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Group theory is used to define complete force fields for deltahedral and trivalent molecular skeletons in
terms of bond stretches, and bond stretches and slides, respectively. Analysis of ab initio Hessian matrices
shows the delocalized nature of the force field in boranes and the relatively localized force field in C60,
where only interactions of bonds in adjacent rings or separated by at most three edges of the truncated
icosahedron show significant interaction.

1. Introduction

Is the force field in carbon and boron clusters local, or does
it have long-range components? What is the best choice of
internal coordinates for three-dimensional cage molecules? How
should one analyse and compare first-principles calculations of
the Hessian matrix for clusters?

The core of these questions is the problem of coordinates.
One needs to find a set of suitable coordinates, which is based
on the topology of the cluster. In the present paper, we show
how such coordinates can be defined for deltahedral clusters
and their trivalent duals. The treatment makes use of two group-
theoretical theorems which relate the mechanical representation
of such clusters to their topology.1 In this coordinate basis, we
construct a complete force field, which fully characterizes the
chemical bonding. A complete force field precisely covers the
information which is contained in frequencies and composition
of the normal modes. It thus represents the exact inverse of the
vibrational eigenvalue problem. The theoretical results are
applied to explicit calculations on highly symmetrical repre-
sentative cages of carbon and boron.

2. Group-Theoretical and Topological Background

Consider a polyhedral cluster withV vertex points or atoms.
The set of all vertexes spans a reducible representation of the
molecular point group. We shall refer to this as the positional
representation,Γσ(V). Theσ index is a cylindrical label, which
indicates that the vertex points are invariant with respect to all
symmetry elements that pass through the atom sites. Tables of
Γσ(V) for many symmetric clusters are available in the literature.2

From its equilibrium position, each atom can move in three
orthogonal Cartesian directions. The set of 3V displacements
spans the mechanical representation of the cluster,ΓM(V).
According to induction theory,3 the mechanical representation
is obtained by forming the direct product of the positional

representation with that of the three translations

It includes the six collective modes, three translations, and three
rotations, transforming, respectively, asΓT andΓR. Subtracting
these, we obtain the symmetry representation of the internal
modes of vibration,Γvib(V):

which covers the 3V - 6 internal degrees of freedom of a non-
linear molecule withV atoms. Using standard group-theoretical
techniques,Γvib(V) may be resolved into irreducible representa-
tions, describing the internal symmetry coordinates.4 In principle,
several types of symmetry coordinates exist, e.g., bond stretches,
changes in bond angles, dihedral angles, etc., and the problem
is to find a suitable minimal set that reflects the bonding most
efficiently.

A special symmetry relationship can be obtained for a specific
class of clusters: the deltahedra. All faces of a deltahedron are
triangles. This is the favored bonding mode adopted by boron
in the closo-borane, BnHn

2-, series.5 For deltahedra, the number
of vertexes,V, is related to the number of edges or bonds,e, by

This counting rule has a symmetry extension, which forms the
key group-theoretical theorem for the construction of force fields
in boron cages. The extension is obtained by replacing each
term in the counting rule by an appropriate symmetry repre-
sentation, yielding1

or, on substitution

The termΓσ(e) in this result is the symmetry representation
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ΓM(V) ) Γσ(V) × ΓT (1)

Γvib(V) ) ΓM(V) - ΓT - ΓR, (2)

3V - 6 ) e. (3)

ΓT × Γσ(V) - ΓT - ΓR ) Γσ(e). (4)

Γvib(V) ) Γσ(e). (5)
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spanned by all stretches of the edge bonds. Such stretches are,
indeed, fully symmetric orσ-type objects with respect to the
symmetry elements passing through the edge midpoints. Hence,
the result in eq 5 states that the internal modes of vibration and
the stretches of the bonds of a deltahedron span the same
symmetry. We can thus construct a complete harmonic force
field for deltahedral clusters taking all possible interactions
between edge bonds. As compared to the conventional Cartesian
Hessian, which is of course also complete, a bond force field
has the advantage that it is based on symmetry-equivalent
interactions and thus corresponds to the simplest symmetry
representation of elastic forces in a molecule. In addition, it
gives direct information on the chemical bonding.

This relationship was found by Boyle and Parker6 in a study
of closo-B12H12

2- but taken as a coincidence of icosahedral
symmetry. It was shown later to be true for all deltahedra that
can be mapped on the surface of a sphere.1 In mechanical terms,
the theorem implies that a deltahedron cannot vibrate unless
some of its bond lengths are changing. In this form, it is a
consequence of a general result, which was obtained by the
famous French polymath Cauchy7 as early as 1812, and states
that “Every convex polyhedral surface with rigid faces is
inflexible”. [II e Mémoire sur les Polygones et les Polye`dres,
Théorème XIII: “ Dans un polye`dre conVexe, dont toutes les
faces sont inVariables, les coins compris entre les faces, ou, ce
qui reVient au meˆme, les inclinaisons sur les diffe´rentes areˆtes
sont aussi inVariables” . (“In a convex polyhedron with rigid
faces, the angles between the facessor, in other words, the
inclinations on the different edgesswill also be rigid”.) Since
the proof of the completeness of the set of stretching coordinates
as internal modes rests on Euler’s theorem, it is really a
topological property of deltahedra. This implies that even in
the absence of all symmetry the bond stretches of a convex
deltahedron form a complete nonredundant set of internal
coordinates. In the next section, we will use this result to
construct a complete force field for deltahedral clusters.

The dual of a deltahedron is a trivalent cluster in which three
bonds radiate from each atom. This is the preferred bonding
mode of carbon, both in the polyhedranes, CnHn, and in the
fullerenes, Cn. For trivalent clusters, the counting rule is

Again, there is a symmetry extension in which each term is
replaced by its symmetry representation. This forms our second
group-theoretical relation:1

or, on substitution

Here,Γ|(e) is the symmetry representation of a set of vectors
or arrows, one along each bond. The right-hand side of the
equation thus represents the symmetry of all edge stretches and
edge-sliding movements (or “slides”, for short). This is found
to match the mechanical representation, but now, in contrast
with the case of deltahedral clusters, the symmetries of the six
collective modes are included in the edge slides,Γ|(e). On the
basis of this theorem, we can thus construct a complete force
field for trivalent clusters in terms of bond stretches and slides
but must take into account some redundancy relations for the
slide constants. This construction will be presented in section
4.

3. Complete Force Field for Deltahedra

We now proceed to the construction of a complete force field
for deltahedra and the identification of the force constants. We
will assume that the cluster consists ofV identical atoms or
superatoms with massm. Let (xi

e,yi
e,zi

e) denote the equilibrium
position of atomi (i ) 1, ..., V). The displacements of each
atom with respect to its equilibrium position in the three
Cartesian directions of a common coordinate frame will be
denoted by nonsuperscripted symbolsxi, yi, andzi. These form
the basis set of the mechanical representation. For general
purposes, an element of this set will be referred to asqk, with
k ) 1, ..., 3V. In addition, we define a set of internal coordinates
sl: the first 3V - 6 elements of this set correspond to all bond
stretches,∆r〈ij 〉, of the deltahedron, and the remaining six
elements are the translations and rotations. It is convenient to
group both types of coordinates in column vectors as

The bond between atomsi andj is denoted as〈ij 〉. The stretching
of the bond between these atoms, denoted as∆r〈ij 〉, can be
expressed in theq coordinates as follows:

where superscript “e” denotes an equilibrium quantity. The
unnormalized translations and rotations are

and similarly fory andz components. These relations can now
be collected in the traditionalB matrix, which transforms
Cartesian displacements into internal and collective coordinates:

B is a square matrix, sincesandq have the same dimensions.
The group-theoretical relation of eq 4 guaranteesB to be
nonsingular.

We now turn to the vibrational potential energy. Since the
vibrational modes span the same symmetry as that of the bond
stretches (eq 4), the potential can be written as

The k’s are the force constants and describe a complete force

3V ) 2e (6)

ΓT × Γσ(V) ) Γσ(e) + Γ|(e) (7)

ΓM(V) ) Γσ(e) + Γ|(e). (8)

q ) (x1

y1

z1

x2

y2

z2

l
xV
yV
zV

), s ) (∆r〈12〉
∆r〈13〉

l
Tx

Ty

Tz

Rx

Ry

Rz

) (9)

∆r〈ij 〉 ) 1

r〈ij 〉
e

[(xi
e - xj

e)(xi - xj) + (yi
e - yj

e)(yi - yj) +

(zi
e - zj

e)(zi - zj)] (10)

Tx ) ∑
i

xi (11)

Rx ) ∑
i

yi
ezi - zi

eyi (12)

s ) Bq (13)

q ) B-1s (14)

2V ) ∑
〈ij 〉〈mn〉

k〈ij 〉〈mn〉∆r〈ij 〉∆r〈mn〉 (15)
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field. We follow here a convention where the summation indices
〈ij 〉 and 〈mn〉 run independently over all bonds. The sum
therefore containse2 terms, of which at moste(e + 1)/2 are
distinct, but molecular symmetry will usually yield a much
smaller set of independent force constants. Their number is equal
to the number of copies of the totally symmetric representation
Γ0 contained in the symmetric square of the edge representation
Γσ(e).

Nowadays, many ab initio programs provide accurate calcula-
tions of the Hessian matrix, from which the internal force
constants of our force field can easily be obtained. The Hessian
matrix,H, defines the potential in Cartesian form, according to

where the dagger denotes transposition of rows and columns.
The elements ofH may thus be expressed as

With theB matrix, one can now switch to internal and collective
coordinates as follows:

The second-order derivatives for the interaction between twos
coordinates thus read:

Derivatives involving collective modes will automatically
vanish, as the Hessian is invariant under translations and
rotations. In this way, one obtains alle(e + 1)/2 bond-bond
interaction constants. They may easily be sorted into sets of
symmetry-equivalent constants. A practical application to the
dodecaborane dianion will be illustrated in section 5.1.

4. Complete Force Field for a Trivalent Cage

In a trivalent cage, each atom is connected to three neighbors.
According to the symmetry theorem,1 the Cartesian displacement
coordinates are now transformed to 3V/2 bond stretches,∆r〈ij 〉,
and 3V/2 bond slides,∆l〈ij 〉. Together, these form the set of
internals coordinates of the trivalent cage:

The expressions for the bond stretches in terms of Cartesian
displacement coordinates were given in eq 10 and now appear
in the upper half of theB matrix. The slides are translations of
two atoms along the direction of their common bond, as shown
in Figure 1. These type of coordinates have not been used

previously in studies of cluster vibrations.
By convention, we define the positive sense of∆l〈ij 〉 as a

translation from atomi to atomj. Hence, one has

The slides can easily be expressed in Cartesian displacements
of the atoms concerned:

The expressions of this type provide the remaining lower half
of the B matrix. The potential energy of vibration is given by

where we have usedk〈mn〉〈ij 〉
lr ) k〈ij 〉〈mn〉

rl . In this expression,〈ij 〉
and 〈mn〉 run independently over all bonds. Note in particular
that constantsk〈ij 〉〈mn〉

rl and k〈mn〉〈ij 〉
rl are not necessarily equal, as

exchanging the roles of stretching and sliding bonds may give
different contributions to the potential energy.

There are three types of force constants, corresponding to
the three possible combinations of stretches and slides. These
constants can be extracted directly from the Hessian, following
the same procedure as that in the case of the deltahedron, i.e.,
by a matrix transformation involving the inverse of theB matrix,
as described in eq 19.

The total number of nonsymmetry related constants in the
potential energy expression is equal to the number of times the
totally symmetric representation occurs in the symmetrized
square of theΓσ(e) + Γ|(e) sum representation. This sym-
metrized square can further be decomposed into three parts:

where square brackets denote symmetrized parts. The numbers
of the totally symmetric representations in these three parts
correspond, respectively, to the numbers of nonsymmetry related
constants of typekrr, kll, andkrl.

The force field which is obtained in this way is, however,
not free from redundancies. The external collective modes
contained in the mechanical representation give rise to a set of
redundancy conditions between the force constants, which can
easily be derived by requiring that the forces associated with
the spurious modes be zero. First, consider the translations. A
translation in thex direction induces slides of all bonds that
have a component along this direction. This is expressed by a
total differential of the following type:

and similarly forTy and Tz. The associated force is given by

This force will be zero if the following redundancy relations

Figure 1. Definition of slides.

2V ) q†Hq (16)

Hkl ) ∂
2V

∂qk∂ql
(17)

2V ) s†(B-1)†HB-1s (18)

∂
2V

∂sa∂sb

) ∑
pq

(B-1)paHpq(B
-1)qb (19)

s ) (∆r〈12〉
∆r〈13〉

l
∆l〈12〉
∆l〈13〉

l
) (20)

∆l〈ji 〉 ) -∆l〈ij 〉 (21)

∆l〈ij 〉 ) 1

r〈ij 〉
e

[(xj
e - xi

e)(xi + xj) + (yj
e - yi

e)(yi + yj) +

(zj
e - zi

e)(zi + zj)] (22)

2V ) ∑
〈ij 〉〈mn〉

(k〈ij 〉〈mn〉
rr ∆r〈ij 〉∆r〈mn〉 + 2k〈ij 〉〈mn〉

rl ∆r〈ij 〉∆l〈mn〉 +

k〈ij 〉〈mn〉
ll ∆l〈ij 〉∆l〈mn〉) (23)

[Γσ(e) + Γ|(e)]2 ) [Γσ(e)]2 + [Γ|(e)]2 + Γσ(e) × Γ|(e) (24)

d

dTx

) 2∑
〈ab〉
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e - xa

e

r〈ab〉
e

∂

∂∆l〈ab〉

(25)

dV

dTx

) 2∑
〈ab〉

∑
〈ij 〉

xb
e - xa

e

r〈ab〉
e

(k〈ij 〉〈ab〉
rl ∆r〈ij 〉 + k〈ij 〉〈ab〉

ll ∆l〈ij 〉) (26)
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are fulfilled:

and similarly fory andz components.
The rotations can be treated in an analogous way. Again, an

overall rotation does not affect the bond lengths and therefore
cannot interfere with stretches, but it may induce slides. The
total differential for a rotation about thez axis is given by

and similarly forRx andRy. The associated force is

This force vanishes under the additional redundancy conditions:

and similarly for thex andy components.
For each bond〈ij 〉, we thus have in principle 12 redundancy

conditions, or 12e conditions in total. This number will, of
course, also be drastically reduced whenever symmetry is
present, as will be illustrated in section 5.2 for the example of
cubane.

5. Applications

5.1. Dodecaborane, B12H12
2-. The largest closo-borane an-

ion, B12H12
2- exists as a near-perfect icosahedron in its salts,

invariably distorted slightly by steric hindrance with the
surrounding lattice.8 Ab initio calculations of the vibrational
frequencies in a 4-31G basis were performed by Brint et al. as
part of a wider study of theoretical and experimental IR and
Raman spectra of boranes.9,10We have recalculated the spectrum
with the DGauss density functional program,11 which is included
in the UniChem package.12 Different functionals were investi-
gated, the GGA BLYP with DZVP2 global orbital basis set
yielding results which were closest to experimental frequencies.
In Table 1, we collect experimental and theoretical geometries
and vibrational spectra. The experimental IR and Raman spectra
refer to solid salts of, respectively, Na2B12H12

13 and K2B12H12.14

Equivalent data for the deuterated salts are also available.
The experimental pattern is reproduced quite accurately by

the ab initio results. As expected, SCF frequencies overestimate
the experimental values, especially for the high-energyνB-H

stretching modes above 2000 cm-1, with discrepancies of up
to 7%. In this respect, the DFT results score slightly better.

The normal modes of the B12 cage were treated analytically
in earlier papers by Weber and Thorpe15 and Boyle and Parker,6

using simplified force field models. A crucial problem in the
extraction of force field parameters, which also appears in
applying the present complete field method, concerns the correct
assignment of modes with predominant skeletal character.
Indeed, except for theνB-H stretches, theνB-B vibrations of
the cluster cage and theδB-B-H bending modes of the external
hydrogens may show substantial mixing. Muetterties et al.13

assigned the lowest IR and Raman frequencies, at 745 (Ag),
720 (T1u), 580 (Hg), and 770 (Hg) cm-1, to skeletal modes.
Abdul-Fattah and Butler16 later reversed the assignment of the
T1u modes, claiming a predominantνB-B character for the
middle-frequency 1070 cm-1 mode versus aδB-B-H assignment
for the 720 cm-1 mode. Only a full calculation of the total
Hessian can settle this question unambiguously.

To obtain a complete force field for the oscillating icosahedral
cage, we must first separate cluster vibrations from the motions
of the exohedral hydrogen atoms. The separation procedure is
described in appendix A. The effective cluster vibrations are
obtained by projecting out the modes for which the hydrogen
atoms follow the boron displacements adiabatically. The result-
ing effective Hessian,Heff for the skeletal displacements of the
boron atoms, is given by

whereHBB andHHH are, respectively, the diagonal boron-boron
and hydrogen-hydrogen blocks of the Hessian, andHBH and
HHB are the corresponding off-diagonal blocks. To this effective
potential matrix is associated an effective mass matrix,M :

wheremB and mH are the masses of, respectively, boron and
hydrogen atoms. The frequenciesν of the effective modes are
then obtained by solving the eigenvalue problem:

∑
〈ab〉

xb
e - xa

e

r〈ab〉
e
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rl ) 0 (27)

∑
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e
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) 2∑
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e yb
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e ya

e
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∂

∂∆l〈ab〉

(29)
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) 2∑
〈ab〉

∑
〈ij 〉

xa
e yb

e - xb
e ya

e

r〈ab〉
e

(k〈ij 〉〈ab〉
rl ∆r〈ij 〉 + k〈ij 〉〈ab〉

ll ∆l〈ij 〉)

(30)

∑
〈ab〉

xa
e yb

e - xb
e ya

e

r〈ab〉
e

k〈ij 〉〈ab〉
rl ) 0 (31)

∑
〈ab〉

xa
e yb

e - xb
e ya

e

r〈ab〉
e

k〈ij 〉〈ab〉
ll ) 0 (32)

TABLE 1: Spectroscopic and Geometrical Data for B12H12
2-

label νjexp
13,14(cm-1) νjcalc

a (cm-1) νjcalc
b (cm-1)

Ag 2517 2687 2540
745 741 725

T1g 1064 923
T1u 2480 2642 2504

1070 1155 1026
720 720 683

T2u 2611 2476
809 732

Gg 1035 900
696 631

Gu 945 822
774 717

Hg 2470 2618 2483
955 1013 891
770 792 728
580 600 558

Hu 1043 911
526 499

bond (Å)8 (Å) (Å)

〈B-B〉 1.77 - 1.804
〈B-H〉 1.07 - 1.206

a HF-SCF calculation, 4-31G basis.9,10 b DFT calculation, DGauss,11

BLYP-DZVP2.

Heff ) HBB - HBH(HHH)-1HHB (33)

M ) mBI + mHHBH (HHH)-1(HHH)-1HHB (34)
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whereν are the frequencies in Hz; the elements ofHeff are in
N/m, and those ofM in kg.

From the DFT results, we have calculated the effective
Hessian and mass matrix and diagonalized the resulting matrix
equation. The frequencies (in cm-1) are given in Table 2, labeled
νjeff.

When comparing these frequencies with the experimental and
calculated spectra in Table 1, it is clearly seen that effective
cluster modes are always very close to the lowest eigenmodes
of each symmetry type.

The effective potential for the skeletal modes is now
decomposed over all bond-bond interactions, according to the
general group-theoretical result:

The bond indices in this expression refer to the labeling system,
shown in Figure 2. The summation domainsDx indicate that
both bond indices in a sum run independently over all pairs of
given type. As an example,k2 is the interaction constant between
stretchings of two adjacent bonds. Since each of the 30〈ij 〉 bonds
has four 〈im〉 nearest neighbors, the summation domainD2

contains 120 combinations. Note that there are, in total, 465
permutationally distinct bond-bond combinations, but only 9
independent force constants. This number is equal to the number
of times the Ag representation is contained in the symmetric
square ofΓvib for the skeletal modes, with

In contrast, only eight frequencies are experimentally observable.
The ninth experimental parameter is associated with the
eigenvector composition of the Hg modes. Indeed, since there
are two Hg modes in an icosahedral cage, their eigenvector
composition represents an extra degree of freedom which does
not depend on symmetry. In principle, observables such as
intensities or isotope shifts can be used to extract this parameter
from experiment, thus yielding enough empirical data to match
the complete force model.

The complete set of force constants can now easily be
calculated from the effective Hessian by taking the appropriate
second derivatives. The results are displayed in Table 3.

The small deviations in the calculated values are due to slight
numerical instabilities in the DGauss program, which does not
make use of the icosahedral point group symmetry.

Figure 2 shows a “magnitude diagram” of the boron skeleton.
The line thickness and colouring varies according to the
magnitude of the constant between the central bond〈ij 〉 and the
bond considered.

This figure shows that interaction between bonds in general
decreases with their distance; however, e.g., transversal interac-
tions of the〈ij 〉 - 〈no〉 type are much stronger than those of the
〈ij 〉 - 〈kn〉 type.

|Heff - 4π2ν2M | ) 0 (35)

2Veff ) qB†Heffq
B

) k1 ∑
〈ij 〉 ) 1

30

(∆r〈ij 〉)
2 + k2∑

D2

120

∆r〈ij 〉∆r〈im〉 +

k3∑
D3

120

∆r〈ij 〉∆r〈ik〉 +k4∑
D4

120

∆r〈ij 〉∆r〈km〉 + k5∑
D5

120

∆r〈ij 〉∆r〈lm〉 +

k6∑
D6

120

∆r〈ij 〉∆r〈kl〉 + k7∑
D7

120

∆r〈ij 〉∆r〈kn〉 + k8∑
D8

120

∆r〈ij 〉∆r〈ln〉 +

k9∑
D9

30

∆r〈ij 〉∆r〈no〉 (36)

Γvib(B12) ) Ag + T1u + T2u + Gg + Gu + 2Hg + Hu (37)

TABLE 2: Frequencies for the B12 Cage from the Effective
Hessian

label νjeff
a (cm-1) νjA12

b (cm-1)

Ag 728 727
T1u 763 782
T2u 733 728
Gg 664 658
Gu 745 735
Hg 825 821

562 553
Hu 508 505

a νjeff refers to the eigenvalues of the effective Hessian (eq 33) with
the appropriate mass matrix (eq 34).b νjA12 refers to the eigenvalues of
the effective Hessian for a cage of BH superatoms with a massmBH )
11.819 au.

Figure 2. “Magnitude diagram” of the boron skeleton in dodecaborane.
Bond indices are associated with summation domains of eq 36. Vertex
m shares a face with〈ij 〉, vertexk only an edge, vertexl is at distance
2 from bothi andj, and vertexesn ando are at distances 2 and 3 from
i (3 and 2 fromj). The gray bond, between the black atoms, is the
central bond〈ij 〉; the color of this bond is not drawn to scale because
the self-interaction of this bond is about 5 times larger than the second
largest interaction.

TABLE 3: Force Constants for B12, in N/m

constant valuea valueb σ c

k1 〈ij 〉 〈ij 〉 352 221.48 0.8%
k2 〈ij 〉 〈im〉 -109 -33.12 2.8%
k3 〈ij 〉 〈ik〉 54 41.46 1.4%
k4 〈ij 〉 〈km〉 0 -29.57 2.1%
k5 〈ij 〉 〈lm〉 0 -17.36 1.3%
k6 〈ij 〉 〈kl〉 0 17.56 1.6%
k7 〈ij 〉 〈kn〉 0 0.88 31.4%
k8 〈ij 〉 〈ln〉 0 -3.95 5.4%
k9 〈ij 〉 〈no〉 0 8.06 3.1%

a Eq 36, withk4 - k9 zero, fitted toνjA12 from Table 2.b Calculated
from the effective Hessian.c Standard deviation.
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Figure 3 shows the “sign distribution” of the interactions on
the boron skeleton. This reflects whether a bond tends to shrink
(“+” sign) as the main bond stretches or tends to stretch also
(“-” sign).

We have also derived closed form expressions for the
frequencies of a 12-atom icosahedron as a function of the nine
force constants:

Here,ω ) 2πν is the angular frequency,m is the mass of the
B-H cluster superatom, andΦ is the “golden number”,1/2(1
+ x5). Frequencies calculated with these expressions are
displayed in the Table 2, labeledνjA12. They are very close to
the results of the effective cluster Hamiltonian, which implies
that the effective mass matrix is approximately equal to (mB +
mH)I .

We may now compare these results with the previous analysis
of Boyle and Parker,6 who only took into account interactions
between neighboring bonds, as described by the first three force
constants. (The actual force constant expressions in ref 6 contain
errors, due to a few wrong matrix elements in the matrix
transformation between internal coordinates and symmetry
coordinates. The correct expressions can be obtained from our
eq 36 by puttingk4-k9 equal to zero.) The results in the table
clearly show that this approximation overlooks the important
contribution from the next three force constants,k4, k5, andk6,
which concern pairs of nonadjacent bonds.

5.2. Cubane, C8H8. The cubane molecule was first synthe-
sized in 1964,17 and its regular geometry was soon confirmed
by X-ray diffraction.18 The high symmetry and unusual geometry
of the molecule make it an interesting candidate for spectro-
scopic investigations. Several IR and Raman19,20 studies have

been published, of which the most complete presents a full set
of fundamental frequencies with a suggested assignment. The
IR spectrum of cubane is very simple, as only the T1u

fundamental vibrations appear. Three lines are observed in the
IR spectrum, which is the number expected for a C8H8 molecule
possessingOh symmetry.

A number of theoretical studies21-24 of the geometry and
vibrational structure, at different levels of calculation, have
appeared since cubane was synthesized. The geometries calcu-
lated in these studies compare reasonably well with experiment.
We repeated calculations of the geometry and the vibrational
spectrum with Gaussian25 (Dunning/Huzinaga full double zeta
basis set26 with Becke’s three-parameter hybrid method using
the LYP correlation functional27). A comparison of experimental
and calculated geometries and frequencies is presented in Table
4.

As for the boron cage (vide supra), the effective skeletal
modes for the carbon cage were projected out using the method
explained in the appendix. The resulting matrix equation was

Ag: mω1
2 ) 2(3 - Φ)(k1 + 4k2 + 4k3 + 4k4 + 4k5 + 4k6 +

4k7 + 4k8 + k9) (38)

T1u: mω2
2 ) 3(k1 + 2Φk2 + 2k3 + 2Φ-1 k4 - 2Φ-1 k6 -

2k7 - 2Φk8 - k9) (39)

T2u: mω3
2 ) 2(- Φ + 2)(k1 - 2Φ-1 k2 + 2k3 - 2Φk4 +

2Φk6 - 2k7 + 2Φ-1k8 - k9) (40)

Gg: mω4
2 ) Φ+2

2
(k1 - k2 - k3 - k4 + 4k5 - k6 - k7 -

k8 + k9) (41)

Gu: mω5
2 )

3Φ+2
2

(k1 + k2 - 3k3 - k4 + k6 + 3k7 - k8 - k9) (42)

Hg: mω6
2 + mω7

2 ) 4k1 + 2(Φ + 1)k2 - 2(2Φ - 1)k3 +
2(Φ - 2)k4 - 8k5 + 2(Φ - 2)k6 - 2(2Φ - 1)k7 +

2(Φ + 1)k8 + 4k9 (43)

m2ω6
2 ω7

2 ) 8[14k1
2 - k1k5 + 1

2
k1k9 - k2

2 + k2k3 + k2k4 +

k2k6 + k2k7 - 2k2k8 - k3
2 + k3k4 + k3k6 - 2k3k7 + k3k8 -

k4
2 - 2k4k6 + k4k7 + k4k8 + k5

2 - k5k9 - k6
2 + k6k7 + k6k8 -

k7
2 + k7k8 - k8

2 + 1
4
k9

2] (44)

Hu: mω8
2 ) k1 - 2k2 + 2k4 - 2k6 + 2k8 - k9 (45)

Figure 3. “Sign distribution” of the stretch interactions in the boron
skeleton (〈ij 〉 is situated between the two black atoms).

TABLE 4: Spectroscopic and Geometrical Data for C8H8

label νjexp
18-20(cm-1) νjcalc

a (cm-1)

A1g 2995 3193
1002 1013

A2u 2987 3137
839 1069

Eg 1083 1119
912 928

Eu 1151 1203
617 624

T1g 1130 1177
T1u 2978 3164

1230 1263
853 866

T2g 2970 3151
1182 1226
821 835
665 704

T2u 1036 1080
829 850

bond (Å) (Å)

〈C-C〉 1.55 1.589
〈C-H〉 1.10 1.089

a DFT calculation, Gaussian,25 B3LYP-d95.
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diagonalized to obtain frequencies; they are listed in Table 5,
labeledνjeff. As opposed to the boron cage, the lowest frequency
modes are not always of predominant skeletal type. As an
example, the skeletalEg andT2u modes are to be convolutions
of low- and high-frequency eigenmodes of cubane.

The stretching and sliding components of the mechanical
representation for a regular cube are given by

The complete force field will thus contain 12 force constants:
five for the stretching modes, five for the slidings, and two for
the interactions between equisymmetric stretchings and slidings.
The different bond-bond interactions are summarized in Table
6.

The bond indices in these expressions refer to the labeling
system shown in Figure 4.

Using this new notation, the effective potential can be written
as

The complete set of force constants was calculated from the
effective Hessian; the results are displayed in Table 7. Note
that the definitions ofKl and Krl constants imply specific
directions of the bonds concerned. This is not the case for the
Kr constants, since no direction is involved in a stretch. The
signs in Table 7 refer to the interactions between the bonds
used in the definitions for theK constants in Table 6 and to the
geometry given in Figure 4, where the “positive slide” direction

is indicated. To calculate the potential using eq 46, the signs
must be adjusted according to the bond pair considered.

Using the determined force constants, we can calculate
frequencies for the cubane cage, consisting of CH oscillators
with massmC + mH. The results are listed in Table 5, labeled
νjA8, and comply with the following expressions:

As noted previously for the boron cage, these frequencies match
the results of the effective Hessian calculations.

As mentioned in section 4, there are several redundancy
conditions to be fulfilled (see eqs 27, 28, 31, and 32), giving
rise to 144 conditions in total. However, inspection shows that
only three independent conditions remain:

These equations indicate that the translations (eq 57) and
rotations (eq 59) are spurious modes and that the translation
does not interact with the T1u stretching vibration (eq 58). The

TABLE 5: Frequencies for the C8 Cage from the Effective
Hessian

label νjeff
a (cm-1) νjA8

b (cm-1) label νjeff
a (cm-1) νjA8

b (cm-1)

A1g 1017 1018 T1u 948 974
A2u 1074 1068 T2g 935 953
Eg 1020 996 T2g 717 717
Eu 653 687 T2u 919 937

a νjeff refers to the eigenvalues of the effective Hessian (eq 33) with
the appropriate mass matrix (eq 34).b νjA8 refers to the eigenvalues of
the effective Hessian for a cage of CH superatoms with a massmCH )
13.019 u.

TABLE 6: Bond -Bond Interactions for C8

k〈ij 〉〈ij 〉
rr ) K0

r k〈ij 〉〈ij 〉
ll ) K0

l diagonal element

k〈ij 〉〈ik〉
rr ) K1⊥

r k〈ij 〉〈ik〉
ll ) K1⊥

l nearest perpendicular

k〈ij 〉〈mn〉
rr ) K1|

r k〈ij 〉〈‚mn〉
ll ) K1|

l nearest parallel

k〈ij 〉〈lo〉
rr ) K2⊥

r k〈ij 〉〈lo〉
ll ) K2⊥

l next nearest perpendicular

k〈ij 〉〈op〉
rr ) K2|

r k〈ij 〉〈op〉
ll ) K2|

l next nearest parallel

k〈ij 〉〈ik〉
rl ) K1

rl stretch(〈ij 〉)-slide(〈ik〉)
k〈ij 〉〈lo〉

rl ) K2
rl stretch(〈ij 〉)-slide(〈lo〉)

Γσ(e) ) A1g + Eg + T1u + T2g + T2u (46)

Γ|(e) ) A2u + Eu + T1g + T1u + T2g (47)

2Veff ) K0
r∑

D1

12

(∆r〈ij 〉)
2 + K0

l ∑
D1

12

(∆l〈ij 〉)
2 + K1⊥

r ∑
D2

48

∆r〈ij 〉∆r〈ik〉 +

K1⊥
l ∑

D2

48

∆l〈ij 〉∆l〈ik〉 + K1|
r ∑

D3

24

∆r〈ij 〉∆r〈mn〉 + K1|
l ∑

D3

24

∆l〈ij 〉∆l〈mn〉 +

K2⊥
r ∑

D4

48

∆r〈ij 〉∆r〈lo〉 + K2⊥
l ∑

D4

48

∆l〈ij 〉∆l〈lo〉 + K2|
r ∑

D5

12

∆r〈ij 〉∆r〈op〉 +

K2|
l ∑

D5

12

∆l〈ij 〉∆l〈op〉 + K1
rl∑

D6

48

∆r〈ij 〉∆l〈ik〉 + K2
rl∑

D7

48

∆r〈ij 〉∆l〈lo〉 (48)

Figure 4. Bond indices associated with force constants notation,
introduced in Table 6. “Positive slide directions” are also indicated.

TABLE 7: Force Constants for C8, in N/m

constant value constant value

K0
r 358.22 K1⊥

l 46.01

K1⊥
r 4.81 K1|

l 66.71

K1|
r 10.01 K2⊥

l -3.65

K2⊥
r -2.01 K2|

l -16.56

K2|
r 8.13 K1

rl 3.21

K0
l 116.86 K2

rl -3.21

A1g: mω1
2 ) 2(K0

r + 4K1⊥
r + 2K1|

r + 4K2⊥
r + K2|

r ) (49)

A2u: mω2
2 ) 2(K0

l + 4K1⊥
l + 2K1|

l + 4K2⊥
l - K2|

l ) (50)

Eg: mω3
2 ) 2(K0

r - 2K1⊥
r + 2K1|

r - 2K2⊥
r + K2|

r ) (51)

Eu: mω4
2 ) 2(K0

l - 2K1⊥
l + 2K1 |

l - 2K2⊥
l - K2|

l ) (52)

T1u: mω5
2 ) 2(K0

r + 2K1⊥
r - 2K2⊥

r - K2|
r ) (53)

T2g: mω6
2 + mω7

2 ) 2(K0
r - 2K1|

r + K2|
r + K0

l +

2K1⊥
l - 2K2⊥

l + K2|
l ) (54)

m2ω6
2 ω7

2 ) 4(K0
r - 2K1|

r + K2|
r )(K0

l + 2K1⊥
l -

2K2⊥
l + K2|

l ) - 32(K1
rl - K2

rl)2 (55)

T2u: mω8
2 ) 2(K0

r - 2K1⊥
r + 2K2⊥

r - K2|
r ) (56)

K0
l - 2K1|

l - K2|
l ) 0 (57)

K1
rl + K2

rl ) 0 (58)

K0
l - 2K1⊥

l + 2K2⊥
l + K2|

l ) 0 (59)
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constants from Table 7 satisfy these conditions within the
numerical accuracy of the calculation. In this way, only nine
independent force constants remain, exactly the number of times
the A1g representation occurs in the symmetric square of the
representation of the vibrational modes.

5.3. Buckminsterfullerene, C60. Ever since its discovery in
1985 by Kroto et al.,28 the C60 molecule has been the subject
of many research projects. The most famous isomer is undoubt-
edly the so-called “Bucky Ball”, where all pentagons are
isolated. This molecule has the shape of a truncated icosahedron.

There have been a number of reported measurements of the
vibrational transitions in C60.29-34 There are a total of 46
fundamental vibrational modes for C60, but due to the high
symmetry (Ih), there are only four infrared active modes ofT1u

symmetry and 10 Raman active modes, two ofAg symmetry
and eight ofHg symmetry. The remaining 32 modes are silent
as fundamental transitions and can only be observed as weak
combination bands34,35 or from inelastic neutron scattering
measurements30 where the selection rules are relaxed.

There have also been a number of theoretical studies36 of
the vibrational modes of C60. Dixon et al.37 calculated the
harmonic vibrational frequencies at the local density functional
level by using analytic second derivatives. The calculated values
for the observed infrared and Raman transitions are in good
agreement with the experimental values, as shown in Table 8.

In addition, several local force fields have been proposed,39-42

and it has been demonstrated that, to a good approximation,
C60 vibrates as a thin spherical shell.41

5.3.1. Partial Force Field.In earlier work,41 attempts were
made to calculate the vibrational spectrum of C60 using an
extended Wu force field, containing six force constants. We
have now extended this to up to 10 force constants,c1-c10.
The associated potential energy is

The parameters, used in this expression, refer to the pentagon-
hexagon bond system as shown in Figure 5.

Constantsc7 andc8 were added to complete the force field
of nearest neighbors. They offer a description of the pyrami-
dalization of the carbon atoms. Constantsc9 andc10 introduce
additional springs between atoms that are second neighbors.
Their main effect is to improve the frequency fit for the lowest
Hg squashing mode. This force field describes all potential
energy effects caused by changes in bond lengths and angles
between neighboring atoms. Values for the 10 force constants,
which were optimized in order to obtain a least square fit of
calculated frequencies to IR and Raman data, are listed in Table
9; frequencies calculated with these constants are listed in Table
8.

Although the frequencies from this 10-parameter force field
are in fairly good agreement with experimental data, the lowest
Hg mode at approximately 273 cm-1 is still not well reproduced.
In the original six-parameter model,41 this frequency was
calculated too low at 214 cm-1. By addition of the local
pyramidalization constantsc7 and c8, the error became even
larger, with a calculated value of 207 cm-1. A real improvement,

to a value of 245 cm-1, could only be achieved by adding
interactions between atoms which are more than one bond away,
as expressed by the constantsc9 andc10. This indicates that the

2V ) c1∑
30

(∆rh)
2 + c2∑

60

(∆rp)
2 + c3rprh∑

120

(∆Rh)
2 +

c4rpr′p∑
60

(∆Rp)
2 + 2c5∑

120

∆rp∆rh + 2c6∑
60

∆rp∆r′p +

2c7rpxrhr′p∑
120

∆Rp∆Rh + 2c8rhxrpr′p∑
60

∆Rh∆R′h +

2c9∑
60

(∆Rp)
2 + 2c10∑

120

(∆Rh)
2 (60)

TABLE 8: Spectroscopic and Geometrical Data for C60

label νjexp
34(cm-1) νjcalc

a (cm-1) νjcalc
b (cm-1) νjcalc

c (cm-1)

Ag 1470 1525 1456.8 1525
495 499 503.4 499

Au 972 1080.3 967
T1g 1318 1300.5 1317

830 889.7 831
579 583.0 579

T2g 1360 1393 1371.3 1392
839 978.9 839
804 814.3 805

566 551 567.4 549
T1u 1429 1486 1445.3 1485

1183 1224 1160.4 1224
576 591 599.2 591
526 535 542.3 535

T2u 1571 1522.4 1570
1201 1234 1190.7 1233
1026 996 1016.2 995

726 734.6 726
356 342 344.6 342

Gg 1524 1548 1517.4 1547
1356 1347 1368.9 1347
1076 1122 1086.3 1123

788 860.8 785
573 545.2 571

486 484 445.7 484
Gu 1446 1480 1474.8 1480

1310 1359 1337.2 1358
970 984 961.0 981

830 926.4 829
760 762 763.3 759

350 339.8 348
Hg 1578 1618 1560.3 1617

1426 1475 1447.6 1474
1251 1297 1222.6 1296
1101 1128 1135.9 1127
775 788 774.4 791
711 727 722.9 727
432 431 424.3 431
273 261 245.3 263

Hu 1559 1611 1558.8 1611
1385 1389 1367.5 1388

1248 1225.1 1248
762 830.9 763
671 666.7 672
541 510.1 541
401 350.8 405

bond (Å)38 (Å) (Å) (Å)

〈CsC〉 1.467 1.445 1.445 1.445
〈CdC〉 1.355 1.395 1.395 1.395

a DFT.37 b Extended Wu force field.c Complete force field.

Figure 5. Parameters used in extended Wu force field.

TABLE 9: Force Constants for Extended Wu Force Field
(N/m)

c1 520.1 c6 9.8
c2 348.1 c7 35.1
c3 68.4 c8 21.7
c4 77.6 c9 42.7
c5 28.0 c10 11.6
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lowest Hg mode, which is important in Jahn-Teller distortions
of C60 anions,43 has a strong non-local character. It is associated
with an amplitude which varies slowly over the surface of the
cluster, and thus is susceptible to long-range interactions.

5.3.2. Complete Force Field.As a basis for the complete force
field, we have used the full ab initio Hessian, calculated by
Dixon et al.37 All 160 force constants for the complete force
field, as in eq 23, were extracted. Since the DGauss program
does not make use of icosahedral symmetry, the resulting force
constants for equivalent interactions show slight deviations. If
we remove numerical noise by replacing equivalent constants
by their mean values and then invert the Hessian problem,
frequencies which show precise icosahedral degeneracies are
obtained. The results of this symmetry cleaning of the Dixon
calculation are also listed in Table 8.

Figure 6 shows a Schlegel diagram with the labeling system
for atoms in C60.44 These labels are used to define the force
constants for all types of interactions between two given bonds.

Table 10 lists all values for these force constants and their
numerical standard deviation, as obtained from the Hessian in
ref 37 before symmetry cleaning. For each force constant, only
one of the equivalent pairs is given; the signs in the table refer
to these exemplary pairs. The stretch and slide representations
for C60 are given by

Taking the symmetrized squares, we note that the numbers of
independent stretch, slide, and stretch-slide interaction constants
are, respectively, 50, 47, and 63, in agreement with Table 10.

Several constants turn out to be extremely small, and these
cases are always accompanied by high numerical inaccuracies.

The values for the force constants show that the interaction
between two bonds decreases with the distance; however, the
contributions from the “long-distance interactions” provide
essential corrections, since there are many more of them; without
these terms, it is very difficult to reproduce all frequencies
accurately. The effect of slide-slide interactions decays less
rapidly with distance than stretch-stretch interactions.

Considering the relative importance of interactions, the main
interactions with a given bond are found on the bonds of the
“neighboring rings”, i.e., the rings which encircle that bond.
Additional interactions, which are still significant, extend to the
next atoll of rings. We find that bonds which are more than
three bonds awaysi.e., the smallest path from〈ij 〉 to 〈kl〉 consists
of more than three bondsshave contributions, which are less
then 0.5% of the main interaction. The distribution of the most
important interactions for the case of stretch-stretch constants
(k〈1,2〉〈kl〉

rr ) is shown in Figure 7.
This relatively localized picture of the force field is broadly

compatible with the known chemistry of C60. [60]-Fullerene
replaces electron-deficient alkenes in organometallic complexes,
undergoes halogenation and epoxidation, and dimerizes by [2
+ 2]-addition, but does not react byη5or η6 addition to
pentagonal or hexagonal faces. In many respects, the chemistry
of C60 is closer to that of ethene than to that of a delocalized
“super arene”.45

Elaboration of the redundancy conditions does not yield exact
zeros, though most values lie below 1.0 N/m. This is a

consequence of the large uncertainties in several constants, and
so, the conditions are essentially satisfied.

In an earlier work on the force field in C60 by Quong et al.,46

the Cartesian Hessian, obtained from a local density approxima-
tion, was used to calculate the force constant tensors between
all pairs of atoms. The force constants were found to fall off
with distance. However, a detailed comparison with the present
model cannot be made since the force field by Quong et al. is
decomposed into atom-to-atom interactions along the interatomic
vectors. As compared to the present bond-to-bond interaction
scheme, such an atom-to-atom approach is insensitive to the
directional character of the polyhedral bonds.

5.3.3. Decomposition of the Wu Force Field into Slide and
Stretch Terms.As compared to the complete force field, the
methods which are traditionally used in chemistry are often
seriously under-parametrized. The fitting procedure will then
effectively “store” a number of different interactions in a few
parameters. This implies that the force constants of such methods
are “effective” force constants and must be interpreted with
extreme caution. A good example is offered by the extended
Wu force field. Its terms (eq 60) can be decomposed in slide
and stretch terms. Decomposition of the potential in eq 60 using
the values from Table 9 gives rise to the nonzero constants,
listed in Table 11.

These constants satisfy the first two redundancy conditions
(eqs 27 and 28) exactly and the next two (eqs 31 and 32)
approximately. Note that although the stretching force constants
c1 andc2 obtained by fitting the Wu force field are quite low,
520.1 and 348.1 N/m, the actual pure stretching interactions,
as measured by the complete force field, are much higher, 762.2
and 650.2 N/m, and much more in accordance with the DFT
results, 867.1 and 671.0 N/m, and with chemical experience.

Some constant values turn out to be degenerate, which reflects
the fact that the Wu force field has fewer degrees of freedom
than the complete one.

A clear shortcoming of the extended Wu force field is that it
does not incorporate interactions between bonds which are three
bonds away from each other, in contrast to the results of the
complete force field. While the error on the frequencies is small,
except for the lowest Hg mode, the too strongly localized
character of the Wu force field will give less accurate eigen-
vectors for the vibrational modes.

Γσ(e) ) 2Ag + T1g + 3T1u + T2g + 3T2u + 3Gg + 3Gu +
5Hg + 3Hu (61)

Γ|(e) ) Au + 3T1g + 2T1u + 3T2g + 2T2u + 3Gg + 3Gu +
3Hg + 4Hu (62)

Figure 6. Atom labeling in C60.44

8292 J. Phys. Chem. A, Vol. 105, No. 36, 2001 Ceulemans et al.



6. Conclusion

A group-theoretical framework has been used to derive a
complete force field for two extreme types of molecular cage:
the deltahedron, for which all vibrations are bond stretches, and
the trivalent polyhedral cage, for which bond stretches and bond
slides describe all possible vibrational motions. Projection of
ab initio calculated Hessian matrices allows comparison of the
degree of localization in the force field in the two cases. Whereas
the rigid B12 cage has significant cross cage interaction constants
even for antipodal bonds, the force field of the trivalent C60

cage is dominated by slide and stretch constants for nearby
bonds (separated by no more than three polyhedron edges). The
latter result is compatible with the relatively localizedπ-addition
chemistry of [60]-fullerene and suggests a parametrization of
the force field for general fullerenes.
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TABLE 10: Constants for C60, in Nm

stretch-stretch stretch-slide Slide-slide

k 〈ij 〉 〈kl〉 value σ (%) k 〈ij 〉 〈kl〉 value σ (%) k 〈ij 〉 〈kl〉 value σ (%)

1 〈1,2〉 〈1,2〉 867.1 0.5 51 〈1,2〉 〈1,6〉 -140.7 2.3 114 〈1,2〉 〈1,2〉 574.9 1.3
2 〈1,6〉 59.8 3.4 52 〈3,4〉 83.1 2.3 115 〈1,6〉 288.4 1.6
3 〈3,4〉 -80.0 2.4 53 〈3,14〉 54.1 3.1 116 〈3,4〉 101.7 2.0
4 〈3,14〉 -51.3 3.3 54 〈4,17〉 8.6 2.2 117 〈3,14〉 58.0 2.9
5 〈4,5〉 24.1 1.6 55 〈7,21〉 -6.2 3.4 118 〈4,5〉 -10.3 5.7
6 〈4,17〉 1.9 8.9 56 〈15,16〉 -1.8 4.9 119 〈4,17〉 6.8 2.4
7 〈7,8〉 14.4 2.2 57 〈15,32〉 -3.8 2.4 120 〈7,21〉 3.9 8.6
8 〈7,21〉 16.6 1.1 58 〈16,17〉 5.9 1.6 121 〈15,16〉 -3.7 3.6
9 〈15,16〉 -0.1 58.0 59 〈16,34〉 -2.7 2.8 122 〈15,32〉 -1.7 7.0

10 〈15,32〉 4.9 1.4 60 〈17,18〉 -5.9 1.3 123 〈16,17〉 10.0 1.9
11 〈16,17〉 10.4 0.9 61 〈18,36〉 -0.5 25.7 124 〈16,34〉 -0.1 78.8
12 〈16,34〉 -0.4 18.1 62 〈22,39〉 0.4 23.3 125 〈17,18〉 -5.8 2.2
13 〈17,18〉 5.9 1.7 63 〈33,34〉 -1.8 4.0 126 〈22,39〉 0.1 78.5
14 〈18,36〉 -1.5 5.3 64 〈33,50〉 -0.8 11.6 127 〈33,34〉 -1.8 4.6
15 〈22,39〉 0.9 8.2 65 〈34,35〉 1.4 6.1 128 〈33,50〉 -2.0 4.1
16 〈33,34〉 -1.0 8.8 66 〈35,36〉 -1.1 6.9 129 〈34,35〉 0.2 50.8
17 〈33,50〉 1.0 8.5 67 〈35,52〉 -0.3 33.5 130 〈35,36〉 0.9 8.7
18 〈34,35〉 -1.2 8.2 68 〈40,54〉 0.1 58.8 131 〈35,52〉 1.0 8.9
19 〈35,36〉 0.3 36.8 69 〈51,52〉 0.1 64.8 132 〈40,54〉 -0.2 54.6
20 〈35,52〉 -1.2 6.6 70 〈51,60〉 -0.1 62.5 133 〈51,52〉 0.7 13.6
21 〈40,41〉 -0.5 21.3 71 〈1,6〉 〈1,2〉 -128.3 2.7 134 〈51,60〉 0.7 10.8
22 〈40,54〉 -0.9 11.8 72 〈1,9〉 -113.0 2.8 135 〈52,53〉 -0.9 9.3
23 〈51,52〉 0.4 23.2 73 〈2,3〉 66.1 2.9 136 〈55,60〉 1.8 6.9
24 〈51,60〉 0.2 47.1 74 〈2,12〉 40.7 3.7 137 〈1,6〉 〈1,6〉 500.6 1.1
25 〈52,53〉 1.0 7.8 75 〈3,14〉 5.1 3.8 138 〈1,9〉 263.0 1.6
26 〈55,60〉 -0.5 18.5 76 〈7,8〉 86.4 3.2 139 〈2,3〉 -78.9 2.9
27 〈1,6〉 〈1,6〉 671.0 0.4 77 〈7,21〉 52.4 3.2 140 〈2,12〉 -31.5 5.2
28 〈1,9〉 48.6 4.7 78 〈8,24〉 -2.2 15.4 141 〈3,14〉 -4.9 4.1
29 〈2,3〉 -69.8 2.2 79 〈10,11〉 -4.3 3.9 142 〈7,8〉 84.2 2.4
30 〈2,12〉 -25.2 5.6 80 〈10,26〉 -3.9 1.9 143 〈10,26〉 0.2 52.2
31 〈3,14〉 4.8 5.3 81 〈11,12〉 11.8 1.7 144 〈11,28〉 -3.5 2.4
32 〈7,8〉 -37.1 5.9 82 〈11,28〉 4.0 2.4 145 〈13,14〉 -3.6 3.1
33 〈10,26〉 13.8 0.7 83 〈12,13〉 -8.7 1.0 146 〈15,16〉 -1.8 6.7
34 〈11,28〉 -7.1 1.3 84 〈13,14〉 0.7 11.1 147 〈15,32〉 -0.7 12.2
35 〈13,14〉 5.7 2.3 85 〈13,30〉 -3.6 3.9 148 〈22,39〉 -5.6 1.6
36 〈15,16〉 3.5 3.5 86 〈14,15〉 -2.9 4.4 149 〈23,42〉 -1.6 4.2
37 〈15,32〉 -0.1 70.6 87 〈15,32〉 0.4 16.6 150 〈29,47〉 1.2 5.2
38 〈22,39〉 5.8 1.8 88 〈22,23〉 -3.1 2.8 151 〈30,31〉 2.1 2.5
39 〈23,42〉 -0.5 16.4 89 〈22,39〉 -4.1 1.9 152 〈31,48〉 -0.5 12.3
40 〈29,47〉 2.8 2.7 90 〈23,24〉 3.9 2.3 153 〈32,33〉 -0.2 25.9
41 〈30,31〉 -1.3 8.1 91 〈23,42〉 -1.6 6.2 154 〈41,56〉 0.3 26.0
42 〈31,48〉 -0.1 70.7 92 〈27,28〉 -1.6 4.7 155 〈42,43〉 3.2 2.0
43 〈32,33〉 -0.6 20.0 93 〈27,45〉 -1.9 5.8 156 〈46,58〉 0.6 9.8
44 〈41,56〉 0.4 22.1 94 〈28,29〉 2.4 4.3 157 〈49,50〉 -0.1 56.7
45 〈42,43〉 -1.3 11.9 95 〈29,30〉 -0.5 16.8 158 〈49,59〉 -0.4 22.1
46 〈46,58〉 1.0 12.1 96 〈29,47〉 0.4 22.4 159 〈55,56〉 0.6 14.4
47 〈49,50〉 0.2 44.0 97 〈30,31〉 -1.3 5.5 160 〈59,60〉 0.5 18.4
48 〈49,59〉 0.6 14.7 98 〈31,32〉 0.4 18.5
49 〈55,56〉 -1.3 7.2 99 〈31,48〉 0.2 32.5
50 〈59,60〉 -0.3 40.9 100 〈32,33〉 -0.8 8.7

101 〈33,50〉 1.4 8.9
102 〈40,41〉 0.5 13.8
103 〈40,54〉 0.5 15.0
104 〈41,42〉 -0.7 14.5
105 〈41,56〉 -0.1 71.1
106 〈46,47〉 0.5 20.4
107 〈46,58〉 0.1 83.6
108 〈47,48〉 -0.6 10.1
109 〈48,49〉 0.2 45.7
110 〈49,50〉 0.4 20.8
111 〈49,59〉 0.3 26.6
112 〈55,56〉 -0.1 60.7
113 〈55,60〉 -0.1 56.1
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A Separation of Skeletal and Exohedral Vibrations in
Binary Clusters of Type (AX)W>

Consider a cluster withV atoms of type A, each of which
has an additional bond to an atom X outside the cage. The
q-coordinate basis of such a cluster consists of two subsets of
displacements of atoms A and X, which will be arranged as
shown in eq 63:

Accordingly, the total Hessian will be divided in four subma-
trices, depending on the type of atom which is being displaced:

The off-diagonal block matrices are related by transposition

The potential energy is thus given by

where the indicesi and j range from 1 to 3V.
The kinetic energy is written as

wheremA andmX are the respective masses of the atoms A and
X.

The normal modes that result from the vibrational eigenvalue
problem will be mixtures of skeletal vibrations and displace-
ments of the exo atoms. For the purposes of constructing a force
field for the cluster vibrations, we must project out the skeletal
modes. This is done by requiring that the exohedral atoms follow
the motions of the cluster atoms adiabatically, i.e., in such a
way that the forces for the displacements of the exo atoms
vanish.

For l varying from 1 to 3V, one has:

This condition can also be written as

or

This expression shows how the exohedral atoms follow the
displacement of the cluster atoms in a way which creates no
extra force field. By substituting this result in the expression
for the potential energy, we obtain an effective potential for
the skeletal vibrations:

Here, the term in brackets is the effective Hessian,Heff, from
which the force field for the skeletal modes is to be extracted:

For the calculation of the frequencies associated with these
effective modes, we must introduce similar coordinate trans-
formations for the time derivatives. The kinetic energy in matrix

form then becomes

Figure 7. “Magnitude diagram” of the carbon skeleton in C60 for the
k〈1,2〉〈kl〉

rr force field constants. The red rings which encircle the central
〈1,2〉 bond carry the most important interactions. The remaining
interactions above 0.5% are found in the next circle of blue rings.

TABLE 11: Decomposition of Wu Force Field

stretch-stretch stretch-slide slide-slide

〈ij 〉 〈kl〉 value 〈ij 〉 〈kl〉 value 〈ij 〉 〈kl〉 value

〈1,2〉 〈1,2〉 762.2 〈1,2〉 〈1,6〉 -135.1 〈1,2〉 〈1,2〉 606.6
〈1,6〉 41.6 〈3,4〉 88.0 〈1,6〉 337.9
〈3,4〉 -50.4 〈3,14〉 52.1 〈3,4〉 125.5
〈3,14〉 -38.7 〈4,17〉 -7.2 〈3,14〉 73.8
〈4,5〉 49.4 〈7,21〉 -7.0 〈4,5〉 -49.4
〈4,17〉 7.2 〈1,6〉 〈1,2〉 -142.1 〈4,17〉 -7.2
〈7,8〉 21.0 〈1,9〉 -124.6 〈7,21〉 7.0
〈7,21〉 7.0 〈2,3〉 98.4 〈1,6〉 〈1,6〉 601.3

〈1,6〉 〈1,6〉 650.2 〈2,12〉 50.6 〈1,9〉 321.4
〈1,9〉 51.1 〈3,14〉 -10.9 〈2,3〉 -135.8
〈2,3〉 -61.1 〈7,8〉 117.9 〈2,12〉 -64.6
〈2,12〉 -36.7 〈7,21〉 60.4 〈3,14〉 10.9
〈3,14〉 10.9 〈8,9〉 -21.0 〈7,8〉 108.9
〈7,8〉 -8.6 〈10,11〉 -10.9 〈10,26〉 10.9
〈10,26〉 10.9 〈10,26〉 -10.9

〈11,12〉 7.2
〈12,13〉 -10.9

HAX ) (HXA)† (65)

V )
1

2
∑
i,j

Hij
AA qi

A qj
A + ∑

i,j

Hij
AX qi

A qj
X +

1

2
∑
i,j

Hij
XX qi

X qj
X (66)

T )
1

2
mA ∑

i

(q̆i
A)2 +

1

2
mX ∑

i

(q̆i
X)2 (67)

∂V

∂ql
X

) ∑
i

Hil
AX qi

A + ∑
i

Hil
XX qi

X ) 0 (68)

HXXqX ) -HXAqA (69)

qX ) -(HXX)-1 HXAqA (70)

qX† ) -qA†HAX(HXX)-1 (71)

2Veff ) qA†HAAqA - 2qA†HAX(HXX)-1HXAqA +

qA†HAX(HXX)-1 HXX(HXX)-1HXAqA

) qA†[HAA - HAX(HXX)-1HXA]qA (72)

Heff ) HAA - HAX (HXX)-1 HXA (73)

q3 X ) -(HXX)-1 HXAq3 A (74)

q3 X† ) - q3 A† HAX (HXX)-1 (75)

q ) (qA

qX ) (63)

H ) (HAA HAX

HXA HXX ) (64)
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The term in square brackets is the effective mass matrix,M :

The frequenciesν of the effective modes are then obtained by
solving the eigenvalue problem:

The mass matrixM can be written asSM
-1MdSM, whereMd is

the diagonalized mass matrix (all zeros, except for the eigen-
values on the diagonal) andSM is the eigenvector matrix.
Equation 72 thus becomes

q̃A ) SMqA are mass-weighted coordinates, andq̂A )
xMdSMqA, or

By substituting eq 80 in eq 72, we obtain

Diagonalization of the term in square brackets yields the
solutions of the eigenvalue problem in eq 78.

For the purpose of conversion from Cartesian coordinates to
internal and collective coordinates, new equilibrium positions
for the “(AX)” atoms have to be calculated. The following
transformation was used:
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2T ) mA q3 A† q3 A + mX q3 A† HAX(HXX)-1(HXX)-1HXAq3 A

) q3 A† [mAI + mXHAX(HXX)-1(HXX)-1HXA]q3 A (76)

M ) mAI + mXHAX(HXX)-1(HXX)-1HXA (77)

|Heff - 4π2ν2 M | ) 0 (78)

2T ) q3 A†SM
-1MdSMq3 A

) q̃3 A†Mdq̃3
A

) q̂3 A†q̂3 A (79)

qA ) SM
-1 1

xMd

q̂A (80)

2Veff )

q̂A†[ 1

xMd

SM(HAA - HAX (HXX)-1 HXA)SM
-1 1

xMd
]q̂A (81)

qi
AX(mA + mX) ) qi

AmA + qi
XmX (82)
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