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Group theory is used to define complete force fields for deltahedral and trivalent molecular skeletons in
terms of bond stretches, and bond stretches and slides, respectively. Analysis of ab initio Hessian matrices
shows the delocalized nature of the force field in boranes and the relatively localized force fiejgl in C
where only interactions of bonds in adjacent rings or separated by at most three edges of the truncated
icosahedron show significant interaction.

1. Introduction representation with that of the three translations

_ Is the force field in carbon and boron clusters local, or does Ty() =T,() x Ty 1)

it have long-range components? What is the best choice of

internal coordinates for three-dimensional cage molecules? How |t jncludes the six collective modes, three translations, and three

should one analys_e and compare first-principles calculations of rgtations, transforming, respectively, BsandI'r. Subtracting

the Hessian matrix for clusters? these, we obtain the symmetry representation of the internal
The core of these questions is the problem of coordinates. modes of vibrationIyin():

One needs to find a set of suitable coordinates, which is based

on the topology of the cluster. In the present paper, we show Li(v) =Ty (v) = I't — Iy, (2)

how such coordinates can be defined for deltahedral clusters

and their trivalent duals. The treatment makes use of two group- which covers the 8 — 6 internal degrees of freedom of a non-

theoretical theorems which relate the mechanical representationlinear molecule withy atoms. Using standard group-theoretical

of such clusters to their topolodyin this coordinate basis, we  techniquesIi,(v) may be resolved into irreducible representa-

construct a complete force field, which fully characterizes the tions, describing the internal symmetry coordindtisprinciple,

chemical bonding. A complete force field precisely covers the several types of symmetry coordinates exist, e.g., bond stretches,

information which is contained in frequencies and composition changes in bond angles, dihedral angles, etc., and the problem

of the normal modes. It thus represents the exact inverse of theis to find a suitable minimal set that reflects the bonding most

vibrational eigenvalue problem. The theoretical results are efficiently.

applied to explicit calculations on highly symmetrical repre- A special symmetry relationship can be obtained for a specific

sentative cages of carbon and boron. class of clusters: the deltahedra. All faces of a deltahedron are
triangles. This is the favored bonding mode adopted by boron
2. Group-Theoretical and Topological Background in the cIoso-borane,,ﬂHﬁ’, series For deltahedra, the number

. . . of vertexesy, is related to the number of edges or bo
Consider a polyhedral cluster withvertex points or atoms. v 9 reisy

The set of all vertexes spans a reducible representation of the Jw—6=e¢ ()

molecular point group. We shall refer to this as the positional

representation],(v). Theo index is a cylindrical label, which  This counting rule has a symmetry extension, which forms the

indicates that the vertex points are invariant with respect to all key group-theoretical theorem for the construction of force fields

symmetry elements that pass through the atom sites. Tables ofn boron cages. The extension is obtained by replacing each

I',(v) for many symmetric clusters are available in the literafure. term in the counting rule by an appropriate symmetry repre-
From its equilibrium position, each atom can move in three sentation, yielding

orthogonal Cartesian directions. The set of @splacements

spans the mechanical representation of the cludtgiy). I x Ty(v) — Iy = Tr =T 4(€). 4)

According to induction theorythe mechanical representation o

is obtained by forming the direct product of the positional ©F, On substitution
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spanned by all stretches of the edge bonds. Such stretches are. Complete Force Field for Deltahedra
indeed, fully symmetric op-type objects with respect to the
tsgénrrgse:ﬁ/iﬁlimgnsttsa?::?]r;gt :Egoi%?grg? ;%%Z;ngr\)/?é?ii;egﬁgfor deltahedra and the identification of the force constants. We
q will assume that the cluster consists ofidentical atoms or
the stretches of the bonds of a deltahedron span the same . o e
symmetry. We can thus construct a complete harmonic force supgraton;s W'th. mafn. Let ( y'e?? ddgnolte the equnltf)rlumh
field for deltahedral clusters taking all possible interactions position of atomi (= Lo U)'. The displacements of eac
between edge bonds. As compared to the conventional Cartesial tom W'th dr_esp(_ect to f|ts equilibrium p%§;|t|on f'n the tqlrege
Hessian, which is of course also complete, a bond force field dartets?rg Irections o gtcgmmon co_or w(njateﬂ:amef Wit be
has the advantage that it is based on symmetry-equivalent enoted by nonsuperscripted symbualsy, andz. These form

interactions and thus corresponds to the simplest symmetrythuer 222';’ :ﬁtetlj;n:r;itnc;lfefhr;:r:g?l/virl?%r:?:g?rggnf F(;:/itgr)]eneral
representation of elastic forces in a molecule. In addition, it purp ! A

gives direct information on the chemical bonding. k=1, ..., 3. In addition, we define a set of internal coordinates

: : : - . the first 3 — 6 elements of this set correspond to all bond
This relationship was found by Boyle and Pafkiera stud 3 L .
of closo-B,H?, bﬂt taken as gcoi):wcidence of icosahgdral stretches,Arg of the deltahedron, and the remaining six

elements are the translations and rotations. It is convenient to
symmetry. It was shown later to be true for all deltahedra that

We now proceed to the construction of a complete force field

can be mapped on the surface of a spRénemechanical terms, group both types of cTordlnates In column vectors as
the theorem implies that a deltahedron cannot vibrate unless X,

some of its bond lengths are changing. In this form, it is a y Al
consequence of a general result, which was obtained by the zl Ar 5

famous French polymath Cauchgs early as 1812, and states 1 :

that “Every convex polyhedral surface with rigid faces is % T,

inflexible”. [Il © Mémoire sur les Polygones et les Padlyes, q= Y2 s=|T 9)
Theoreme XIII: “Dans un polydre corvexe, dont toutes les 5| Ty

faces sont inariables, les coins compris entre les faces, ou, ce : z

qui revient au niene, les inclinaisons sur les diffmtes afées X, Ry

sont aussi ipariables’. (“In a convex polyhedron with rigid y, R,

faces, the angles between the faces in other words, the z R,

inclinations on the different edgewvill also be rigid”.) Since !

the proof of the completeness of the set of stretching coordinates . . )
as internal modes rests on Euler's theorem, it is really a | bond between atornandj is denoted agjLI The stretching

topological property of deltahedra. This implies that even in ©f the bond between these atoms, depoted&aﬁg can be
the absence of all symmetry the bond stretches of a convex&XPressed in the coordinates as follows:

deltahedron form a complete nonredundant set of internal 1
coordinates. In the next section, we will use this result to ArmD=T[(xie— xf')(xi — %)+ O — yf’)(yi —y)+
construct a complete force field for deltahedral clusters. o

The dual of a deltahedron is a trivalent cluster in which three & - %e)(zi —2)] (10)

bonds radiate from each atom. This is the preferred bonding
mode of carbon, both in the polyhedranesHg: and in the \yhere superscript “e” denotes an equilibrium quantity. The

fullerenes, G. For trivalent clusters, the counting rule is unnormalized translations and rotations are
Again, there is a symmetry extension in which each term is '
replaced by its symmetry representation. This forms our second — e, _ A, 12
group-theoretical relatioh: R, ny; 2y (12)
I't xT'y(v) =T, e+ I, @) and similarly fory andz components. These relations can now
be collected in the traditionaB matrix, which transforms
or, on substitution Cartesian displacements into internal and collective coordinates:
T(v) =T,(€) + (8. 8) s=Bqg (13)
q=B"s (14)

Here,I'(e) is the symmetry representation of a set of vectors

or arrows, one along each bond. The right-hand side of the g is a square matrix, sinGandq have the same dimensions.
equation thus represents the symmetry of all edge stretches angr,o group-theoretical relation of eq 4 guarantd&so be
edge-sliding movements (or “slides”, for short). This is found nonsingular.

to match the mechanical representation, but now, in contrast We now turn to the vibrational potential energy. Since the

with th_e case of delta_hedral clqsters, the symmetries of the siX,inrational modes span the same symmetry as that of the bond
collgctlve modes are included in the edge slidégg). On the stretches (eq 4), the potential can be written as
basis of this theorem, we can thus construct a complete force

field for trivalent clusters in terms of bond stretches and slides 2V = I Ar 15
but must take into account some redundancy relations for the m%mﬂkﬁ'm"té 9o 13)
slide constants. This construction will be presented in section

4. The K's are the force constants and describe a complete force
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previously in studies of cluster vibrations.

J By convention, we define the positive sense/ofypas a
Al translation from atom to atomj. Hence, one has
i
Figure 1. Definition of slides. Alyr= —Ay (21)

field. We follow here a convention where the summation indices The slides can easily be expressed in Cartesian displacements
(j0and nndrun independently over all bonds. The sum of the atoms concerned:

therefore containg? terms, of which at mosé(e + 1)/2 are 1

distinct, but molecular symmetry will usually_ yield a much A== [(Xje =X (x + Xj) + (yje Iy, + YJ) +

smaller set of independent force constants. Their number is equal Iao

to the number of copies of the totally symmetric representation B n 29

I'o contained in the symmetric square of the edge representation (Z—2)(z+2)] (22)

T's(€).

Nowadays, many ab initio programs provide accurate calcula-
tions of the Hessian matrix, from which the internal force
constants of our force field can easily be obtained. The Hessian,,,, . y
matrix, H, defines the potential in Cartesian form, according to V= m%m(krﬁi A o AT ey 2krtil INATAY e

The expressions of this type provide the remaining lower half
of the B matrix. The potential energy of vibration is given by

2v=g'Hg (16) i) (23)
where the dagger denotes transposition of rows and columns.yhere we have Usekgnmmuz kfﬁjmmrﬂ In this expression(ijC]
The elements oH may thus be expressed as and [innJrun independently over all bonds. Note in particular

5 that constantskgmmﬂ and krﬁ/mmare not necessarily equal, as
0= IV (17) exchanging the roles of stretching and sliding bonds may give
Lo el different contributions to the potential energy.

] ] ] ) ) There are three types of force constants, corresponding to
With theB matrix, one can now switch to internal and collective  the three possible combinations of stretches and slides. These

coordinates as follows: constants can be extracted directly from the Hessian, following
Fro—tnt 1o 1 the same procedure as that in the case of the deltahedron, i.e.,
2V=s(B )HB s (18) by a matrix transformation involving the inverse of tBenatrix,

as described in eq 19.
The total number of nonsymmetry related constants in the
potential energy expression is equal to the number of times the

The second-order derivatives for the interaction betweenstwo
coordinates thus read:

Py, totally symmetric representation occurs in the symmetrized
= Z(B—l) H (B (19) square of thel',(e) + I(e) sum representation. This sym-
0s0S, %9 Pe P d metrized square can further be decomposed into three parts:

Derivatives involving collective modes will automatically [T, (e) + I,(€)]° = [I',(€)]° + [[}(&)]° + T,(e) x [\(€) (24)
vanish, as the Hessian is invariant under translations and
rotations. In this way, one obtains a@e + 1)/2 bond-bond where square brackets denote symmetrized parts. The numbers
interaction constants. They may easily be sorted into sets of of the totally symmetric representations in these three parts
symmetry-equivalent constants. A practical application to the correspond, respectively, to the numbers of nonsymmetry related

dodecaborane dianion will be illustrated in section 5.1. constants of typ&™, k7, andk".
_ _ The force field which is obtained in this way is, however,
4. Complete Force Field for a Trivalent Cage not free from redundancies. The external collective modes

In a trivalent cage, each atom is connected to three neighbors contained in the mechanical representation give rise to a set of
According to the symmetry theorehthe Cartesian displacement redundancy conditions between the force constants, which can

coordinates are now transformed tBbond stretchesiry s easily be derived by requiring that the forces associated with
and 3/2 bond slides A% Together, these form the set of the spurious modes be zero. First, consider the translations. A
internals coordinates of the trivalent,cage: translation in thex direction induces slides of all bonds that
have a component along this direction. This is expressed by a
Ar g total differential of the following type:
Arpg,
: d 2 Xg - Xg 0 (25)
s=| 20 — =
Afon (20) dT, ;D 1o M
Az
: and similarly forT, and T,. The associated force is given by
The expressions for the bond stretches in terms of Cartesian dv X — X
_displacement coordinates were given_in eq 10 and now appear —= ZZD;—(HH;DMDMM—F I(E/jmﬁbds/mg (26)
in the upper half of thé& matrix. The slides are translations of dT,  &Bfm (S

two atoms along the direction of their common bond, as shown
in Figure 1. These type of coordinates have not been usedThis force will be zero if the following redundancy relations
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are fulfilled: TABLE 1: Spectroscopic and Geometrical Data for B,H?,
e e label Vexp 214 (Ccm™Y) Veac2(cm) Veale? (M)

% akr/ -0 @7 Aq 2517 2687 2540

Z e {ij MabC 745 741 725

BbI T 0 Tig 1064 923

T 2480 2642 2504

e_ e 1070 1155 1026

T X, 720 720 683

Z—e Gjmab— O (28) To 2611 2476

1ol A 809 732

Gy 1035 900

and similarly fory andz components. G Szg gg%

The rotations can be treated in an analogous way. Again, an ! 774 717

overall rotation does not affect the bond lengths and therefore 2470 2618 2483

cannot interfere with stretches, but it may induce slides. The 955 1013 891

total differential for a rotation about theaxis is given by 770 792 728

580 600 558

H 1043 911

e e u
d XY~ XYa o 526 499
—=2 (29)
dR, & rg,, Aax bond (Ay A A)

B-B0O 1.77 - 1.804

and similarly forR, andR,. The associated force is (B—HO 1.07 - 1.206
aHF-SCF calculation, 4-31G basté? ® DFT calculation, DGauss,

av X Yo — %o Ve BLYP-DZVP2.
—= ZZ];—(kgmatﬂMﬁm"' %}DMDA@Q . o .
dr, £ n R stretching modes above 2000 chwith discrepancies of up
(30) to 7%. In this respect, the DFT results score slightly better.
The normal modes of the;Bcage were treated analytically
This force vanishes under the additional redundancy conditions:in earlier papers by Weber and Thotpand Boyle and Parkeér,
using simplified force field models. A crucial problem in the

CyE—x¢ extraction of force field parameters, which also appears in
Xa Yo~ % Ya Y X .
Zﬂ—k&mbm= 0 (32) applying the present complete field method, concerns the correct
(& (S assignment of modes with predominant skeletal character.
Indeed, except for theg_y stretches, therg_g vibrations of
Y — ¢ the cluster cage and thg_g—1 bending modes of the external
a’h Tha /mm: 0 (32) hydrogens may show substantial mixing. Muetterties €8 al.
;] e 0 assigned the lowest IR and Raman frequencies, at 74p (A
@ 720 (Tw), 580 (Hy), and 770 (H) cm™?, to skeletal modes.

Abdul-Fattah and Butléf later reversed the assignment of the
T1y modes, claiming a predominamg_g character for the
middle-frequency 1070 cm mode versus ég-g— assignment
for the 720 cm?® mode. Only a full calculation of the total
Hessian can settle this question unambiguously.

To obtain a complete force field for the oscillating icosahedral
cage, we must first separate cluster vibrations from the motions
of the exohedral hydrogen atoms. The separation procedure is
described in appendix A. The effective cluster vibrations are

5.1. Dodecaborane, BHJ,. The largest closo-borane an-  obtained by projecting out the modes for which the hydrogen
ion, B,,HZ, exists as a near-perfect icosahedron in its salts, atoms follow the boron displacements adiabatically. The result-
invariably distorted slightly by steric hindrance with the ing effective HessiarH ¢ for the skeletal displacements of the
surrounding latticé. Ab initio calculations of the vibrational  boron atoms, is given by
frequencies in a 4-31G basis were performed by Brint et al. as
part of a wider study of theoretical and experimental IR and — BB _ |yBH yHH\—1 /HB
Raman spectra of borang¥We have recalculated the spectrum Hen =H HP(H™) H (33)
with the DGauss density functional prograhwhich is included
in the UniChem packag®.Different functionals were investi-
gated, the GGA BLYP with DZVP2 global orbital basis set
yielding results which were closest to experimental frequencies.
In Table 1, we collect experimental and theoretical geometries
and vibrational spectra. The experimental IR and Raman spectra
refer to solid salts of, respectively, MgasH1, 13 and KoB1oH0.14
Equivalent data for the deuterated salts are also available.

The experimental pattern is reproduced quite accurately by wheremg and my are the masses of, respectively, boron and
the ab initio results. As expected, SCF frequencies overestimatehydrogen atoms. The frequenciesf the effective modes are
the experimental values, especially for the high-enengyy then obtained by solving the eigenvalue problem:

and similarly for thex andy components.

For each bondi [ we thus have in principle 12 redundancy
conditions, or 12 conditions in total. This number will, of
course, also be drastically reduced whenever symmetry is
present, as will be illustrated in section 5.2 for the example of
cubane.

5. Applications

whereHBB andH"H are, respectively, the diagonal boreoron
and hydrogerhydrogen blocks of the Hessian, ari#H and
HHB are the corresponding off-diagonal blocks. To this effective
potential matrix is associated an effective mass makfix,

M = mBI + m_|HBH (HHH)—l(HHH)—lHHB (34)
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IHoy — 4ﬂ2V2M| =0 (35) TABLE 2: Frequencies for the By, Cage from the Effective
Hessian
label Vst 2(cm™Y) Va,, 2 (cm™)

wherev are the frequencies in Hz; the elementdf; are in
N/m, and those oM in kg. Ag 728 727

From the DFT results, we have calculated the effective ?u ;gg ;gg
Hessian and mass matrix and diagonalized the resulting matrix qu 664 658
equation. The frequencies (in c#) are given in Table 2, labeled Gi 745 735
Veft. _ o _ Hg 825 821
When comparing these frequencies with the experimental and 562 553
calculated spectra in Table 1, it is clearly seen that effective Hu 508 505
cluster modes are always very close to the lowest eigenmodes a;,_ refers to the eigenvalues of the effective Hessian (eq 33) with
of each symmetry type. the appropriate mass matrix (eq 38}, refers to the eigenvalues of

The effective potential for the skeletal modes is now the effective Hessian for a cage of BH superatoms with a mggs=
decomposed over all bordbond interactions, according to the  11.819 au.
general group-theoretical result:

2Vef'f = qBTHefqu
120

30
=k (Arg)®+ kngrmEArmm+
2

ja=$1
120 120 120

kSZArmE{M@D—i—kzlgArmE{ymm+ &ZNmu{Srmnm+
3 4 5
120 120 120

keZArmmMmm‘F k7§Arm Al gt ksgArﬁ] Al t
6 7 8

30
kggArmmMmom (36)

The bond indices in this expression refer to the labeling system,
shown in Figure 2. The summation domaidg indicate that
both bond indices in a sum run independently over all pairs of
given type. As an examplk; is the interaction constant between
stretchings of two adjacent bonds. Since each of thig BBonds

has four imOnearest neighbors, the summation domBin
contains 120 combinations. Note that there are, in total, 465 Figure 2. “Magnitude diagram” of the boron skeleton in dodecaborane.
permutationally distinct bonelbond combinations, but only 9  Bond indices are associated with summation domains of eq 36. Vertex
independent force constants. This number is equal to the numbeim shares a face witfij [) vertexk only an edge, vertekis at distance

Of t|mes the % representation |S Contained in the Symmetnc 2 from bothi andj, and vertexes ando are at distances 2 and 3 from

] : i (3 and 2 fromj). The gray bond, between the black atoms, is the
square ofliy for the skeletal modes, with central bondij[J the color of this bond is not drawn to scale because
the self-interaction of this bond is about 5 times larger than the second
Lip(Bo) =Ag+ Ty + Ty + Gy + G, + 2H, + H, (37) largest interaction.

In contrast, only eight frequencies are experimentally observable. TABLE 3: Force Constants for By, in N/m
The ninth experimental parameter is associated with the

Cc

eigenvector composition of theghinodes. Indeed, since there constant value value 7
are two H, modes in an icosahedral cage, their eigenvector ki 0o 352 221.48 0.8%
composition represents an extra degree of freedom which does K %Sg("tllj _1&? _:ﬁ'ﬁ 21'30//‘:
not depend on symmetry. In principle, observables such as ke 0 (ki) 0 —29.57 > 1%
intensities or isotope shifts can be used to extract this parameter (§j (Xm0 0 ~17.36 1.3%
from experiment, thus yielding enough empirical data to match (j CIKIO 0 17.56 1.6%
the complete force model. k [ij (&kn0] 0 0.88 31.4%

The complete set of force constants can now easily be ks jng 0 —3.95 5.4%
calculated from the effective Hessian by taking the appropriate ko (ij CImol) 0 8.06 3.1%

S The small deviations n he caloulated values are aue to Slight 5,8, ks~ ko 2610, it tr, rom Table 2 Calulated
=2ne o . from the effective Hessiaf.Standard deviation.

numerical instabilities in the DGauss program, which does not

make use of the icosahedral point group symmetry.

Figure 2 shows a “magnitude diagram” of the boron skeleton.  This figure shows that interaction between bonds in general
The line thickness and colouring varies according to the decreases with their distance; however, e.g., transversal interac-
magnitude of the constant between the central ignénd the tions of thelij ([ [Moltype are much stronger than those of the
bond considered. [ij [0— &n(ltype.
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Figure 3 shows the “sign distribution” of the interactions on
the boron skeleton. This reflects whether a bond tends to shrink
(“+” sign) as the main bond stretches or tends to stretch also
(“—" sign).

We have also derived closed form expressions for the
frequencies of a 12-atom icosahedron as a function of the nine
force constants:

Ag Mw? = 2(3— D)(K, + 4k, + 4k, + 4k, + 4ks + 4k, +
4k, + 4kg + kg) (38)

T, M5 = 3(k, + 2Pk, + 2k, + 20 Tk, — 20 1 kg —
2k — 2Dkg — ko) (39)

Ty Mw3=2(— ® + 2)(k, — 20 'k, + 2k, — 2Dk, +
20ks — 2k, + 20 kg — ky) (40)
D+2
Gy mwizT(kl—kz— kg — Ky + kg — ks — ky —
ks 1 ko) (41) _ o _ o
Figure 3. “Sign distribution” of the stretch interactions in the boron
. 2 skeleton {ij Jis situated between the two black atoms).
G, Mwz =
3042 TABLE 4: Spectroscopic and Geometrical Data for GHg
2 (kl + I(2 3k3 k4 + k6 + 3k7 k8 k9) (42) label Texp 18—20(Cm—1) pcalca(cm—l)
5 5 A 2995 3193
Hg: Mg + mw? =4k, + 2(P + 1)k, — 2(20 — 1)k; + 1002 1013
Aay 2987 3137
2(P — 2)ky — 8K + 2(P — 2)ks — 2(2 — 1)k, + ’ 839 1069
1083 1119
2(D + 1)kg + 4k (43) E o1> 928
1 1 E, 1151 1203
— 617 624
mlw? w? = 8[Zk§ — ok + okl — B+ ks + ko, + - R 52
T 2978 3164
koks + Kok — 2koks — k§ + Kk 1 ksks — 2Kgky + kgkg — ' 1230 1263
853 866
kG — 2Kk + Kk F Kk T IG — koo — kG + Kk + kekg — Tog 2970 3151
1182 1226
G+ kokg — G+ 1kgl (44) 821 835
4 665 704
Tou 1036 1080
Hy: moj = kg — 2k, + 2k, — 2ks + 2kg — ko (45) 829 850
bond A A

Here,w = 2xv is the angular frequencyn is the mass of the
B—H cluster superatom, and is the “golden number"Y/,(1 %:ﬁ% %?g %-ggg
+ +/5). Frequencies calculated with these expressions are 2 DET calculation. Gaussis éSLYP-dgs ’
displayed in the Table 2, labeléq,,. They are very close to ' ' '
the results of the effective cluster Hamiltonian, which implies been published, of which the most complete presents a full set
that the effective mass matrix is approximately equahtg € of fundamental frequencies with a suggested assignment. The
my)l. IR spectrum of cubane is very simple, as only the, T
We may now compare these results with the previous analysisfundamental vibrations appear. Three lines are observed in the
of Boyle and Parke?f,who only took into account interactions IR spectrum, which is the number expected forggigmolecule
between neighboring bonds, as described by the first three forcepossessin@, symmetry.
constants. (The actual force constant expressions in ref 6 contain A number of theoretical studigs?* of the geometry and
errors, due to a few wrong matrix elements in the matrix vibrational structure, at different levels of calculation, have
transformation between internal coordinates and symmetry appeared since cubane was synthesized. The geometries calcu-
coordinates. The correct expressions can be obtained from oudated in these studies compare reasonably well with experiment.
eq 36 by puttings—ko equal to zero.) The results in the table We repeated calculations of the geometry and the vibrational
clearly show that this approximation overlooks the important spectrum with Gaussidh(Dunning/Huzinaga full double zeta
contribution from the next three force constarkis ks, andks, basis sé€ with Becke’s three-parameter hybrid method using
which concern pairs of nonadjacent bonds. the LYP correlation functional). A comparison of experimental
5.2. Cubane, GHg. The cubane molecule was first synthe- and calculated geometries and frequencies is presented in Table
sized in 1964, and its regular geometry was soon confirmed 4.
by X-ray diffraction!® The high symmetry and unusual geometry As for the boron cage (vide supra), the effective skeletal
of the molecule make it an interesting candidate for spectro- modes for the carbon cage were projected out using the method
scopic investigations. Several IR and RaAigfAstudies have explained in the appendix. The resulting matrix equation was
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TABLE 5: Frequencies for the Cg Cage from the Effective z
Hessian . j
label eg2(cm™) wa,°(cm™) label Ve 2(cm™) wa,P(cm?)
Aig 1017 1018 Tu 948 974 k i
Aoy 1074 1068 Ty 935 953 v
E 1020 996 T 717 717 =
E 653 687 919 937
) . . . . "
2 Ve refers to the eigenvalues of the effective Hessian (eq 33) with P
the appropriate mass matrix (eq 38)., refers to the eigenvalues of

the effective Hessian for a cage of CH superatoms with a mgss= p "
13.019 u. Figure 4. Bond indices associated with force constants notation,

introduced in Table 6. “Positive slide directions” are also indicated.
TABLE 6: Bond —Bond Interactions for Cg

TABLE 7: Force Constants for Cg, in N/m

K =K Ko =K diagonal element
1) ) O 0 1) ) O 0
K! = Kl K = K nearest perpendicular conrstant value colnstant value
o= K ——T nearest parallel K? 358.22 KI1D 46.01
kgjmbmz Kb k"m o= |<'2E next nearest perpendicular Kin 4.81 Klm 66.71
r p—
K mopr= K Ko =K next nearest parallel Ky, 10.01 Ky 3.65
[Mopd] 21 {ij [opC] 21 Kr —2.01 KI —16.56
Kij = K1 stretch(jj D-slide kL) 20 : 2 :
K stretch(jj [)-slide Ky 8.13 Ky 3.21
Kgmo= Kz WEy-slide(lon Kt 116.86 K ~3.21

diagonalized to obtain frequencies; they are listed in Table 5, is indicated. To calculate the potential using eq 46, the signs
labeledverr. As opposed to the boron cage, the lowest frequency must be adjusted according to the bond pair considered.
modes are not always of predominant skeletal type. As an Using the determined force constants, we can calculate
example, the skeletdy and Tz, modes are to be convolutions  frequencies for the cubane cage, consisting of CH oscillators
of low- and high-frequency eigenmodes of cubane. with massme + my. The results are listed in Table 5, labeled
The stretching and sliding components of the mechanical 7,5, and comply with the following expressions:
representation for a regular cube are given by
Ay mwf = 2(Kp + 4Kj + 2K}, + 4K, + Ky)  (49)
L =A+Ey+ Tyt Tyt Ty (46)
Az M3 = 2(Kq + 4Kq + 2KY, + 4K5; — K5) - (50)
L8 = Ay + B+ Tigt Tyt Ty (47)
Ey mwj = 2K, — 2K}, + 2K}, - 2Ky, + Ky)  (51)
The complete force field will thus contain 12 force constants:

five for the stretching modes, five for the slidings, and two for E, mwi = 2(K6 — 2K£D + 2K£” — ZKQD — Kéu) (52)
the interactions between equisymmetric stretchings and slidings.
ghe different bonetbond interactions are summarized in Table Ty ma)g = 2(K} + 2K'; — 2Kb, — Kby (53)

The bond indices in these expressions refer to the labeling

. 2 2 __ r__ r r /
system shown in Figure 4. Tog Mwg + Moz = 2(Ky — 2Ky, + Ky + Ko +

Using this new notation, the effective potential can be written 2K — 2K, + K) (54)
as
12 12 s mfo? o2 = 4(Kj — 2K, + Ky (Ko + 2K —
/ 4 r/ rA2
Ve = KB;(Armﬂz + K()Z(A/m P+ KrlmgArm Argot+ 2Ky + Ky) — 32(KY — K3)? (55)
1 1 2
48 24 24 T,y mwj = 2(Kj — 2K’ + 2K5, — K) (56)

KinS A4 Ayt K ZAr r +K/ZA/ A
m; it K - 1A o K S Mo As noted previously for the boron cage, these frequencies match

48 48 12 the results of the effective Hessian calculations.
r / r i i
Ar iz Arg o+ K ZA/ M+ K EN Al gt As mentioned in section 4, there are several redundancy
20] o] 20 o] 21 [® . . Lo
g . n E = ! . conditions to be fulfilled (see eqgs 27, 28, 31, and 32), giving
rise to 144 conditions in total. However, inspection shows that

12 48 48
KQHEA/EJ[A/@D"' KrlZArE]EA/EkD-’_ Krg/gNmE{VubD (48) only three independent conditions remain:
5 6 7

Kg - ZKiu - K;u =0 (57)
The complete set of force constants was calculated from the y y
effective Hessian; the results are displayed in Table 7. Note Ki+K;=0 (58)
that the definitions ofK” and K” constants imply specific
directions of the bonds concerned. This is not the case for the K§ — 2K 5+ 2KSn + Ko =0 (59)

K" constants, since no direction is involved in a stretch. The

signs in Table 7 refer to the interactions between the bonds These equations indicate that the translations (eq 57) and
used in the definitions for thK constants in Table 6 and to the rotations (eq 59) are spurious modes and that the translation
geometry given in Figure 4, where the “positive slide” direction does not interact with the ] stretching vibration (eq 58). The
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constants from Table 7 satisfy these conditions within the TABLE 8: Spectroscopic and Geometrical Data for Go
numerical accuracy of the calculation. In this way, only nine jape| 7% (cm™)  Teac? (€M) Toac(CM D) Feao®(cm )
independent force constants remain, exactly the number of times

: . - Aq 1470 1525 1456.8 1525
the Ayq representation occurs in the symmetric square of the 495 499 503.4 499
representation of the vibrational modes. Ay 972 1080.3 967
5.3. Buckminsterfullerene, Go. Ever since its discovery in Tig 1318 1300.5 1317
1985 by Kroto et al?8 the G molecule has been the subject ggg ggg'g g%
of many research projects. The most famous isomer is undoubt- T, 1360 1393 13713 1392
edly the so-called “Bucky Ball’, where all pentagons are 839 978.9 839
isolated. This molecule has the shape of a truncated icosahedron. 566 %%‘; %%‘;—3:1 %91%
. Thgre have bgen a nlumber of reported measurements of the T 1429 1486 1445 3 1485
vibrational transitions in €.2%34 There are a total of 46 1183 1224 1160.4 1224
fundamental vibrational modes forgé; but due to the high 576 591 599.2 591
symmetry (1), there are only four infrared active modesTaf 526 535 542.3 535
. Tou 1571 1522.4 1570
symmetry and 10 Raman active modes, twoAgfsymmetry 1201 1234 1190.7 1233
and eight ofHy symmetry. The remaining 32 modes are silent 1026 996 1016.2 995
as fundamental transitions and can only be observed as weak 726 734.6 726
combination band$3° or from inelastic neutron scattering G 1252’2 1%1% 1%‘;‘;'3 13;227
: g .
measurement® where the selection rules are relaxed. 1356 1347 1368.9 1347
There have also been a number of theoretical stéfdizs 1076 1122 1086.3 1123
the vibrational modes of & Dixon et al¥” calculated the 782 860-2 785
harmonic vibrational frequencies at the local density functional 486 %4 54‘2%_7 %ﬂ
level by using analytic second derivatives. The calculated values g, 1446 1480 1474.8 1480
for the observed infrared and Raman transitions are in good 1310 1359 1337.2 1358
agreement with the experimental values, as shown in Table 8. 970 ggg 99%-2 32891
In addition, several local force fields have been propd8ed, 760 762 763.3 759
and it has been demonstrated that, to a good approximation, 350 339.8 348
Ceo Vibrates as a thin spherical sh#ll. Hg 1578 1618 1560.3 1617
5.3.1. Partial Force FieldIn earlier work#! attempts were 1426 1475 1447.6 1474
o X 1251 1297 1222.6 1296
made to calculate the vibrational spectrum af @sing an 1101 1128 1135.9 1127
extended Wu force field, containing six force constants. We 775 788 774.4 791
have now extended this to up to 10 force constactsCio. 711 727 722.9 727
The associated potential energy is 432 431 424.3 431
273 261 245.3 263
5 ) ) Hy 1559 1611 1558.8 1611
2V=c¢ Ar)° +c Ar )+ cr.r AL + 1385 1389 1367.5 1388
1;( N, 2;( p) TGy hg)( ) 1248 1225.1 1248
( )2 762 830.9 763
Cyr )t Aa)”+ 2¢5 ) Ar Arp +2c,) Ar Ar' )+ 671 666.7 672
“e p; P SZO b 6; e 541 510.1 541
401 350.8 405
2cr AT ) Ao Ay, + 2Cr /T ) Aoy Ad, +
oo Tl A T 22Ty ) A bond (Ay* @) ) @
2 AR + 2¢ AR)? (60 [C—CO 1.467 1.445 1.445 1.445
Cg;( R 1023( R” (60) [C=CO 1.355 1.395 1.395 1.395

apDFT.37 bExtended Wu force fieldc Complete force field.
The parameters, used in this expression, refer to the pentagon
hexagon bond system as shown in Figure 5.

Constantsy andcg were added to complete the force field

of nearest neighbors. They offer a description of the pyrami-
dalization of the carbon atoms. Constacisind ¢ introduce
additional springs between atoms that are second neighbors.
Their main effect is to improve the frequency fit for the lowest
Hg squashing mode. This force field describes all potential
energy effects caused by changes in bond lengths and angles
bet_ween neighb_or_ing a_toms. Values for the 10 force ConSt_amS'Figure 5. Parameters used in extended Wu force field.
which were optimized in order to obtain a least square fit of
calculated frequencies to IR and Raman data, are listed in TableTABLE 9: Force Constants for Extended Wu Force Field
9; frequencies calculated with these constants are listed in Table(N/m)

8. a 520.1 Cs 9.8

Although the frequencies from this 10-parameter force field C 348.1 Cr 35.1
are in fairly good agreement with experimental data, the lowest Cs 68.4 Cs 217
Hy mode at approximately 273 crhis still not well reproduced. 2‘5‘ Z;'g gio ﬁ-g

In the original six-parameter mod#,this frequency was
calculated too low at 214 cm. By addition of the local to a value of 245 cmt, could only be achieved by adding
pyramidalization constants; and cs, the error became even interactions between atoms which are more than one bond away,
larger, with a calculated value of 207 ctnA real improvement, as expressed by the constacgsndcs. This indicates that the
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lowest H, mode, which is important in JakiTeller distortions
of Cgo anions?® has a strong non-local character. It is associated
with an amplitude which varies slowly over the surface of the
cluster, and thus is susceptible to long-range interactions.

5.3.2. Complete Force Fields a basis for the complete force
field, we have used the full ab initio Hessian, calculated by
Dixon et al3” All 160 force constants for the complete force
field, as in eq 23, were extracted. Since the DGauss program
does not make use of icosahedral symmetry, the resulting force
constants for equivalent interactions show slight deviations. If
we remove numerical noise by replacing equivalent constants
by their mean values and then invert the Hessian problem,
frequencies which show precise icosahedral degeneracies ares
obtained. The results of this symmetry cleaning of the Dixon
calculation are also listed in Table 8.

Figure 6 shows a Schlegel diagram with the labeling system
for atoms in Go.** These labels are used to define the force
constants for all types of interactions between two given bonds.

Table 10 lists all values for these force constants and their
numerical standard deviation, as obtained from the Hessian in
ref 37 before symmetry cleaning. For each force constant, only rigyre 6. Atom labeling in Go.4
one of the equivalent pairs is given; the signs in the table refer

to these exemplary pairs. The stretch and slide representationgonsequence of the large uncertainties in several constants, and

for Ceo are given by so, the conditions are essentially satisfied.
In an earlier work on the force field inggby Quong et al#?
Iy(€) =2A;+ Tyg+ 3Ty + Tyy + 3T, + 3G, + 3G, + the Cartesian Hessian, obtained from a local density approxima-
5Hy + 3H, (61) tion, was used to calculate the force constant tensors between
all pairs of atoms. The force constants were found to fall off
I(e) = A, + 3T+ 2T, + 3T, + 2T,, + 3G, + 3G, + with distance. However, a detailed comparison with the present
3H, + 4H, (62) model cannot be made since the force field by Quong et al. is

decomposed into atom-to-atom interactions along the interatomic

. . vectors. As compared to the present bond-to-bond interaction
Taking the symmetrized squares, we note that the numbers of, P b

. - C . scheme, such an atom-to-atom approach is insensitive to the
independent stretch, slide, and stretshide interaction constants

; . . directional character of the polyhedral bonds.
are, respectively, 50, 47, and 63, in agreement with Table 10. 5.3.3. Decomposition of the Wu Force Field into Slide and

Several constants turn out to be extremely small, and thesegyatch TermsAs compared to the complete force field, the
cases are always accompanied by high numerical inaccuraciesmgihods which are traditionally used in chemistry are often

The values for the force constants show that the interaction seriously under-parametrized. The fitting procedure will then
between two bonds decreases with the distance; however, thesfectively “store” a number of different interactions in a few

contributions from the “long-distance interactions” provide parameters. This implies that the force constants of such methods
essential corrections, since there are many more of them; withoutare “effective” force constants and must be interpreted with
these terms, it is very difficult to reproduce all frequencies exireme caution. A good example is offered by the extended
acc_uratel_y. The effect of slideslide interactions_decays less  \wu force field. Its terms (eq 60) can be decomposed in slide
rapidly with distance than stretetstretch interactions. and stretch terms. Decomposition of the potential in eq 60 using
Considering the relative importance of interactions, the main the values from Table 9 gives rise to the nonzero constants,
interactions with a given bond are found on the bonds of the |isted in Table 11.
“neighboring rings”, i.e., the rings which encircle that bond.  These constants satisfy the first two redundancy conditions
Additional interactions, which are still significant, extend to the (eqs 27 and 28) exactly and the next two (egs 31 and 32)
next atoll of rings. We find that bonds which are more than approximately. Note that although the stretching force constants
three bonds awayi.e., the smallest path frofj (1o (KlLtonsists ¢, andc, obtained by fitting the Wu force field are quite low,
of more than three bongsave contributions, which are less  520.1 and 348.1 N/m, the actual pure stretching interactions,
then 0.5% of the main interaction. The distribution of the most as measured by the complete force field, are much higher, 762.2
important interactions for the case of stretaftretch constants  gnd 650.2 N/m, and much more in accordance with the DFT
(K%, 2m) is shown in Figure 7. results, 867.1 and 671.0 N/m, and with chemical experience.
This relatively localized picture of the force field is broadly Some constant values turn out to be degenerate, which reflects
compatible with the known chemistry ofgg [60]-Fullerene the fact that the Wu force field has fewer degrees of freedom
replaces electron-deficient alkenes in organometallic complexes,than the complete one.
undergoes halogenation and epoxidation, and dimerizes by [2 A clear shortcoming of the extended Wu force field is that it
+ 2]-addition, but does not react by%or 5° addition to does not incorporate interactions between bonds which are three
pentagonal or hexagonal faces. In many respects, the chemistrihonds away from each other, in contrast to the results of the
of Ceo is closer to that of ethene than to that of a delocalized complete force field. While the error on the frequencies is small,
“super arene"? except for the lowest fimode, the too strongly localized
Elaboration of the redundancy conditions does not yield exact character of the Wu force field will give less accurate eigen-
zeros, though most values lie below 1.0 N/m. This is a vectors for the vibrational modes.
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TABLE 10: Constants for Cg, in Nm

stretch-stretch stretch-slide Slide-slide
k mgo &IO value o (%) k mo &IO value o (%) k mo &IO value o (%)
1 1,20 [M@,21 867.1 0.5 51 [O,27 0,60 —140.7 2.3 114 11,20 0,20 574.9 1.3
2 1,60 59.8 3.4 52 3,400 83.1 2.3 115 1,60 288.4 1.6
3 3,40 —80.0 2.4 53 3,140 54.1 31 116 (3,40 101.7 2.0
4 3,141 513 3.3 54 @,171 8.6 2.2 117 3,141 58.0 2.9
5 @,50 24.1 1.6 55 (7,210 —6.2 3.4 118 [@,50 —-10.3 5.7
6 @,171 1.9 8.9 56 5,161 -1.8 4.9 119 @,171 6.8 2.4
7 7,80 14.4 2.2 57 15,3727 —3.8 2.4 120 7,210 3.9 8.6
8 7,210 16.6 11 58 16,171 5.9 1.6 121 15,161 3.7 3.6
9 15,167 -0.1 58.0 59 16,341 —2.7 2.8 122 (15,327 —-1.7 7.0
10 5,323 4.9 1.4 60 17,183 —5.9 1.3 123 16,17 10.0 1.9
11 06,11 10.4 0.9 61 18,361 -05 257 124 16,341 —0.1 78.8
12 06,341 —-0.4 18.1 62 22,391 04 233 125 17,181 58 2.2
13 17,187 5.9 1.7 63 (33,347 -1.8 4.0 126 22,391 0.1 78.5
14 (18,341 -1.5 5.3 64 33,507 —-0.8 11.6 127 (33,341 -1.8 4.6
15 [22,39] 0.9 8.2 65 [34,35] 1.4 6.1 128 (33,501 —-2.0 4.1
16 [33,34] -1.0 8.8 66 [35,36] -1.1 6.9 129 (34,351 0.2 50.8
17 33,507 1.0 8.5 67 35,5721 —-0.3 335 130 [35,36] 0.9 8.7
18 [34,35] -1.2 8.2 68 [40,54] 0.1 58.8 131 35,5727 1.0 8.9
19 [35,36] 0.3 36.8 69 51,5727 0.1 64.8 132 (40,547 -0.2 54.6
20 [35,572] -1.2 6.6 70 51,607 -0.1 62.5 133 (51,5727 0.7 13.6
21 40,4100 —-05 21.3 71 O, 0,20 —128.3 2.7 134 51,607 0.7 10.8
22 40,547 -0.9 11.8 72 1,90 —113.0 2.8 135 52,537 -0.9 9.3
23 51,5727 0.4 23.2 73 2,30 66.1 2.9 136 (55,60 1.8 6.9
24 51,607 0.2 47.1 74 2,127 40.7 3.7 137 01,60 01,60 500.6 1.1
25 52,5371 1.0 7.8 75 (3,140 5.1 3.8 138 1,91 263.0 1.6
26 55,60 —-05 18.5 76 7,80 86.4 3.2 139 2,31 —78.9 2.9
27 11,60 014,60 671.0 0.4 77 7,210 52.4 3.2 140 2,127 —315 5.2
28 1,90 48.6 4.7 78 8,24 —2.2 154 141 (3,147 —4.9 4.1
29 2,30 —69.8 2.2 79 10,1100 —4.3 3.9 142 7,81 84.2 2.4
30 2,120 —25.2 5.6 80 10,261 —-3.9 1.9 143 (10,267 0.2 52.2
31 3,140 4.8 5.3 81 11,123 11.8 1.7 144 11,281 —35 2.4
32 7,80 —-37.1 5.9 82 11,287 4.0 2.4 145 13,147 —3.6 3.1
33 10,267 13.8 0.7 83 12,137 —-8.7 1.0 146 15,167 -18 6.7
34 1281 —7.1 1.3 84 13,141 0.7 111 147 ns5321  —-0.7 12.2
35 13,147 5.7 2.3 85 13,307 —3.6 3.9 148 22,397 —5.6 1.6
36 5,161 3.5 3.5 86 14,151 -2.9 4.4 149 23421 —1.6 4.2
37 15,3721 -0.1 70.6 87 15,321 0.4 16.6 150 29,410 1.2 5.2
38 [22,39] 5.8 1.8 88 [22,23] -31 2.8 151 30,31 2.1 25
39 [23,472] —-0.5 16.4 89 22,397 —4.1 1.9 152 [31,48] —-0.5 12.3
40 29,410 2.8 2.7 90 [23,24] 3.9 2.3 153 [32,33] -0.2 25.9
41 30,30 —1.3 8.1 91 (23,471 -16 6.2 154 41,567 0.3 26.0
42 @1,481 —0.1 70.7 92 27,281 -1.6 4.7 155 [@2,431 3.2 2.0
43 [32,33] —-0.6 20.0 93 [27,45] -1.9 5.8 156 [46,58] 0.6 9.8
44 @1,561 0.4 22.1 94 28,291 2.4 4.3 157 49,501 -0.1  56.7
45 [42,43] -1.3 11.9 95 29,307 —-0.5 16.8 158 [49,59] -04 22.1
46 [46,58] 1.0 12.1 96 29,471 0.4 22.4 159 [$5,56] 0.6 14.4
a7 (49,507 0.2 44.0 97 (30,310 -1.3 5.5 160 59,607 0.5 18.4
48 [49,59] 0.6 14.7 98 (31,321 0.4 18.5
49 55,567 -13 7.2 99 [31,48] 0.2 325
50 59,60 —-0.3 40.9 100 [32,33] —-0.8 8.7
101 33,507 1.4 8.9
102 40,4100 0.5 13.8
103 [40,54] 0.5 15.0
104 41,421 -0.7 145
105 (41,567 -0.1 711
106 46,411 0.5 20.4
107 [46,58] 0.1 83.6
108 [47,48] —0.6 10.1
109 [48,49] 0.2 45.7
110 (49,507 0.4 20.8
111 [49,59] 0.3 26.6
112 55,561 -0.1 60.7
113 55,60 -0.1 56.1
6. Conclusion cage is dominated by slide and stretch constants for nearby

A group-theoretical framework has been used to derive a lbonds (selpgrated by r;)(l) mqrﬁ tr?an 'ihrg € lp?lythrtzg de(jdges). The
complete force field for two extreme types of molecular cage: 'atter resuitis compatible with the relatively localizeeddition

the deltahedron, for which all vibrations are bond stretches, and Sheémistry of [60]-fullerene and suggests a parametrization of
the trivalent polyhedral cage, for which bond stretches and bond the force field for general fullerenes.

slides describe all possible vibrational motions. Projection of

ab initio calculated Hessian matrices allows comparison of the ~ Acknowledgment. Research in Leuven was supported by
degree of localization in the force field in the two cases. Whereas the concerted action scheme of the Flemish Government (GOA,
the rigid B2 cage has significant cross cage interaction constants Ministerie van het Wetenschapsbeleid) and by the Flemish
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Figure 7. “Magnitude diagram” of the carbon skeleton igo@or the

K smoforce field constants. The red rings which encircle the central
[1,20bond carry the most important interactions. The remaining
interactions above 0.5% are found in the next circle of blue rings.

TABLE 11: Decomposition of Wu Force Field

stretch-stretch stretchslide slide-slide

MO O value 0O O value OO KO value
m,210Mm,20 7622 M@,20M@,60 —135.1 1,201,200 606.6
a,e0 41.6 3,40 88.0 a,ed 337.9
3,40 —50.4 3,140 52.1 3,40 1255
(3,141 —38.7 4,171 —-7.2 3,140 73.8
4,50 49.4 7,210 -7.0 4,50 —49.4
4,171 7.2 600,20 -—-142.1 [4,17] —-7.2
7,80 21.0 1,90 -—124.6 7,210 7.0
7,210 7.0 2,31 98.4 1,600 1,60 601.3
Mm,600M,60 650.2 2,120 50.6 1,90 321.4
1,91 51.1 3,141 -10.9 2,31 -135.8
2,31 -61.1 7,81 117.9 2,121 —64.6
2,121 —-36.7 7,210 60.4 3,140 10.9
3,141 10.9 8,90 —21.0 7,80 108.9
7,81 —8.6 10,110 —10.9 10,261 10.9

(10,267 10.9 (10,267 —10.9

11,121 7.2

12,137 —10.9

financial support under the EU TMR Networks USEFULL and
BIOFULLERENES.

A Separation of Skeletal and Exohedral Vibrations in
Binary Clusters of Type (AX),>

Consider a cluster withy atoms of type A, each of which
has an additional bond to an atom X outside the cage. The

Ceulemans et al.

The off-diagonal block matrices are related by transposition

HAX = (H*A)f (65)

The potential energy is thus given by
1 1
V=S HA G S H G G S Y (66)
] ] ]

where the indice$ andj range from 1 to 3.
The kinetic energy is written as

1 1
T=Cm, Z(q{*)2+5rnx Z(qix)z (67)

wherem, andmy are the respective masses of the atoms A and
X.

The normal modes that result from the vibrational eigenvalue
problem will be mixtures of skeletal vibrations and displace-
ments of the exo atoms. For the purposes of constructing a force
field for the cluster vibrations, we must project out the skeletal
modes. This is done by requiring that the exohedral atoms follow
the motions of the cluster atoms adiabatically, i.e., in such a
way that the forces for the displacements of the exo atoms
vanish.

For /varying from 1 to 3, one has:

\Y
— =R A Y H g =0 (68)
aq/ ] T
This condition can also be written as
HXg = —H*Ag? (69)
or
qX — _(HXX)—l HXAqA (70)
qu — _qATHAX(HXX)—l (71)

This expression shows how the exohedral atoms follow the
displacement of the cluster atoms in a way which creates no
extra force field. By substituting this result in the expression

for the potential energy, we obtain an effective potential for

the skeletal vibrations:

2Veff — qATHAAqA _ ZqATHAX(HXX)*lHXAqA +
qATHAX(HXX)—l HXX(HXX)—lHXAqA
— qAT[HAA _ HAX(HXX)*IHXA]qA (72)

g-coordinate basis of such a cluster consists of two subsets ofHere, the term in brackets is the effective Hesslag;, from
displacements of atoms A and X, which will be arranged as which the force field for the skeletal modes is to be extracted:
shown in eq 63:

Accordingly, the total Hessian will be divided in four subma-
trices, depending on the type of atom which is being displaced:

B HAA AX
H= HXA XX

(63)

(64)

Heff — HAA _ HAX (HXX)—l HXA (73)

For the calculation of the frequencies associated with these
effective modes, we must introduce similar coordinate trans-
formations for the time derivatives. The kinetic energy in matrix

X XXy—1 XA LA

q°=-(H") "H™q (74)

qXT — _ qAT HAX (HXX)*l (75)

form then becomes
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— AT LA AT | AX XX =1 XXy =1 XA LA (10) Brint, P.; Sangchakr, B.; Fowler, P. W.; Weldon, V.JJChem.
27 Ma a g+ M g H (H ) (H ) H™q Soc. Dalton Trans1989 2253-2260.
_ _ (11) Andzelm, J.; Wimmer, El. Chem. Physl992 96, 1280.DGauss
= C]AT [mal + mXHAX(HXX) l(HXX) lHXA]CIA (76) 4.0, Oxford Molecular, Ltd.: Beaverton, OR, 1997.
(12) UniChem is a registered trademark of Oxford Molecular Group.
. . . . (13) Muetterties, E. L.; Merrifield, R. E.; Miller, H. C.; Knoth, W. H.,
The term in square brackets is the effective mass malifix, Jr.; Downing, J. RJ. Am. Chem. S0d.962 84, 2506-2508.
(14) Leites, L. A.; Bukalov, S. S.; Kurbakova, A. P.; Kaganski, M. M.;
M =m,l + mHH)HH) TR (77) Gatft, Y. L.; Kuznetsov, N. T.; Zakharova, |. ASpectrochim. Actd982
38A 1047-1056.
) ) ) (15) Weber, W.; Thorpe, M. RJ. Phys. Chem. Solids975 36, 967.
The frequenciew of the effective modes are then obtained by (16) Abdul-Fattah, M.; Butler, I. SCan. J. Spectroscdl977, 22, 110.
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