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Phase synchronization of two systems with different dynamical parameters driven by a common external
signal is studied using a model of the photosensitive BelouZabotinsky reaction. Complex dynamics,
including chaos, arise when the external light intensity is periodically switched between two levels. Two
dynamical conditions are investigated here: (a) the two systems are driven between two limit cycles and (b)
both systems are driven between excitable and oscillatory states. Phase synchronization is achieved with both
Gaussian-distributed and dichotomous noise when the random variation is added to the duration of the periodic
forcing. In the case that noise is added to the intensity of the periodic forcing, perfect phase synchronization
is achieved with dichotomous noise, whereas only transient synchronization is observed with Gaussian-
distributed random variation. Studies with correlated noise show that the compound system may have two
attractors, one corresponding to the phase synchronized state and one to unsynchronized oscillations (lag-
synchronized or chaotic, depending on the parameters). This suggests that transient synchronization is due to
noise-induced transitions between the synchronized attractor and the neighborhood of a second invariant set
which may in some cases also be an attractor. The synchronization mechanism is also studied using a return
map.

1. Introduction studies in the past 30 yed%*> A number of studies on
periodically driven chemical reactions have reported the obser-
vation of entrainment and consecutive bifurcations leading to
chaos?3440 Our recent study of the light-sensitive BZ reaction
with periodic and nearly periodic switching illustrates that not
only are the forcing frequency and amplitude important but that
the detailed waveform of the external forcing is also essential

Synchronization phenomena have been studied in various
fields such as biology,1° physics!?~17 and chemistryé1°as
well as in a variety of technological contexXfsin the case of
strong coupling, the motions in different subsystems can
completely mimic each other. To realize the synchronization

of two systems, one system can be used as a driving force to, e . 5 )
drive the other (masterslave synchronizatiod) or the two in determining the behavior of a driven dynamical systém.

systems can be mutually coupled (bidirectiofalRecently, it The. addition of random varle}tlons to thbrat.lonsof exFernaI
has been shown that if the synchronized systems have identicaf0r¢ing pulses can synchronize two otherwise chaotic systems
dynamics then there is no essential difference between unidi-Which have the same dynamics.
rectional and bidirectional couplirf§.Using an external signal Here we extend our earlier work to explore the feasibility of
to drive the two systems has also been investigated actively inusing random variation to synchronize two systems with
recent studie&!11824 The external signal can be periodic, different dynamics, oscillating at different amplitudes and
chaotic or random® Synchronization can sometimes be ob- frequencies. Synchronization in both amplitude and phase of
served in driven dynamical systems even in the absence oftwo systems with different dynamics has been reported by
coupling?! Parmananda and Jiang in a modeling study of electrochemical
In the past decade, methods for synchronizing chaotic systemscorrosiont® They found that when the two response systems
have attracted increasing interest, prompted by potential ap-are at unequal parameter values and exhibiting different
plications in secure communicat®nand by research in  dynamical behavior synchronization is achieved only for forcing
neuroscience, among other fieRiEor systems with different  including a random element. A recent study on a forced two-
structures or parameters, general definitions of synchrony havevariable biological model system also shows that the noisy
been developed which do not require the two systems to behaveswitching between two states may tame chaotic phenomena and
identically2® In this study, we investigate phase synchronization favor synchronizatioA.
of two photosensitive BelousexZhabotinsky (BZ) reactions The constructive influence of random fluctuations will be
subjected to a common square-wave light perturbation. Phasecharacterized in this study in two different ways: (a) the random
synchronization is obtained when appropriate variables in two yariation is added to thiatensityof the external forcing or (b)
systems reach their maxima or minima with negligible phase the random fluctuation is added to tHeration of the perturba-
delay. The amplitudes may on the other hand remain noncor-tjon we consider both Gaussian-distributed and dichotomous
related. Chemical reactions driven by a periodic perturbation yangom variation. Moreover, two types of dynamical situations
have been the subject of many experimental and computationaly ¢ investigated here: (a) the two systems are driven between

- two limit cycles or (b) both systems are driven between excitable
*To whom correspondence should be addressed. E-mail: roussel@uleth.ca. . . .
Fax: +1 403 329 2057. and oscillatory states. These switching protocols are easily

TE-mail: wangj@cs.uleth.ca. realizable experimentally in a photosensitive reaction.
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Figure 1. Schematic drawing of the periodic forcing used in this study. Figure 2. Bifurcation diagrams of the two systems with respect to the
¢o is the bromide production at an average light intensity. The light variation of T, while T_ remains constant at 1.1. Other parameter
intensity is varied periodically in such a way that the bromide production values are given in the text. Points plotted here are the minimum value

rises togo + ¢ for T, time units, then falls tapo — ¢ for T_. time of v during its time evolution. The value et is offset by 0.06.
units.

2« and —2« with mean value zero. Dichotomous noise is
2. Model

generated by randomly selectifg= 2« or £ = — 2« with equal

As in our previous study? the model adopted here is a two-  probability, and similarly fog. In all cases, a new value of the
variable Oregonatdt modified to describe the photosensitive noise process is only generated whgrswitches from high to
BZ reactiort’#8(the oxidation and bromination of malonic acid low or vice versa. These noise processes are thus closely related
by acidic bromate in the presence of metal catalyst Ru@py) to periodic dichotomous noisé.
The dimensionless form of the model using Tyson“Riéealing

is 3. Results
du  (fy, + @)(g — u) 3.1. Excitable-to-Oscillatory Switching.We first consider
="+ u(l-uw Q) the two systems switching between excitable and oscillatory
dt (G +w) dynamics. The following parameter values are used: For system
d- 1,¢1=0.022,9; = 0.022, and; = 1, for system 2¢, = 0.021,
- U — o, ) gz = 0.0223, and, = 1. Here we choosey, = 0.07 andc =
dt 0.03. Thereforeg varies between the two levels = 0.04

(oscillatory) and¢ = 0.1 (excitable). Figure 2 presents the
bifurcation diagrams of the two systems under a common
periodic forcing, in whichlT—; remains constant at 1.1 (dimen-
sionless time units) andl;. is varied. In the region of small
T+, both systems exhibit complex oscillations with multiple
minima within each oscillation cycle. Detailed analysis using
stroboscopic plots reveals the development of chaos via qua-
siperiodic bifurcation in this regio®. There also exist two more
narrow parameter windows df,. within which both systems
display complex dynamical behavior. The sizes and positions
of the two windows are sensitive to the valuesiandg. It is
necessary to change both parameters in order to maintain overlap
between the chaotic windows of the two systems subject to the
same periodic forcing. The following studies of synchronization
gare carried out in the regions of the bifurcation diagram in which

both systems exhibit complex oscillations. If at least one of the
1). When studying the effect of random variation in theation two systems is. ghaotic i.n. the absence of noise, _sensitive

f the periodic forcinaTe. = To + g and T = T + qlependenpe on.|n|t|al Cpndl'[lOﬂS guarantegs exponentlallsep'ara-
0 b = 9:1+e +TH ¢ Ho tion of trajectories. This makes synchronization of motion in

whereT. andT- are preselected values of the durations of the s region relatively difficult and thus an excellent test of our
periodic forcing angk is the (white or dichotomous) noise with  methods.

Zero mean. As ;hown_m an earlier stully andTTC can eagh Time series of the two systems calculatedrat= 1.1 and

be used as a bifurcation control paramétertheir values in - o . )

this study are selected in such a way that both systems exhibitT+ = 0-56 are shown in Figure 3a. Here Gaussian-distributed

complex oscillations. random variations are added to the duratidng(T-c = T- +
Random fluctuations in this study are generated as follows: x) and T (T+c = T+ + u) with strengthe = 0.2. The noise is

When white noise is investigated, Gaussian-distributed randomturned on at = 200 (dimensionless time units). Figure 3a shows

numbersE (or u) with variancex are generated is called the that, shortly after the random process is turned on, the two

noise strength in this study. Values outside the range-2¢ systems quickly merge to become indistinguishable on the scale

are rejected to bound the variability of the random numbers. of this time series plot. More detailed examination shows that

Consequently, the random fluctuatigr(or x) varies between  their oscillation amplitudes are still different. The difference

We will consider the case of two uncoupled copies of this
system, i.e.j = 1 and 2. Heray; and »; are respectively the
dimensionless concentrations of HBr@nd Ru(bpyy**, f; is
an adjustable stoichiometric parameterand g; are scaling
parameters, andl represents the rate of bromide production due
to irradiation. This rate is proportional to the applied light
intensity59-55 We decompose the photochemically induced
bromide production intg = ¢o + ¢p + &, wherego represents
production at a background light intensity, represents an
applied perturbation, anél is a realization of a noise process
(Gaussian-distributed or dichotomous) with zero mean value.
When studying the effect of random variation in the duration
of the periodic forcing, we omi.

We consider a square-wave perturbation, gg= £c, where
c is an adjustable constant. The durations of the positive an
negative perturbations are respectivély and T (see Figure
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Figure 3. (a) Time series of systems 1 (solid curve) and 2 (dashed
line). (b) Time evolution of the difference between these two systems 0.3
in the variablev. Gaussian-distributed noise is added to the durations
of the forcing (i.e., througlx) and is turned on at= 200. HereT- =
1.1, T, = 0.56, and« = 0.2. Other parameter values are given in the 0.25
text.
. . . . . 0'2
between the two systems in variahlés plotted in Figure 3b. o
As expectedys — v, remains nonzero even after synchroniza- 015
tion, so that only phase synchronization is achieved here. :
Nevertheless, the synchronization is quite impressive. With
smaller values of, we observed transient synchronization: The 0.1
synchronized oscillations are frequently interrupted by an
unsynchronized state. Calculation of the leading Lyapunov 0.05 . . . .
exponent indicates that the two systems are chaotic without 0.05 0.1 0.15 0.2 0.25 0.3
noise and then become nonchaotic at sufficiently large noise v,

strengths. Figure 4. Projections of the dynamics onto thg,(v2) plane at different

We emphasize here that synchronization is achieved in our noise levels: (a) 0, (b) 0.1, and (c) 0.15. b and ¢ are projections after
model in the absence of coupling between the systems. Thethe achievement of phase synchronization. Here dichotomous noise is
only commonality between the two systems is that they receive applied to the durations of the periodic forcing (i.e., thropghOther
a common input. If ¢ is regular, the two systems do not in parameter values are the same as thosg used in Figure 3. In b, we see

. . an example of transient synchronization: The two systems spend most

general Synchronlze. In the range of parameters gopSIdered, th%f their time near the line; = v, (representing phase synchronization)
attractor in the @, v, t) phase space can be a limit cycle, a \ith occasional excursions away from this region. At higher noise
torus, or a chaotic state. In any of these cases, initial phasestrengths (c), the trajectories stay in the synchronized state.
differences are either maintained (limit cycle and torus) or
increased by the dynamics (chaos). However, random variationsystems spend most of their time in the phase synchronized state
in the illumination of appropriate strength creates strong (near the liney; = v) with occasional excursions away from
correlations between the phases of the driven systems. this region. This is an example of transient synchronization.

Figure 4 presents the results under the influence of dichoto- As « is increased, excursions become less and less frequent.
mous noise added, again, to the durations of the two phases ofEventually, phase synchronization between the two systems
the square-wave perturbation. In panel a, we see the projectionbecomes perfect (panel c). The amplitudes of the oscillations
of a long trajectory onto they{, v») plane in the absence of still vary randomly because of the stochastic driving, but the
noise. The trajectory fills a substantial portion of the accessible leading Lyapunov exponent is negative. Note that the value of
part of the plane, indicating an almost complete lack of « required for perfect phase synchronization is smaller with
synchrony. With a noise strength of 0.1 (panel b), the two dichotomous noise than it is for Gaussian-distributed noise.



7374 J. Phys. Chem. A, Vol. 105, No. 31, 2001 Roussel and Wang

' ' ' ' ' 0.18 , . , , .
03} a |
0.16 _ ‘ |
025 el g K
0.14 | |
0.2 012 | R
= |
0.15 0.1 e
‘\ 0.08 |
0.1 I \ |
\ \ 0.06 |
0.05 — : ‘ . . 004 ) | | | | |
0 10 0 e 240 0 01 02 03 04 05 06 07
' T

+c

T T T T T Figure 6. Bifurcation diagrams of the two systems with respect to the
0.3 b variation of T, while T_. remains constant at 1.1. Other parameter
values are given in the text. Points shown here are the minimum values
of v during their time evolution. The value of is shifted up by 0.05.

0.25 +
takes small values<0.1), both systems exhibit quasiperiodic
o 02 r oscillations and a transition to chaos via quasiperiodic bifurca-
tion. AboveT, = 0.3, both systems exhibit complex dynamical
0.15 | 1 behavior only in very narrow ranges.
o We first add Gaussian-distributed random fluctuations to the

durations of the two phases of the forcing (i.e., throughWhen

T- = 1.1 andT4+ = 0.243, the above two systems exhibit
008 5 o4 015 02 oo5 03 chaos, with positive leading Lyapunov exponetits=< 0.035).
' ’ ' ) ' ' ' The time evolution of the two systems is presented in Figure
! 7a, in which the noise was turned ontat 200. After a short

9 ) . transient period, the oscillation phases of the two systems come
line); (b) projection of the dynamics onto the;(v,) plane after the int d ith h thei illati litud
achievement of phase synchronization. Here dichotomous noise ig/Nto corresponaence, - althoug eir oscillatuon amplitudes

applied to the intensity of the periodic forcing (i.e., througk) and remain different. The relationship between corresponding
is switched on at = 200 with noise strengtk = 0.0075 forT,. = variables in the concentration space is plotted in Figure 7 parts
0.56 andT-¢ = 1.1. Other parameter values are given in the text. b and c. In Figure 7b, the evolution process of the two systems
) . o . covers the full accessible region of tha,(v») plane, implying
The effects of dichotomous noise added to the lightintensity 4t there does not exist a simple functional relationship between
¢ (i.e., throught) are presented in Figure 5. The noise strength yeir oscillation phases. However, after turning on noise (Figure

K equals 0.0075_ in this cz_alculanon. I?\"ecall_that during each 7¢), this complex trajectory collapses onto a simple narrow one,
period of the forcingg remains constant; that is, a new random . jicating that their phases are now locked in a more-or-less

iqtensity is only chosen at switching “m‘?- Time series .plots in fixed relationship. When dichotomous noise is added to the
flgqre 5a S?ﬁw th‘f’lt thsttwozsa/ost(i[]ns qlrj]'ctﬁy synghlroplze a;‘ter duration of the forcing, qualitatively the same results as those
urning on the noise at = » thoug € moduiation o fshown in Figure 7 are achieved. Again, the required noise

?hS:I:I:r:ggmar\?gigl:igﬁso?frfgwerft mgﬁsfrogﬁt?gegb bsii)a\l/:/fe 0 strengthk for achieving perfect phase synchronization is smaller
9 % Fig than that for Gaussian-distributed random variations.

the relationship between corresponding variables in the con- ) ) o

centration space after the achievement of synchronized oscil- Figure 8 presents the result when Gaussian-distributed random
lations. The evolution process of the two systems in the ( variations are added to the light intensigyof the periodic

v2) plane before the addition of noise is the same as that shownforcing. The noise strengihequals 0.0045 in this calculation.

in Figure 4a. In the presence of dichotomous noise, the complex Time series plots in this figure show that the two systems
trajectory illustrated in Figure 4a collapses onto a narrow Auickly synchronize after turning on noisetat 200, though
trajectory, suggesting that the phases are now locked in a morethere is a pronounced modulation of the oscillation amplitudes
or-less fixed relationship. When Gaussian-distributed noise is because of the random variation of the light intensity
used, qualitatively the same results are obtained. Moreover, However, the synchronized state is occasionally interrupted by
transient synchronization is observed whertakes smaller a short period of unsynchronized oscillations. The occurrence

Figure 5. (a) Time series of systems 1 (solid curve) and 2 (dashed

values, as in the earlier case. of this unsynchronized state becomes less frequent when the
3.2. Oscillatory SystemsHere we chooseé, = 0.03 andc noise strengthe is increased. In this case, transient phase
= 0.02. Thereforeg varies between the two levels,= 0.05 synchronization is due to the small noise strength selected

and 0.01, which are below the Hopf bifurcation thresholds both because the same phenomenon also occurs when weak noise is
of system 1, for whicke; = 0.02,q: = 0.022, and; = 1, and applied to the durations of the perturbation. In the version of
of system 2, for whiche; = 0.021,q, = 0.0225, and, = 1. the model studied here, the maximum noise strengtts
Without periodic switching, both systems exhibit simple limit restricted by the background light intensity and the periodic
cycles atp = 0.05 and at 0.01. Figure 6 presents the bifurcation forcing amplitudec, as the overall value @f must remain above
diagrams of the two systems with respect to the continuous zero. Even with larger values af we are unable to achieve
variation of T, whereas—. is kept constant at 1.1. Whén¢ perfect synchronization without any interruption.



Phase Synchronization of BZ Systems J. Phys. Chem. A, Vol. 105, No. 31, 2002375

0.35 . : ; . ‘ forcing switches from high to low, or vice versa, without regard
a to earlier values of the random variable. It is natural to wonder
0.3 || . what the effects of introducing correlations in successive random
trials might be. We have studied these questions briefly. Much
0.25 of what we have learned simply confirms the general picture
developed in earlier sections, although some of our results hint
~ 02 ‘ at considerable dynamical richness.
| We started with a very simple driving process: We used a
0.15 \ ‘ copy of our periodically driven system operating in an appropri-
\ ate parameter range to generate a chaotic signal. We sampled
01 ‘ this signal to obtain a sequence of values. A linear transforma-
tion was applied to this sequence to generate a sequence of
0.05 160 180 200 220 240 values ofu of appropriate amplitude and zero mean. This
. process is not random, but a chaotic system does display
correlated fluctuations which have some of the properties of
0.35 . . . . noise. The results (not shown) are similar to those obtained with
b uncorrelated noise. Stable phase synchronization can be achieved
03t . provided the sampling time of the chaotic trajectory is not too
short. (If the sampling time is too short, then only a small part
0.25 | 8 of the chaotic trajectory is used to generate the fluctuations.
Thus, a slowly varying modulation is generated instead of a
S02¢t . sequence displaying chaotic fluctuations.)
The chaotic driving described above has rather complex
0.15 ¢ statistical properties. We therefore decided to study the effect
of fluctuations whose statistical properties are more easily
017 1 understood. We chose a two-state Markov cl&iAgain, the
duration of (e.g.) the negative perturbation was computed at
0.05 : : T

0.05 0.1 o.l15 0i2 o.I25 0.3 0.35 the momen_t of switching byl+c = T+ + u, whereu is a
random variable chosen randomly from the two valts at

" the onset of the perturbation. For simplicity, we can label the
0.35 : : : two possible values oft by their signs, *+” and “—". In a
c Markov chain, the system “remembers” the last choice it made.
03¢t . We then introduce a probabilit;— of selecting “-” given
that the last choice wast”, and P—;. of selecting “” given
0.25 - i that the last choice was—". The probabilitiesP; and P__
are then fixed by normalization. To make the mean fluctuation
o 02k . zero, we constraif—, = P, which in turn implies thaP
= P__ =1 — P4+_. Note that the casB+- = 0.5 corresponds
0.15 | . to the simple (uncorrelated) dichotomous noise process discussed
earlier. We proceeded similarly with the duration of the positive
01 | . perturbationT_.. Note that the two Markov chains (for each of
the two durations) are independent.
0.05 : : : : : We already know the behavior féx.— = 0.5: excellent phase
005 0.1 015 02 025 03 035

synchronization is achieved in this case. Similar results are
obtained whet,_ is close to 0.5. However, whd?, — is made
Figure 7. (a) Time series of systems 1 (solid curve) and 2 (dashed significantly different from 0.5 (i.e., as successive valueg of
line); (b) projection of the dynamics onto thes(v2) plane in the become either more correlated or anticorrelated), the synchro-
absence of noise; (c) projection after the achievement of phase ;o ogcillations are interrupted by unsynchronized oscillations,

synchronization. Here Gaussian-distributed noise is applied to the . . O A
durations of the two phases of the forcing (i.e., throughNoise of similar to the transient synchronization shown in Figure 8. The

strengthc = 0.12 is turned on at = 200 (dimensionless time units). interruptions occur more and more frequently and last longer

T =1.1,T, = 0.243, and other parameter values are given in the aSP+- approaches either 0 or 1. At the extremBs(= 0 or
text. 1 exactly), we are back to periodic forcing. @f.— = 1, this

periodic forcing alternates between two durations for each of
Figure 9 shows the results when dichotomous noise is addedthe positive and negative perturbations.) In some cases, espe-
to the intensity¢ of the periodic forcing. The plot of corre-  cially if P+— = 1, the bias introduced hy may push the system
sponding variables in thev{, v») phase plane suggests that out of the chaotic regime and allow synchronization. However,
perfect phase synchronization is achieved here. The evolutioneven in these cases, the dynamics may be complex. In some
process of the two systems in the concentration space beforecases, there may be two attractors for the composite system,
the addition of noise is the same as that shown in Figure 7b, one in which the two reactors are phase synchronized and one
covering the full accessible region of the,(v,) plane. in which lag synchronizatictiis observed (i.e., the two reactors
3.3. Correlated Noise.The noise processes studied thus far repeat the same pattern out of phase). Figure 10 gives an
are uncorrelated, in the same sense that the velocity in Brownianexample of these coexisting attractors. The only difference
motion is an uncorrelated random variable: A new value of between the two simulations is that the value of the dichotomous
the appropriate random variable is selected every time the noise variablex was —0.2 when fluctuations were first added

Vi
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Figure 8. Time series of systems 1 (solid curve) and 2 (dashed line). Gaussian-distributed random variations are added to the oftémsity
periodic forcing (i.e., througlg). Noise of strengthk = 0.0045 is switched on dt= 200. Other parameter values are the same as those used in
Figure 7. Here phase synchronization is occasionally lost.
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Figure 9. Projection of the dynamics onto thei(v,) plane after the 0.35

achievement of phase synchronization. Here dichotomous noise of
strengthx = 0.004 is applied to the intensity of the periodic forcing 03 L b |
(i.e., throughg). Other parameter values are the same as those employed )

in Figure 7. 0.25 |

in panel a and+-0.2 in panel b. Although this behavior is not
universal, we have here one way to understand intermittent 0.2
synchronization: There are two attractors for the composite
system, one of which corresponds to phase synchronization.
Under favorable conditions, the composite system spends most 0.1
of its time near the phase synchronized attractor. However, the !
random process can cause transitions between this attractor and 0.05
an unsynchronized (or lag-synchronized) state. . ‘ ‘ ‘
A somewhat similar phenomenon is observed when we try 020 40 60 80 100 120
to apply our methods to a nonchaotic driving regime. Figure ;
11 Sh.OWS the result of adding GaUSSIan_dISF”bUIEd noise to theFigure 10. Time series of systems 1 (solid curve) and 2 (dashed line)
durations of the two phases of the perturbing square wave atcgicylated at different initial values gf (a) —0.2 and (b) 0.2. Here
values of the parameters which result in regular oscillations. dichotomous noise is applied to the durations of the periodic forcing
After turning on noise at = 200, the two systems require a (i.e., throughu) and is turned on dt= 65. Other parameter values are
rather long transient period (depending on the realization of the the same as those used in Figure 3. The dichotomous “noise” is
noise process and on the noise strength) to achieve a synchrogenerated by a Markov process wih- = 1.
nized state. However, the two systems in the same (or nearly
the Same) locations of the phase space may respond to the same2se illustrated in Figure 10 and, probably, in the case illustrated
perturbation differently because of the slightly different param- in Figure 11) also be an attractor. In other cases, trajectories
eters. When this happens, noise will desynchronize the two are simply pushed onto the stable manifold of a repeller before
synchronized systems, causing flipping between synchronizedPeing sent back to the phase-synchronized attractor along the
and unsynchronized states (see Figure 11). Noise thus causekepeller’s unstable manifold.
switching between two dynamical states of the compound 3.4. The Synchronization Mechanismln an earlier paper,
system, namely, synchronized and unsynchronized (or lag- we emphasized that it is necessary to analyze the trajectories in
synchronized) oscillations. The synchronized state is clearly phase space to understand synchronization in these systems.
always locally attracting at sufficiently large noise strength. The The key concept in this earlier study was a decomposition of
unsynchronized state may under certain conditions (such as thephase space into expanding and contracting regions. Although
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Figure 11. Time series of systems 1 (solid curve) and 2 (dashed Iine)fvit# 1.1 andT; = 0.64. Other parameteralues are listed in section
3.1. Here Gaussian-distributed noise is added to the duration of the periodic forcing with noise stwen@®5. Noise is switched on att 200.
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Figure 13. Trajectories experiencing switching events in the boxed
region of Figure 12 with parameters set as those in Figure 7, with
fdichotomous switching of strength= 0.12. The solid curve corre-
sponds to the trajectory for system 1; the dashed curve is for system 2.
The photochemical bromide production is switched from the lgw(

o - ; .~ - 0.01) to the highg = 0.05) value, causing the first sharp turn in each
switching while both systems are passing through the boxed region, in of the two trajectories. The boundary of the expanding region

which the system passes from a strongly contracting to the eXpandmgsimultaneously moves from the dastiot curve to the dotted curve.

;i%;%neof phase space. The figure also shows the definition of the phase(_l_hese curves are drawn for the parameters of system 1. The

corresponding curves for system 2 are very near those of system 1.)

. o . The transients move the two systems deep into the contracting region.
there are some important qualitative differences between the |, act, system 1, which was initially out of the contracting region,

Novak—Tyson cell cycle model and the light-sensitive Orego- gets pulled back in by the switching event.
nator, a similar style of analysis turns out to be helpful here. o _

In the chaotic regime, the attractors for the switched Orego_ or not. In the former case, the drift is due to different effect of
nators tend to have a similar appearance to that shown in Figureswitching in different regions of the attractor, sometimes slowing
12. The original periodic orbits of the unswitched systems appear @nd sometimes accelerating angular motion around the attractor.
as dark boundary curves in the attractor. The attractor crossedf the parameters are different, the parameter difference also
expanding and contracting regions of phase space which cancauses phase drift because of the different periods of the two
be computed (for each value ¢f by finding the curve on which ~ oscillators. Figure 13 shows a detail of two trajectories which
the divergence of the flow velocity = (ti, i) is zero. Forthe ~ €Xperience a synchronizing switching event as they pass through

Figure 12. Attractor of system 1 for the parameters of Figure 7 (limit
cycle to limit cycle switching) and = 0. The dashed curve is the
boundary separating the contracting (C) and expanding (E) regions o
phase space fop = 0.01. The dotted curve is the contracting to
expanding boundary fap = 0.05. Synchronization is associated with

current modelV-»; = 0 when the boxed region in Figure 12. The two systems are initially
relatively far apart. Switching drives both systems deeper into

o — 2\ 32 the region in which strong contraction occurs. (In fact, system

v, = 1[ ((l 20, — €)(G + u) — ] 1is initially outside the contracting region and gets driven back
fi 29 in by the switching event.) Note that, because the parameters

are similar, all aspects of the overall dynamics (shape of

These curves are also shown in Figure 12 for the two values of attractor, boundaries of contracting region, etc.) are similar for
¢ between which the system is switched. the two systems. As a result of undergoing a relatively long

We noticed (by examining a number of trajectories at different stay in the contracting region, the two systems are much more
parameter values) that switching events which occurred whennearly synchronized on exit from this region than they were
the two systems were in the lower left corner of the attractor before switching.
(boxed in Figure 12) tended to synchronize the two systems. To simplify the dynamics, we define a phase artes shown
Even when trajectories start out far apart, they will eventually in Figure 12. Figure 14 shows the Euclidean distance between
transiently drift into phase, whether their parameters are identical the same two trajectories as those in Figure 13 plotted against



7378 J. Phys. Chem. A, Vol. 105, No. 31, 2001 Roussel and Wang

0.8 . . 2n . 4 T
a
o7 b by _
06 r R 3n/2 1
s | , |
© 04 % s 7
- i \ | q-D— Tt [ //‘ 7
0.3 - 1
0.2 r 2 - ) 1
01 r 1 /
0 i ] L O L i 1
0 /2 T 3n/2 2n 0 /2 T 3n/2 2n
8, 9
Figure 14. Euclidean distance between the two systems in phase space
(d) vs phase angle of system 8] for the same realization of the 2n ) (' ' b

noise process as in Figure 13. The expanding and contracting regions I ;
of phase space can clearly be seen in this graph as regions of positive P ;
and negative slope, respectively. Switching events are denoted by 3n/2 L g
arrows. The first pair of switching events is very short and occurs in i
the wrong region of phase space to have much effect on the dynamics. ;
The second shift up i@ (an alternative view of which is shown in S —
Figure 13) forestalls reinjection of the trajectories into the expanding
region and leads to a sharp decreasd. iihe dotted lines delimit the ;
region in which switching events tend to be particularly effective for i

6i+1
a

synchronization (the boxed region of Figure 12). /2 r | : 1
the phase angle of system 1 for a full circuit around the attractor. j/ |

Passage of the two systems through expanding and contracting 0

regions of phase space appear respectively as regions of positive 0 /2 T 82 an
and negative slope in this figure. The second switch from low 8

to high¢ in Figure 14 (corresponding to the sharp cusp in the on

trajectory segments in Figure 13) interrupts the increasg in
and in fact causes a sharp decrease in this statistic. Repeated
events of this nature eventually cause synchronization. Note that
similar events occurring at angles near the first minimum in
the d(01) curve can also contribute to synchronization but are
much less important for two reasons: First, this minimum is
much more narrow than the second one, which means that the
window of angles at which switching will assist synchronization

is much smaller in the region of the first minimum. Second,
the divergence is much less negative in the region of the first
minimum than it is near the second, meaning that the contraction

3n/2

9i+1
a

/2

in the former region is much weaker. 0 K .
In the chaotic (smalt) case, these synchronizing events still 0 /2 n 3n/2 2n
occur, as it will happen from time to time that both systems 9

pass through the appropriate region simultaneously and experi-Figure 15. Return maps for (&) = 0, (b)« = 0.12 with dichotomously
ence a switching event there. However, the pattern of switching varied switching times, and (& = 0.12 for a system with Gaussian
events is such that it is likely that the two systems will Vvariability in its switching times. The parameters are set as those for
subsequently wander away from each other. Clearly, noise inSystem 1 in Figure 7. The dotted lines indicate the phase angle range
the switching times alters this pattern in some significant way. corresponding to the boxed region in Figure 12.

To understand this further, we construct a Poihcaap by
recording the phase anglésat which switching from the low
to the high value ofp occurs over a long trajectory. Then we

amplitude, several things happen. First, the map becomes
multivalued. In the dichotomous case (Figure 15b), the map

construct a return map by plottirdy.. vs 6. Figure 15 shows consists of a series of curves QUe to the dis_crete nature qf the
return maps for the purely deterministic system=0) as well noise process. In the Gaussian case (Figure 15c), simple
as for systems in which the switching times are subjected to SPréading is observed. In addition, some of the gaps in the
dichotomous or Gaussian noise. The map corresponding to theoriginal map are filled in, indicating that switching occurs more
deterministic system (panel a) has some steeply sloped sectionginiformly over the attractor with noise than without. This results
which are responsible for the chaotic behavior because smallin an increase in the number of ways the system can reach the
differences ing; result in large differences ifii+1. Moreover, region favorable to synchronization. Finally, at sufficiently large
trajectories which pass through the synchronizing region (the noise amplitudes, trajectories can visit the synchronization region
box in Figure 12, corresponding to the phase angles delimited in two successive cycles (points in panels b and c in the central
by dotted lines in Figure 15) always take at least two steps of square). Such events, although rare, greatly enhance the rate at
the map before returning to this region. As we increase the noisewhich the systems becomes synchronized.
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Note that, although we have concentrated on the case of
oscillatory-to-oscillatory switching in this section, the situation
in the excitable to oscillatory case is qualitatively identical.

Discussion and Conclusions

In this study, we have shown the feasibility of synchronizing
two chemical systems operating under slightly different condi-
tions. This is an important demonstration because we can in
general expect small quantitative differences between any two

chemical reactors of similar design. Perfect phase synchroniza-
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synchronization among (nearly) periodically driven systems.
Noise-induced coherent motion has been observed in a variety
of studies'®1756 This contribution further demonstrates the
constructive role which can be played by noise. The results also
illustrate that adding random variability to tlieration of the
forcing phases is a powerful complement to the traditional way
of perturbing thentensityof external forcing, in particular when
the intensity can only be varied within a narrow range. The
above results also indicate that dichotomous noise is more
effective than Gaussian distributed noise in obtaining a syn-

tion can be achieved when the two driven systems are switchegchronized state because it requires smaller noise strength for

between two limit cycles or between excitable and oscillatory
states. When there exist large differences betwgemdqg, or
betweene; andey, it becomes very difficult to find a periodic
forcing regime in which both systems exhibit complex oscil-

lations. We have checked the above results with other combina-

tions of T4c and T—, €; ande,, andq; and g.. Qualitatively,

the same results are obtained. When random variations are adde

to the durations of the forcing, the noise strengtis limited
by the values off; andT_; that is, 2 must be no larger than
T4 or T_. In the case thaf- (or T;) is too small, perfect phase

successful synchronization.

The explanation of the synchronization mechanism presented
in section 3.4 is incomplete. After attempting many other styles
of explanation however, we have come to the conclusion that
explanations of synchronization in randomly switched systems
require an analysis of the behavior in phase space, either
girectly* or in a suitably constructed Poincarep, as we have
done here. The Poincaneaps of Figure 15 reduce the dynamics
to a circle map, suggesting that further insight might be obtained
by seeking similar phenomena in analytic circle maps such as
the sine map® an avenue of investigation which we are

synchronization cannot be achieved because of this limitation currently pursuing.
of the noise strength. However, larger noise strengths can be

u_sed if_we limit random variation to the larger of the two phases Acknowledgment. We thank the anonymous referees whose
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