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Mariá n Boguñá, Alexander M. Berezhkovskii,† and George H. Weiss*
Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892

ReceiVed: October 31, 2000

Single-molecule fluorescence spectroscopy can be used to estimate the rate constants for slow transitions
between two states characterized by different lifetimes of a fluorescent probe. The fluorescence decay for
this system is a biexponential, the coefficients of each exponential being the fraction of time spent by the
system in each of the states. This paper explains how to estimate the rate constants for the transitions and
derives the sampling error for the estimates on the assumption that the data are gathered onM molecules,
each monitored for a timeT. Results of the analysis indicate that the dominant factor in determining the
precision of the rate constant isM and that the role ofT is less significant.

1. Introduction

A variety of techniques, among them single-molecule spec-
troscopy (SMS),1-5 can be used to monitor the dynamic behavior
of individual molecules in condensed phases. The information
available from single-molecule experiments is more detailed than
that provided by bulk measurements. One implementation of
these ideas is based on measurements of fluorescence of the
probes attached to single molecules. It has been applied to the
study of conformational changes of DNA,6-8 as well as to tRNA
molecules.9 In these experiments the molecule interconverts
between two states, 1 and 2, with different fluorescence lifetimes
of the probe,τ1 and τ2, respectively. The interconversion is
described by a first-order kinetic scheme:

wherek1 and k2 are rate constants whose values are sought.
When the fluorescence decay rate is much greater than that of
the interconversion, the decay of the fluorescence intensity
measured in a bulk experiment is biexponential:

wherePeq(i) is the probability that a molecule is in statei () 1,
2) at equilibrium. If we letk ) k1 + k2 these probabilities can
be expressed as

Equation 1.2 shows that the bulk experiment allows one to
estimate only the ratio of the rate constants, rather than the rate
constants themselves. The single-molecule experiment provides
additional information with which one can estimate the indi-
vidual rate constants. In this experiment a randomly chosen
molecule is periodically excited by a train of laser pulses for a

time T. The fluorescence decay is again described by biexpo-
nential with the same decay times as in the bulk experiment,
but with random amplitudes:

The amplitudex is the fraction of time (out of the total timeT)
that the molecule spent in state 1.6,10,11 Repetition of the
experiment allows one to estimate the probability density for
x, p(x|T), conditioned on the total monitoring time of a single
molecule. The bulk result in eq 1.2 is recovered from the single-
molecule experiment in the limitT f ∞, since, because of
ergodicity, limTf∞p(x|T) ) δ[x - Peq(1)]. When T is finite,
p(x|T) is no longer a delta function and contains the information
that can be used to find the individual rate constants.

A general theory of this kind of SM fluorescence experiment
has been developed in refs 10-12. The theory developed in
these references assumes that the number of molecules,M,
studied in the experiment, is infinite. Errors in the estimates of
k1 andk2 arise becauseM is necessarily finite. In this paper we
explain how the rate constants can be estimated from the set of
random amplitudes found experimentally and calculate the error
in these estimates due to the finiteness ofM, i.e., the sampling
error. Our analysis deals only with the sampling error and
neglects any other source of errors.

A main result of this paper is a general formula relating the
sampling errors toM and the measurement timeT. This formula
shows that when the rate constants are not too different, say
(1/3) < k1/k2 < 3, the dependence onT will not be significant
so long askT g 10. This implies that in this circumstance long
records would contain redundant information. Nevertheless this
additional information can be utilized by cutting the long records
into shorter ones, thereby increasing the effective number of
molecules without performing further experiments. The same
strategy of partitioning the records can also be used when the
measurement times for the molecules differ.

2. Rate Constants

Since there are two rate constants, one needs to have two
equations. WhenT is finite one can use the first two moments
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of x. These are functions of the rate constants and can be found
using the results in ref 12. Let〈x〉 andσ2(T) be the mean and
variance ofx. Under the assumption that the system is initially
in a state of equilibrium the exact mean and variance ofx are12,13

If 〈x〉 and σ2(T) are known exactly, the rate constants can be
expressed in terms of〈x〉 andk as

where k can be found as the solution to the transcendental
equation

The last two equations allow one to calculate the two rate
constants, which can be expressed as

WhenkT is large enough, saykT g 10, the last two terms in eq
2.3 can be neglected. In this approximation the rate constants
can be related to the mean and variance ofx by

Equations 2.4 and 2.5 formally relate the rate constants to
the mean and variance ofx. In practice, neither〈x〉 nor σ2(T) is
known exactly, but must be estimated from the experimental
data. The experimental output consists of a set of amplitudes
{x1, x2, ... , xM}, where xi is the amplitude found from
measurements on moleculei. The sampling error in estimating
the rate constants is the error incurred by replacing〈x〉 and
σ2(T), by their estimates,xj andσj2. Our strategy will be to first
calculate the sampling errors in the estimates of〈x〉 andσ2(T)
and then to find the sampling error in the estimates of theki

using the relations in eq 2.4.

3. Sampling Error in Estimates of 〈x〉 and σ2(T)

We assume that all of thexi are identically distributed
independent random variables described by the probability
densityp(x|T). The standard estimates of the mean and variance
are14

BecauseM is finite, xj andσj2 are random variables. It is easy to
check that

This property of the estimates is usually referred to as un-
biasedness.14

In our further analysis the estimatesxj and σj2 will be
decomposed into a sum of deterministic and random parts by
writing

where, for example,δx is the random component ofxj. These
definitions ensure that〈δx〉 ) 〈δσ2〉 ) 0. One can check that
the second-order moments ofδx andδσ2 are15

The important feature of these relations is that all of these
averages areO(M-1). This result will be used later to show that
the estimates of the rate constants are unbiased toO(M-1).

All of the moments on the right-hand side of eq 3.4 can be
calculated exactly using results derived in ref 13. The exact
moments are too complicated to be included here, although they
will be used later in their exact form to generate numerical
results. In the long-time limit the normalized moments take the
form

where a term that isO(M-2) is omitted in the last line. A brief
derivation of the moments is given in the Appendix.

4. Sampling Errors in Rate Constant Estimates

Equation 2.4 is an exact relation between theki and〈x〉 and
σ2(T). When〈x〉 andσ2(T) in this relation are replaced by their
estimatesxj andσj2, we arrive at an estimate of the rate constants:

These estimates are random variables whose values are close
to the exact values in eq 2.4 whenM is large enough. To
estimate the error inkhi we write

To find an approximation toδki we substitute the expressions
for xj and σj2 in eq 3.3 intoki(xj, σj2) and expand the result to
second order inδx andδσ2:

Since〈δx〉 ) 〈δσ2〉 ) 0 it follows that the estimatekhi is unbiased
up to terms that areO(M-1).

On squaring both sides of eq 4.3 we find
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The derivatives in this equation can be evaluated exactly by
appealing to eq 2.1. Figure 1 shows plots of the relative error
[var(khi)]1/2/ki as a function ofkT to lowest order inM-1 for
M ) 50.

In the large-kT limit (kT g 10) the expressions can be
simplified by appealing to eq 2.3. In this limiting case we find,
by using eq 3.5, that to lowest order in 1/M the relative error in
the estimate of the rate constant is

independent ofi. In this formulaK ) k1/k2. The expression in
eq 4.5, which is one of the main results of the paper, shows
how the relative error depends on the number of molecules,M,
and monitoring time,T. We see from this equation that the
dominant factor in determining the relative variance of the
estimate ofki is the number of molecules rather than the
monitoring time. Any deviation from the conditionk1 ) k2 will
increase the error at a fixed value ofkT. One further result is
immediately available. The joint probability density of the
random variablesxj andσj2(T) is essentially a two-dimensional
Gaussian.14 Since eq 4.3 shows thatδki is a linear combination
of two Gaussian random variables to lowest order inM-1, it
follows thatkhi is also a Gaussian with meanki and a variance
calculated from eq 4.5. This is confirmed by a plot of simulated
data given in Figure 2.

Looking at Figure 1 we see that when the two rate constants
are approximately equal the curves will contain a small dip as
a function of kT. Otherwise, one sees that the greater the
difference betweenk1 andk2, the slower will be the approach
to the largekT value (2/M)1/2. This effect of asymmetry is in
agreement with results shown in Figure 1 of ref 12.

In general, increasing the monitoring time will always
improve the precision of the estimate of the normalized variance.
However, there is no benefit to be gained by increasingT beyond
kT ) 10 if the value ofk1/k2 is in the interval (1/3, 3) (see
Figure 1). This would seem to suggest that data from measure-
ments made at such long times provide no usable information.
However, this is not the case since the data can be used to
increase what we will term “virtual molecules”. This is done
by decomposing the total data set into subsets, each of which
can be regarded as being the result of measurements on new
virtual molecules. When the rate constants are not too dissimilar
the monitoring time for these virtual molecules should be of
the order ofkT ≈ 10. On one hand, this is long enough to
guarantee the independence of data collected from the virtual
molecules as the relaxation function for the kinetic scheme in
eq 1.1 is exp(- kt).13 On the other hand, this value ofkT is
short enough to make the cutting procedure efficient in
increasing the number of virtual molecules. Making use of the
data in this way can potentially increase the precision in the
estimates.

The general idea of decomposing the data set into smaller
data sets (after the biexponential form of fluorescence decay

with lifetimes identical to those found in the bulk experiment
has been established) can also be applied when the monitoring
times differ for the different molecules. Reference 16 discusses
how to calculate rate constants in this case. Implementing the
decomposition strategy not only increases the number of
effective molecules, but may also allow one to convert an initial
data set with different monitoring times into one with identical
monitoring times.

Appendix. Moments ofx.

The moments ofx can be calculated using the results derived
in some detail in ref 13. The formula for〈xn〉 as a function of
T can be expressed in terms of a functiong(t) defined by

as
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( 2
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Figure 1. Curves of the normalized standard deviation, [var(khi)]1/2/ki,
as a function ofkT for M ) 50 molecules. The curves shown are for
values ofK ) k1/k2 ) 1, 3, and 9. These illustrate the point that the
quickest approach to the limiting value of 0.2 occurs forK ) 1 and is
quite slow when the rates are very asymmetric.

Figure 2. Results for the approximate value of the probability density
for the estimatekhi generated by the simulation of 1000 experiments.
The parameters used to generate the points wereM ) 100 molecules,
k1 ) 1, k2 ) 0.3, andkT ) 10. The solid line is a Gaussian calculated
with the same mean and variance as in the simulated data.

g(t) ) Peq(1) + Peq(2)e-kt (A1)

〈xn〉 )
n!Peq(1)

Tn ∫0

T
dt1 ∫0

t1 dt2 ...∫0

tn-1 dtng(t1 - t2) ×

g(t2 - t3) ...g(tn-1 - tn) (A2)

4900 J. Phys. Chem. A, Vol. 105, No. 20, 2001 Boguñá et al.



A more succinct representation can be found in terms of Laplace
transforms as shown in ref 13. Exact expressions for the first
four moments can be expressed in terms ofK ) k1/k2 as
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