation). We take asø0(j;R,θ), in eq 2.9, the harmonic
nuclear wave function

whereHj is a Hermite polynomial of degreej, RR andRΘ are
obtained from the ICN stretching and bending force constants,27

and the equilibrium values of the Jacobi coordinates (R,Θ) are
R0 ) 4.99 bohrs, andθ0 ) 0.0 rad, respectively. The electronic
wave functionφn(x) in eq 2.9 is defined as the product of two
one-dimensional harmonic oscillator wave functions, each
representing the eigenfunctions of the electronic part of the
quantum Hamiltonian. For example, the electronic wave function

for staten is a ground state harmonic oscillator wave function
for all electronic modes except thenth one, which has one
quantum of excitation:

In our calculations we use the empirical ICN potential energy
surfaces derived by Goldfield et al.,28 and assume that the
dominant contributions to the excited state dynamics result from
parallel transitions from the ground state1Σ0+ potential energy
surface to the excited electronic state with3Π0+ symmetry.
These empirical potentials consist of two coupled excited state
potential energy surfaces, associated with the3Π0+ and 1Π1

electronic excited states that correlate to the I1/2 and I3/2 channel,
respectively. Rigorous comparisons with experimental data,
however, might require calculations on the complete set of ab
initio potential energy surfaces, e.g., those reported by Moro-
kuma and co-workers.29

III. Results

Results are presented in two sections. First, section IIIA
presents the cumulative transition matrix elements obtained
according to the semiclassical methodology, described in section
II, and compares the results to those obtained using quantum
mechanics. We considered the case whereø0(j) ) ø0(1) is the
ground vibrational state, andø0(k) ) ø0(3) is the second excited
vibrational state along theR coordinate. Section IIIA also
compares the semiclassical results for individual wave packet
components in theE-J representation, for both the3Π0+ and
the 1Π1 electronic excited states, with the corresponding
quantum mechanical results. This comparison of individual wave
packet components provides a comprehensive picture of the
energy dependence of individual transition matrix elements and
demonstrates the ability of the semiclassical methodology to
describe both real and imaginary parts of the state-to-state
specific transition matrix elements associated with alternative
photoexcitation pathways. Finally, section IIIB presents mo-
lecular dynamics simulation results of coherent control, after
photoexcitation of an initial superposition state to various final
energy levels in the A˜ continuum. In particular, we provide a
detailed comparison between the relative product yields obtained
using semiclassical mechanics to the corresponding quantum
mechanical results.

A. Transition Matrix Elements. Consider first results that
correlate with the I1/2 product channel. Besides the calculation
of the photodissociation cross sections, coherent control studies
requireµij(ê,E), i.e., the off-diagonal channel-dependent complex
quantities. Figure 1 compares the semiclassical (solid) and
quantum (dashed) results for the modulus|µ13(I1/2,E)| (see panel
a), and phaseΦ13(I1/2,E) (panel b) of the cumulative transition
matrix elementµ13(I1/2,E) [see eq 2.4]. Although one sees
differences of up to 15-20% between the semiclassical and
quantum mechanical results, the overall qualitative features are
in excellent agreement with one another; that is, both the overall
shape of|µ13(I1/2,E)| and the position of the amplitude nodes as
a function ofE, as well as the energy dependence of the phase
|Φ13(I1/2,E)| are in good agreement. Note that the phase ofµij

is the most elementary phase-dependent quantity to which we
can apply a test of the utility of semiclassical mechanics. That
is, the phase of a matrix element involving the continuum, as
opposed to the product considered herein, does not allow for
quantum-semiclassical comparisons since the phase of the
continuum wave function is arbitrary and therefore computer-
code dependent.

φ
n(x) ) xne

-(1/2)(x1
2+x2

2) (2.11)
Ψê

t(R,θ;j) ) ∫dx〈φê|x〉〈x,R,θ|Ψt(j)〉 (2.7)

〈K,J,ê|øt(j)〉 )

A∫0

∞
dR∫0

π
dΘ Y/

J0(Θ) sin Θ e-iKRΨê
t(R,Θ;j) (2.8)

Ψ0(x,R,θ;j) ) φ
n(x)ø0(j;R,θ) (2.9)

ø0(j;R,θ)

) (RR

π )1/4

Hj(xRR/p(R - R0))e
-(RR/2)(R-R0)2(Rθ

π )1/4

× exp[-
Rθ

2
(θ - θ0)

2] (2.10)
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Figure 1 shows important qualitative features ofµ13(I1/2,E),
such as the energy position of the nodes, and the change in
sign ofµ13(I1/2,E) when going through an energy node. Both of
these features are determined by the symmetry properties of
the product of the two wave packet components that contribute
to µ13(I1/2,E) at eachJ, as defined by eq 2.4. The origin of the
deviations between semiclassical and full quantum mechanical
results, displayed in Figure 1, can be attributed to differences
in the asymptotic wave packet components that correlate with
the I1/2 photodissociation channel, as discussed later in this
section. The wave packet components also provide a compre-
hensive understanding of the energy dependence of|µ13(I1/2,E)|
since, as mentioned above,|µ13(I1/2,E)| is obtained according
to eq 2.4, by summing the product of the two wave packet
components that correlate to the I1/2 photodissociation channel
over all rotational states.

Figure 2 compares contour plots for the asymptotic wave
packet components that correlate to the I1/2 photodissociation
product. Results are shown for wave packet components
obtained in the photoexcitation of ICN that are initially in the
ground vibrational state|ø0(1)〉 (panel a), or in the second excited
vibrational state|ø0(3)〉 (panel b). Here, semiclassical wave
packet results (solid lines) are compared to the corresponding
quantum results (dashed lines), obtained at 50 fs after photo-
excitation of the molecule to the3Π0+ electronic excited state.
At this time, the wave packet components in theE-J repre-
sentation are asymptotic since the wave packet is unchanged at
times greater than 45 fs after photoexcitation. Figure 2 shows
that for this empirical potential energy model, the CN rotational
distributions associated with both photoexcitation pathways are
centered at approximatelyJ ) 10 for all final energy states in
the Ã continuum, However, they differ with respect to one
another in the number of nodes along the energy coordinate,

reflecting features of the corresponding initial vibrational state.
The agreement between semiclassical and full quantum me-
chanical calculations is quite satisfactory at the center of the
band, while deviations become more significant at the tails.

Similar considerations apply to product associated with the
I3/2 channel. Figure 3 shows the modulus|µ13(I3/2,E)| (see panel
a), and phaseΦ13(I3/2,E) (panel b) ofµ13(I3/2,E), and compares
the semiclassical (solid lines) and quantum mechanical (dashed)
results. Figure 3 shows that both the modulus and the phase of
the semiclassicalµ13(I3/2,E) are in very good agreement with
quantum results. Significantly, for all cases the convergence of
the modulus, and the phase, occur at essentially the same rate.

Figure 4 compares the contour plots for the asymptotic wave
packet components that correlate to the I3/2 spin-orbit state in
the 1Π1 photodissociation channel. These wave packets result
entirely from nonadiabatic dynamics at the conical intersection,
after 3Π0+ r X photoexcitation of ICN molecules that are
initially in the ground vibrational state (panel a), or in the second
excited vibrational state (panel b). As above, semiclassical wave
packets (solid lines) are compared to the corresponding quantum
results (dashed lines), at 50 fs. Figure 4 shows that for this
photodissociation channel the CN rotational distributions as-
sociated with both photoexcitation pathways have maximum
amplitudes at 40e J e 60 for all final energy states in the A˜
continuum, and are significantly more structured than the wave
packet components that correlate to the I1/2 spin-orbit state.
The agreement between semiclassical and quantum calculations,
for these rather hot and complicated rotational distributions, is
once again very satisfactory. Evident from Figure 4 is the origin
of the two more prominent band intensities displayed by Figure
3, in the 4-6 eV energy range, as well as the quality of the

Figure 1. Semiclassical (solid lines), and quantum mechanical (dashes)
cumulative matrix elementsµ13(I1/2,E) ) |µ13(I1/2,E)| exp(iΦ13(I1/2,E)),
associated with final photodissociation channel I1/2, as a function of
final energyE in the Ã continuum.

Figure 2. Contour plots for the norm of the3Π0+ asymptotic wave
packet components in theE-J representation at 50 fs after3Π0+ r X
photoexcitation of the molecule that is initially in the ground (panel
a), or second excited vibrational states (panel b). Semiclassical results
(solid lines), and the corresponding quantum mechanical results (dashed
lines) are shown.
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“node” at ∼4.75 eV as determined by the structure of the
rotational distribution as a function ofJ. Figure 3 also shows
that the same level of agreement displayed in Figure 3 for the
cumulative transition matrix element as a function of energy
can also be observed in the rotational state specific transition
amplitudes. Thus, one would anticipate that the SC-IVR
techniques could also be implemented for simulating rotational
state specific CC techniques.

In these computations, we have included only contributions
from parallel transitions3Π0+ r X, in order to facilitate the
comparison between semiclassical and quantum calculations.
Therefore, the cumulative transition matrix elementµ13(I3/2,E)
results exclusively from population that crosses from the initially
populated3Π0+ state to the1Π1 electronic excited state at the
conical intersection. The agreement displayed in Figure 3
demonstrates that the Meyer-Miller Hamiltonian, quantized
according to the Herman-Kluk SC-IVR methodology together
with stationary phase MC methods, is able to describe not only
the modulus but also the phase of the off-diagonal cumulative
transition matrix elements in semiquantitative agreement with
full quantum mechanical calculations. This is an important result
because it demonstrates that even when the system undergoes
purely nonadiabatic dynamics the semiclassical methodology
correctly describes both coherences, i.e., the relative phases of
asymptotic wave functions in the A˜ continuum, and probability
distributions.

Finally, Figures 5 and 6 compare the semiclassical cumulative
matrix elementsµii(I1/2,E) (see panel a), andµii(I3/2,E) (see panel
b), with the corresponding quantum results (dashes). With the
exception of small deviations in the high energy tail ofµ11-
(ê,E) (ê ) 3/2, 1/2) there is almost quantitative agreement between
semiclassical and full quantum mechanical results. By contrast,
Figure 6 shows somewhat poorer agreement forµ33(I1/2,E) (see

panel a), andµ33(I3/2,E) (see panel b). In this case, when the
system is photoexcited from higher vibrational states, the
semiclassical calculations show more significant deviations from
the exact quantum mechanical results. These deviations are
similar to those observed in previous studies,5,23,30and are the
subject of further investigation. However, the overall qualitative
features of these higher vibrational state cumulative matrix
elements obtained according to semiclassical mechanics are still
in good agreement with full quantum mechanical calculations
throughout the whole energy range.

The comparison of Figures 5, 6, 1, and 3 shows that the
“nodes” of the cumulative transition matrix element are smeared
out by the coupling between the two electronic states, leaving
only a very narrow 5.7-6.0 eV energy range where coherent
control is expected to be inefficient, since both|µ13(I3/2,E)| and
|µ13(I1/2,E)| are small compared to the diagonal transition matrix
elements|µjj(I3/2,E)|.

B. Coherent Control of Photofragmentation Product
Yields. Figure 7 shows the relative product yieldsR(I1/2:I3/2,E),
(eq 2.3), after ICN photodissociation in the A˜ continuum,
obtained through bichromatic coherent control of an initial
superposition of vibrational states with quantum numbersV )1
andV )3. Figure 7 compares the semiclassical (solid lines) and
quantum (dashed lines) results obtained at various photoexci-
tation energies. Relative product yields are presented in the form
of contour plots for the photoexcitation energies indicated in
panels a-f, as a function of both the relative pulse phase
parameter,Θ1 - Θ2, and the relative amplitudeS) c1

2
ε′′1

2/(c3
2
ε′′3

2

+ c1
2
ε′′1

2).
Note first, that Figure 7 shows that the product ratio varies

significantly as a function of the relative pulse phase parameter,

Figure 3. Semiclassical (solid lines), and quantum mechanical (dashes)
cumulative matrix elementsµ13(I3/2,E) ) |µ13(I3/2,E)|exp(iΦ13(I3/2,E)),
associated with final photodissociation channel I3/2, as a function of
final energyE in the Ã continuum.

Figure 4. Comparison of contour plots for the norm of the1Π1

asymptotic wave packet components in theE-J representation at 50
fs after 3Π0+ r X photoexcitation of the molecule that is initially in
the ground (panel a), or second excited vibrational states (panel b).
Semiclassical results (solid lines), and the corresponding quantum
mechanical results (dashed lines) are shown.

Nonadiabatic ICN Photodissociation J. Phys. Chem. A, Vol. 105, No. 12, 20012595



demonstrating a broad range of yield control over an extended
range of S (i.e., strong dependence on (Θ1 - Θ2)) for all
photoexcitation energies, with the exception ofE ) 6 eV [see
panel (d)]. Here coherent control is expected to vanish since
bothoff-diagonal matrix elements|µ13(I1/2,E)| and|µ13(I3/2,E)|
are much smaller than the diagonal terms|µjj(ê,E)|, with ê )
(I1/2,I3/2) and j ) (1,3) (see Figures (5, 6, 1 and 3)).

Second, note that the overall comparison between semiclas-
sical and full quantum dynamics simulations of coherent control,
displayed by the contour diagrams in Figure 7, indicates that
the structure of the diagrams, the trend in these structures with
photoexcitation energy, and the range of quantum mechanical
product yields are reproduced by the semiclassical calculations
within an error of approximately 5-10%.

At the lowest photoexcitation energy (see panel a), maximum
control is attained atS e 0.5, where the production of I1/2 can
be reduced from 40% to less than 1%, simply by varying the
relative phase parameter from 0° to 180° atS∼ 0.25. At higher
values ofS (as S f 1), the semiclassical and full quantum
mechanical product yields still agree with one another within
an error of 5-10% and show a qualitatively different behavior
from that observed at smaller values ofS. In particular, the ratio
R, asS f 1, becomes only weakly dependent on the relative
pulse phase parameter,Θ1 - Θ2, and it is therefore no longer
possible to control the final outcome of the photodissociation
reaction.

At higher photoexcitation energies (see panel b) the semiclas-
sical and full quantum mechanical product yields again agree
within about 5-10% error and show dependence onΘ1 - Θ2

andS that is completely different from that obtained at lower
photoexcitation energies. Here, the degree of yield control is

found to be maximum in the 0.5e S e 0.8 range, where the
production of I1/2 can be reduced from more than 70% to less
than 30% by changing the relative phase from about 330° to
150°.

Various different trends are observed at the other energies
shown in Figure 7, it being clear that (a) ICN is an excellent
candidate for studies of coherent control and (b) semiclassical
IVR computations do an adequate job of predicting control.

IV. Conclusions

In this article we have shown that coherent control over ICN
photodissociation is extensive and that SC-IVR techniques are
able to simulate bichromatic coherent control of an initial ICN
superposition state in semiquantitative agreement with exact
quantum mechanical results.

We have demonstrated the capabilities of a semiclassical
technique that involves quantization of the Meyer-Miller
classical Hamiltonian for nuclear and electronic dynamics, by
comparing the semiclassical and full quantum mechanical results
of relative photofragmentation product yields, as controlled by
the relative pulse phase, or the relative amplitude parameters.
Some quantitative disagreement was observed for dynamics
initiated in the higher vibrational states. Its origin is the subject
of further study.

The SC results obtained through quantization of the Meyer-
Miller Hamiltonian, according to the Herman-Kluk SC-IVR
methodology, together with stationary phase MC methods, were
able to reproduce the correct structure of the relative product
yield for various different photoexcitation energies, demonstrat-
ing that the SC-IVR methodology correctly describes excited

Figure 5. Semiclassical cumulative matrix elementsµ11(ê), with ê )
(I1/2,I3/2) (solid lines), and the corresponding quantum mechanical results
(dashes). Panel a shows the comparison ofµ11(I1/2), and panel b displays
the corresponding results forµ11(I3/2).

Figure 6. Semiclassical cumulative matrix elementsµ33(ê), with ê )
(I1/2,I3/2) (solid lines), and the corresponding quantum mechanical results
(dashes). Panel a shows the comparison ofµ33(I1/2), and panel b displays
the corresponding results forµ33(I3/2).
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state nonadiabatic dynamics as influenced by laser induced
quantum interference effects.

According to the present implementation, semiclassical
simulations of ICN coherent control require the evaluation of
quite a large number of trajectories (∼2 × 107), and of course
they would be even more demanding for systems with many
more degrees of freedom. This is clearly the aspect of the
calculation that needs further development. It is expected that
the combination of the HK SC-IVR, together with stationary
phase MC, and direct implementation methodologies under
development, should provide a more tractable approach for
simulating coherent control on higher dimensionality problems.
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