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Direct product basis sets are frequently used to calculate vibrational energy levels of small polyatomic
molecules. They have the important advantage of simplicity. However, they have the important disadvantage
that a very large number of direct product functions is necessary to obtain converged energy levels. By using
an iterative, rather than an explicit, method to calculate eigenvalues of the Hamiltonian matrix, it is possible
to calculate energy levels despite the huge size of the direct product basis. Nonetheless, it is natural to attempt
to reduce the size of the direct product basis by excluding functions that do not contribute to the wave functions
associated with the energy levels of interest. In this paper we present a variational basis representation (VBR)
example and a discrete variable representation (DVR) example demonstrating that it is possible to use the
Lanczos method and exclude direct product basis functions by restricting basis function indices while
maintaining the favorablae™?! scaling relation for the cost of direct product basis matrix-vector products.

I. Introduction method with a direct product basis: (1) one abandons the direct

Several new techniques enable experimentalists to accuratel))groqu?t baf's and chcilcnse;tlr!ste(ja? more compllca}ted dput bettler
determine high-lying energy levels of small molecules. The asis functions (usually obtained from a successive diagonal-

development of better ab initio methods and the availability of |;at|on/tryncgt|on schemé);’ (2) one abandon; the. explicit
faster computers have permitted ab initio quantum chemists too!lagonahzatlon methOd_ and instead uses an |terat|ve_ method
determine potential energy surfaces of useful accuracy close to{l-6- & method that requires only that one evaluate matrix-vector
the minimum. The experimental and ab initio advances drive Products) and exploits the simple structure of the direct product
the development of methods for calculating vibrational and Pasisi®*® Both of these strategies are effective, and both are
rovibrational energy levels of small polyatomic molecutes. ~ USed to calculate spectra.
Almost invariably, energy levels are calculated by computing ~ The simplicity of a direct product basis facilitates evaluating
eigenvalues of a matrix representation of the Hamiltonian matrix-vector products and therefore makes the calculation of
operator in a large basis. energy levels and wave functions with very large direct product
The principal impediment to the calculation of energy levels basis sets possible. Using a direct product basis set and the
is the number of basis functions required to obtain converged Lanczos algorithm, it is straightforward to calculate vibrational
results. The simplest basis functions are direct product functions.energy levels of most triatomic molecu¥sNevertheless, it is
To construct a direct product basis one chooses 1-d basissomewhat disturbing that so many basis functions are required.
functions, ¢i (g, ik = 1, 2, ...,n, for each of the vibrational ~ For example, we used about3froduct PODVRC2! (potential

degrees of freedom and makes products: optimized discrete variable representation) basis functions to
_ calculate vibrational energy levels of,@8* but it is well
D; i, i, = i, (G) &1, (Qp) - B (Ch) @) knowr?223that if one uses VBR (variational basis representation)

1-d basis functions and selects from the complete direct product
basis only those functions that are strongly coupled, it is possible
to compute vibrational levels quite accurately with a much
smaller basis. Even for a problem with six vibrational degrees
of freedom it is possible to cope with a huge direct product
basis!*17-24put it is natural to wonder if it is possible to improve
the basis set without complicating (and rendering less efficient)
the calculation of the matrix-vector products required to use
the Lanczos algorithm to compute energy levels. It is possible
to use successive diagonalization/truncation basis functions with
the Lanczos algorithm, but successive diagonalization/truncation
matrix-vector products are more complicated and slightly less
efficient than their direct-product counterpatg>26Wyatt and
co-workers have used product basis functions and applied the
Lanczos algorithm to study large molecules for which it is

* Part of the special issue “William H. Miller Festschrift. impossible to use the complete direct product b#si$Instead,
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The direct product basis include products of the 1-d basis
functions. If, for notational simplicity, we assumg= n for k
=1, 2, ...,f then there aref such product basis functions. Many
years ago it became clear that the number of basis functions in
a direct product basis is too large to permit calculating energy
levels and wave functions using an explicit diagonalization
method, whose cost scaleshswhereN = nf is the size of the
Hamiltonian matrix. Large matrices cause trouble for two
reasons. First, standard, explicit, diagonalization algorithms
modify the matrix and therefore require that it be stored in the
core memory of the computer. Second, the cost of explicit
diagonalization scales &8, whereN is the size of the matriX.

There are two popular strategies for avoiding the problems
one confronts when attempting to use an explicit diagonalization
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operator sorting technique). Unfortunately, their basis of selected A. Local Mode Vibrations of Silane. If coupling between
functions does not have the simple structure of a complete directVBR basis functions is not large, it is possible to calculate very
product basis, and therefore a single matrix-vector product in accurate low-lying energy levels using a VBR basis that does
the selected basis is more costly than it would be in a direct not include functions with large zeroth-order energies (large
product basis (of similar size). diagonal matrix elements). One can therefore safely exclude
In this article we demonstrate that it is possible to use a basissuch VBR functions from a direct product basis. It is easiest to
obtained by selecting functions from a set of direct product basis exclude basis functions with high zeroth-order energies if all
functions in conjunction with the Lanczos algorithm to calculate of the 1-d vibrational problems used to define the 1-d functions,
energy levels, without sacrificing the favoralhé™ scaling from which the product basis is built, are similar or identical.
relatiort*2930 for the cost of a direct-product matrix-vector In this case, to exclude VBR functions with large zeroth-order
product. This is, of course, not possible for arbitrary selection energies one can simply exclude functions for which the sum
schemes, but it is possible if one selects by constraining the of the 1-d quantum numbers is larger than some chosen value,
implemented without augmenting the cost of matrix-vector N; whereN; is a threshold value. This kind of constraint is
products, it will be useful if there are basis functions in the commonly used when calculating local mode vibrational energy
original direct product basis that do not contribute to the wave levels?? By employing this constraint, one is able to calculate
functions whose energy levels one wishes to calculate. This isenergy levels using far fewer VBR basis functions than would
usually the case, but clearly the more carefully one optimizes be required using a full direct product basis. For a molecule
the 1-d functions from which the direct product basis is built, with four local-mode-like degrees of freedom and a direct
the less one will gain by excluding some functions from the product basis withy, = 0, 1, ...,N; for all k the ratio of the size
product basis. of the basis constrained so that+ i, + ... if < N; to the size
Retaining some basis functions and excluding others has (if of the full direct product basis is & )/(N: + 1)4 The

the favorablenf! scaling. is maintajned) at least two advan- constraint is particularly effective if the potential is such that it
tages: (1) the cost of a single matrix-vector product is reduced coyples only VBR functions with similar zeroth-order energies.
because the total number of basis functions is reduced; (2) theThjs js the case for most local-mode Hamiltonians. If one uses
number of matrix-vector products required to obtain converged the successive constraint scheme to efficiently applyithei,
energy levels is reduced because the spectral range of ther i, < N, constraint, reducing the number of VBR basis
Hamiltonian matrix is reducetf. The extent to which each of  functions reduces the cost of each matrix-vector product. The
these advantages is important is clearly problem dependent an¢ost of a Lanczos calculation is a product of the cost of a single

basis set dependent. matrix-vector product and the number of iterations required to
o obtain convergence, which is inversely proportional to the
II. Constraining Ranges spectral range of the Hamiltonian matrix. Excluding unnecessary

To use the Lanczos algorithm to calculate energy levels, one functions from a basis accelerates calculating energy levels not
needs to evaluate matrix-vector products of the form (for Only because it reduces the cost of evaluating a single matrix-

illustrative purposes the equation is presented for a three degree/€ctor product but also because it decreases the spectral range
of freedom problem) and hence the number of matrix-vector products required to

achieve converged energy levels.
_ _ A local-mode Hamiltonian for a tetrahedral hydride molecule
@ik = ZAi'iBi'JC"'kviik N ZA” Z By ch'kuiik @ with four identical stretching degrees of freedom and a quartic
J J potential ig2

whereA, B, andC are matrix-representations of operators that 1 4 1 4 14

depend on a single coordinate ang is a Lanczos vector. H=—S$pl—— Zp’ p. +— Z fiyy, +
The matrix-vector product is computed sequentially by doing uem 3MGE T 2

first the sum ovek, then the sum ovef, and finally the sum 1 4 1 4

overi.14230If one uses a direct product basis set, andk - Z fuYyivk + — Z fiaYayyy (3)

take on all values betweein, jmin, Kmin @Nd imax jmax Kmax 6i%=1 24 ifm=1

(respectively). Because the vectgk on the right side of the )

above equation depends bandj the cost of the sum ovdgis with

not increased by allowin@min andkmax to depend or andj.

This kind of constraint can therefore be introduced without y;=1—exp(a(r; —r)) (4)

jeopardizing then™"* scaling rule. For the same reason one can

allow jmax andjmaxto depend omwhile maintainingn™* scaling. wherer; is the length of bond, rie is the equilibrium bond

For a problem witH degrees of freedom, successive constraints length of bond, f; = 2D, anda are Morse oscillator parameters,

of this kind are implemented by allowing the indaxto take M is the mass of the central atom= (myM/my+M), andmy

on all possible values, the indéxto take on values determined is the mass of a hydrogen atom. A basis of products of the Morse

by i1, the indexis to take on values determined byandis, functions, denoted byijizisisl]) is a very good basis for the

etc. (the index; takes on values determined by iy, ..., it-1). Hamiltonian of eq 3 with relatively small off-diagonal matrix
Successive constraints of this type can be imposed in eitherelements. Th®,. anda parameters of the Morse basis functions

a VBR or a DVR. In a VBR, the constraints are chosen to we use are those of the potential.

exclude weakly coupled basis functions. In a DVR, one can If the number of potential terms is not large, it is efficient,

choose constraints so that DVR functions centered about pointswhen calculating energy levels in the VBR with the Lanczos

at which the potential is very large are excluded. In the next algorithm, to evaluate matrix-vector products for each term in

two subsections we discuss examples of VBR and DVR the Hamiltonian separately. For each term the matrix-vector

constraints. product has the general form of eq 2. Each of the 1-d matrices

i)=1



Lanczos Method with Basis Function Index Constraint

(representing eitheg; or y;) can be computed from closed-form
expressiond? For a quadratic potential teryays, the constrained
matrix-vector products may be computed as follows. The matrix
element is

Y,

22 I3ls

Y,

(i, i, i3, 1 1YaYaliz, i, i3, 1405 0y Oy i,

with
Y = WyliC (6)

After doing the sums over andi,, the nontrivial matrix-vector
product for this term is

1920",i"2) VR (ERPAE)]
Uity = Yij, Yir i Y iz, (7
13=! 14=!
It is evaluated in two steps:
i7" 1i"2,i3)
-v-v-i('l)z zo Yo Ui
IJIZ|34 i4: 4'4 1234
720" 1,i'2)
Ui = Y. u , O 8
i, i3ZO [P TRTIAIA (8)

Underlined indices are subject to the constraint that their sum
is less than or equal tN;.

Clearly, to impose the constraimf,+ i» + iz +is < N, it is
necessary to choose

iTaX (i 019 =N — ()

If ip + iz + i3+ is < N, then necessarily + i> + iz < N;, and
therefore

S B

ig]ax(ilviz)z N, =i, =iy (10)
Similarly, i; + i, < N, and
7% (i) = N — iy (11)

The most efficient way to impose these constraints is to

determine and storé&™ (iy, iz, ig), iz (i1, iz), andiy™ (i1)

before computing the matrix-vector products. The functions

in (i, iz, i), i3 (i1, i), andiy ™ (i1) determine the boundary,
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TABLE 1: A Comparison of the Costs of Constrained (\; =
12) and Unconstrained VBR Calculations of SiH Local
Mode Vibrational Levels up to 15 000 cnrt2

full basis constrained basis
basis size¢ 28561 1820
largest eigenvalue (cm)? 92685 29988
no. of iterationgd 3281 1261
time (seconds)/1000 iteratidts 153 12
total time (second§y' 501 15
largest eigenvalue (cm)© 93429 30254
no. of iterationg® 3051 1180
time (seconds)/1000 iteratidifs 391 122
total time (secondsy 1194 144

aFor both basis sets we do as many iterations as are required to
converge all the energy levels. Computer time is on a single R10000
194 MHz processor of an SGI Origin 2000With the quadratic
potential. With the quartic potential Evaluating matrix-vector prod-
ucts separately for each terfUsing Gauss-Laguerre quadrature to
evaluate the potential matrix-vector product.

of the unconstrained matrix-vector product isk(4)(Ni+3)-
(Ne+2)(Ne+5/4)20(Ne+1)*) which is 7.8% forl\; = 12. Because

this ratio is smaller than the previous one, the ratio of the
constrained cost to the unconstrained cost is smaller than the
ratio of the constrained basis set size to the unconstrained basis
set size. For each term, the approximate cost of the constrained
matrix-vector product is obtained by counting the number of
loops required to program the two steps of eq 8.

To test the VBR constrained-index basis we have applied it
to calculate stretching vibrational energy levels of silane. We
use the quadratic fitted potential of ref 31. We choose a
maximum value of; = 12 for the 1-d basis index. To test that
this basis set is big enough to compute converged energy levels,
we compared levels calculated with= 12 to levels computed
with N; = 14. Energy levels up to 15 000 ch computed with
N; = 12, are within 0.05 cm' of energy levels computed with
N, = 14.

As explained above, we impose the constraints by evaluating
matrix-vector products separately for each term. A cost com-
parison is given in Table 1. Imposing the constraint reduces
the cost of each matrix-vector product by a factor of 13. This
agrees with the reduction anticipated on the basis of counting
loops. In addition, imposing the constraint reduces the largest
eigenvalue from 92 685 cm to 29 988 cml. This decreases
the number of matrix-vector products required to converge all
the levels up to 15 000 cm from 3281 to 1261. By combining
the above two factors, imposing the constraint reduces the total
cost by a factor of 33 (see Table 1). Energy levels computed

in a space with Cartesian axes labeled by basis function indices,ith and without the constraint differ by at most 0.10dm

between the region of included and the region of excluded basis

If the number of terms in the potential is large, it is not

functions. Having determined the region to be included (once), efficient to evaluate constrained matrix-vector products for each
matrix-vector products for all terms with two factors can be term, |n this case, it is better to use quadrature and to evaluate
computed as explained above for taey, term by permuting the potential matrix-vector product as

indices. It would also be possible to impose the constraints using

‘IF" statements, but this is about four times much more costly.
Rather than doing matrix-vector products for bcpfg and
y? terms, we combine them and exploit the fact that the matrix
representation of the sum of the two terms is diagonal. For this
term, whose representation matrix is diagonal, the ratio of the
cost of the constrained matrix-vector product to the cost of the
unconstrained matrix-vector product is simply the ratio of the
number of constrained basis functions to the number of direct
product basis functions,N(+4)(Ni+3)(Ni+2)/16(\i+1)%), which
is 9.6% forN; = 12. For a term with two factors, both of which
are off-diagonal (such as thgy, term discussed above), the
ratio of the cost of the constrained matrix-vector product to that

Ne Ne Ne N
UMZ Z Ti'l“l z Ti'z“z Z Ti'sas z
=1 a=1 az=1 as=1
N i7%i1)
T VO YV S T S T

11=! 1=

i7%(i1,i2) i7%(i1,i2,i3)
o T, Yiiig, (12)

1303 40

i3=! I4=

where Tnq, iS an element of the matrix used to evaluate the
quadraturé.
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To test using quadrature with a constrained VBR basis, we do not contribute to the wave functions of the desired energy
have calculated stretching vibrational energy levels of silane levels, and without jeopardizing thé*! scaling rule. For the
using the quartic potential of ref 31, which is obtained by quadratic potential, the cost of computing the energy levels up
reexpressing the stretch part of the ab initio potential of ref 32 to 15 000 cm? is reduced by a factor of 33; for the quartic
in terms ofy;. We choose a maximum value Nf = 12 for the potential the cost of computing energy levels up to 10 000cm
1-d basis index. To test that this basis set is big enough tois reduced by a factor of 8.
compute converged energy levels we compared levels calculated B. PODVR Calculation of the Vibration of Water. It is
with N; = 12 to levels computed with; = 14. Energy levels natural to consider excluding DVR product basis functions from
up to 15000 cm!, computed withN; = 12, are within 0.09 a direct product DVR basis. The idea is enticing because it is
cm~1 of energy levels computed witl = 14. Because we use  anticipated that it should be possible to exclude many DVR

Morse oscillator basis functions we choose basis functions centered about DVR points at which the potential
is larger than the highest energy level one wishes to conipéite.
= /wa!?’n(za.) (13) The utility of throwing away basis functions centered about

points at which the potential is high depends, of course, on the
regularity of the potential and the quality of the 1-d basis sets
from which the product basis functions are built. Other authors

have considered different schemes for excluding DVR basis

functions3

In a previous paper, we used a potential optimized DVR
ni(k — 2n — 1)]22 (PODVR) direct product basis and an indexing array to exclude

b, = [—] A B PODVR basis functions from the basis to calculate vibrational
I'(k—n) energy levels of KD.1* We have now used the successive

wherez = k(1 — ), k = w/ox (w and wx are the Morse
frequency and anharmonicity constantsy),is a Gauss quadra-
ture weight for the associated Laguerre polynomigl,??,
Z, is a corresponding Gauss point

1 2y (212 constraint scheme to exclude basis functions more efficiently.
= 7 ®n (14) We use the same parameters, the same potential, and the same
a number of PODVR functions (22) in each of the three

coordinates as in ref 14. By excluding DVR functions peaked
about points at which the potential is larger than 46 000%m

we were able to converge all vibrational energy levels less than
about 22 000 cmt! using only 5660 of the 10648 direct product
functions. See Table 3. Energy levels computed with the
constrained basis were almost as well converged as those with
the full basis (the largest error introduced by the constraint is

and ¢, is the Morse eigenfunctionN, is the number of
quadrature pointd\; (defined previously) is the largest possible
value of basis set index. Settifd, = N; + 3 yields exact
integrals for a quartic potential. This can be proved by noting
that ¢, is a polynomial of degree less than or equaNtoThe
constrained sums ovey, iy, i3, andi4 are evaluated as explained

after eq 7. L . 1.2 cnTl; see Table 4).

The constraint is imposed using eq 12, but because one The elements of a DVR matrix representing the Radau
obtains a diagonal term by comblnlng ljneandpr terms, itis coordinate kinetic energy operator (KE®)of a triatomic
advantageous not to include tygeterms in the potential when  molecule are
calculating potential matrix elements by quadrature. Instead, they

are treated separately. Of course, the six quadratic kinetic yDVR O 5, 8., +KO 5., 8. +
coupling termspy,py, are also treated separately. The potential o100 05000~ a0 Pty Qs T Rl Catyon Qe
at the 4-d quadrature points is stored, and matrix-vector products u(ri, rZZ)Kg’iOL3 oy, Oara, (15)

(see eq 12) are evaluated in eight steps. Due to the fact that not

all of thte §un(1js in (taq 12 a;e conséral??d,t:]he rau:) off the cost of where the PODVR points iny, r», and are labeled byu, oo,
a constrained matrix-vector proguct to the cost ot an uncon- g o, andu is an inverse moment of inertia function. It is

frt]ralr_]ed r??kt]rlx-vecior_pr%dgct _|stnotrllong_er cl;atsk? to the rattlo_ of GBest to determine which DVR functions are to be included before
€ siz€ ot the constrained basis 1o the size of the unconstrane oing the constrained matrix-vector products. To determine

basis. In additionN, is slightly larger thar,. If matrix-vector —  hich DVR functions should be included one could (1) for each
products were evaluated separately for each term in the potentlalEair (@1,02) determine which values afs should be included:

all sums would be constrained, but because there are 61 potentia  (2) for each pairds,as) determine which values af, should

terms this would be prohibitively expensive. be included (because the same DVR is used fand forr,

. '_? cb(?stlc?mpar!son for tthe_ qtuart(ljc potetr;]tlal |staI?o prﬁsen;[e_d this is equivalent to determining which valuesoafshould be
In Table 1. Imposing constraints reduces the cost of each matnx~, . jeq for each pairo(,as)). In scanning scheme (1), one

vector product by a factor of 3. Imposing the constraint reduces determmes(xm'”( ) and o™ ). In scanning scheme
the largest eigenvalue from 93 429 chio 30 254 cmil. This o1, 0g) andog o, o). g

decreases the number of matrix-vector products required to(z)f one determines " (at, r(]“) andoy ;}iaz, aa). d
converge all of the levels up to 10 500 chfrom 3051 to 1180. If one uses sca_nnlng scheme (1), the matrix-vector product
Combining the above two factors, imposing the constraint for the third term in eq 15 is
reduces the total cost by a factor of 8 (See Table 1). Energy

levels computed with and without the constraint differ by at , o) o

most 0.10 cm! (see Table 2). Uty ey, = (1 157) Keya, Yaryarya, (16)
One should note that energy levels computed with the quartic ag=od(oy,00)

potential will be inaccurate because bending degrees of freedom ) ) )

are ignored in this calculation. and the matrix-vector product for the second term in eq 15 is
In conclusion, using successive constraints enables one to

efficiently apply the Lanczos algorithm to calculate energy levels Uy oo, = Z Kg?zm2 U ey a7

without wastefully includingmany VBR basis functions that )
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TABLE 2: Stretching Vibrational Levels of SiH 4 up to 10 000 cnt?! Calculated Using the Quartic Potentiaft

state C. c-u. state C. cru. state C. cru.

1000A; 2198.085 0.000 3200fF2 10773.097 0.009 3210F: 12992.021 0.024
1000f: 2208.254 0.000 3200fF; 10774.008 0.009 3210A: 12995.309 0.024
2000A: 4342.651 0.000 3011A: 10824.350 0.007 3111A: 13039.434 0.019
2000f: 4344.061 0.000 3011F: 10827.603 0.007 3111fF 13045.254 0.020
1100A 4402.819 0.000 3011F; 10834.174 0.007 0222A: 13046.356 0.018
1100f2 4412.856 0.000 3011E 10837.057 0.007 0222fF; 13048.143 0.019
1100E 4417.840 0.000 3011F; 10837.139 0.007 2211A 13095.705 0.016
3000A: 6414.955 0.000 1022A 10887.724 0.005 2211fF> 13115.575 0.015
3000f; 6415.083 0.000 1022f; 10893.780 0.005 2211E 13125.994 0.015
2100A: 6538.742 0.000 1022E 10906.316 0.005 7000F2 14018.631 0.002
2100f; 6544.696 0.000 1022f; 10908.028 0.005 700 0AL 14018.632 0.003
2100E 6549.708 0.000 1022F 10912.295 0.005 6100A: 14424.514 0.086
2100f; 6555.937 0.000 2111A 10955.918 0.004 6100F: 14424.518 0.085
2100f; 6560.401 0.000 2111fF 10977.682 0.004 6100E 14435.545 0.084
0111A; 6613.906 0.000 6000A 12220.548 0.000 6100F: 14435.548 0.086
0111F 6623.815 0.000 600 0f: 12220.548 0.000 6100F: 14435.550 0.084
400 0A; 8418.467 0.000 510 0A: 12557.078 0.035 5200A: 14704.961 0.100
400 0f2 8418.482 0.000 5100fF: 12557.104 0.035 5200F: 14705.308 0.101
3100A: 8615.835 0.002 5100E 12567.570 0.035 5200E 14706.561 0.101
3100f: 8617.292 0.002 5100f: 12567.579 0.035 5200fF: 14706.812 0.101
3100E 8625.470 0.002 5100fF; 12567.602 0.035 5200F: 14707.157 0.102
3100f: 8626.123 0.002 4200A: 12765.906 0.033 5011A: 14769.449 0.095
3100fF; 8627.426 0.002 4200fF2 12766.766 0.034 5011F: 14769.506 0.096
2200A: 8691.135 0.001 4200E 12767.388 0.034 5011F; 14779.332 0.095
2200f; 8692.898 0.001 4200fF: 12770.486 0.036 5011E 14779.378 0.096
2200E 8693.728 0.001 4200F: 12771.343 0.036 5011F: 14779.380 0.095
2011A 8743.689 0.001 4011A: 12831.988 0.032 430 0A; 14834.414 0.092
2011f 8751.914 0.001 4011F; 12832.481 0.032 4300f 14834.518 0.093
2011f 8762.617 0.001 3300f2 12841.160 0.032 4300E 14834.570 0.093
2011F 8769.667 0.001 3300E 12841.179 0.032 430 0f 14856.973 0.098
2011fF; 8769.759 0.001 3300A: 12841.380 0.032 4300F; 14857.057 0.097
1111A 8831.154 0.000 4011F; 12841.961 0.032 4210A 14965.993 0.076
5000A: 10353.737 0.000 4011F; 12842.016 0.032 4210F 14968.811 0.079
5000f; 10353.739 0.000 4011E 12842.332 0.032 4210F; 14973.677 0.078
410 0A; 10621.055 0.010 3210A: 12953.026 0.021 42 10E 14974.722 0.079
410 0f> 10621.244 0.010 3210F; 12958.119 0.022 4210F; 14976.387 0.079
4100E 10631.029 0.010 3210E 12966.663 0.023 4210f 14985.237 0.078
4100f2 10631.099 0.010 3210f2 12967.988 0.023 4210E 14986.834 0.080
4100f; 10631.267 0.010 3210F: 12972.382 0.023 4210F; 14987.580 0.079
3200A; 10755.578 0.008 3210fF: 12980.480 0.024 4210F; 14991.297 0.079
3200f; 10756.631 0.008 3210F: 12984.338 0.024 42 10A; 14993.530 0.079
3200E 10757.179 0.008 3210E 12986.459 0.024

aThe zero point energy with the constrained and unconstrained basis sets is 4514.57535398Bdc#b514.575353908 crh respectively.
Energy levels computed with the constrained basis are in columns marked by c. Differences between energy levels computed with the constrained
basis and levels computed with the full basis are in columns marked-y. c.

TABLE 3: PODVR Calculation of Vibrational Energy is constrainted (eq 18), whereas the sum one must evaluate with
Levels of HO with Vimax = 46 000 cnt2 scanning scheme (1) is not constrained (eq 17). We therefore
full basis constrained basis use scanning scheme (1) for the third term and scanning scheme
basis size 10 648 5660 (2) for the second and (equivalent) first terms. Both schemes
largest eigenvalue (cm) 131 000 117 000 are equivalent for the matrix-vector product of the potential.
no. of iterations 2324 2063 The same scanning scheme is used for the primed and the
time (seconds)/1000 iterations 12 7 unprimed indices, e.g., in eq 14 for each pai¢,(o)) we
total time (seconds) 29 15 +min

include values ofx, betweeno,™ (o, o) and o™ (o, o).
aFor both basis sets we do as many iterations as are required to Terms with two nondiagonal factors do not occur in the Radau

converge all the energy levels up to 22 000énComputer time is on coordinate KEO for a triatomic, but it is worth noting that the

a single R10000 194 MHz processor of an SGI Origin 2000. cost of evaluating a matrix-vector product for such a term would

) ) ) o be same in both scanning schemes, For example, for a term
(The matrix-vector product for the first term in eq 15 is similar.)

If instead one uses scanning scheme (2), the matrix-vector 9 9
product for the second term in eq 15 is K=1r, 12 0) 5~ 55 (19)
1
af*a'y,a's) . .
, _ o o) with DVR matrix elements,
ua’]a’za’a - Ka’zaz ua’]aza’S (18)
ag=ad"(a'y,a's) DVR — (r1) )

o0 50 5,000 fu’l,a’z,a’3 o0y o500, Ka’3a3 (20)

The matrix-vector product for the second term is more efficient
with scanning scheme (2) than with scanning scheme (1) The matrix-vector products can be done in both scanning
because the sum one must evaluate with scanning scheme (2¥chemes:
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TABLE 4: Vibrational Levels of H ,O up to 22 000 cnt?! Calculated with Constrained and Unconstrained Basis Sets

sym Cc c—u. sym Cc C-u. sym C. C-u. sym C. C-u.
A 1594.32 0.00 A 13195.82 0.02 B> 16974.73 0.10 Au 19724.91 0.13
A 3152.01 0.00 B> 13252.53 0.00 Av 17054.80 0.14 Au 19757.19 0.27
A 3656.49 0.00 A 13453.59 0.02 B2 17156.77 0.02 B> 19757.28 0.11
B> 3755.92 0.00 A 13604.80 0.04 A 17226.37 0.29 A 19883.65 0.14
A 4667.70 0.00 A 13647.80 0.06 A 17312.60 0.23 B> 19884.34 0.08
A 5234.29 0.00 B> 13658.72 0.00 B> 17320.36 0.04 A 20056.41 0.44
B> 5332.06 0.00 A 13793.41 0.04 B, 17374.80 0.03 B> 20126.12 0.04
A 6134.11 0.00 B> 13799.24 0.03 A 17435.13 0.30 A 20126.35 0.16
A 6775.03 0.00 A 13829.79 0.08 A 17461.54 0.68 B> 20165.69 0.12
B> 6873.47 0.00 B> 13832.03 0.00 B> 17497.06 0.04 Au 20377.50 0.45
A 7202.68 0.01 A 13911.77 0.05 Ar 17542.52 0.11 Au 20398.52 0.40
B> 7250.93 0.00 B> 14075.99 0.01 A 17754.78 0.25 B> 20416.14 0.08
A 7444.93 0.00 A 14223.74 0.23 A 17877.95 0.11 A 20429.26 0.99
A 7539.79 0.00 B> 14321.49 0.01 B> 17903.15 0.03 B> 20449.76 0.17
A 8273.25 0.00 A 14541.31 0.01 B> 17954.95 0.04 A 20533.41 1.14
B> 8375.64 0.00 A 14549.21 0.03 Au 18119.73 0.13 B> 20542.45 0.25
A 8762.89 0.01 B> 14630.26 0.01 A 18171.96 0.04 A 20638.10 0.09
B> 8809.59 0.00 A 14778.35 0.10 Au 18257.65 0.39 A 20710.29 0.49
A 8863.20 0.00 A 14858.96 0.05 B> 18260.93 0.02 B> 20722.87 0.12
A 9002.14 0.00 B> 14932.73 0.04 Ar 18272.19 0.23 Au 20732.39 0.84
A 9719.76 0.00 A 15109.74 0.08 B> 18310.17 0.08 B> 20911.05 0.42
B> 9832.58 0.00 B> 15122.59 0.01 B> 18370.98 0.22 A 20914.33 1.19
A 10073.82 0.01 A 15181.28 0.02 A 18404.07 0.12 A 20915.40 0.81
A 10285.76 0.02 A 15350.22 0.06 B> 18404.86 0.05 B> 20949.31 121
B> 10332.41 0.00 B> 15355.29 0.01 Au 18567.25 0.46 A 21020.46 0.27
A 10525.60 0.00 A 15377.15 0.09 A 18665.39 0.35 B> 21025.89 0.14
A 10602.81 0.05 B> 15545.32 0.04 Au 18684.78 0.25 B> 21052.24 0.25
B> 10615.59 0.00 A 15744.33 0.23 B> 18713.17 0.04 Au 21205.03 0.28
A 10869.36 0.04 A 15809.26 0.03 B> 18764.27 0.07 B> 21205.78 0.09
B> 11034.09 0.00 B> 15839.11 0.02 A 18958.96 0.54 A 21276.65 0.18
A 11082.25 0.00 B> 15922.71 0.02 A 18996.24 0.35 A 21284.51 0.28
A 11234.36 0.01 A 16023.82 0.15 B> 18996.49 0.09 A 21332.46 0.21
B> 11235.21 0.00 A 16057.61 0.03 A 19148.28 0.13 B> 21338.53 0.12
A 11766.24 0.02 B> 16108.20 0.03 B> 19188.85 0.04 A 21378.37 0.57
B> 11815.47 0.00 A 16187.12 0.12 Au 19250.98 0.28 B> 21498.90 0.12
A 12011.51 0.01 A 16525.50 0.09 Au 19376.61 0.25 Au 21545.68 0.79
A 12144.51 0.05 B> 16541.18 0.02 B> 19449.39 0.14 B> 21566.43 0.17
B> 12156.53 0.00 A 16654.19 0.02 B2 19468.54 0.07 B> 21622.88 0.14
A 12340.68 0.00 A 16784.31 0.05 A 19493.49 0.47 A 21652.32 0.46
A 12408.46 0.04 B> 16823.85 0.02 A 19665.01 0.25 A 21758.43 0.93
A 12504.09 0.02 A 16826.20 0.17 B> 19667.22 0.06 A 21831.88 0.77
B> 12567.05 0.01 A 16899.58 0.10 A 19695.72 0.36 A 21843.64 1.09
B> 12571.35 0.00 B> 16899.60 0.05 B, 19698.49 0.57 B> 21866.72 0.23

aThe zero point energy for the constrained and unconstrained basis sets is 4630.34b6idA630.34651 cn, respectively. Energy levels
computed with the constrained basis are in columns marked by c. The difference between energy levels computed with the constrained basis and
levels computed with the full basis are in columns marked byuc.

ooy, 0'2) reindexing the points before determining which basis functions
= Z (ra) © are to be retained and before evaluating matrix-vector products.
00y o'y,05,0 5 o0y 303 00500 i . . .
o o= Mo, 0t') Rather than including DVR functions centered about points

(21) at which the potential is less thafax (using either of the two
scanning schemes described above), one could select DVR

and functions to include by proceeding as follows: retain the values
T 05) of o that satisfy the conditiowv(r{?, rg, 0.6‘) < Vmax for. gach
U= Z ©) Dy value ofoy retain the values onﬁ_z that satisfy the condlt!oh/(
w00y T Al 0pa - o'50g wrmafTnn 040 000 ri% 152, 60°) < Vimax for each pair of ¢, ay) values retain the

(22) values ofas that satisfy the conditioV(r}%, r32 6%) < Vimax
Using equations similar to those presented above, constrained
It is useful to determine, e.g., for scanning scheme (1), matrix-vector products can also be computed for this constraint
ag"ax(al, ap) and ag””(al, o) before evaluating matrix-vector ~ system. Because the range of allowed values of the second index
products, because this obviates the need to determine whetheis constrained, the total cost with this constraint system would
basis functions should be included or excluddaring the be somewhat lower. If there is little coupling there is not much
Lanczos iteration. o ®{ay, a2) and o "(ou, o) are deter- difference between this procedure for imposing constraints and
mined before computing the matrix-vector products, it is possible schemes (1) and (2) described above. Due to coupling, DVR
to evaluate them by Summing On|y over index values that cor- functions centered about pOintS at which the pOtentia' is less
respond to basis functions that are included in the basis. It would than Vmax may be excluded if one uses this constraint system.
obviously be more difficult to do the same thing for a more This is a disadvantage of this method of choosing which points
complicated (e.g., multiwell) potential. In this case, one could to include.
map the discontinuous regions into one continuous region by For H0, we find that the number of matrix-vector products
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required to converge the lowest energy level is decreased onlyand also to reduce the cost of each matrix-vector product. We
slightly from 2324 to 2063 but that the cost of each matrix- have also tested excluding basis functions from a direct product
vector product is reduced by a factor of 2. The ratio of the cost PODVR basis by removing basis functions peaked about points
of the constrained basis calculation to the cost of the full direct at which the potential is larger thafax In this case the number
product basis calculation is approximately proportional to the of iterations required is not reduced significantly, but we are
ratio of the constrained basis size to the full direct product basis able to reduce the number of basis functions and the cost of the
size. (See Table 3.) We compare constrained and unconstraineanatrix-vector products by about a factor of 2. We have used a
calculations with no symmetry adaptation. It would be possible simple criterion Vmay for excluding basis functions, but it
to use the symmetry-adapted Lanczos (SAL) methédand should also be possible to use more sophisticated criteria for
constrain basis index ranges. In fact, we have used SAL to excluding points with the method we employ.
determine symmetries of the,8 states we calculated.

References and Notes

(1) Bfa“dé, Z.; Light, J. C.Annu. Re. Phys. Chem1989 40, 469.

To calculate vibrational (or rovibrational) energy levels, one gg g';‘?irrt]b tEo-n'--'Tm-JF:Q’I; nhcl;sélocphe%fifgz?%gh 1§utational Chemistry
must choo;e a basis Set_ W'th which to ConStrUCt_ a matrix Schleyer, P. v. R.,’ Ed’.; John Wiley & Sons: New York, 1998;Vol. 5.
representation of the Hamiltonian operator and an eigensolver  (4) Light, J. C.; Carrington, T., JAdv. Chem. Phys200Q 114, 263.
to calculate eigenvalues of the matrix. Both choices have an  (5) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
important effect on the efficiency of the calculation. The choice ’I;,‘;’ens‘se_”%"‘;n?;%%ees igg'zomansecond Edition; Cambridge University
of the basis set and the choice of the eigensolver are not () carter, S.; Handy, N. QViol. Phys.1986 57, 175.
independent. For example, if one chooses a direct product basis, (7) Badc, Z.; Light, J. C.J. Chem. Phys1987, 86, 3065.
then it is clear that it is better to use an iterative (e.g., Lanczos) Egg 'Eze””yson, j.;l\lxerger(sjon, B;' JC?hChe”;th&lfgfié 2815-

Fe H H owmann, J. M.; Gazay, . em. Y. 3 .
rather than an expllc_lt (e.g., Householder) eigensolver. D|_rect 10) LeQuieé, F.. Leforestier, CJ. Chem. Phys199q 92, 247.
product basis _fl_Jnctlons do not represen_t wave functlon_s (11) lung, C.; Leforestier, CJ. Chem. Phys1989 90, 3198.
compactly, but it is very easy to compute a direct product basis ~ (12) Bentley, J. A; Brunet, J-P.; Wyatt, R. E.; Friesner, R. A;
representation of the Hamiltonian, and it is easy to evaluate Lef‘irgeSt"\%N %ﬁg‘l‘:m/&'?'g;ri'aet%?}g%rl%]b f}i?ﬁ Phys. Letl993 202
matrix-vector products with a product basis Hamiltonian matrix. 4651_ ) o gron. T R

The number of direct product basis functions for a molecule  (14) Bramley, M. J.; Carrington, T., J2. Chem. Phys1993 99, 8519.
with f degrees of freedom igf (wheren is a representative (15) Bramley, M. J.; Tromp, J. W.; Carrington, T., Jr.; Corey, GJC.
number of 1-d basis functions). Becausis typically between Ch(elrg)' PBr:gﬁqllg?/“lv}O?'%la?r?ihgton T.. 3. Chem. Phy<1994 101, 8494
10 and 20, this number is huge for a molecule with six degrees  (17) Leforestier, C.: Braly, L. B.; Liu, K.; Elrod, M. J.; Saykally, R. J.
of freedom. There are two obvious ways to improve the basis: J. Chem. Phys1997 106 8527.

(1) make new (better) basis functions by taking appropriate  (18) Sarkar, P.; Poulin, N.; Carrington, T., Jr.Chem. Phys1999 110,
linear comblnatlons of the dl_rect pro_duct functions; (2) exclude (19)' Cullum, J.: Willoughby, R. A.Lanczos Algorithm for Large
from the direct product basis functions that are not necessary symmetric Eigeralue ComputationsBirkhauser: Boston, 1985.
for calculating the energy levels of interest. There is a great (20) Echave, J.; Clary, D. GChem. Phys. Lettl992 190, 225.
deal of evidence suggesting that option (1) is a very good gg VHV;'(;n";-r?] CLafr'(r:‘ﬁitl‘("”"VT .’SJCL]C')rﬁrtll?tmbﬁ;gsjgogrﬁnig%ogg 173
strategy. However, it has the disadvantage that generating better 53y carter, S.; Handy, N. Comput. Phys. Rel986 5, 115.
basis functions requires devising a contraction scheme, and (24) Lehoucq, R. B.; Gray, S. K.; Zhang, D.-H.; Light, J. Comptt.
choosing parameters. It also has the disadvantage that matrixPhys. Comm1998 109 15. _ _ )
vector products in the new basis are more complicated and costlyph§zs5igg%eggeg23' A.; Bentley, J. A.; Menou, M.; Leforestier JCChem.
than their direct produ_ct counterparts. In this paper we have ' (26) wu, X. T.; Hayes, E. FJ. Chem. Phys1997, 107, 2705.
demonstrated that option (2) is, for some problems, a good (27) Wyatt, R. E.; lung, C.; Leforestier, Q. Chem. Phys1992 97,
choice. If one excludes direct product basis functions by 345;-3 Wvatt R. E.- lung. C.: Leforestier. G. Chem. Phvs1992 97
restricting the range of basis function indices, it is straightfor- 34§7.) yatt, R. E.; lung, C.; Leforestier, Q. Chem. Phys1992 97,
ward to evaluate the matrix-vector products required to use (29) Friesner, R. A.; Wyatt, R. E.; Hempel, C.; Criner, B.Comput.
iterative methods to compute energy levels. Excluding basis Phys.1986 64, 220.
functions by restricting index ranges is practical and effective. ~ (30) Manthe, U.; Koeppel, Hl. Chem. Phys1993 93, 345.
We have applied two different schemes for excluding direct (31) Wang, X.-G.; Sibert, E. LJ. Chem. Phys2000 113 5384,

e pp \ 9 C (32) Martin, J. M. L.; Baldrige, K. K.; Lee, T. Mol. Phys.1999 97,
product basis functions. We excluded VBR product basis 945.
functions by imposing a constraint on the allowed values of gi; go|berti % Ts '\ﬂ”efvl W. HéJ- ghhem-lfhhyssllg’%ffi 1493%22-

_ H H umont, R. S.; Assalone, W. em. Y .
the 1 d_quantu_m numt_)ers. For silane, this works extremely well. (35) Sutcliffe. B. T - Tennyson, Jnt. J. Quantum Cheni.991. 39, 183.
Excluding basis functions enables us to reduce the number of (36) wang, X.-G.; Carrington, T., 33. Chem. Phys2001, 114, 1473.

Lanczos iterations required to converge the desired energy levels (37) Chen, R.; Guo, HJ. Chem. Phys2001 114, 1467.

I1l. Conclusion



