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Microcanonical ensemble molecular dynamics simulations are used to study anisotropy in diffusional and
related dynamical properties for five spherical sorbates of varying size and polarizability in silicalite. Silicalite
has straight and zigzag channels, parallel to they and x-axes of the unit cell, respectively, which are
interconnected in such a way that diffusion along thez direction is possible only by alternation of the sorbate
between straight and zigzag channel segments. Helium, the smallest and most weakly bound sorbate, is found
to comply most closely with the behavior expected on the basis of the simple random walk model developed
to understand the geometrical correlation between the principal elements of the diffusional tensor in silicalite
(J. Kärger,J. Phys. Chem.1991, 95, 5558). The larger and more strongly bound sorbates, Ne, Ar, CH4, and
Xe, show significant deviations from this model. The diffusion of these particles along thez direction is
distinctly subdiffusional with the mean square displacement growing as≈ t0.8. The randomization and anisotropy
parameters for all four sorbates are similar but differ significantly from the predictions of the random walk
model. The relative rates of diffusion along the straight and zigzag channels are more sensitive to the nature
of the sorbate than the anisotropy and randomization parameters. For all five sorbates, the subdiffusional
behavior along thez direction, as well as deviations from the predictions of the random walk model, are
more pronounced at higher concentrations. The anisotropy in the short-time dynamics has been examined by
studying the velocity autocorrelation functions and the instantaneous normal mode spectra. For very short
times of less than 0.5 ps, the velocity autocorrelation function and its directional analogues are virtually
identical, but divergences are seen by times of the order of 1 ps. The instantaneous normal mode spectra
show the expected correlation between the diffusion coefficient, the Einstein frequency, and the fraction of
imaginary modes. There is no significant anisotropy in the INM spectra that is consistent with the behavior
of the velocity autocorrelation functions for short time scales.

1. Introduction

Transport properties of simple sorbates in zeolites provide
convenient models for understanding the effect of confinement
in a microporous medium on the dynamics of fluids. Zeolites
are ordered porous media with well-characterized crystal-
lographic structures which provide a very wide variety of pore
dimensions, binding energies, and channel geometries.1-5 One
of the most obvious ways in which confinement in a zeolite
can alter the dynamics of a fluid is by inducing diffusional
anisotropy due to a framework geometry belonging to a
noncubic space group.6-10 Other examples of unusual diffusional
phenomena due to the structure of the confining medium are
single file diffusion,11-15 the levitation effect,16-19 and quantum
sieving.20

Silicalite is the pure silica analogue of the industrially
important zeolite ZSM-5. Silicalite belongs to the orthorhombic
Pnmaspace group and is therefore expected to induce diffu-
sional anisotropy. Silicalite also has a more unusual feature in
the geometry of the channel network that has made it the focus
of a number of theoretical studies. Silicalite contains two types
of interconnected channels: straight channels parallel to they
direction and zigzag channels parallel to thex direction. The
channel connectivity is such that at a channel intersection the
sorbate can move in one of the four directions in thex, y-channel

system, and sorbate diffusion along thez direction is only
possible by alternation of the sorbate between straight and zigzag
channels. Thus diffusion in thez direction must depend on the
diffusion coefficients in thex and y directions. This type of
correlation between the components of the diffusion tensor due
to the geometry of the channel network is classed as geometrical
correlation. To understand the effect of such geometrical
correlations on the diffusional anisotropy, Ka¨rger developed a
simple and elegant Markovian random walk model for diffusion
in silicalite that predicts the following relationship between the
diffusion coefficients,Dx, Dy, and Dz, in the x, y, and z
directions:6

wherea, b, andc are the unit cell dimensions. More elaborate
models that take into account other sources of correlations, such
as vacancy correlations due to concentrations significantly
greater than zero and kinetic correlations due to incomplete
randomization, have subsequently been developed.9,10For xenon,
methane, and ethane, comparison of predictions based on
random walk methods with pulsed field gradient NMR and
molecular dynamics (MD) results indicate a fair degree of
consistency.

In this work, we examine the diffusional anisotropy exhibited
by simple Lennard-Jones sorbates in zeolites using molecular* To whom correspondence should be addressed.
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dynamics simulations. The dependence of the extent of anisot-
ropy on sorbate size and polarizability is illustrated using
Lennard-Jones parametrizations for helium, neon, argon,
methane, and xenon. In addition to calculating the diagonal
elements of the diffusion tensor, we also examine the anisotropy
in several related quantities such as the velocity autocorrelation
function and the ballistic to diffusional crossover times.
Instantaneous normal mode (INM) analysis has been recently
shown to be very useful for understanding short-time dynamical
behavior of sorbates in zeolites.21-23,25-27 For example, the INM
spectrum carries signatures of the anomalous levitation peak.
In this work, INM analysis is extended to study diffusional
behavior in anisotropic zeolites. The paper is organized as
follows. Simulation details and related techniques of analysis
are summarized in Section 2. Results are discussed in Section
3. Conclusions are presented in Section 4.

2. Details of Simulations and Analysis

2.1 Zeolite Structure.The unit cell of silicalite contains 96
silicon atoms and 196 oxygen atoms. The positions of the
framework atoms were taken from the crystallographic data for
the orthorhombic form.28,29Silicalite belongs to thePnmaspace
group and has lattice parameters ofa ) 20.07 Å,b ) 19.92 Å,
andc ) 13.42 Å. The straight channels parallel to they-axis
have elliptical cross sections, with major and minor axes of 5.7
and 5.1 Å, respectively, and are bisected by the planesx ) 0
andx ) a/2. The zigzag channels parallel to thex-axis with a
circular cross section of 5.4 Å radius can be clearly seen in the
planesy ) b/4 andy ) 3b/4.

2.2 Potential Energy Surface.The potential energy function
for Lennard-Jones sorbates in silicalite is based on the Kiselev
model.30-32 The total potential energy of the system is subdi-
vided into a guest-host term, Ugh, which represents the
interaction between the sorbate or guest atom with the host
lattice and a guest-guest term,Ugg, which is a pairwise
Lennard-Jones interaction between the sorbate atoms. The
silicon atoms in the framework are assumed to be completely
shielded from interaction with the sorbate by the tetrahedrally
coordinated oxygen atoms. Since silicalite contains no frame-
work cations, it is not necessary to postulate compensating
partial charges on the framework oxygens, and the only
contribution to the guest-host interaction energy is due to the
dispersion interaction between the sorbate and the framework
oxygens. The functional form of the potential is then given by:

where nO and N are the number of framework oxygen and
sorbate atoms respectively,rij is the distance between thejth
framework oxygen and theith sorbate atom and∈SO andσSO

are the Lennard-Jones parameters for the sorbate-oxygen
interaction. Table 1 shows the Lennard-Jones parameters for
the sorbate-sorbate as well asorbate-framework oxygen in-

teraction used in this work. Parameters for neon, argon, and
xenon are taken from ref 33. The methane parameters are those
used in a recent study of diffusional anisotropy.8 The parameters
for helium are taken from ref 24. Note that CH4 has a very
similar ∈SS value to Ar and a very similarσSS value to that of
Xe. Figure 1 shows contour plots of the potential energy as a
function of the location of a single rare gas atom in the silicalite
framework. The steeper repulsive walls and reduced dimensions
of the channels for the larger xenon atom when compared to
helium are obvious. In the case of helium, additional very small
pores can be seen that are isolated from the channel system
and are artifacts of the potential energy surface. These unphysi-
cal pore spaces arise because the approximation of assuming
complete shielding of the sorbate from direct interaction with
framework silicon atoms breaks down when the sorbate size is
small. The effect is small for helium, and the MD dynamics is
not affected provided the simulation is initiated with the sorbates
located in the channel regions. For very small sorbate sizes,
however, the distortion of the channel geometry is substantial.
In previous work on the levitation effect in silicalite, sorbates
with Lennard-Jones size parameters as small as 1.5 Å were
considered.19 Our analysis of contour plots of such small
sorbates indicates that the channel structure of silicalite is
severely distorted in such cases, and we have therefore not
considered any sorbates withσSSless than 2.28 Å in this study.

2.3 Molecular Dynamics. 2.3.1 Computational Details.
Molecular Dynamics (MD) simulations were carried out in the
microcanonical (NVE) ensemble using the velocity Verlet
algorithm.34,35The simulation program developed by us has been
tested against results available in the literature and used in
previous work.26,27 Initial velocities were sampled from a
Maxwell-Boltzmann distribution corresponding to some preset
temperature and then temperature scaling was carried out during
the equilibration period. The reference temperature was taken

TABLE 1: Lennard -Jones Parameters for the
Sorbate-Sorbate and Sorbate-Oxygen Interactions

sorbate ∈SS(kJ mol-1) σSS(Å) ∈OS(kJ mol-1) σOS(Å)

He 0.085 2.28 0.426 2.62
Ne 0.28 2.85 0.529 2.78
Ar 1.183 3.35 1.028 3.03
CH4 1.23 3.73 1.108 3.214
Xe 3.437 3.85 1.737 3.28
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Figure 1. Contour plots of the potential energy surface of a single (a)
xenon and (b) helium atom in silicalite. The plots are constructed in
thexz-plane withy-coordinate fixed at 4.98 Å. Contour lines give the
potential energy in kJ mol-1.
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to be 300 K; actual temperatures during a run were within(20
K of this value. Concentrations ranging from 2 to 24 sorbates
per unit cell were studied. Orthorhombic periodic boundary
conditions were imposed. A simulation cell containing two unit
cells of silicalite along thez-axis in conjunction with a spherical
cutoff radius of 12 Å for sorbate-sorbate and sorbate-zeolite
interactions was found to be sufficient to converge the guest-
host potential energy to better than 2%.26,27 The zeolite
framework was assumed to be rigid. The time step for each
system was chosen to ensure energy conservation to better than
the third significant figure. Instantaneous normal modes were
calculated at intervals of 100 time steps. Further convergence
details and choice of time steps, run lengths, and equilibration
periods are discussed in Section 2.3.4.

It is useful to consider at this stage the possible implications
with regard to our simulation results of the choice of a rigid, as
opposed to a flexible, zeolite lattice. Previous studies comparing
diffusional behavior of methane in rigid and flexible zeolite
frameworks indicate that the inclusion of lattice vibrations has
a relatively small effect on diffusion constants.36-38 The reason
for this is that the force constants for the zeolite framework
bonds are very large, and as a result, the zeolite lattice vibrations
are relatively weakly coupled to the sorbate motion. While the
presence of lattice vibrations assists the equilibration process
in the NVE ensemble simulations, it is by no means essential
provided equilibration times are sufficiently long.39 Moreover,
our primary interest in this work is the effect of channel
geometry and connectivity on the diffusional behavior of
sorbates. In this context, we cite several recent works on the
effect of geometrical correlations on diffusional behavior in
silicalite6-10 as well as on single-file diffusion,11-15 which use
the rigid lattice assumption. Therefore, we feel that for an
exploratory study of the type presented in this work, the rigid
lattice approximation is adequate provided appropriate care is
taken with regard to equilibration. To ensure the latter, we have
followed an equilibration protocol in which the system is first
thermalized at a high temperature of 500 K and then cooled to
300 K in steps of 50 K, ensuring thermalization at intermediate
temperatures.

2.3.2 Diffusion Coefficients.The mean squared displacement
(MSD), ∆2r(t), may be defined as

wheretmax is the duration of the simulation. A plot of the mean-
squared displacement,∆2r(t), versus time,t, can be subdivided
into two distinct regimes: (i) the initial ballistic regime for which
∆2r(t) ∝ t2 and (ii) the diffusional regime with∆2r(t)t.36 The
Einstein relation in the diffusional regime defines the diffusion
coefficient,D, to be

wherer(t) is the 3N-dimensional position vector for the sorbate
atoms at timet. The direction-dependent diffusion coefficient
in the x direction,Dx, is defined as

wherex is anN-dimensional vector. The definitions ofDx and

Dy are analogous. In all the cases studied here, the time period
until approximately 1 ps can be definitely classed as in the
ballistic regime while beyond 10 ps, the system may be classed
as in the diffusional regime. A least-squares fitting procedure
was used to obtain straight line fits in the two regions using
the expression:

and its analogues in they andzdirections. The three-dimensional
generalization is

Ideally, the values ofnx, ny, nz, andn should be 2 and 1 in the
ballistic and diffusional regions, respectively, but in practice
deviations from integer power dependence are observed due to
the effects of the confining potential.36 Since such deviations
from unity contain interesting information on the degree of
subdiffusional character, we have used eqs 7 and 8 to fit our
data rather than eqs 5 and 6 which enforce a linear dependence
on time. The intercept of the plot of ln|x(t) - x(0)|2 against ln
t is taken to be 2Dx in the one-dimensional case and 6D in the
three-dimensional case. An order-N algorithm was used to
compute the mean-square displacement as a function of time.35

The ballistic to diffusional crossover time,τc, is taken to be the
point of intersection of the straight line fits to the data in the
ballistic and diffusional regimes.

Since the purpose of this study is to study diffusional
anisotropy in silicalite, we summarize the different parameters
that have been used in the literature to characterize the relative
magnitudes of the direction-dependent diffusion coefficients.
The relative rates of diffusion in the straight and zigzag channel
scan be simply characterized by the ratioDy/Dx. The anisotropy
parameter,A, which indexes the rate of diffusion in thez
direction as a result of correlated motions in thex and y
directions is defined as

The randomization parameter,â, is defined as:

A value of unity for theâ-parameter indicates that the basic
assumption of Ka¨rger’s model is exactly obeyed, i.e., the
probability of a sorbate to move in any one of four directions
on reaching a channel intersection is the same.â > 1 indicates
a tendency for the sorbate to continue in a channel of the same
type, whereasâ < 1 indicates a tendency to alternate between
straight and zigzag channels.

2.3.3 Time-Correlation Functions.The velocity autocorrela-
tion function is defined as

and is related to the diffusion coefficient,D, by the relation:

We have, however, not used the integral of the velocity

∆2r(t) ) 〈|r i(t) - r i(0)|2〉 (3)

) 1/N ∑
i)1

N 1

(tmax - t)
∫0

tmax - t
[r i(t + τ) - r i(τ)]2dτ (4)

〈|r(t) - r(0)|2〉 ) 6Dt (5)

∆2x(t) ) 〈|x(t) - x(0)|2〉 ) 2Dxt (6)

ln〈|x(t) - x(0)|2〉 ) ln(2Dx) + nx ln t (7)

ln〈|r(t) - r(0)|2〉 ) ln(6D) + n ln t (8)

A ) (Dx + Dy)/2Dz (9)

â )
c2/Dz

a2/Dx + b2/Dy

(10)

Cυυ(t) )
〈v(t)‚v(0)〉

〈v2(0)〉
(11)

D ) (1/3)∫0

∞
Cυυ(t)dt (12)
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autocorrelation function to compute the diffusion coefficient
since the relation using the mean square displacement as a
function of time proves to be computationally more efficient.
The directional analogues are defined as:

The structure of the velocity autocorrelation function can provide
information on the short and intermediate time dynamics of the
system. The time,τn, at which Cυυ(t) first turns negative
represents the average time at which the sorbate first encounters
a repulsive barrier and is often closely related to the crossover
time from ballistic to diffusional motion. The position of the
first minimum in CVV(t) indicates the average time at which
the sorbate is likely to reverse its direction of motion. As
collisions with the wall and other sorbates increase, the
correlation function decays to zero.

2.3.4 ConVergence Tests.The statistical error in quantities
such as the diffusion coefficient, which are both time-dependent
and expressed in terms of a mean square deviation, are relatively
much greater than for simple averages, such as the mean
potential energy.34,35A detailed study of the error in the diffusion
coefficient of sorbates in zeolites depends on the nature of the
system and the underlying potential energy surface.40 Since
results reported in the literature vary significantly in terms of
run lengths, equilibration protocols, and potential energy pa-
rametrizations, we have performed a fairly detailed set of
convergence tests. The results for CH4 in silicalite are sum-
marized in Table 2. We have considered five different concen-
trations of 2, 8, 12, 16, and 24 atoms per unit cell as well as
three different sets of equilibration times,tequil, and production
run lengths,tprod, for each concentration. As expected, a simple
statistical average such as the guest-host interaction energy, is
very well converged even for the smallest concentration and
run length. The sharp rise in〈Ugh〉 on going from a concentration

of 16/u.c. to 24/u.c. indicates that a concentration of 24 atoms
per unit cell exceeds the maximum packing density for sorbates
of this size.33 Therefore, for CH4 and Xe, we have not considered
the results for concentrations above 16/u.c. Convergence of the
D values with increasing equilibration and production times is
much slower, as expected for a transport property, specially at
the lowest concentration of 2/u.c. This is expected given the
slow thermalization for very low sorbate concentrations in a
rigid lattice in the NVE ensemble. A comparison with the results
of Jost et al. who used an NVT ensemble with weak coupling
to the thermal bath shows that the agreement between their
results and ours is much better at higher concentrations.8 On
the basis of previous work,26,27,40we estimate an error of(10%
for the diffusion coefficients obtained from the longest runs.
We also show the convergence behavior for the exponents,nx,
ny, nz, andn in the diffusional regime (see eqs 7 and 8). The
convergence behavior ofnx, ny, andn is more robust than that
of nz. As mentioned in the introduction, the motion in thez
direction is a consequence of correlated motions along thex
andy directions. The variation in thenz values may therefore
be due to two reasons: (i) slower diffusional motion along the
z-axis and (ii) slow restoration of Fickian behavior in the very
long-time limit. These points are discussed further in Section
3. It should be noted, however, that despite a relatively higher
variation in nz as compared tonx and ny, the nz exponent is
always lower than the exponents in thex andy direction.

Convergence tests, similar to those reported above for CH4

and Xe, were carried out for the other four sorbates. The results
reported here are for the longest run length simulation for each
concentration. The corresponding simulation parameters are
summarized in Table 3. On the basis of our convergence tests,
we expect our diffusion coefficients to be correct to within(10
to (20% for the longest runs.

2.4 Instantaneous Normal-Mode Analysis.In this section,
we first summarize those aspects of instantaneous normal mode
(INM) analysis which have been found useful in understanding
the short-time dynamics of simple sorbates in zeolites.26,27We
then discuss the simple extensions necessary to study the effect
of anisotropy of the confining potential on the INM spectrum.

An instantaneous normal-mode analysis is performed by
expanding the potential energy function to second order in the
displacement,r(t) - r(0), wherer(0) andr(t) are the configura-
tions of theN-particle system at timet ) 0 and at timet,

TABLE 2: Convergence Tests for CH4 in Silicalite at Different Concentrations Measured in Sorbates Per Unit Cella

(kJ mol-1) (10-8 m2s-1) diffusional

conc tprod(ns) tequil (ns) T (K) 〈Ugh〉 〈Ugg〉 Dx Dy Dz D nx ny nz n

2 5.3 5.3 305 -15.76 -0.09 0.62 0.60 0.19 0.43 0.89 1.05 0.83 0.99
5.3 26.4 301 -15.75 -0.09 0.49 0.74 0.13 0.45 0.95 0.96 0.94 0.98

26.4 26.4 305 -15.76 -0.09 0.49 0.56 0.15 0.39 0.95 1.02 0.91 0.99
8 5.3 5.3 305 -15.35 -0.49 0.49 0.63 0.23 0.43 0.93 0.99 0.81 0.96

5.3 26.4 299 -15.37 -0.49 0.47 0.63 0.23 0.43 0.94 0.97 0.80 0.95
26.4 26.4 298 -15.38 -0.49 0.48 0.59 0.20 0.41 0.93 0.99 0.83 0.90

12 5.3 5.3 303 -15.25 -0.78 0.36 0.51 0.15 0.34 0.91 0.94 0.84 0.92
5.3 26.4 299 -15.26 -0.78 0.31 0.49 0.22 0.32 0.95 0.95 0.74 0.93

26.4 26.4 299 -15.26 -0.79 0.30 0.47 0.16 0.31 0.95 0.96 0.82 0.94
16 5.3 5.3 300 -15.14 -1.04 0.22 0.36 0.19 0.23 0.89 0.96 0.68 0.92

5.3 26.4 304 -15.12 -1.04 0.26 0.39 0.15 0.25 0.89 0.98 0.77 0.93
52.8 26.4 317 -15.08 -1.04 0.20 0.41 0.12 0.24 0.95 0.96 0.81 0.95

24 5.3 5.3 291 -4.57 -0.98 0.15 0.14 0.15 0.11 0.74 0.98 0.55 0.89
5.3 26.4 299 -4.51 -0.96 0.08 0.14 0.15 0.10 0.97 0.96 0.59 0.92

52.8 26.4 298 -4.51 -0.97 0.08 0.14 0.09 0.09 0.94 0.95 0.69 0.93

a A time step of 5.3 fs was used for all the runs. Temperature scaling was carried out during the equilibration period,tequil, and switched off
during the production run of length,tprod.

Cυxυx
(t) )

〈vx(t)‚vx(0)〉

〈vx
2(0)〉

(13)

Cυyυy
(t) )

〈vy(t)‚vy(0)〉

〈vy
2(0)〉

(14)

Cυzυz
(t) )

〈vz(t)‚vz(0)〉

〈vz
2(0)〉

(15)
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respectively. The short-time classical Hamiltonian can then be
written as

where the first and second derivative matrices of the potential,
F andD, respectively, are constructed with respect to the mass-
weighted coordinates,q. The Hessian matrix can be diagonalized
to give the eigenvalues,{ωi

2, i ) 1, 3N}, and eigenvectors
U(r(0)). The eigenvalues correspond to the squares of the
normal-mode frequencies and may be positive or negative
corresponding to real and imaginary frequencies, respectively.
Conventionally, the imaginary branch is depicted on the negative
frequency axis.

The INM spectrum or the normalized INM density of states
is obtained by averaging the INM frequencies over a set of
configurations sampled from the equilibrium distribution in any
ensemble. Mathematically, it may be represented as

The fraction of imaginary modes,Fi, indicates the extent to
which the system samples regions of negative curvature,
including barrier and shoulder regions of the PES. Previous
studies indicate thatFi is generally correlated with the magnitude
of the self-diffusion coefficient. The Einstein frequency,ωE, is
defined as:ωE

2 ) ∫ ω2F(ω)dω whereF(ω) is the normalized
INM spectrum. The Einstein frequency is a measure of the
average force constant,〈V′′〉/3N, of the system.

For a classical system, it is possible to obtain an approxima-
tion to the short-time dynamics in terms of the kinematics of
the normal mode coordinates. On the basis of the time evolution
of the classical normal modes, it has been shown that the
velocity autocorrelation function is given by:

where the integration is restricted to only the real branch of the
INM spectrum. For simple liquids and for rare gases in zeolites,

the short time behavior of the translational autocorrelation
function is well reproduced by the above formula providedFi

is not too large.
To define the components of the INM spectrum along the

three Cartesian directions, an eigenvector representing thekth
mode associated with some configuration is denoted by

whereêjâ is the mass-weighted displacement of thejth atom in
theâ-direction withâ ) x, y, or z. In the case of orthorhombic
zeolites, projections along Cartesian directions are equivalent
to projections along the crystallographic axes. We wish to
separate the INM density of states into the direction-dependent
densities of statesFâ(ω) such thatFâ(ω) indicates the probability
of finding a mode with frequencyω with a projection in the
â-direction. Following earlier approaches for computing trans-
lational and rotational components of INMs in molecular liquids,
we define the projection matrix

where

and the diagonal elements of the projection matrix are

SincePkk
x + Pkk

y + Pkk
z ) 1, we can write

where

Each of the direction-dependent densities of states will have a
fraction of imaginary modes,Fi and given our definition,Fi )
Fix + Fiy + Fiz.

3. Results and Discussion

3.1 Diffusional and Ballistic Regimes. The separation
between the ballistic and diffusional regimes is most clearly
shown in log-log plots of the mean square displacement against
time. As an illustration, Figure 2 compares the direction-
dependent mean square displacements,∆2x(t), ∆2y(t), and∆2z(t),
against time for CH4 in silicalite. The slopes for all three curves
in the ballistic region from 0 to approximately 0.5 ps are very
close to 2. The transition to the diffusional regime is marked
by a crossover period rather than a sharp crossover time,τc.
More interestingly, the slopes in the diffusional regime are close
to unity but are by no means identicalsthenx andny values are
0.95 and 0.96, respectively, whilenz is 0.82. The net mean
square displacement,∆2r(t) grows ast0.94. Thus, sorbate motion
along thez direction, corresponding to thec-axis of the unit
cell, is distinctly subdiffusional. From Table 4, it can be seen
that this subdiffusional behavior for thez-displacement is present
for all the sorbates studied here, although it is least pronounced

TABLE 3: Molecular Dynamics Simulation Parameters
Used for Different Lennard-Jones Sorbates

(kJ mol-1)

sorbate
mass
(amu)

time
step
(fs)

conc
(sorbates/

u.c.)
tequil
(ns)

tprod
(ns)

T
(K) 〈Ugh〉 〈Ugg〉

He 4 0.24 2 1.20 2.40 318 -2.40 0.002
12 1.20 1.20 309 -2.31 0.02
16 1.20 2.40 301 -2.33 0.03
24 1.20 2.40 304 -2.31 0.06

Ne 20 0.48 2 4.80 19.20 299-3.89 -0.007
12 2.40 2.40 308 -3.76 -0.03
16 2.40 4.80 299 -3.76 -0.04
24 2.40 4.80 306 -3.64 -0.03

Ar 40 1.20 2 11.76 0.24 294-11.47 -0.08
12 6.00 6.00 296-11.08 -0.60
12 6.00 6.00 296-11.08 -0.60
16 6.00 12.00 285-11.07 -0.82
24 6.00 12.00 288-10.95 -1.20

CH4 16 5.30 2 26.4 26.4 305-15.76 -0.09
8 26.4 26.4 298-15.38 -0.49

12 26.4 26.4 299-15.26 -0.79
16 26.4 52.8 317-15.08 -1.04

Xe 131 12.0 2 116.40 3.60 305-27.97 -0.30
12 60.00 60.0 304-26.61 -2.93
16 60.00 120.00 313-26.35 -4.00

H ≈ ∑
i)1

3N 1

2 (dqi

dt )
2

+ V(r(0)) - F‚(q(t) - q(0)) + 0.5(q(t) -

q(0))T‚D‚(q(t) - q(0)) (16)

F(ω) ) 〈(1/3N) ∑
k)1

3N

δ(ω - ωk(r))〉 (17)

Cυυ(t) ) ∫real
F(ω) cos(ωt)dω (18)

ψk ) ∑
j)1

N

∑
â

Uk,jâ|êjâ〉 (19)

Pkl
â ) 〈ψk|p̂âp̂â|ψl〉 (20)

p̂â|ψl〉 ) ∑
j)1

N

Ul,jâêjâ (21)

Pkk
â ) ∑

j)1

N

Uk,jâ
2 (22)

F(ω) ) Fx(ω) + Fy(ω) + Fz(ω) (23)

Fâ(ω) ) 〈(1/3N) ∑
k)1

3N

Pkk
â δ(ω - ωk(r))〉 (24)
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for helium. Figure 3 also illustrates this by comparing the mean
square displacements in thez direction as a function of time
for all the five sorbates studied here. The general result that
emerges from the results in Table IV is that the relative values
of nx, ny, andnz are influenced by the size, polarizability, and
concentration of the sorbate. At a given concentration, the
smaller and less polarizable the sorbate, the smaller the

anisotropy and subdiffusional character manifested by thenx,
ny, and nz exponents. For a given sorbate, increasing the
concentration promotes subdiffusional behavior along thez
direction, relative to the other two directions. Exceptions to these
trends do arise which must be accounted for by a more detailed
analysis of factors influencing diffusion. For example,nz values
for CH4 are somewhat higher than the corresponding values
for Ar. From Table 1, it can be seen that∈SS is very similar for
both sorbates, butσSS is about 10% greater for CH4. It may be
conjectured that the larger sorbate is forced to occupy positions
close to the channel centers and therefore may show different
diffusional behavior. Other factors that may play a role are the
number of lowest energy sorption sites available for a sorbate
of given size.

Since the greater tendency to subdiffusional behavior along
thezdirection is a very distinct feature of diffusional anisotropy
that emerges from our study, it is worthwhile to examine it more
carefully. Previous studies of the time dependence of the MSDs
of sorbates in zeolites have not considered anisotropic effects.
The diffusion of CH4 in silicalite has, however, been reported
as being subdiffusional with an exponent of 0.78 at a temper-
ature of 298 K.36 We find, however, that the exponent for the
total MSD is 0.94. The differences between their study and ours
may stem from different potential energy surfaces as well as
much shorter run lengths (0.2 ns as opposed to 2.6 ns). Our
study finds distinctly subdiffusional behavior only along thez
direction. Thenz exponent for different run lengths is fairly
similar and therefore is unlikely to be an artifact of a simulation
that is too short. It would therefore appear that this type of
subdiffusional motion is a consequence of the correlated nature
of diffusion along thez-axis which can take place only if the
particle alternately diffuses through straight and zigzag channel
segments. However, the geometry of the channel network is
clearly not the only determining factor since the very small,
light, and weakly bound helium atom does not display such
pronounced diffusional anisotropy. It is also clear that the
subdiffusional behavior is more pronounced at higher concentra-
tions indicating that avoided crossings of sorbates in thez
direction may play a role, as in the case of single-file diffusion.
It would appear therefore that a combination of the potential
energy landscape within a channel, the packing density as well
as the geometrical connectivity is necessary to produce this
subdiffusional behavior. On the basis of this, one can predict
that similar direction-dependent subdiffusional behavior will be
present in other two-dimensional networked channel zeolites,
such as ZSM-11, and the effect will be attenuated with
increasing temperature and accentuated by increasing concentra-
tion. In future work, it will be of interest to examine if there is
a slow approach to Fickian behavior in the long-time limit, as
has been suggested in the case of single-file systems.42

The crossover time from ballistic to diffusional motion has
been computed as the point of intersection of the straight line
fits to the MSDs in the two regions. The results, for 12 particles
per unit cell, are given in Table 5. The crossover times are found
to be fairly similar for all the systems and the most notable

Figure 2. Log10-log plot of mean square displacements in thex, y,
andz directions as a function of time for CH4 in silicalite at 300 K and
a concentration of 12 particles per unit cell.

TABLE 4: The Exponent of the Time Dependence of the
Mean Square Displacement in the Ballistic and Diffusional
Regimes for Different Lennard-Jones Sorbates in Silicalitea

ballistic diffusional

sorbate
conc

(sorbates/u.c.) nx ny nz n nx ny nz n

He 2 1.93 1.94 1.92 1.93 0.99 0.93 0.93 0.96
12 1.91 1.92 1.90 1.91 0.98 1.02 0.87 0.99
16 1.91 1.92 1.90 1.91 1.00 1.03 0.93 1.01
24 1.90 1.90 1.89 1.90 1.01 1.00 0.90 1.00

Ne 2 1.91 1.91 1.90 1.91 0.98 1.01 0.81 1.00
12 1.93 1.94 1.93 1.90 0.96 1.09 0.83 1.02
16 1.93 1.93 1.92 1.93 1.00 0.95 0.89 0.96
24 1.91 1.91 1.91 1.91 0.94 0.99 0.90 0.96

Ar 2 1.96 1.96 1.95 1.96 0.99 1.02 0.79 1.00
12 1.94 1.94 1.94 1.94 0.92 0.96 0.73 0.92
16 1.93 1.93 1.93 1.93 0.93 0.98 0.78 0.94
24 1.90 1.89 1.89 1.90 0.88 0.93 0.70 0.87

CH4 2 1.95 1.95 1.93 1.94 0.95 1.02 0.91 0.99
8 1.93 1.93 1.92 1.93 0.93 0.99 0.83 0.90

12 1.90 1.90 1.90 1.90 0.95 0.96 0.82 0.94
16 1.90 1.90 1.90 1.90 0.95 0.96 0.81 0.95

Xe 2 1.94 1.93 1.91 1.93 0.91 0.93 0.76 0.91
12 1.89 1.89 1.89 1.89 0.92 0.97 0.78 0.94
16 1.87 1.86 1.87 1.87 0.89 1.01 0.76 0.98

a The exponentsnx, ny, nz andn corresponds to the∆2x(t), ∆2y(t),
∆2z(t), and∆2r(t) displacements, respectively. Simulation parameters,
as well as the mean temperature and potential energy, are given in
Table 3.

Figure 3. Log10-log plot comparing mean square displacements in
thezdirection,∆2z(t), versus time for different Lennard-Jones sorbates
in silicalite at 300 K and a concentration of 12 particles per unit cell.

TABLE 5: Ballistic to Diffusional Crossover Times (in ps)
for Lennard -Jones Sorbates in Silicalite at a Temperature
of 300 K and Concentration of 12 Particles Per Unit Cell

sorbate τcx τcy τcz τc

He 0.29 0.31 0.11 0.23
Ne 0.40 0.28 0.21 0.26
Ar 0.29 0.31 0.24 0.26
CH4 0.24 0.37 0.23 0.26
Xe 0.20 0.35 0.18 0.21
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feature is that the crossover time for the MSD in thezdirection
is distinctly lower than the crossover times in the other two
directions. There is, however, some ambiguity in the exact
location ofτc because of the extended nature of the crossover
region. An examination of Figure 2 also indicates that the above
method of locatingτc will generally result in values that are
lower than the time at which the MSD begins to show a
deviation from ballistic behavior on a log-log plot. Intuitively,
our results for a reduced value forτcz, as compared toτcx or
τcy, do appear to be reasonable since the range of ballistic motion
in the z direction is strongly confined by the channel walls.

Table 6 shows the direction-dependent diffusion coefficients
as well as the anisotropy parameter,A, the randomization
parameter,â, and the ratioDy/Dx. As expected, the diffusion
coefficients decrease with increasing binding energy and size
of the sorbate. TheDy/Dx ratio is most sensitive to the specific
nature of the sorbate. This must reflect differences in the straight
and zigzag channel architecture experienced by the different
diffusing particles. Increasing concentration results in lowering
the diffusion coefficients, as well as the anisotropy and
randomization parameters. The assumption of complete ran-
domization which underlies eq 1 appears to be most closely
obeyed by the He sorbate which is entirely expected given the
small size, weak binding, and high diffusion coefficients for
this system. For all concentrations of helium in silicalite,â ≈
1 andA ≈ 4. The simple random walk model of Ka¨rger predicts
â ) 1 andA > 4.4. Clearly, the motion of the helium atoms is
very rapidly randomized in the channels so that at the channel
intersection the probability of moving in any four of the
available channel segments is essentially equal. The other four
sorbates, on the other hand, haveâ values very close to 0.5,
indicating a propensity for the sorbates to alternate between
straight and zigzag channels on reaching an intersection
presumably due to greater influence of the local nature of the
potential energy surface. The anisotropy parameter,A, is
approximately 2 for the larger sorbates, instead of≈ 4 for
helium. The results forâ andA are consistent with our results
for the exponent of the time dependence which also indicate
that helium is clearly a sorbate that closely obeys the assump-
tions underlying the simple random walk model.

It is important at this point to make an explicit comparison
with previous work on diffusional anisotropy. Only two Len-

nard-Jones sorbates, Xe and CH4, have been studied from the
point of view of understanding diffusional anisotropy in
silicalite. Our potential energy parameters for CH4 are identical
to those used by Jost et al. Their results areDx ) 0.5, Dy )
0.6,Dz ) 0.1, andD ) 0.4 in units of 10-8 m2 s-1, which may
be compared with our results in Table 6. The agreement is
reasonable given that the values quoted from ref 8 have been
read of the graph and therefore are approximate. Results for
xenon show poorer agreement partly because of small differ-
ences in potential energy parameters. In general, we find that
Dz values are overestimated and theâ parameters underestimated
when compared with previous work. This may be due to
differences in run lengths. A more important reason, in our
opinion, is that we have allowed the exponent of the time
dependence of the MSD to deviate from unity, whereas in past
work, a linear dependence on time has been assumed.

3.2 The Velocity Autocorrelation Function.We have looked
at the short-time behavior of the velocity autocorrelation
function,Cυυ(t), and its directional counterparts,Cυxυx(t), Cυyυy(t),
andCυzυz(t). Figure 4 shows the four correlation functions for
neon and xenon in silicalite.Cυxυx(t) and Cυyυy(t) are indistin-
guishable on the scale of the plots.Cυzυz(t) differs from its
counterparts in thex andy directions in having a much deeper
first minimum. In the case of xenon,Cυzυz(t) also has a
pronounced second maximum (also seen in methane and argon)
which is absent for helium and neon. All the four velocity
autocorrelation functions for each system are almost identical
until a timeτn when they first turn negative. While the location
of the first minimum occurs for smaller times for the more
mobile sorbates, the location ofτn for four larger sorbates is
between 0.4 and 0.5 ps. Earlier work on diffusion in faujasite
indicated thatτn is strongly correlated with the ballistic to
diffusional crossover time,τc.27 In silicalite, however,τn is found
to be significantly larger than theτc values which lie between
0.2 and 0.4 ps.

3.3 Instantaneous Normal-Mode Analysis.Table 7 sum-
marizes the key features of the INM spectra. As expected on

TABLE 6: Diffusion Coefficients of Different
Lennard-Jones Sorbates in Silicalite at a Temperature of
300 K at Different Concentrations

(kJ mol-1) (10-8 m2 s-1)
sorb-
ate

conc
(sorb-
ates/
u.c.) Ugg Ugh Dx Dy Dz D A â

Dy/
Dx

He 2 -2.40 0.002 7.08 11.21 1.65 6.61 5.54 1.18 1.58
12 -2.31 0.02 6.28 7.22 1.97 5.10 3.43 0.76 1.15
16 -2.33 0.03 5.19 6.03 1.55 4.21 3.62 0.81 1.16
24 -2.31 0.06 4.29 5.74 1.57 3.13 3.19 0.70 1.34

Ne 2 -3.89 -0.007 2.29 2.55 1.02 1.86 2.37 0.53 1.11
12 -3.76 -0.03 1.89 1.60 0.80 1.33 2.18 0.49 0.85
16 -3.76 -0.03 1.38 2.07 0.58 1.32 2.97 0.64 1.50
24 -3.64 -0.03 1.32 1.36 0.45 1.03 2.98 0.67 1.03

Ar 2 -11.47 -0.09 0.76 0.94 0.38 0.65 2.24 0.50 1.24
12 -11.08 -0.60 0.66 0.73 0.31 0.55 2.24 0.50 1.11
16 -11.07 -0.82 0.44 0.47 0.26 0.37 1.75 0.39 1.07
24 -10.95 -1.20 0.22 0.19 0.22 0.19 0.93 0.21 0.86

CH4 2 -15.76 -0.09 0.49 0.56 0.15 0.39 3.50 0.78 1.14
8 -15.38 -0.49 0.48 0.59 0.20 0.41 2.68 0.60 1.23

12 -15.27 -0.79 0.30 0.47 0.16 0.31 2.41 0.51 1.57
16 -15.08 -1.04 0.20 0.41 0.12 0.24 2.54 0.50 2.05

Xe 2 -27.97 -0.30 0.11 0.16 0.05 0.10 2.70 0.59 1.45
12 -26.61 -2.93 0.14 0.29 0.12 0.17 1.79 0.35 2.07
16 -26.35 -4.00 0.06 0.18 0.05 0.09 2.40 0.40 3.00

Figure 4. Short-time behavior of time correlation functions for (a)
xenon and (b) neon in silicalite at 300 K and a concentration of 12
particles per unit cell.
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the basis of previous studies, there is a strong correlation
between the diffusion coefficient,D, the fraction of imaginary
modes,Fi, and the Einstein frequency,ωE. The fraction of
imaginary modes for the projections of the INM density of states
on thex, y, andz axes is essentially identical. This is consistent
with the isotropy in the short-time dynamics that is displayed
by the velocity autocorrelation functions. On the basis of our
previous work, the time scales for which the INM approach
can be expected to be useful can be estimated from the value
of τn, the time at which the velocity autocorrelation function
first turns negative. Since this is of the order of 0.5 ps, and at
thermal velocities at 300 K corresponds to distances of a few
angstro¨ms, it is not surprising that the INM spectra are not
sensitive to the geometrical connectivity of the silicalite lattice
which manifests its anisotropy over longer length scales.
Moreover, the INM spectrum can be thought of as displaying
the local curvature of the PES as sampled by the system. A
diffusional property, such as the levitation effect, which is
closely connected with the curvature distribution of the potential
will be mirrored by changes in the INM spectrum. Geometrical
correlations in the principal components of the diffusional tensor
are not, however, expected to have a close connection with the
PES. The anomalous levitation peak for sorbates in silicalite
has been observed for sorbates in the size range from 1.5 to 2.2
Å; as discussed in section 2.2, we believe the Kiselev potential
energy parametrization to be somewhat problematic in this size
regime, and we have therefore not studied the levitation effect
in this zeolite.

4. Conclusions

In this work, we have studied the anisotropy in diffusional
and related dynamical properties for five spherical sorbates of
varying size and polarizability in silicalite. Helium, the smallest
and most weakly bound sorbate, complies most closely with
the behavior expected on the basis of the simple random walk
model of Kärger with a randomization parameter close to 1 and
an anisotropy parameter close to 4. The larger and more strongly
bound sorbates (Ne, Ar, CH4, and Xe) show significant
deviations from this model. The diffusion of these particles along
thezdirection is distinctly subdiffusional with the mean square
displacement growing as≈ t0.8. The randomization parameters
for all these systems are close to 0.5, and the anisotropy
parameters are all close to 2. The relative rates of diffusion along
the straight and zigzag channels are more sensitive to the nature
of the sorbate than the anisotropy and randomization parameters.
For all five sorbates, the subdiffusional behavior along thez
direction as well as deviations from the predictions of the
random walk model are more pronounced at higher concentra-
tions. The subdiffusional motion along thez direction appears
to be a consequence of a combination of factors: (i) the
geometrical connectivity of the silicalite channel network, (ii)
the nature of the potential energy landscape seen by a sorbate
located within the channel spaces, and (iii) the packing density.
On the basis of our results, one would expect such subdiffusional

behavior in specific directions for sorbates in other zeolites
which can display geometrical correlations in diffusional
behavior, e.g., ZSM-11 and chabazite. The PES dependence
would imply that such subdiffusional behavior would become
less prominent with increasing temperature. The anisotropy in
the short-time dynamics has been examined by studying the
velocity autocorrelation functions and the instantaneous normal
mode spectra. For very short-times of less than 0.5 ps, the
velocity autocorrelation function and its directional analogues
are virtually identical but divergences are seen by times of the
order of 1 ps. The motion along thez direction is clearly more
correlated than along thex or y directions. The instantaneous
normal mode spectra show the expected correlation between
the diffusion coefficient, the Einstein frequency, and the fraction
of imaginary modes. There is no significant anisotropy in the
INM spectra which is consistent with the behavior of the velocity
autocorrelation functions for short time scales. Our results
suggest that there are several aspects to diffusional anisotropy,
in addition to the relative magnitudes of the direction-dependent
diffusion constants, which may be worth exploring further.
These include the extent of subdiffusional behavior and the
short-time dynamics. The qualitative difference in behavior of
helium and xenon as sorbates in silicalite may be of interest
experimentally since129XeNMR spectroscopy is widely used,
and3He NMR has been suggested as a probe in porous media.41

One can also predict that similar direction-dependent subdif-
fusional behavior will be present in other two-dimensional
networked channel zeolites, such as ZSM-11 and gismondine,
and that the effect will be attenuated with increasing temperature
and accentuated by increasing concentration. In future work, it
will also be of interest to examine if there is a slow approach
to Fickian behavior in the long-time limit for such systems.
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