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The Hirshfeld stockholder partitioning of a molecular density into subsystem densities, e.g., of atoms-in-
molecules, is derived from the Fisher entropy for locality (intrinsic accuracy) referenced to the isolated atom
densities. This complements the previous derivation using the entropy deficiency of Kullback and Leibler,
thereby strongly suggesting that the Hirshfeld result is independent of the information measure applied to
assimilate the reference atomic information. Several properties of such subsystems are examined. It is shown
that they represent equilibrium, stable pieces of the molecular density, which minimize and reduce to zero
the nonadditivity of the missing information relative to the isolated atom reference. The equilibrium criteria
for the optimum partitioning in both the entropy and energy representations are derived and interpreted in
terms of local entropies of subsystems and their related “temperatures” of information. Generalized variational
principles in the entropy and energy representations are proposed, which link the entropy of the information
theory with energetical parameters of molecular systems. The associated information temperature becomes
infinite, when a single ground-state density is the density of interest.

1. Introduction would hope to find that the Hirshfeld partitioning is unique,
when theseparated atom limiis adopted as a reference, being

The dominant perspective in chemical thought is that of independent of the specific information measure adopted in the

molecules as combinations of atoms and functional groups S
) . ntr xtremum principle. In the present r, we shall
connected by chemical bonds. All such chemical (bonded) entropy extremum principie © present paper, we sha

bsvstems mav b nsidered to be onlv slightl rturbed inexamine this question by using the Fisher information for
subsystems may be considered to be only siightly perturbed locality called intrinsic accuracyWe demonstrate that it also

C%mp?ﬁson to lthe C?rreSpo?d'n? sepa_rated Sl:bSyStemS’. ©4eads to the Hirshfeld subsystem densities. Moreover, it is shown
when the complémentary molecuar Environments aré missing. y, gives rise to additivity of the missing information

Chemical atoms are usually only weakly deformed by the :
olarization and charge transfer associated with the formationfuncnonal'
P 9 The unique character of the stockholder partitioning prompts

of chemical bonds, with a change in the bonding pattern h furth : f the “th d ical”
affecting mainly the valence shell of atoms comprising a us here to further examine some of the “thermodynamica
properties of the Hirshfeld subsystems. In particular, we shall

mqlecule. Itis t.her.efore appealmg for Interpretative purposes elucidate the equilibrium and stable character of such open AIM.
to invoke the criterion of the maximum similarity between the . - L )
It is essential to note that all divisions of the fixed, ground-

bondedatoms-in-molecule$AIM; open subsystems) and the state molecular density, say of AB= pa + ps, Must be carried

corresponding isolated atoms (or ions) of the periodic table of out for constant energy of the molecule as a whole, because by

elements. . .
. . the HohenbergKohn theorem of thelensity functional theory
9
As we have recently demonstratetie information theory (DFTY13.14 the density fixes the system ener@y = E,{o].

can he _used to assimilate in the most unbiased manner FheTherefore, determining the optimum partitioning @y the
information content of the appropriate free atom densities, in information-entropy extremum principle calls to mind the

E];n%atri?golg&rl:ga?:fljll_ (;Ti]t?lleerc(ullaL;dn?]irrzSilr;yumur)n iitsci)rrgci:n?(frrrﬁgies. familiar maximum entropy principle of classical thermodynam-
tion (entropy deficiency) principle produces the Hirshi€ld ics> We further explqre thesg thermodyn_amlcal analpgles_ln
» ” - . the present work, by interpreting the equilibrium principles in
(“stockholder”) AIM densities as the pieces of the molecular both the entropy and energy representations in terms of the

density optimally most resembling the densities of the corre- information-theoretic entropy densities and the associated local

nggcdrllng_ Iz(;last;d t%tr?;ntsc; tAr;eSIn:g?):elrr;foorpq;stfens:;hﬁorsxIaarpt- information “temperatures” of subsystems, much in the spirit
P gv - e P NG SIMAAMY ¢ o arlier thermodynamical transcriptions of DFT.
between molecules and their fragments and to the problem of

determmmg the bond ml,!|'[|p|ICItI.E§ Ina m‘?',eC&pe-, . 2. Hirshfeld Partitioning of Molecular Density and the

_ The leshf(_ald atom, which exhibits the minimum |nf_orm§t|on Minimum Entropy Deficiency Principle
distance to its free atom reference, possesses, like its free
analogue, a single cusp in its electron density, linked to the The KL’ referenced information entropy functional of the
effective atomic number of the nucletisHirshfeld atoms  (normalized) trial probability distribution(r) relative to the
overlap, and each of them extends over the whole space. Ongeference distributiomy(r)

* To whom correspondence should be addressed. _ p(M)| ..
t Jagiellonian University Ag(L[DH)O] = fp(r) In[—=|dF =s%[p] =0 (1)
* University of North Carolina po(r)

10.1021/jp004414q CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/11/2001



7392 J. Phys. Chem. A, Vol. 105, No. 31, 2001

called the missing information or entropy deficiency, measures
the information “distance” betwegmandp,. The corresponding
principle of the minimum entropy deficiengy represents a

systematic procedure for assimilating in the most unbiased

manner the information contained in the relevant constraints
imposed on the trial distributiop(r), when searching for the
most resembling the reference distributigyt5¢

The logarithmic part of the integrand in eq 1

pr)

G @)

I[plp,] = 'n[

called surprisal, provides a local measure of the information
contained inp with reference tq,. The information entropy
defined without a reference

Stpl = fp(F) In[p(7)] dF

is called the Shanndrentropy of the distributiomp(r).

In what follows, we explicitly consider a molecule AB,
consisting of two complementary subsystems A and B, e.g.,
AIM. Generalization to an arbitrary number of subsystems is
trivial. To treat the classical problem of partitioning the
molecular density = pa + pg into subsystem densities, one
defines the entropy deficiency functiofal

®3)

AS“[papsloaeal = Z AS“[p,lpo] =
o=A,B

Z S Too] = S paps] (4)
a=A,B

where {pJ} are the separated fragment or other reference

densities, and imposes the local constraint of the exhaustive

allocation ofp to pa and pg:

p(F) = pa(T) + pg(T) ()

Then, the principle of minimum entropy deficiency

o{S Toawal = [2(F)pa(T) + pe(F)1dT} =0 (6)

where(r) is the associated Lagrange multiplier function to be
determined from the constraint of eq 5, givéke Hirshfeld
subsystemg?

p(T)
p°(T)
Here p° = Z.-ap pg Stands for the “promolecule” density

consisting of the isolated fragment densities shifted to their
actual positions in the molecule. The universal fadB(r)

pL(T) = pj ?)[ = po(T) D(F) = W, (F) p(F) (7)
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the net effect of mixing the atomic densities in a molecule.
Transforming the functional of eq 8 gives (see eq 7)

asi=3 J panl o = > AS“Tedel]
a=A,B o=A,B

0
pi(—)
0
0

= AS(L[PAPB|P,':PE] =0

©)

i.e., the entropy deficiency of arbitrary subsystem denditigs
relative to the corresponding Hirshfeld densities. The equality
sign in eq 9 holds only fop, = o'}, o = A,B.

The strong conclusion is that the stockholder partitioning goes
uniquely with vanishing nonadditivity of the entropy deficiency,
when isolated fragment densities are used as reference. It also
follows from eq 9 that any deviation of the subsystem densities
from the equilibrium Hirshfeld ones must result in an increase
of the entropy deficiency, thus proving the information theoretic
stability of the optimum subsystem pieces of the molecular
density, with respect to all virtual displacements of the molecular
fragment densities preserving

To be more explicit, consider displacemefiidp.],} which
represent changes in the amount of charge transfer between
subsystems and their internal polarization. Then, for the
Hirshfeld division ofp, the missing information is stable relative
to all such hypothetical displacements

OAS™
I

3pu(F)

[dp(F)], d7 =0,
{ot}

global equilibrium; (10)
O*AS®

T — dp, ()] 2= 0,
Q;B S NCYNG [dou ()],

{o}

global stability,
where the equality sign impliedp, = 0}.
The KL functional of eq 4 consists of two terms:

AS* = Z S oo I p, dF — Z S oo I 5, dF
o=A,B o=A,B

_ L L
= SiiodPaPe] — SeclpapslPaPE]

The first, unreferenced ternS;.,., yielding the total Shannon
information of the subsystem densities, by itself would make
the optimum densities of subsystems perfectly delocalized; we
therefore call it thedelocalization componerdf the missing
information functional. The delocalization effect of tis, .
functional is manifest in the entropy extremum principle:

O SieiodPapsl = [ H(T)pa(T) + pg(T)] dT} =0 (13)

having the perfectly delocalized, equidensity solutions, given

(11)

(12)

determines the local proportionality of the subsystem density PY the locally unbiased fractions pf

to the reference density, whereas the local fragment share

w(F) is the fraction ofp® in p°.
Now consider themixing missing information functional

AS;L[PAPBWZP%] = A§L[PAPB|PZPE] - A§L[P|Po] (8)

where the last term is the information distance between the

molecular and promolecule densities. This functional provides
a measure of the nonadditive part of the missing information,
—ASS = L p] — S [pal — S5 [pel, thus indeed reflecting

pl(TY=p(F)2 a=AB (14)
It is only owing to the second, reference-dependencglization
component Ot, that the Hirshfeld atoms become very much

like their free analogues.
3. Optimum Subsystem Densities from the Referenced
Intrinsic Accuracy Principle

The question naturally arises: Is the optimum partitioning
dependent on the specific information measure used, or will
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other measures produce different optimum solutions to the where the Lagrange multipliéris associated with the constraint

partitioning problem? We examine this question by turning to
another information functional of the parametric probability
densityp(r|0) depending upon the parametgr

ap(T10)|

. |
I6) = [p(T16) [a N ar = [k

introduced by FishetFor the special case whéris a parameter
of locality

(15)

p(T16) = p(T + 6) = p(T") (16)
the Fisher information become8&/{r = V)
In p(T)]? (@)2
_ _.|9In p r o T .
I7(6 = 0) = f()[ dr_f—pm dr =
17Tl (17)

This functional defines the so-calléutrinsic accuracy’ of
p(r), providing a measure of the “narrowness” of the probability

distribution. Because the Shannon (KL) information represents

the “spread” ofp(r), the simple Shannon and simple Fisher

measures provide complementary characteristics of the prob-

ability distribution. Intrinsic accuracy itself, just as the Shannon
information S, on minimization produces the perfectly

delocalized pieces of the molecular density of eq 14. This can

be verified using the variational principle (compare eq 13):

— [ @(T)[pa(T) + pg(7)] dT} = 0

whereg(r) is the Lagrange multiplier function for the constraint
of eq 5 and

{1 Geiod Paspe] (18)

5eiodPaspel = 1Toal + 17T pg] (19)

To generate localized subsystem densities, one has to incIuqu
the separated subsystem reference in the Fisher entropy, Wh|chsc

then introduces the necessary “penalty” entropy when the AIM
densities deviate from the reference. Following the KL gener-
alization’ of Shannon’s entropy, we propose the referenced
generalization of the Fisher function of eq 15

9 |n[p(?|¢9)/po(T|0)]}2 ~
dr

AIF[p(T10)Ip(T16)] = [ pme){

20
(20)
or in the locality form (eq 17)
Alffpip,] = fp(r){—ln % } dr
=[P ( ) [3 In(f’./p") dr (21)

To test the localization performance of eq 20, we may
consider the simplest variational principle

O{AI[plpd — & [p(T)} =0 (22)

of p normalization: fp df = 1. The corresponding Euler
equation

d In R(T)\? _
(o] e
whereR(F) = p(r)/po(r), gives
INR=v=& [df, £<0 (24)

Thus, a finite value oR(r) can only be obtained wheh= 0,
In R(r) = 0, orp(f) = po(F). The same solution follows when
one substituteAS-[p|p,] for AlF[p|po] in eq 221 This verifies
the localization effect of the functional of eq 20, required to
produce localized subsystem densities in the molecular density
partitioning problem. We call the referenced Fisher’s functional
of eq 20 theFisher missing informatiorfentropy deficiency)
or the Fisher information distancéetweenp and po.

Following the analysis of the preceding section, one again
identifies the propelocalization partof the AIF functional as
the difference

_l:;c[p|po] = A|F[p|po] - Igeloip] =
al alnp) aInpy\2
pr( ar;p)( T )dr _fp( ot )dr (25)

whereldelm{p] = |f[p] stands for the reference-independent
intrinsic accuracy of eq 17.

Let us now go back to the partitioning of the AB density
into pa and pg (eq 5), which can be rewritten in terms of
functions{ Ry = pa/p3} Of the relative subsystem densities:

p(T) = pa(T) RA(T) + pa(T) Rg(T)

Implementing the principle of the minimum of Fisher’s entropy
deficiency for locality

(26)

O{AlTpapgloapg] + [ N(P)lpa(T) + pg(F)1dT} =0 (27)
here AlF[oa peloape] = Alf[paloa] + Alf[pslog] =
[oa.ee] = 1aF[pa]l + 18F[ps] and h(r) is the local Lagrange
multiplier associated with the exhaustive partitioning constraint
of eq 26, gives the following equation for the optimum
subsystem densities:

Q;B[ pﬁ(?)’—

Hence

3 INR (7))
+ h(T)

apam} =0 (28)

RA(?) = RB(?) = R(?) = exp[fjmhlIZ(?,) d?'],
h(t) = 0 (29)

Now, the functionR(F) automatically follows from eq 26 (see
also eq 7)

R(T) = p(T)/p°(T) = D(7) (30)

and

(31)
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We therefore again find the Hirshfeld subsystem densities Let us now consider another, global constraint, in addition
of eq 7 as the optimum solutions of the Fisher's entropy to eq 5, of the single subsystem density normalization, say for
deficiency principle of eq 27. Because the same partitioning a = A:
follows from the KL entropy deficiency measure, one may
conjecture that the stockholder partitioning scheme is unique pr(‘r’) df =N, (37)
in the information theory, being independent of the particular
form of the entropy functional used, provided the same referencein the entropy deficiency minimum principle of eq 6:
to the isolated fragments is made. Additional support for this
conclusion comes from the independent axiomatic approach byd{ §<L[pA,pB] — f/_l(‘r’)[pA(?) + pg(T)] dT —

Ayerst® to the same problem. o
2 [pa(T) dF} =0 (38)

. . . N o The solutions of the corresponding Euler equations are
We now discuss in some detail the global stability criterion

of eq 11 in the AB system. To examine the behavior of the Pa(T) = pa(T) explE(T) + 1] = pa(T) explE(T)lx (39)
ASE functional of eq 4 relative to displacements @f from

4. Stability of the Hirshfeld Subsystems

o : .
e, oo = AB, we impose the second local constraint of the ) — 0% =
fixed density difference Pa(T) = pg(T) eXPI(T)] (40)
_ - ~ wherel(r) = A(f) — 1 can be obtained from eq 5:
d(T) = pa(T) — pa(T) (32) -
N . . ) &(F) =1In A0 (41)
in addition to the molecular density preservation eq 5. Notice [x02(F) + p3(F)]

that p(f) andd(r) uniquely determinga = (p + d)/2 andpg =
(0 — d)/2, so there is no need for any optimization. It can be The global Lagrange multiplier can then be determined from

verified that, among all triaf po(d)}, uniquely specified byl the second constraint of eq 37, which gives the equation
for the fixed p, the Hirshfeld densities indeed provide the
minimum information distance relative to the reference densities o(T)pa(T)
(see eq 7): X‘fﬁ dr =N, (42)
xPa(T) + pg(T)
H L 0 —
o ASTHp P = to be solved numerically foy = exp@.a).
: L _ Lrs H o These solutions define the subsystem densities most resem-
22'3} AS' [p.d] = A [{ea}{pat] bling the reference densities and reproducing the specified

subsystem numbers of electrons:
= [p°(F) D() In D(T) dF =

Po = pu(NA'NB)v o= AvB (43)
AS“[plp] (33)

thus uniquely determining the entropy deficiency as a function
where AS“[{ po[p,d} [{ po}] = AS[p,d]. Indeed, functional of the specified number of electrons in each subsystem:
differentiation of AS-[p,d] with respect tod(r), for the fixed

p, gives the optimund(F) satisfying the following equation: AS*[p,(NaNg)Ip20a] = ASU[NANgl0200]  (44)
SASL[p, Y — d(F)°(F Again, a stability inequality holds (see eq 33):
( S d]) _ m: o1) ~dONED] ooy e
() [p(T) — d(T)]pa(T) AS™[NsNglpapg] = AST[NANglpapE] (45)
or palps = p2/pS andd = D[pS — p3] = df, which is the whereN} = fpq df, a = AB. This result demonstrates the

Hirshfeld result. Moreover stable character of the equilibrium (Hirshfeld) subsystems with
respect to intersubsystem charge transfer.

2 L Of—
(M) |l = 2’& >0 (35) 5. Chemical Potential Equalization
P

od(T)od(T T
(F)od(r) P(7) 5.1. External Equilibrium Condition. Let the molecular
thus satisfying the stability criterion of eq 11: den3|§yp _be the ground-state o_IenS|ty for _the AB system. The
equalization of the local chemical potentilr) of this equi-
librium distribution of electrons in AB as a whafe"*2requires

(O°AS“[p,d)),lge = [ %[d(ﬂ —d'(MPPdr =0 (36)  that
’ - ~,_ OE[d] 9E,(N)
with equality only ford = d". u(r) =pulp;t] = op(7) TU=ETONT (46)

The above inequality is a manifestation of a general property
of the KL entropy function, because the assimilation of the wheré314
additional constraint of eq 32 cannot result in a decrease of the
information distance in comparison to that corresponding to a Elp] = fyp dr + F[p] = EU(N) (47)
single constraint of eq 5. This is because the second constraint
actually restricts the range of trial distributions to a single pair is the system electronic energy, uniquely determineg oy
of pa and pg consistent with the first constraint. by the external potential due to the nuclgr;) = va(r) + vs(r)
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= v[piT], and the overall number of electrord,p] = /p(F) dr. partial functional derivative, called thelirshfeld chemical
Here,F[p] = W[p]IFly[p]Cgenerates the sum of the electronic  potential
kinetic and repulsion energieB,= Te + Vee for the ground-

statey[p]; u = u[p] = i[N,v] stands for the systerglobal o d¢,[onpa]  OE,[p] do(7) p b
chemical potential and v4(F) denotes the external potential Uo(T)=——F — = So(F) A s = U371,
generated by the nuclei in the A or B subsystem. 0p,(T) P(T) dog(F) W (F)

Equation 46 directly follows from the DFT variational oa=AB (54)

principle for open system%!® o ) o
which is not equalized throughout the space. Also, combining

9E,(N) eqs 46 and 54 gives
o{E[p] —uNlp]} =0, oru=—g (48)

ue(F)opy(T) = uop(F), a=AB (55)
which can be written in the equivalent form
We note that any shift iltﬁpf\ implies an associated shift in
I OE,[p] 8p(F) =0, oru() = (49) dph, SO thatdply + Opi = dp. This is in contrast to the
op(T) i ’ # # functional derivatives of eq 51, probing the energy response to
a local change of one subsystem for the fixed (embedding)
Above and throughout the paper, functional differentiation with density of the other subsystem.
respect to the electron densities is carried out for constant 5.2. Internal Equilibrium Condition. In the partitioning
external potential. In these equilibrium conditiorf®,p(f) dr problem of eq 5p andd (eq 32) uniquely specify subsystem
= dN = 0, so that a change in the molecular density originates densities, both equilibrium and nonequilibriumg = p(p,d),
from an infinitesimal outflow (inflow) of electrons from (to) o = A,B. Consider the externally closed AB system, consisting
AB, involving a hypothetical electron reservoir. We therefore of the two mutually open subsystems A and B. The fixed
call eq 46 theexternal equilibrium criteriorfor AB as a whole. constraint,dp(f) = 0, then implies a local relation between
Let us now turn to the density partitioning of eq 5, which virtual, intersubsystem density displacements
divides N electrons of AB intoNa and Ng electrons in

subsystems. Let us express the molecular electronic energy as (0pa(T)), = —(0pg(T)), (56)
the equivalent functional of subsystem densities
or
E.[lo] = E,[oa + psl = €,[0a:08] (50)

_ _ _ _ (6d(T)), = 2[0pa(T)], = — 2[0pg(T)], (57)
This allows one to define th&ibsystem local chemical potentials

~ Consider now the in situ (charge transfer) functional derivative
(F) = (éey[PA,PB]) _ 5EU[P]{5P(V) = u(F) of the molecular energy density functional in the subsystem
o
Pp=

0po(T) N 0p(T) \6pu(T) o5 resolution (eq 50)¢,[{ pa(p,d)}] = €.[p,d], for constantp:
{*3 o (51) -
_ _ O¢,[p.d] 0€,[pp:psl 9I04(T)
Thus, the local subsystem chemical potentials are equal to the = 2
global local chemical potential, which is equalized at the global od(T) |, oFmB | 0pu(T) fea ad(r) /,

chemical potential levely = u[p] = u(F) = uq(r). Such external
derivatives cannot discriminate, therefore, between alternative — l[ﬂ (F) — ug(t)] =0 (58)
divisions of the molecular density. 2R B

Moreover, expressing the energy as a functioNoandNg, ] ) o
E.[p] = €.(Na,Ng), allows one to define thglobal subsystem where we have used eqgs 51, 56, and 57 to identify derivatives

chemical potential§ o} (see eq 46): in the chain rule. Thus, becausg(r) = us(r) = u, the internal
equilibrium condition is automatically satisfied for adfr), as
€ (Na,Ng) OE,[0]{9p(F) N for all alternative partitionings of the ground-staianto pa
Uy = T = fé (T) 5N and pg.
« Ng p a /N The foregoing analysis of the external and internal equilibrium

o criteria shows that the chemical potential (electronegativity)
3 [p(7)dr aN quantities cannot be used to identify the equilibrium partitioning
“HMTON | THgN) TH (52) of the molecular ground-state density. Their failure to discrimi-
o Ngzq of Ng . Lo . g
nate among alternative division schemes is because the elec
tronic energyE,[p] is the same for all partitioningsd,[p,d] =
E,[p]. This indicates a clear need for entropic parameters to
characterize the states of subsystems in AB. We shall examine
this in more detail in Section 6 below.
5.3. Energy Partitioning and Subsystems-in-Molecules.
Although the energ¥,[p] of AB as a whole is conserved for
H— all partitionings of eq 5, the energy of an embedded subsystem
dpg(T) _ v\/*('r') o=AB (53) o = A,B in AB, in the presence of the other subsystgr# o,
dp(T) ar ' changes as a result of the intersubsystem charge transfer. Here
we examine the subtle problem of the partitioning of the
Therefore, defining the Hirshfeld energy functional,oi[ o], molecular energy of eq 47 into the subsystem energies for a
pg[p]] = E,[p], one obtains the corresponding subsystem given partitioning ofp into pa and pg.

also equalized at the global chemical potential level. Thus, for
each subsystenu,, = uq(r) = u.

It follows from eq 7 that any external displacement of the
molecular densityyp(F) is uniquely partitioned intd dp' ()}
displacements of the subsystem densities
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Consider first the energi,[p.], which depends solely on  the presence of the complementary subsystem, into the sub-
the single subsystem density. For this purpose, we partition thesystem effective external potentia[lsiﬁ(i") = Uzﬁ[u,{ oot T1},
universal HohenbergKohn functionalF[p] = F[pa + pg] Of so that the embedded subsystem energy (eq 63) assumes the
eq 47 into the additiveFqpa, ps] = F[pa] + F[pg], and global-like form (see eq 47):

nonadditive F"[pa, ps] = F[p] — Fqpa,ps], contributions:
€olpwps] = [VE(F)py(F) dF + Flo,] = E,ei(N,),
Flpl = Foapel + Flons0e] Goy  Colewrd = [ulDr, pel = EglNe
a=AB (67)

The nonadditive part must vanish at infinite separation between

subsystems, li|as—) F'[pa, pe] = 0, because by the size- Hence, the equation for the subsystem chemical potential

consistency requirement becomes
lim E[p] = Ex[pa] + E 60 v [9€alPosiy] v, OFlp.]
lim E[p] = E,[ps] + Eolpe] (60) () =( ootl) iy 2Pl g
pa(r) pﬁz“ pa(r)
and
which also is of the form of the global ground-state Euler
lim fPU dr = 2 fPaUa dr (61) equation (see eq 49):
R a=AB
v =y OF[P]
This partitioning ofF[o] gives u(P)=p=ov(r)+ on(T) (69)

EJlpd = fu(?)pa T)dr +FlpJ, a=AB (62) It follows from the chemical potential electronegativity) (
equalizationua(f) = us(f) = u = —yx (Section 5.1), the
Because of the nonvanishiig[pa,es] for the overlapping partitioning of eq 64, and egs 67 and 69, that
densities of subsystems at finite separations, the energy of the

embeddedx (in the presence of) would appear to be best . ‘5Fn[PwPﬁ]
defined as Vg (T) = 0o (T) + | e (T) + |7~ (70)
00u(T) |,
€aloapel = Eolpo] + Flpaspg] (63)
and

The total electronic energy can now be expressed as (see eq .
50 oF oF OF [pg

) )

E,[0] = €alpa:ps]l + Eglps] = Ealpal + €gloa:08] P Pa Pu P=a
= ¢ ,[pa.0g] (64) An algorithm for determining the subsystem effective external

potential from the embedding density of the complementary
This gives for the local subsystem chemical potential of eq 51 molecular environment has been proposed by A¥eis,the
spirit of the Zhae-Morrison—Parr (ZMP) proceduré?

@ (56a[pA,pB]) OE,[p,] (5F”[pA,pB]) The above analysis indicates that the subsystem depsity
ulr)=\——=— = = = is the ground-state density for the effective external potential
" 0Pa(™) Jp, O™\ 0pa(M) [, O v P
o= er— =
=ty () + g (T) = tolpepsTl, 0o=AB - -
“ “ e (65) pa(T) = po[ V5 T] (72)

whereu,*(F) = v(F) + 0F[pa]/0pq(F) is the contribution due to  Equation 70 also demonstrates that for constant subsystem
pa alone andu.(r) is the corresponding embedding (€) external potential§v,}, and thus alse, the effective potential
correction due tgg. The subsystem chemical potential equal- s a functional of the subsystem densities

ization uq(f) = ue = u (Section 5.1) then implies tha,®(r)
must cancel out the local dependenceugt(r). The internal UEﬁ(T) — Z/eﬁ[p pgiT] (73)
equilibrium criterion of Section 5.2 directly follows from the @ o HPATE
condition of preservation dt,[pa + ps] = E,[p] with respect

to all density preserving virtual flows of electrons between
subsystemsglpa + dpg = O (see also eq 58):

Therefore, by the Hohenberdlohn theoren®® and its multi-
component generalizatidd,a given partitioningo = pa + ps
of the molecular electronic density is uniquely identified by the
corresponding subsystem effective external potentials:
de,[onpe] = 2 J1a(F) dpy () dF

a=AB

[oape] <= [V 8] (74)

= [dp,(T T) — ug(7)] dT
f PAIAT) = (7] Moreover, the equilibrium (Hirshfeld) electronic densities of
= fdPB(T)[:uB(T) —up(M]dr =0 (66) subsystems are uniquely identified by the minimum of the
missing entropy functionahpapsloapsl = Jpa.cel, €.9.,
We would like to remark now that in the DFT for sub- S[pa,08] or Spa,0s] (Section 3). Therefore, the following
system&21 one absorbs the effect of embedding, because of mapping exists between information-distance entropies, Hirsh-
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feld densities of subsystems, the associated effective externalaxiomatic approach of Calléft.We first present the molecular

potentials, and subsystem energies: equivalents of Callen’s first three postulates and develop their
implications. We also comment upon properties of the state
Sph0a] <= [oaeal < [vam val < [eg.ef]  (75) parameters of molecular subsystems.

Equilibrium Partitionings. Postulate I. Among all possible
whereuffH = 05 [p.ph; T] andel) = o[ py.pfl, o = A,B. Note, partitionings ofp’s into pa and pg, for the chosen references
however, that the subsystem energies as defined by eq 67 dq %} and p°, there exist particular diisions (called equilibri-
not sum to the total energy (see eq 64). um ones), that are characterized completely @and the

This mapping and eq 67 provide a vital link between the reference densities.
energies of equilibrium subsystems and their information Indeed,{ps = plplp?] = PZ[Pa 0° pCl} give rise top,
entropies. This connection between the information entropy andyhich by the HohenbergKohn theorems determines external
the optimum partitioning qf the mqlgcular density, through t.he potentialy = [p] and the system number of electroNs=
effective external potentials, facilitates a “thermodynamic” Nj,]. We have clearly proved in the preceding sections the stable
approach to subsystems-in-molecules, which we will explore equilibrium character of the Hirshfeld subsystems. Also, because

in\tlcz Qg)étggggr?/r; that, by manipulating the effective external the Hirshfeld subsystem densities determiﬂ@ﬂ,pg] and
. o o , , the equilibrium entropy deficiency and subsystem
potentials, one can interpretrepresentable densities of any {ealpnpsl} d Py y y

(nonequilibrium) partitioning ofp, {p}, as comprising the energies are unique functionals of the molecular and reference
) oSy

densities.
. ff. .
ground-state densn.les for sorfig]'}. Such ex}ernal pote.ntlals In the equilibrium “thermodynamics”, one is interested in
can theref(_)re be V'eWed as t_he_:rmodynam|c ‘constraints” as- changes of subsystems, from one equilibrium partitioning, with
sociated with the particular division gf The basic problem of ( o {¢°), to another, with £, p® {o°}). All such
“thermodynamics” behind such a partitioning procedure is the £ 05 1Pal)s ! ' P 1Pal):

determination of th ilibrium state (i.e., Hirshfeld partition- displacements involve a shift in the molecular ground-state
aete ation ot the equ um state {l.e., mirshield partitio density and, thus, also a change in the external potential (e.g.,
ing) that eventually results after the removal of such internal

S : . due to a shift in nuclear positions in space) and the associated
constraints in a closed composite system, characterized by the P pace)

. . . referencep®.
fixed molecular electronic density. The molecular external &

. - . . Minimum Entropy Deficiency and Entropy Density.
POtem'a,l,”._ va + vs effectively c!‘eterr.nmef the molecular b4 1ate 11, There exists a function (called the information
volume”, in which electrons are “confined”. Similarly, the

entropy deficiency S) of the extaressubsystem parameter,
subsystem effective external potentié@ﬁ} can be consid- py deficiency S) X WIS b cliss}

ered as molecular analogues of the thermodynamic volumesOf any composite system AB, defined for all equilibrium
Hirshfeld titioni d haing the followi ty.
of subsystems. Therefore, their energy conjugafds¢./ (Hirshfeld) partitionings o and haing the following property

of o The values assumed byp,} in the absence of internal
I, (N]A e = pu(l)} (see eq 67), are reminiscent of the

. o constraints{ z&" ; T} are those that minimize Sver the
thermodynamical pressures of subsystems. Similarly, the func- {2 [lpal; T}

tional derivative B ol/d _ s th lecul manifold of constrained equilibrium states.
ional derivative P&,[p)/ov(P)]p = p(f), represents the molecular —\ye 1aye already demonstrated this property of the missing
analogue of the local “pressure” of the composite system

- ) ’ ’ . " information functionalS= [ pa,pg] in Sections 2 and 4. The
as\s/\(l)uateild Vt\;'th t’ghe tvo:;:m? rte{ﬁteid externr;l ]E’Ot?rr]mal ; | given nonequilibrium partitionings can always be considered
€ call attention 1o the fact that a search for the external ;¢ representing ground-state subsystem densities for the corre-
potential v[p], which matches a given densigy through the

. . . eff .
ground-state relations of eqs 72 and 73, calls for the universal ;pondlng effective external potentids, }, representing the

Legendre transform functiorft2® Flp] = max|[E.[e] — [pv internal constraints, which identify the given subsystem densi-

o . . . ties.
?cf]ihiorL (E,\r\]/?/v;)?qpsrt?jgt?ct)%?le densities, this search is equivalent The KL7 entropy deficiencyS = S[pa08] is always

nonnegative. This follows from the inequality 1= 1 — 1/x.

6. Elements of the Local “Thermodynamical” Description Hence, Inpa/pg) = (pa — pg)/pa. Multiplying the last inequal-
of the Equilibrium Partitioning of Molecular Densities ity by po and integrating over all space then gives
As has been shown in the preceding section, a given L ~ R
exhaustive partitioning of the ground-state dengity o[N,] S*Ipapel = ZB S (oo = p) d7 = [(p—p9)d7 =0
o=A,

into pa andpg, p = pa + ps, does not affect the energy of the (76)

composite system as a whot&[p], while directly influencing

the embedded subsystem enerdiegoa,os]} and the missing  pecause the molecule and promolecule densities are isoelec-

information functional§pa,es]. The equilibrium partitioning  {rgnic.

into Hirshfeld subsystem densitiggy} , gives rise to a unique Molecular and subsystem densities can be thought of as

minimum value of the missing informatioB[{ p};}] for the strongly nonhomogeneous electron gases. Therefore, for inter-

assumed referencggg}, which also determine the promol-  pretative purposes, one may use the approploag informa-

ecule density°. Any assumed subsystem densities determine tion-entropy parameters, e.g., thietropy deficiency densityry

uniquely the effective subsystem potenti{aﬂ/ﬁﬁ[pA,pB;T]}, for and its additive subsystem contributiosf)) = Z,—a g[Su(F)],

which they are the ground-state densities. Therefore, the searctas the parameters of state for a current partitioningpof

for the optimum partitioning can be also interpreted as a searchAlternatively, the local entropy densities per electrsfi) =

in the subsystem effective external potential space. S(F)/p(F) and{S(F) = su(F)/pu(r)}, can be used for this purpose.
We now attempt a phenomenological description of the It should be realized, however, that the densities of the

subsystem equilibrium (Hirshfeld) densities in the spirit of a functional [ pa,ps] of eq 4 and of its subsystem components

previous “thermodynamical” interpretation of DR¥ To for- can be negative. Therefore, to ensure the positive character of

mulate a basis for such a local “thermodynamical” transcription the local missing entropies of information (i.e., the information

of the Hirshfeld partitioning scheme, we will follow the “distance”), we take, as the basic “thermodynamic” entropy
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measure, the density of the symmetrized missing entropy of that at each point in space the local information “temperatures”

Kullback 318 called divergence of the mutually open subsystems equalize at the equilibrium

. . Lo partitioning. Notice, however, that, although the subsystem

S([PA,PB] = Z {A§< [Palpdl + AS* [palpal} chemical potentials equalize for any trial partitioning, the
a=A,B

information temperature equalization takes place only for the
equilibrium (Hirshfeld) subsystem densities.

P

Z f(Pa — pg) In[—] dF A similar conclusion follows from the corresponding “ther-

o=A,B 14 modynamic” interpretation of the variational procedure of eq
6. Suppose that the equilibrium densities of subsystems have

Z Jsu(F)dr = [SF)dF =0 (77) been reached. The minimum of the entropy deficie8ypa,
a=AB pg] for such optimum division op then demands that a virtual
transfer of the electronic densitypAr) = —dpg(r), will produce
no change i [pa, pg] of the composite system: AL =
0. Becauses<- is an additive sum of the subsystem contribu-
tions, the corresponding expression fax3f" gives

This represents the unbiased sum of the information distance
from p, to pg and that fromp;, to ps, o0 = A,B. The equality
sign in eq 77 requireBo, = pgo} - Becauses‘f(?) is @ monotonic
increasing function of the local density valug,K(r) =
§;(pa(“r')), the subsystem density state variab{eg} can be KL
replaced by the corresponding local entror{iég as the state L B 08, " [Pl o
parameters defining the current partitioning @fAll of this ds* [oape] = Z ff dp,(T) dr
accords with the following: =K " Opy(T)

Postulate 1ll. The entropy deficiency of a composite system

— [reKlzy _ KLz S
S and its density “§f) are additve over the constituent :f[sa (T) S (T dpy(T) dr =0 (84)
components. i - »
Information “Thermodynamical” Criterion of the Equi- where we have introduced the KL entropy deficiency densities

librium Partitioning. One obtains from eq 77 the local Of subsystems (see eqs-3) per electron
dependencies of the set of local subsystem param%@é)}

upon the other seftoq(F)}: t

‘EL(?)=; @ = lplell +1, a=AB  (85)
dsg(?) . \dpa(f)]_l _ |n(pa) Po — Pg a r)

dsfy(7)

do.(7) o0 +——=1,(7) (78)

Po.
The corresponding partial functional derivatives of the embedded
subsystem energidsa[pa, ps] = €[Sk, Ss]} With respect to the Ko KL
subsystem entropy densiti¢s\(F)} define thelocal informa- Sa (N =%(7)

tion “temperatures”
P or [paleal = I[pglpg]

The corresponding information-theoretic condition for equi-
librium partitioning therefore requires

) 6%a[s§,éé]) (mtpA,pB]) L N
ot N L e e e
(555(0 o\ 0P [ o RN = T e = e @)
= 1o (Y (F) = ulf o (T) (79)

Equation 7 shows that this equation is indeed satisfied by the
where we have used eq 78 and invoked the chemical potentialHirshfeld densities of subsystems, for which
equalization (see Section 5).
It should be observed that the equilibrium values of the RH(T) =D(F), a=AB (87)
Kullback entropy densities of eq 77 are (see eq 7) a ' '

SHF) = S [{ ) F] = p2(F)ID(F) — 1] InD(F)  (80) Let us similarly interpret the entropy deficiency minimum
principle of eq 27, for the referenced Fisher entropy. The
Also, the corresponding local information “temperatures” from extremum implies that for the equilibrium densitieS &= 0,
egs 78 and 79 are where & corresponds to an infinitesimal, virtual transfer of
density between subsystemgsa@) = —dpg(r). Thus
M) = wi(F), a=AB (81)
where 6|§ N g
Z S do,(F) dF =

fi(F) = In D(F) + [D(F) — 1)/D(F) = f(F)  (82) o5EB " Ope(T)

JIs5(F) = SA(7)] dpa(T) dF =0 (88)
Equations 81 and 82 imply that
where the Fisher information density per electron of subsystem

KHp—=y — _KH/—
T () =157 (T) (83) o in AB (see eq 21) is

This is the local information-entropic supplement to the equi-

librium criterion in the{p.} representation (eqs 51 and 58), (7 [3 In R,(T)|?

T

i.e., of the subsystem chemical potential equalization. It demands o (89)
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Therefore, the equilibrium again requires that generalized entropy extremum principle involving these two
. . constraints then reads
SA(T) =55(T) or RL(T)=Rg(T), (90)
1 Z _
which is indeed satisfied by the Hirshfeld densities of eq 7 (see ‘3{ Sel - _I:_E[p] + %N[p]} =0 (93)

eq 87).

The above local information entropy and temperature tran- yhere we have identified, by analogy with ordinary thermody-
scriptions of the intersubsystem equilibrium criteria of eqs 83, hamics
86, 87, and 90 can be thought of as a “thermodynamical”
supplement of the familiar chemical potential equalization T 1= (959E 94
principle. Although the latter fails to distinguish the Hirshfeld ( h (04)
division as the equilibrium one, the local entropy/temperature I
criteria uniquely identify this very partitioning as the equilibrium — == (050N)¢ (95)
one. Equilibrium requires equalization of the local information T

content parameters of the mutually open subsystems. as the inverse of the system global information temperafre (

and the negative ratio of the chemical potential related quantity
atoT.
To identify the physical meaning of we examine the
The aim of the truly “thermodynamic” description just given  corresponding principle in the energy representation for the fixed
is to describe changes that accompany a given displacement okntropyJp] = S
the system under consideration, from one equilibrium (ground- _
state) molecular densiy, = p1[Ny,v1] to anotherp, = po[Np,v9]. O{E[p] — THp] — uN[p]} =0 (96)
Such a “horizontal” displacement, along the ground-state surface
pgs. = p[N,2] is in contrast to the “vertical” search in the Hence
partitioning problem, which we examined earlier, in whicts
fixed. Such a vertical search is over the effective external = (B_E) and z= (ﬁ) (97)
potentials of subsystems or, equivalently, their densities, which dSIN oN/s
sum up to a given molecular density.
A given change from one-representable densipsto another
involves a change in the generalized ground-state density
functional for the electronic energy

7. Elements of the Information Theoretic
“Thermodynamics” in DFT

-

It should be realized, however, that the constdhtnd
constantE constraints do not identify a single ground-state
density but rather a whole ensemble of them, because there are
many ground-state densities which reproduce the right energy

E[o] = Eu[p][P] = E[v[p],p] (91) and right number_ of t_electrons_. The mplecular state sp.eci.fied

by these constraints is a statistical mixture of all admissible

in which the external potential changes wijthin such a way  densities, which satisfy the constraints.
that the currenp matches the external potentigp], for which When one fixes the molecular densjiff) = p°(F) through
p is the ground-state density. This energy density functional the corresponding local Lagrange multipliefr), one also fixes
differs from the HohenbergKohn functionalE,[p], the varia-  the energyE[p] = E[p°] and the number of electroris[p] =
tional principle for which calls for the minimum energy fiored N[°], thus making the two constraints of eq 93 redundant. For
v, not related to the trial density.!3 a finite value ofz, this impliesT[po] — o, because then the

To relate the information entrop§p], which could also two constraint terms in eq 93 vanish identically. In the
involve relevant reference densities, to the system energeticalvariational principle of eq 96, the information entropy “penalty”
parameters, thus introducing the “physics” to the information term is multiplied by an infinite Lagrange multipliét,as in
theoretic problem, one uses the generalized variational principlethe ZMP proceduré? The fixed p principle of the minimum
in the entropy representation: energy for the fixed entropy reads

o{9p] — Zlkl Jel} =0 (92) O{E[p] = [w(T)p(F) dT} =0 (98)

. - . . or
where A¢ is the Lagrange multiplier associated with tkih

constraintl [ p] = I, with {I1[p]} including the system energy SE[[p],p] N

quantities. Such an application of the information entropy in 5—(T) = w(T) (99)

determining the exchange-correlation part of the effective p p=p°

Kohn—Sham potentidf has recently been reported by Parr and The last two equations must be equivalent to the ground-
state Euler egs 48 and 69, respectively, when the external

Wang?® The entropy term in this principle represents a “device”,
which allows one to assimilate in the optimum dengityhe potential is fixed. Indeed, becaukp] = /{o]p(F) df + Fo]

physical information contained in the constraints, and possibly

in the reference densities built in tI8Eo] functional itself, in =

the most unbiased manner possible. (6E—[f]) = [p%T] + 6F—[f]|po + pr(T)M dr’
As in the ordinary thermodynamics of open systems, the \0P(F)/p=p 0p(F) op(F)

entropy extremum principle of eq 92 requires the constraint of orr OV[OT'] _

the fixed number of electronbp] = N°. Moreover, to introduce = ulp’] + [ p°(T) “op(T) dr’ = o(T)

a temperature parameter, usually associated with the constraint p (100)

of the fixed average energy, as the inverse of its Lagrange
multiplier, we also requireE[p] = E°. The corresponding  Hence, by equating[p;']/6p(f) = O (fixed v functional), as
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information-theoretic basis of the Hirshfeld partitioning of the
molecular electron densities that the stockholder molecular
fragments, e.g., the optimum, unbiased bonded AIM, result from (1) Nalewajski, R. F.; Parr, R. Qroc. Natl. Acad. Sci. U.S./2000

P C ; ; ; 97, 8879.
the minimization of the information distance between the AIM (2) Shannon, C. FBell System Technol. 1948 27, 379, 623.
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reference. As we have demonstrated in the present work, this1959.

result is independent of the two alternative (Shannon or Fisher) d(é)t ':('é:Fha\i/,v{T- M-:NRath\i(e, Pk- '1'33?0 Concepts in Information Theory
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niently formulqted.m terms of the mte_rfragmem equalization (8) Fisher, R. AProc. Cambridge Philos, S0925 22, 700.
of the aIternaUye indices of the local information content of (9) Pfeiffer, P. EConcepts of Probability Theorpover: New York,
each AIM density component. 1979. _
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reference is natural in chemistry. As explicitly reflected by the ~ (13) Hohenberg, P.; Kohn, \W.964 136, B864.
familiar density difference diagrams, chemistry as the science  (14) Par, R. G.; Yang, WDensity Functional Theory of Atoms and

f chemical bonds indeed deal ith t it £ tit t Molecules Oxford: New York, 1989.
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