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Direct product basis sets are frequently used to calculate vibrational energy levels of small polyatomic
molecules. They have the important advantage of simplicity. However, they have the important disadvantage
that a very large number of direct product functions is necessary to obtain converged energy levels. By using
an iterative, rather than an explicit, method to calculate eigenvalues of the Hamiltonian matrix, it is possible
to calculate energy levels despite the huge size of the direct product basis. Nonetheless, it is natural to attempt
to reduce the size of the direct product basis by excluding functions that do not contribute to the wave functions
associated with the energy levels of interest. In this paper we present a variational basis representation (VBR)
example and a discrete variable representation (DVR) example demonstrating that it is possible to use the
Lanczos method and exclude direct product basis functions by restricting basis function indices while
maintaining the favorablenf+1 scaling relation for the cost of direct product basis matrix-vector products.

I. Introduction

Several new techniques enable experimentalists to accurately
determine high-lying energy levels of small molecules. The
development of better ab initio methods and the availability of
faster computers have permitted ab initio quantum chemists to
determine potential energy surfaces of useful accuracy close to
the minimum. The experimental and ab initio advances drive
the development of methods for calculating vibrational and
rovibrational energy levels of small polyatomic molecules.1-4

Almost invariably, energy levels are calculated by computing
eigenvalues of a matrix representation of the Hamiltonian
operator in a large basis.

The principal impediment to the calculation of energy levels
is the number of basis functions required to obtain converged
results. The simplest basis functions are direct product functions.
To construct a direct product basis one chooses 1-d basis
functions,φik(qk), ik ) 1, 2, ...,nk, for each of the vibrational
degrees of freedom and makes products:

The direct product basis includesall products of the 1-d basis
functions. If, for notational simplicity, we assumenk ) n for k
) 1, 2, ...,f then there arenf such product basis functions. Many
years ago it became clear that the number of basis functions in
a direct product basis is too large to permit calculating energy
levels and wave functions using an explicit diagonalization
method, whose cost scales asN3 whereN ) nf is the size of the
Hamiltonian matrix. Large matrices cause trouble for two
reasons. First, standard, explicit, diagonalization algorithms
modify the matrix and therefore require that it be stored in the
core memory of the computer. Second, the cost of explicit
diagonalization scales asN3, whereN is the size of the matrix.5

There are two popular strategies for avoiding the problems
one confronts when attempting to use an explicit diagonalization

method with a direct product basis: (1) one abandons the direct
product basis and chooses instead more complicated but better
basis functions (usually obtained from a successive diagonal-
ization/truncation scheme);6-9 (2) one abandons the explicit
diagonalization method and instead uses an iterative method
(i.e., a method that requires only that one evaluate matrix-vector
products) and exploits the simple structure of the direct product
basis.10-18 Both of these strategies are effective, and both are
used to calculate spectra.

The simplicity of a direct product basis facilitates evaluating
matrix-vector products and therefore makes the calculation of
energy levels and wave functions with very large direct product
basis sets possible. Using a direct product basis set and the
Lanczos algorithm, it is straightforward to calculate vibrational
energy levels of most triatomic molecules.19 Nevertheless, it is
somewhat disturbing that so many basis functions are required.
For example, we used about 203 product PODVR20,21(potential
optimized discrete variable representation) basis functions to
calculate vibrational energy levels of H2O,14 but it is well
known22,23that if one uses VBR (variational basis representation)
1-d basis functions and selects from the complete direct product
basis only those functions that are strongly coupled, it is possible
to compute vibrational levels quite accurately with a much
smaller basis. Even for a problem with six vibrational degrees
of freedom it is possible to cope with a huge direct product
basis,14,17,24but it is natural to wonder if it is possible to improve
the basis set without complicating (and rendering less efficient)
the calculation of the matrix-vector products required to use
the Lanczos algorithm to compute energy levels. It is possible
to use successive diagonalization/truncation basis functions with
the Lanczos algorithm, but successive diagonalization/truncation
matrix-vector products are more complicated and slightly less
efficient than their direct-product counterparts.16,25,26Wyatt and
co-workers have used product basis functions and applied the
Lanczos algorithm to study large molecules for which it is
impossible to use the complete direct product basis.27,28Instead,
they select functions from the complete basis (using a wave
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operator sorting technique). Unfortunately, their basis of selected
functions does not have the simple structure of a complete direct
product basis, and therefore a single matrix-vector product in
the selected basis is more costly than it would be in a direct
product basis (of similar size).

In this article we demonstrate that it is possible to use a basis
obtained by selecting functions from a set of direct product basis
functions in conjunction with the Lanczos algorithm to calculate
energy levels, without sacrificing the favorablenf+1 scaling
relation14,29,30 for the cost of a direct-product matrix-vector
product. This is, of course, not possible for arbitrary selection
schemes, but it is possible if one selects by constraining the
ranges of basis function labels. Assuming selection can be
implemented without augmenting the cost of matrix-vector
products, it will be useful if there are basis functions in the
original direct product basis that do not contribute to the wave
functions whose energy levels one wishes to calculate. This is
usually the case, but clearly the more carefully one optimizes
the 1-d functions from which the direct product basis is built,
the less one will gain by excluding some functions from the
product basis.

Retaining some basis functions and excluding others has (if
the favorablenf+1 scaling is maintained) at least two advan-
tages: (1) the cost of a single matrix-vector product is reduced
because the total number of basis functions is reduced; (2) the
number of matrix-vector products required to obtain converged
energy levels is reduced because the spectral range of the
Hamiltonian matrix is reduced.19 The extent to which each of
these advantages is important is clearly problem dependent and
basis set dependent.

II. Constraining Ranges

To use the Lanczos algorithm to calculate energy levels, one
needs to evaluate matrix-vector products of the form (for
illustrative purposes the equation is presented for a three degree
of freedom problem)

whereA, B, andC are matrix-representations of operators that
depend on a single coordinate andVijk is a Lanczos vector.

The matrix-vector product is computed sequentially by doing
first the sum overk, then the sum overj, and finally the sum
over i.14,29,30 If one uses a direct product basis set,i, j and k
take on all values betweenimin, jmin, kmin and imax, jmax, kmax

(respectively). Because the vectorVijk on the right side of the
above equation depends oni andj the cost of the sum overk is
not increased by allowingkmin andkmax to depend oni and j.
This kind of constraint can therefore be introduced without
jeopardizing thenf+1 scaling rule. For the same reason one can
allow jmaxandjmax to depend oni while maintainingnf+1 scaling.
For a problem withf degrees of freedom, successive constraints
of this kind are implemented by allowing the indexi1 to take
on all possible values, the indexi2 to take on values determined
by i1, the indexi3 to take on values determined byi1 and i2,
etc. (the indexif takes on values determined byi1, i2, ..., if-1).

Successive constraints of this type can be imposed in either
a VBR or a DVR. In a VBR, the constraints are chosen to
exclude weakly coupled basis functions. In a DVR, one can
choose constraints so that DVR functions centered about points
at which the potential is very large are excluded. In the next
two subsections we discuss examples of VBR and DVR
constraints.

A. Local Mode Vibrations of Silane. If coupling between
VBR basis functions is not large, it is possible to calculate very
accurate low-lying energy levels using a VBR basis that does
not include functions with large zeroth-order energies (large
diagonal matrix elements). One can therefore safely exclude
such VBR functions from a direct product basis. It is easiest to
exclude basis functions with high zeroth-order energies if all
of the 1-d vibrational problems used to define the 1-d functions,
from which the product basis is built, are similar or identical.
In this case, to exclude VBR functions with large zeroth-order
energies one can simply exclude functions for which the sum
of the 1-d quantum numbers is larger than some chosen value,
i.e., exclude all functionsΦi1,i2,...,if for which i1 + i2 + ... if >
Nt, whereNt is a threshold value. This kind of constraint is
commonly used when calculating local mode vibrational energy
levels.22 By employing this constraint, one is able to calculate
energy levels using far fewer VBR basis functions than would
be required using a full direct product basis. For a molecule
with four local-mode-like degrees of freedom and a direct
product basis withik ) 0, 1, ...,Nt for all k the ratio of the size
of the basis constrained so thati1 + i2 + ... if e Nt to the size

of the full direct product basis is (
Nt+4

4 )/(Nt + 1).4 The
constraint is particularly effective if the potential is such that it
couples only VBR functions with similar zeroth-order energies.
This is the case for most local-mode Hamiltonians. If one uses
the successive constraint scheme to efficiently apply thei1 + i2
+ ... if e Nt constraint, reducing the number of VBR basis
functions reduces the cost of each matrix-vector product. The
cost of a Lanczos calculation is a product of the cost of a single
matrix-vector product and the number of iterations required to
obtain convergence, which is inversely proportional to the
spectral range of the Hamiltonian matrix. Excluding unnecessary
functions from a basis accelerates calculating energy levels not
only because it reduces the cost of evaluating a single matrix-
vector product but also because it decreases the spectral range
and hence the number of matrix-vector products required to
achieve converged energy levels.

A local-mode Hamiltonian for a tetrahedral hydride molecule
with four identical stretching degrees of freedom and a quartic
potential is22

with

where ri is the length of bondi, ri
e

is the equilibrium bond
length of bondi, fii ) 2De anda are Morse oscillator parameters,
M is the mass of the central atom,µ ) (mHM/mH+M), andmH

is the mass of a hydrogen atom. A basis of products of the Morse
functions, denoted by|i1i2i3i4〉, is a very good basis for the
Hamiltonian of eq 3 with relatively small off-diagonal matrix
elements. TheDe anda parameters of the Morse basis functions
we use are those of the potential.

If the number of potential terms is not large, it is efficient,
when calculating energy levels in the VBR with the Lanczos
algorithm, to evaluate matrix-vector products for each term in
the Hamiltonian separately. For each term the matrix-vector
product has the general form of eq 2. Each of the 1-d matrices

ωi′j′k ) ∑
ijk

Ai′iBj′jCk′kVijk ) ∑
i

Ai′i ∑
j

Bj′j ∑
k

Ck′kVijk (2)
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1
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fijyiyj +

1

6
∑

i,j,k)1

4
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∑
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fijklyiyjykyl (3)

yi ) 1 - exp(-a(ri - ri
e)) (4)
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(representing eitherpi or yi) can be computed from closed-form
expressions.22 For a quadratic potential termy3y4, the constrained
matrix-vector products may be computed as follows. The matrix
element is

with

After doing the sums overi1 andi2, the nontrivial matrix-vector
product for this term is

It is evaluated in two steps:

Underlined indices are subject to the constraint that their sum
is less than or equal toNt.

Clearly, to impose the constraint,i1 + i2 + i3 + i4 e Nt, it is
necessary to choose

If i1 + i2 + i3 + i4 e Nt, then necessarilyi1 + i2 + i3 e Nt, and
therefore

Similarly, i1 + i2 e Nt, and

The most efficient way to impose these constraints is to
determine and storei4

max (i1, i2, i3), i3
max (i1, i2), and i2

max (i1)
before computing the matrix-vector products. The functions
i4
max (i1, i2, i3), i3

max (i1, i2), andi2
max (i1) determine the boundary,

in a space with Cartesian axes labeled by basis function indices,
between the region of included and the region of excluded basis
functions. Having determined the region to be included (once),
matrix-vector products for all terms with two factors can be
computed as explained above for they3 y4 term by permuting
indices. It would also be possible to impose the constraints using
‘IF’ statements, but this is about four times much more costly.

Rather than doing matrix-vector products for bothpri

2 and
yi

2 terms, we combine them and exploit the fact that the matrix
representation of the sum of the two terms is diagonal. For this
term, whose representation matrix is diagonal, the ratio of the
cost of the constrained matrix-vector product to the cost of the
unconstrained matrix-vector product is simply the ratio of the
number of constrained basis functions to the number of direct
product basis functions, ((Nt+4)(Nt+3)(Nt+2)/16(Nt+1)3), which
is 9.6% forNt ) 12. For a term with two factors, both of which
are off-diagonal (such as they3y4 term discussed above), the
ratio of the cost of the constrained matrix-vector product to that

of the unconstrained matrix-vector product is ((Nt+4)(Nt+3)-
(Nt+2)(Nt+5/4)20(Nt+1)4) which is 7.8% forNt ) 12. Because
this ratio is smaller than the previous one, the ratio of the
constrained cost to the unconstrained cost is smaller than the
ratio of the constrained basis set size to the unconstrained basis
set size. For each term, the approximate cost of the constrained
matrix-vector product is obtained by counting the number of
loops required to program the two steps of eq 8.

To test the VBR constrained-index basis we have applied it
to calculate stretching vibrational energy levels of silane. We
use the quadratic fitted potential of ref 31. We choose a
maximum value ofNt ) 12 for the 1-d basis index. To test that
this basis set is big enough to compute converged energy levels,
we compared levels calculated withNt ) 12 to levels computed
with Nt ) 14. Energy levels up to 15 000 cm-1, computed with
Nt ) 12, are within 0.05 cm-1 of energy levels computed with
Nt ) 14.

As explained above, we impose the constraints by evaluating
matrix-vector products separately for each term. A cost com-
parison is given in Table 1. Imposing the constraint reduces
the cost of each matrix-vector product by a factor of 13. This
agrees with the reduction anticipated on the basis of counting
loops. In addition, imposing the constraint reduces the largest
eigenvalue from 92 685 cm-1 to 29 988 cm-1. This decreases
the number of matrix-vector products required to converge all
the levels up to 15 000 cm-1 from 3281 to 1261. By combining
the above two factors, imposing the constraint reduces the total
cost by a factor of 33 (see Table 1). Energy levels computed
with and without the constraint differ by at most 0.10 cm-1.

If the number of terms in the potential is large, it is not
efficient to evaluate constrained matrix-vector products for each
term. In this case, it is better to use quadrature and to evaluate
the potential matrix-vector product as

whereTniRi is an element of the matrix used to evaluate the
quadrature.4

TABLE 1: A Comparison of the Costs of Constrained (Nt )
12) and Unconstrained VBR Calculations of SiH4 Local
Mode Vibrational Levels up to 15 000 cm-1 a

full basis constrained basis

basis sizeb,c 28561 1820

largest eigenvalue (cm-1)b 92685 29988
no. of iterationsb,d 3281 1261
time (seconds)/1000 iterationsb,d 153 12
total time (seconds)b,d 501 15

largest eigenvalue (cm-1)c 93429 30254
no. of iterationsc,e 3051 1180
time (seconds)/1000 iterationsc,e 391 122
total time (seconds)c,e 1194 144

a For both basis sets we do as many iterations as are required to
converge all the energy levels. Computer time is on a single R10000
194 MHz processor of an SGI Origin 2000.b With the quadratic
potential.c With the quartic potential.d Evaluating matrix-vector prod-
ucts separately for each term.e Using Gauss-Laguerre quadrature to
evaluate the potential matrix-vector product.
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To test using quadrature with a constrained VBR basis, we
have calculated stretching vibrational energy levels of silane
using the quartic potential of ref 31, which is obtained by
reexpressing the stretch part of the ab initio potential of ref 32
in terms ofyi. We choose a maximum value ofNt ) 12 for the
1-d basis index. To test that this basis set is big enough to
compute converged energy levels we compared levels calculated
with Nt ) 12 to levels computed withNt ) 14. Energy levels
up to 15 000 cm-1, computed withNt ) 12, are within 0.09
cm-1 of energy levels computed withNt ) 14. Because we use
Morse oscillator basis functions we choose

where zi ) k(1 - yi), k ) ω/ωx (ω and ωx are the Morse
frequency and anharmonicity constants),ωR is a Gauss quadra-
ture weight for the associated Laguerre polynomial,Ln

k-2Nt-2,
zR is a corresponding Gauss point

and φn is the Morse eigenfunction.NR is the number of
quadrature points.Nt (defined previously) is the largest possible
value of basis set index. SettingNR ) Nt + 3 yields exact
integrals for a quartic potential. This can be proved by noting
that φ̃n is a polynomial of degree less than or equal toNt. The
constrained sums overi1, i2, i3, andi4 are evaluated as explained
after eq 7.

The constraint is imposed using eq 12, but because one
obtains a diagonal term by combining theyi

2
andpri

2 terms, it is
advantageous not to include theyi

2
terms in the potential when

calculating potential matrix elements by quadrature. Instead, they
are treated separately. Of course, the six quadratic kinetic
coupling termspriprj are also treated separately. The potential
at the 4-d quadrature points is stored, and matrix-vector products
(see eq 12) are evaluated in eight steps. Due to the fact that not
all of the sums in eq 12 are constrained, the ratio of the cost of
a constrained matrix-vector product to the cost of an uncon-
strained matrix-vector product is no longer close to the ratio of
the size of the constrained basis to the size of the unconstrained
basis. In addition,NR is slightly larger thanNt. If matrix-vector
products were evaluated separately for each term in the potential
all sums would be constrained, but because there are 61 potential
terms this would be prohibitively expensive.

A cost comparison for the quartic potential is also presented
in Table 1. Imposing constraints reduces the cost of each matrix-
vector product by a factor of 3. Imposing the constraint reduces
the largest eigenvalue from 93 429 cm-1 to 30 254 cm-1. This
decreases the number of matrix-vector products required to
converge all of the levels up to 10 500 cm-1 from 3051 to 1180.
Combining the above two factors, imposing the constraint
reduces the total cost by a factor of 8 (See Table 1). Energy
levels computed with and without the constraint differ by at
most 0.10 cm-1 (see Table 2).

One should note that energy levels computed with the quartic
potential will be inaccurate because bending degrees of freedom
are ignored in this calculation.

In conclusion, using successive constraints enables one to
efficiently apply the Lanczos algorithm to calculate energy levels
without wastefully includingmanyVBR basis functions that

do not contribute to the wave functions of the desired energy
levels, and without jeopardizing thenf+1 scaling rule. For the
quadratic potential, the cost of computing the energy levels up
to 15 000 cm-1 is reduced by a factor of 33; for the quartic
potential the cost of computing energy levels up to 10 000 cm-1

is reduced by a factor of 8.
B. PODVR Calculation of the Vibration of Water. It is

natural to consider excluding DVR product basis functions from
a direct product DVR basis. The idea is enticing because it is
anticipated that it should be possible to exclude many DVR
basis functions centered about DVR points at which the potential
is larger than the highest energy level one wishes to compute.14,33

The utility of throwing away basis functions centered about
points at which the potential is high depends, of course, on the
regularity of the potential and the quality of the 1-d basis sets
from which the product basis functions are built. Other authors
have considered different schemes for excluding DVR basis
functions.34

In a previous paper, we used a potential optimized DVR
(PODVR) direct product basis and an indexing array to exclude
PODVR basis functions from the basis to calculate vibrational
energy levels of H2O.14 We have now used the successive
constraint scheme to exclude basis functions more efficiently.
We use the same parameters, the same potential, and the same
number of PODVR functions (22) in each of the three
coordinates as in ref 14. By excluding DVR functions peaked
about points at which the potential is larger than 46 000 cm-1,
we were able to converge all vibrational energy levels less than
about 22 000 cm-1 using only 5660 of the 10648 direct product
functions. See Table 3. Energy levels computed with the
constrained basis were almost as well converged as those with
the full basis (the largest error introduced by the constraint is
1.2 cm-1; see Table 4).

The elements of a DVR matrix representing the Radau
coordinate kinetic energy operator (KEO)35 of a triatomic
molecule are

where the PODVR points inr1, r2, andθ are labeled byR1, R2,
and R3, andµ is an inverse moment of inertia function. It is
best to determine which DVR functions are to be included before
doing the constrained matrix-vector products. To determine
which DVR functions should be included one could (1) for each
pair (R1,R2) determine which values ofR3 should be included;
or (2) for each pair (R2,R3) determine which values ofR1 should
be included (because the same DVR is used forr1 and for r2,
this is equivalent to determining which values ofR2 should be
included for each pair (R1,R3)). In scanning scheme (1), one
determinesR3

min(R1, R2) andR3
max(R1, R2). In scanning scheme

(2), one determinesR1
min(R2, R3) andR1

max(R2, R3).
If one uses scanning scheme (1), the matrix-vector product

for the third term in eq 15 is

and the matrix-vector product for the second term in eq 15 is

HR′1R′2R′3R1R2R3

DVR ) KR′1R1

(r) δR′2R2
δR′3R3

+ KR′2R2

(r) δR′1R1
δR′3R3

+

µ(r1
R1, r2

R2)KR′3R3
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u′R′1R′2R′3
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u′R′1R′2R′3
) ∑

R2

KR′2R2
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) xωRi
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(The matrix-vector product for the first term in eq 15 is similar.)
If instead one uses scanning scheme (2), the matrix-vector
product for the second term in eq 15 is

The matrix-vector product for the second term is more efficient
with scanning scheme (2) than with scanning scheme (1)
because the sum one must evaluate with scanning scheme (2)

is constrainted (eq 18), whereas the sum one must evaluate with
scanning scheme (1) is not constrained (eq 17). We therefore
use scanning scheme (1) for the third term and scanning scheme
(2) for the second and (equivalent) first terms. Both schemes
are equivalent for the matrix-vector product of the potential.
The same scanning scheme is used for the primed and the
unprimed indices, e.g., in eq 14 for each pair (R′1, R′2) we
include values ofR′3 betweenR′2

min (R′1, R′2) andR′2
max (R′1, R′2).

Terms with two nondiagonal factors do not occur in the Radau
coordinate KEO for a triatomic, but it is worth noting that the
cost of evaluating a matrix-vector product for such a term would
be same in both scanning schemes, For example, for a term

with DVR matrix elements,

The matrix-vector products can be done in both scanning
schemes:

TABLE 2: Stretching Vibrational Levels of SiH 4 up to 10 000 cm-1 Calculated Using the Quartic Potentiala

state c. c.-u. state c. c.-u. state c. c.-u.

1 0 0 0;A1 2198.085 0.000 3 2 0 0;F2 10773.097 0.009 3 2 1 0;F1 12992.021 0.024
1 0 0 0;F2 2208.254 0.000 3 2 0 0;F1 10774.008 0.009 3 2 1 0;A2 12995.309 0.024
2 0 0 0;A1 4342.651 0.000 3 0 1 1;A1 10824.350 0.007 3 1 1 1;A1 13039.434 0.019
2 0 0 0;F2 4344.061 0.000 3 0 1 1;F2 10827.603 0.007 3 1 1 1;F2 13045.254 0.020
1 1 0 0;A1 4402.819 0.000 3 0 1 1;F2 10834.174 0.007 0 2 2 2;A1 13046.356 0.018
1 1 0 0;F2 4412.856 0.000 3 0 1 1;E 10837.057 0.007 0 2 2 2;F2 13048.143 0.019
1 1 0 0;E 4417.840 0.000 3 0 1 1;F1 10837.139 0.007 2 2 1 1;A1 13095.705 0.016
3 0 0 0;A1 6414.955 0.000 1 0 2 2;A1 10887.724 0.005 2 2 1 1;F2 13115.575 0.015
3 0 0 0;F2 6415.083 0.000 1 0 2 2;F2 10893.780 0.005 2 2 1 1;E 13125.994 0.015
2 1 0 0;A1 6538.742 0.000 1 0 2 2;E 10906.316 0.005 7 0 0 0;F2 14018.631 0.002
2 1 0 0;F2 6544.696 0.000 1 0 2 2;F2 10908.028 0.005 7 0 0 0;A1 14018.632 0.003
2 1 0 0;E 6549.708 0.000 1 0 2 2;F1 10912.295 0.005 6 1 0 0;A1 14424.514 0.086
2 1 0 0;F2 6555.937 0.000 2 1 1 1;A1 10955.918 0.004 6 1 0 0;F2 14424.518 0.085
2 1 0 0;F1 6560.401 0.000 2 1 1 1;F2 10977.682 0.004 6 1 0 0;E 14435.545 0.084
0 1 1 1;A1 6613.906 0.000 6 0 0 0;A1 12220.548 0.000 6 1 0 0;F2 14435.548 0.086
0 1 1 1;F2 6623.815 0.000 6 0 0 0;F2 12220.548 0.000 6 1 0 0;F1 14435.550 0.084
4 0 0 0;A1 8418.467 0.000 5 1 0 0;A1 12557.078 0.035 5 2 0 0;A1 14704.961 0.100
4 0 0 0;F2 8418.482 0.000 5 1 0 0;F2 12557.104 0.035 5 2 0 0;F2 14705.308 0.101
3 1 0 0;A1 8615.835 0.002 5 1 0 0;E 12567.570 0.035 5 2 0 0;E 14706.561 0.101
3 1 0 0;F2 8617.292 0.002 5 1 0 0;F2 12567.579 0.035 5 2 0 0;F2 14706.812 0.101
3 1 0 0;E 8625.470 0.002 5 1 0 0;F1 12567.602 0.035 5 2 0 0;F1 14707.157 0.102
3 1 0 0;F2 8626.123 0.002 4 2 0 0;A1 12765.906 0.033 5 0 1 1;A1 14769.449 0.095
3 1 0 0;F1 8627.426 0.002 4 2 0 0;F2 12766.766 0.034 5 0 1 1;F2 14769.506 0.096
2 2 0 0;A1 8691.135 0.001 4 2 0 0;E 12767.388 0.034 5 0 1 1;F2 14779.332 0.095
2 2 0 0;F2 8692.898 0.001 4 2 0 0;F2 12770.486 0.036 5 0 1 1;E 14779.378 0.096
2 2 0 0;E 8693.728 0.001 4 2 0 0;F1 12771.343 0.036 5 0 1 1;F1 14779.380 0.095
2 0 1 1;A1 8743.689 0.001 4 0 1 1;A1 12831.988 0.032 4 3 0 0;A1 14834.414 0.092
2 0 1 1;F2 8751.914 0.001 4 0 1 1;F2 12832.481 0.032 4 3 0 0;F2 14834.518 0.093
2 0 1 1;F2 8762.617 0.001 3 3 0 0;F2 12841.160 0.032 4 3 0 0;E 14834.570 0.093
2 0 1 1;E 8769.667 0.001 3 3 0 0;E 12841.179 0.032 4 3 0 0;F2 14856.973 0.098
2 0 1 1;F1 8769.759 0.001 3 3 0 0;A1 12841.380 0.032 4 3 0 0;F1 14857.057 0.097
1 1 1 1;A1 8831.154 0.000 4 0 1 1;F2 12841.961 0.032 4 2 1 0;A1 14965.993 0.076
5 0 0 0;A1 10353.737 0.000 4 0 1 1;F1 12842.016 0.032 4 2 1 0;F2 14968.811 0.079
5 0 0 0;F2 10353.739 0.000 4 0 1 1;E 12842.332 0.032 4 2 1 0;F2 14973.677 0.078
4 1 0 0;A1 10621.055 0.010 3 2 1 0;A1 12953.026 0.021 4 2 1 0;E 14974.722 0.079
4 1 0 0;F2 10621.244 0.010 3 2 1 0;F2 12958.119 0.022 4 2 1 0;F1 14976.387 0.079
4 1 0 0;E 10631.029 0.010 3 2 1 0;E 12966.663 0.023 4 2 1 0;F2 14985.237 0.078
4 1 0 0;F2 10631.099 0.010 3 2 1 0;F2 12967.988 0.023 4 2 1 0;E 14986.834 0.080
4 1 0 0;F1 10631.267 0.010 3 2 1 0;F1 12972.382 0.023 4 2 1 0;F1 14987.580 0.079
3 2 0 0;A1 10755.578 0.008 3 2 1 0;F2 12980.480 0.024 4 2 1 0;F1 14991.297 0.079
3 2 0 0;F2 10756.631 0.008 3 2 1 0;F1 12984.338 0.024 4 2 1 0;A2 14993.530 0.079
3 2 0 0;E 10757.179 0.008 3 2 1 0;E 12986.459 0.024

a The zero point energy with the constrained and unconstrained basis sets is 4514.575353935 cm-1 and 4514.575353908 cm-1, respectively.
Energy levels computed with the constrained basis are in columns marked by c. Differences between energy levels computed with the constrained
basis and levels computed with the full basis are in columns marked by c.-u.

TABLE 3: PODVR Calculation of Vibrational Energy
Levels of H2O with Vmax ) 46 000 cm-1 a

full basis constrained basis

basis size 10 648 5660
largest eigenvalue (cm-1) 131 000 117 000
no. of iterations 2324 2063
time (seconds)/1000 iterations 12 7
total time (seconds) 29 15

a For both basis sets we do as many iterations as are required to
converge all the energy levels up to 22 000 cm-1. Computer time is on
a single R10000 194 MHz processor of an SGI Origin 2000.
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and

It is useful to determine, e.g., for scanning scheme (1),
R3

max(R1, R2) andR3
min(R1, R2) before evaluating matrix-vector

products, because this obviates the need to determine whether
basis functions should be included or excludedduring the
Lanczos iteration. IfR3

max(R1, R2) and R3
min(R1, R2) are deter-

mined before computing the matrix-vector products, it is possible
to evaluate them by summing only over index values that cor-
respond to basis functions that are included in the basis. It would
obviously be more difficult to do the same thing for a more
complicated (e.g., multiwell) potential. In this case, one could
map the discontinuous regions into one continuous region by

reindexing the points before determining which basis functions
are to be retained and before evaluating matrix-vector products.

Rather than including DVR functions centered about points
at which the potential is less thanVmax (using either of the two
scanning schemes described above), one could select DVR
functions to include by proceeding as follows: retain the values
of R1 that satisfy the conditionV(r1

R1, r2
e, θe) e Vmax; for each

value ofR1 retain the values ofR2 that satisfy the conditionV(
r1

R1, r2
R2, θe) e Vmax; for each pair of (R1, R2) values retain the

values ofR3 that satisfy the conditionV(r1
R1, r2

R2, θR3) e Vmax.
Using equations similar to those presented above, constrained
matrix-vector products can also be computed for this constraint
system. Because the range of allowed values of the second index
is constrained, the total cost with this constraint system would
be somewhat lower. If there is little coupling there is not much
difference between this procedure for imposing constraints and
schemes (1) and (2) described above. Due to coupling, DVR
functions centered about points at which the potential is less
thanVmax may be excluded if one uses this constraint system.
This is a disadvantage of this method of choosing which points
to include.

For H2O, we find that the number of matrix-vector products

TABLE 4: Vibrational Levels of H 2O up to 22 000 cm-1 Calculated with Constrained and Unconstrained Basis Setsa

sym c c.-u. sym c c.-u. sym c. c.-u. sym c. c.-u.

A1 1594.32 0.00 A1 13195.82 0.02 B2 16974.73 0.10 A1 19724.91 0.13
A1 3152.01 0.00 B2 13252.53 0.00 A1 17054.80 0.14 A1 19757.19 0.27
A1 3656.49 0.00 A1 13453.59 0.02 B2 17156.77 0.02 B2 19757.28 0.11
B2 3755.92 0.00 A1 13604.80 0.04 A1 17226.37 0.29 A1 19883.65 0.14
A1 4667.70 0.00 A1 13647.80 0.06 A1 17312.60 0.23 B2 19884.34 0.08
A1 5234.29 0.00 B2 13658.72 0.00 B2 17320.36 0.04 A1 20056.41 0.44
B2 5332.06 0.00 A1 13793.41 0.04 B2 17374.80 0.03 B2 20126.12 0.04
A1 6134.11 0.00 B2 13799.24 0.03 A1 17435.13 0.30 A1 20126.35 0.16
A1 6775.03 0.00 A1 13829.79 0.08 A1 17461.54 0.68 B2 20165.69 0.12
B2 6873.47 0.00 B2 13832.03 0.00 B2 17497.06 0.04 A1 20377.50 0.45
A1 7202.68 0.01 A1 13911.77 0.05 A1 17542.52 0.11 A1 20398.52 0.40
B2 7250.93 0.00 B2 14075.99 0.01 A1 17754.78 0.25 B2 20416.14 0.08
A1 7444.93 0.00 A1 14223.74 0.23 A1 17877.95 0.11 A1 20429.26 0.99
A1 7539.79 0.00 B2 14321.49 0.01 B2 17903.15 0.03 B2 20449.76 0.17
A1 8273.25 0.00 A1 14541.31 0.01 B2 17954.95 0.04 A1 20533.41 1.14
B2 8375.64 0.00 A1 14549.21 0.03 A1 18119.73 0.13 B2 20542.45 0.25
A1 8762.89 0.01 B2 14630.26 0.01 A1 18171.96 0.04 A1 20638.10 0.09
B2 8809.59 0.00 A1 14778.35 0.10 A1 18257.65 0.39 A1 20710.29 0.49
A1 8863.20 0.00 A1 14858.96 0.05 B2 18260.93 0.02 B2 20722.87 0.12
A1 9002.14 0.00 B2 14932.73 0.04 A1 18272.19 0.23 A1 20732.39 0.84
A1 9719.76 0.00 A1 15109.74 0.08 B2 18310.17 0.08 B2 20911.05 0.42
B2 9832.58 0.00 B2 15122.59 0.01 B2 18370.98 0.22 A1 20914.33 1.19
A1 10073.82 0.01 A1 15181.28 0.02 A1 18404.07 0.12 A1 20915.40 0.81
A1 10285.76 0.02 A1 15350.22 0.06 B2 18404.86 0.05 B2 20949.31 1.21
B2 10332.41 0.00 B2 15355.29 0.01 A1 18567.25 0.46 A1 21020.46 0.27
A1 10525.60 0.00 A1 15377.15 0.09 A1 18665.39 0.35 B2 21025.89 0.14
A1 10602.81 0.05 B2 15545.32 0.04 A1 18684.78 0.25 B2 21052.24 0.25
B2 10615.59 0.00 A1 15744.33 0.23 B2 18713.17 0.04 A1 21205.03 0.28
A1 10869.36 0.04 A1 15809.26 0.03 B2 18764.27 0.07 B2 21205.78 0.09
B2 11034.09 0.00 B2 15839.11 0.02 A1 18958.96 0.54 A1 21276.65 0.18
A1 11082.25 0.00 B2 15922.71 0.02 A1 18996.24 0.35 A1 21284.51 0.28
A1 11234.36 0.01 A1 16023.82 0.15 B2 18996.49 0.09 A1 21332.46 0.21
B2 11235.21 0.00 A1 16057.61 0.03 A1 19148.28 0.13 B2 21338.53 0.12
A1 11766.24 0.02 B2 16108.20 0.03 B2 19188.85 0.04 A1 21378.37 0.57
B2 11815.47 0.00 A1 16187.12 0.12 A1 19250.98 0.28 B2 21498.90 0.12
A1 12011.51 0.01 A1 16525.50 0.09 A1 19376.61 0.25 A1 21545.68 0.79
A1 12144.51 0.05 B2 16541.18 0.02 B2 19449.39 0.14 B2 21566.43 0.17
B2 12156.53 0.00 A1 16654.19 0.02 B2 19468.54 0.07 B2 21622.88 0.14
A1 12340.68 0.00 A1 16784.31 0.05 A1 19493.49 0.47 A1 21652.32 0.46
A1 12408.46 0.04 B2 16823.85 0.02 A1 19665.01 0.25 A1 21758.43 0.93
A1 12504.09 0.02 A1 16826.20 0.17 B2 19667.22 0.06 A1 21831.88 0.77
B2 12567.05 0.01 A1 16899.58 0.10 A1 19695.72 0.36 A1 21843.64 1.09
B2 12571.35 0.00 B2 16899.60 0.05 B2 19698.49 0.57 B2 21866.72 0.23

a The zero point energy for the constrained and unconstrained basis sets is 4630.34667 cm-1 and 4630.34651 cm-1, respectively. Energy levels
computed with the constrained basis are in columns marked by c. The difference between energy levels computed with the constrained basis and
levels computed with the full basis are in columns marked by c.-u.
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required to converge the lowest energy level is decreased only
slightly from 2324 to 2063 but that the cost of each matrix-
vector product is reduced by a factor of 2. The ratio of the cost
of the constrained basis calculation to the cost of the full direct
product basis calculation is approximately proportional to the
ratio of the constrained basis size to the full direct product basis
size. (See Table 3.) We compare constrained and unconstrained
calculations with no symmetry adaptation. It would be possible
to use the symmetry-adapted Lanczos (SAL) method36,37 and
constrain basis index ranges. In fact, we have used SAL to
determine symmetries of the H2O states we calculated.

III. Conclusion

To calculate vibrational (or rovibrational) energy levels, one
must choose a basis set with which to construct a matrix
representation of the Hamiltonian operator and an eigensolver
to calculate eigenvalues of the matrix. Both choices have an
important effect on the efficiency of the calculation. The choice
of the basis set and the choice of the eigensolver are not
independent. For example, if one chooses a direct product basis,
then it is clear that it is better to use an iterative (e.g., Lanczos)
rather than an explicit (e.g., Householder) eigensolver. Direct
product basis functions do not represent wave functions
compactly, but it is very easy to compute a direct product basis
representation of the Hamiltonian, and it is easy to evaluate
matrix-vector products with a product basis Hamiltonian matrix.

The number of direct product basis functions for a molecule
with f degrees of freedom isnf (wheren is a representative
number of 1-d basis functions). Becausen is typically between
10 and 20, this number is huge for a molecule with six degrees
of freedom. There are two obvious ways to improve the basis:
(1) make new (better) basis functions by taking appropriate
linear combinations of the direct product functions; (2) exclude
from the direct product basis functions that are not necessary
for calculating the energy levels of interest. There is a great
deal of evidence suggesting that option (1) is a very good
strategy. However, it has the disadvantage that generating better
basis functions requires devising a contraction scheme, and
choosing parameters. It also has the disadvantage that matrix-
vector products in the new basis are more complicated and costly
than their direct product counterparts. In this paper we have
demonstrated that option (2) is, for some problems, a good
choice. If one excludes direct product basis functions by
restricting the range of basis function indices, it is straightfor-
ward to evaluate the matrix-vector products required to use
iterative methods to compute energy levels. Excluding basis
functions by restricting index ranges is practical and effective.

We have applied two different schemes for excluding direct
product basis functions. We excluded VBR product basis
functions by imposing a constraint on the allowed values of
the 1-d quantum numbers. For silane, this works extremely well.
Excluding basis functions enables us to reduce the number of
Lanczos iterations required to converge the desired energy levels

and also to reduce the cost of each matrix-vector product. We
have also tested excluding basis functions from a direct product
PODVR basis by removing basis functions peaked about points
at which the potential is larger thanVmax. In this case the number
of iterations required is not reduced significantly, but we are
able to reduce the number of basis functions and the cost of the
matrix-vector products by about a factor of 2. We have used a
simple criterion (Vmax) for excluding basis functions, but it
should also be possible to use more sophisticated criteria for
excluding points with the method we employ.
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