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For use in unimolecular reactions, a simple method is introduced for obtaining the unknown vibration
frequencies of the many asymmetric isotopomers of a molecule from those of the symmetric ones. The method
is illustrated for a triatomic molecule XYZ, ozone. It is based on the neglect of a singleG matrix element in
theGF expression for XYZ, yielding for it a block-factored expression of the XYX type for the frequencies
of all the isotopomers XYZ. It agrees with available data to the accuracy needed, a few cm-1. The first-order
perturbation vanishes. (The zeroth-order case is not a symmetric molecule since it contains all three masses.)
A simple second-order perturbation result for theGF matrix using data for one asymmetric isotopomer then
provides agreement to about 1 cm-1. The virtues of the method are its simplicity, transparency, and novelty,
though normally one would use much more general methods such as ASYM 20 or 40. The method itself is
not restricted to triatomic molecules.

Introduction

In a number of recent calculations, we have required the
vibrational densities of states of isotopically substituted ozone
molecules to perform Rice-Ramsperger-Kassel-Marcus
(RRKM) calculations of the microcanonical rate constants.1

Typically, the vibrational densities of states are obtained either
by a direct enumeration over the vibrational energies2

or by the Whitten-Rabinovitch formula or by a classical
approximation,3,4

whereFvib is the density of states,E is the total energy available
to the system, excluding zero-point energy,n is the total number
of harmonic vibrations,h is Planck’s constant and theνi are
the individual vibrational frequencies. In some cases, anhar-
monicity effects are introduced,4,5 the harmonic expression then
serving as a very useful starting point.

In eq 2, it is clear that the classical density of states is
inversely proportional to the product of the vibrational frequen-
cies,Πihνi, which can be estimated from the Teller-Redlich
product rule,6

whereA, B, andC are the rotational constants of the molecule,

M is the total molecular mass, themk are the individual atomic
masses, theνi are the vibrational frequencies, and the primes
represent the isotopically substituted species.

Equation 3 provides an estimate of the product of the
vibrational frequencies. However, the relationship fails to
provide an estimate of the zero-point energy of the system,
which is related to the sum of the vibrational frequencies,

When all three isotopes,16O, 17O, and18O are accounted for
in all possible combinations, there are 18 different ozone
isotopomers possible with three vibrational frequencies each,
leading to 54 different vibrational frequencies. Of these, only
26 have been measured, leaving 28 of the vibrational frequencies
experimentally unknown.

Our interest is in devising a simple method to determine these
many unknown frequencies of the ozone isotopomers, using the
known frequencies of a number of symmetric ones, and, for a
minor correction, if desired, data on one asymmetric isotopomer.
For our present purpose for unimolecular reaction rate calcula-
tions, only a relatively low accuracy of the order of a few cm-1

is needed. If the primary interest were, instead, the accurate
determination of frequencies or force constants, the procedure
would be quite different,7 e.g., the known frequencies would
be corrected to their harmonic values using overtone energy
level differences (anharmonicities),8b a correction which can be
quite large, e.g.,≈17 cm-1 for SO2,8c and both the symmetric
isotopomers and an asymmetric one would be used to avoid
ambiguity that can arise in solving a quadratic equation for the
force constants.8d However, one could introduce, instead, the
actual frequencies into the publicly available program (ASYM
20 or 40) as though they were the harmonic ones, together with
the isotopic frequency shifts as input data, and obtain the shifts
in frequencies for the other isotopomers.7b The isotopic shifts
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so obtained would be presumed not to be sensitive to the
anharmonicities.

In the present article, the problem is reduced instead to one
of lower dimensions by omitting anyG matrix elements which
prevent theGF matrix for the asymmetric isotopomers from
having the same block factor form as that for the symmetric
isotopomers. The first-order correction, at least for the present
case of ozone, vanishes by symmetry as discussed later, and
the second-order correction is easily estimated from data for
an asymmetric isotopomer. (It should be emphasized that this
zeroth-orderGF expression used here is not that of a symmetric
molecule XYX. It contains the masses of all three atoms in a
molecule XYZ.) The correction is small and is immediately
obtained. The present procedure might be applied to molecules
with more atoms. (We have not, for example, examined its
application to tetratomicC3V molecules whoseGF matrix block
factors into three 2× 2 matrices.) It provides a simple way of
obtaining the missing frequencies at a level quite adequate for
kinetic purposes, such as those in ref 1, and requires no elaborate
input of data. The accuracy, judging from the fits, is estimated
to be about 1 cm-1.

Theory

The procedure we introduce is based on the following: We
consider as a simple example of a bent triatomic molecule XYZ.
For isotopomers theF-matrix for force constants of XYZ has
the symmetry of XYX, when expressed in terms of symmetry
coordinates of the latter.

However, theG-matrix (momentum coefficients) is no longer
block diagonal. Nevertheless, if a single off-diagonal element
for XYZ with Z * X is neglected, theG-matrix for XYZ has
the same block form as that for XYX and expressions based on
that form can then immediately be used to obtain, in this
approximation, the frequencies of all isotopomers. We note in
passing that for a molecule that has the potential energy
symmetry of the ozone isotopomers there are four independent
force constants in the most general force field,8f and so we have
at our disposal four parameters.

On the basis of this general force field, we note, upon
expressing theGF matrix in symmetry coordinates for XYX,
that the various frequencies and sums and products of frequen-
cies arising from the secular equation|GF - λI | ) 0 can be
written. For XYX, using results in refs 8e and 8g, we have

whereµi ) 1/mi and, fori ) 1, is the reciprocal mass of an end
atom X in XYX, while for i ) 3 it is that of the central atom
Y. There are seen to be four unknown constants in eqs 5-7.
The R in eq 5 is the bond angle, 116.8° in the present case.9

The constants in eqs 5-7 could be expressed in terms of the
various force constants in the potential energy expression in eq
8,8a,10and we give those expressions for completeness in terms
of eqs 9-12 below. However, as stated earlier, for our purpose
there is no need to extract these various force constants,f’s,
and we do not do so.

wherer is the O-O bond length. We have10

Using eqs 5 and 6, the parametersA3 andA12 are obtained
from a fit to their average values for four symmetric isotopomers
where the vibrational frequencies are known,16O16O16O,
18O18O18O, 16O18O16O, and 18O16O18O. The parametersA′12
and d are obtained by rearranging eq 7, so as to plot (ν1

2 +
ν2

2)/µ1 Vs µ3/µ1, the slope and intercept providing the desired
values.

The parameters so obtained using known data of the six
symmetric isotopomers areA3 ) 7105957,A12 ) 715358,d )
0.660716, andA′12 ) 7193874, not all of these figures being
significant, as noted later. Given these values, the unknownν3’s
are calculated from eq 5. The unknownν1’s and ν2’s are
calculated from the solution of an equation quadratic inν2, ν4

- bν2 + c ) 0 with b ) A′12 (µ1 + dµ3) andc ) A12
2[(µ1 +

µ3)2 - µ3
2]. The two positive roots of this equation areν1 and

ν2, ν( ) [b/2 ( 1/2(b2 - 4c)1/2]1/2, whereν1 corresponds to the
positive sign.

To obtain approximate but simple expressions for asymmetric
isotopomers, we proceed as follows:

We use expressions8e for theG andF matrices for XYZ given
in terms of the XYX symmetry coordinates, but neglecting for
XYZ a single off-diagonal element G31 () G13), one which is
zero for XYX. As we have noted earlier, examination of the
relevant matrices provides immediately the extension.

The product of the eigenvalues of the secular determinant in
the block diagonalGF matrix is, forν3

2 in eq 5, G33F33. Using
the known G33,8e, eq 5 is seen to be replaced by eq 13
below. For ν1ν2 the relevant term in theGF matrix is8g

(G11G22 - G12
2)(F11F22 - F12

2). The G11G22 - G12
2 for XYX

is 2[(µ1 + µ3)2 - µ3
2], while for XYZ it is8e 2[(1/2(µ1 + µ2) +

µ3)2 - µ3
2], leading to eq 14 below. Forν1

2 + ν2
2 the relevant

GF element is8g G11F11 + 2G12F12 + G22F22. This quantity is
seen from the expressions in ref 8e to be a linear combination
of µ1 andµ3 in eq 7. For XYZ, it is seen to be the same linear
combination, but of 1/2(µ1 + µ2) andµ3, leading to eq 15 below.

That is, in each case theµ1 in eqs 5-7 is becomes (µ1 + µ2)/2.
Application of the parametersA12, A′12, A3, and d and the

results corresponding to eqs 13-15 lead to approximate
vibrational frequencies for ozone isotopomers listed in Table
2. The fit is seen there to be about 1 per mil, so that the figures
given earlier for the parameters are significant only to that
extent. Although the simplified model does not give exact
results, it does give values that are close to the experimentally
observed values, where available, given in Table 1. In particular,
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we note that the values for the asymmetric isotopomers are well
reproduced, although eqs 13-15 were derived with the neglect
of an off-diagonal element G13. We have also applied the
formula to ozone isotopomers,ijk, where i, j, and k are all
different and where no experimental vibrational frequencies are
available.

We note that the approximate result presented here gives
absolute values for the calculated vibrational frequencies, which
are close to their experimental counterparts, leading also to a
close estimation of the zero-point energy in eq 4. In addition,
the product of the calculated vibrational frequencies is close to
the experimental one, leading to the correct scaling in the
classical approximation, eq 2. In the case of ozone, we find
that the calculated frequencies are both internally consistent with
each other and suitable for either a classical evaluation or direct
count of the vibrational density of states.

One expects, of course, that the agreement between calculated
and experimental frequencies will be best when the masses of
the end atoms differ by less than two mass units. This
expectation is borne out by the available data in Table 2. Of
the remaining isotopomers for which the frequencies have not
been measured, the masses of the end atoms differ by two in
only one of the nine cases.

The error in Table 2 for XYZ can be reduced to about 1 cm-1

by an application of second-order perturbation theory. We note
that the first- and second-order corrections to the eigenvalueλi

() 4πνi
2) of the GF matrix are12

where T denotes transpose,Λ0 is a diagonal matrix whose
eigenvaluesλi

(0) are those of theG0F0 matrix, andL0 is a right
eigenvector ofF0G0. We note, thatF0 ) F in the present case.

When eq 16 is applied to the ozone system, one notes that
the only nonzero element in∆G is G13, which is proportional
to µ1 - µ2. By symmetry with respect to exchange of atoms 1
and 3,8e it can be shown thatλi

(0) vanishes for all three
frequencies and that the off-diagonal elements in eq 17 are
proportional toµ1 - µ2, and soλi

(2) is proportional to (µ1 -
µ2)2. The coefficient of proportionality varies withi, i ) 1 to 3.
Because∆λi ) 8π2νi∆νi, it is seen from eq 17 that∆νi, the
correction toνi, varies as (µ1 - µ2)2.

Using these corrections for16O16O18O or 18O18O16O, seen in
Table 2, or averaging them for eachi, they are ca.-2.7, 0.3,
and 2.7 cm-1, for ∆ν1, ∆ν2, and∆ν3, respectively. This same
mean correction can then be used for the missing16O17O18O
isotopomer. For the case where the end atoms differ by only 1

mass unit, the correction on this basis would be about-0.6,
0.1, 0.6, which is within the present “noise level,” but could be
introduced before round off. In summary, the use of data for
one asymmetric isotopomer, preferably with the maximum
difference in (µ1 - µ2), suffices to provide an immediately
applied correction to the data in Table 2, and obtain values
correct to about 1 cm-1.
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