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The pendulum is the simplest zero-order model for an isomerizing vibrational mode (one which passes through
a saddle point). We utilize the classical action/angle theory of the pendulum, for which new results are given
in the appendix, to determine generic scaling laws between the quantum mechanical pendulum eigenvalue
distribution and the coupling matrix elements. These scaling rules are more appropriate for isomerizing
vibrational modes than are the usual harmonic oscillator scaling rules, encoded in traditional spectroscopic
effective Hamiltonians, which break down catastrophically at a saddle point. As a simple example of resonant
quantum dynamics in the vicinity of a saddle point, we analyze a system consisting of a pendulum model for
bend/internal rotor motion, anharmonically coupled to a stretching harmonic oscillator, in qualitative agreement
with the known dynamics of HCP. The dominance of just two of the infinite number of resonances, 2:1 and
4:1, at all energies including that of the saddle point, is related to the scaling properties of the zero-order
pendulum model.

I. Introduction Hamiltonians and those based on, e.g., SU(2) algebras, is the
. N precise scaling of the matrix elements. In an anharmonic
The most common effective Hamiltonian models for molec- algebraic model, there is still a Dunham-like expansion (in

ular vibrations are expressed in terms of harmonic oscillator ~z«imir operators) for the diagonal matrix elements, but the
shift operators for the various (normal or local mode) vibrational |,\vest order terms implicitly include effects of anharmonicity

degrees of freedom. That is, the harmonic oscillator is taken as,;nich are only accounted for at higher order in models based
the zero-order model, and anharmonicities are accounted for,, the harmonic oscillator. Similar differences also occur in
by (1) Dunham-type expansions for the zero-order energies e gealing of the off-diagonal matrix elements; that is, the
(diagonal matrix elements) and (2) various anharmonic vibra- gcajing of the off-diagonal matrix elements is also dictated by

tional resonances, also expressed in terms of the shift operatorsyye nderlying vibron model consistent with the SU(2) algebra.
which couple the vibrational modes. In practice, such effective Neither the harmonic oscillator nor the Morse oscillator

Fzmlg&rnglrgggfls 2Lerfiscléa(l)|¥sdueéi“c/ﬁe(:1tbgg:ﬁ;; tvi\;OaTZitIg(l))cli:. provides an adequate zero-order model for vibrational dynamics
P 9y y ' in the vicinity of a saddle point. Effective Hamiltonian models

then pgrturbation theory (a serie_s of successive un.itary trans'based on harmonic or anharmonic oscillators can, of course,
formqﬂons) can l?e used to derive a (generally high order) successfully reproduce vibrational energetics/dynamics below
effective Hamiltonian from the surface (e.g., refs 1 and 2). More a saddle point, and even above for those states which have

commonly, the parameters are fitted directly to experimental negligible isomerizing charact&®.However, as explored here

or theoretical data. In this case, the parameters cannot beyq iy previous publicatiorfs!® these models fail catastrophi-
rigorously related to terms in the potential surface (i.e., they

have no simple physical interpretation by themselves, although cally for vibrational dynamics/eigenstates that probe the vicinity

together they have predictive power), and, importantly in the of a saddle point. This paper focuses on the scaling of
co?next of th%/s a erp the ararﬁeters included Iion the myodel areoff-diagonal malrix elements in systems with a saddle point,

paper, P . which we demonstrate cannot be adequately reproduced, in a
generally chosen without regard to consistency between the

) . . global sense, by effective Hamiltonian models based on har-
zeroth-order (diagonal) and coupling (off-diagonal) constants. monic or anharmonic oscillators. This breakdown is most evi-

The harmonic oscillator is not the only possible_choice c_)f dent at energies near or above that of the saddle point, but
the zero-order model. Efforts have been made to derive effective harmonically coupled anharmonic oscillator models (the most

Hamiltonian models, based on Lie algebras, which implicitly common form for effective Hamiltonians) are also demonstrated
use the Morse oscillator as a zero-order model (see, e.g., refgg pe inadequate well below the saddle-point energy.
3—6). These models, at least for certain molecules/vibrational The focal point of this paper is a derivation of the scaling

deeF' are more quickly convergent; that is, they can, N les that are appropriate for a zero-order pendulum model, i.e.,
principle, provide more compact, physical models. In practical for motion in a simple sinusoidal potentis{1 — cosA). This

application, the primary difference between traditional effective is one of the simplest models to explicitly include a local
maximum and is particularly relevant to systems which can
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expressed analytically, as demonstrated in the appendix. We
say zero order because, just as no bond stretch in a real molecule
is perfectly represented by a harmonic or even a Morse
oscillator, neither is any real bond-breaking internal rotation, Where6; and 6, are the classical turning points. It is readily
even in small molecules with simple potential surface topologies Verified that the correspondence

such as HCP! adequately represented by a simple pendulum.
Our emphasis, however, is on generic features of the scaling J,=(+1h 3)

rules of systems with saddle points and the limitations of .

harmonic oscillator-based models for representing these systemsl.:’et"veen action and quantum number for a doubly degenerate

; illator leads to a scaling law between the quantum number
Furthermore, the approach we take, being based on fundamenta?>C¢!
principles of semiclassical mechanics, is general, and it will be and the reduced energy= E/B (see eqs A42 and AS1)

1 1 0,
J=£5‘p@ do ==, VI[2E — B(1 — cos0)] do (2)

clear that the precise scaling rules for more complicated systems (v + LA
can be derived in a similar manner (one possible approach is to ——=1(¢) (4)
represent more complicated isomerization potentials as super- v2IB

ositions of simple pendula). . . .
P pe P ) The precise functional form of(¢) need not concern this

We wish to note briefly that, although we focus on isomer- di on. but it . d di f ellinti
izing systems, the scaling rules derived are also applicable to. Iscussion, butitis monotonic and expressed in terms of elliptic

non-bond-breaking internal rotations, such as those of methyl mtegrals.dConverser, the reduced energy levels may be
groups. We do not anticipate that the results will be as useful expressed as

in that context, however, because of the small number of (v + D
guantum levels with energies below the barrier to internal Ev:_”: h —] (5)
rotation. On the other hand, for bond-breaking internal rotor B ~/2IB

systems, the number of vibrational quantum states below the ] ) )

saddle point will generally be quite large, and a primary ex- w_here h_|s_ the inverse function td(e). It also follows by _
perimental and theoretical challenge is the detection of signaturedifferentiation of eq 4 that the local quantum level separation
of the isomerization within complex, congested spectra. This May be approximated in terms of the local classical frequency
paper lays the groundwork for the development of effective IN the form

Hamiltonian models that are appropriate to describe spectro-

scopic patterns ma(king the tran.sition from purely vibrational l(Ey+l —E, ) =ho(e=h \/E[f 1 (6)
motion to hindered internal rotation. 2 2

The shape of this classical frequency profile, with its charac-
teristic “Dixon dip™?2 in Figure 1a, is central to the resonance
The pendulum is amenable to an exact transformation to discussion. The agreement between the classical curve and dots
action/angle variables, from which, using standard principles marking the quantum level separations (using the parameters
of quantum-classical correspondence, various scaling propertiesiefined in section 1ll) confirms the accuracy of the cor-
may be deduced, both for the eigenvalue spectrum and for therespondence implied by eq 6, with the important proviso that
coupling matrix elements. Mathematical details are given in the the classical frequency falls to zero Bt= B, whereas the
appendix. Certain portions of this derivation are familiar and quantum level spacing remains finite. The semiclassical theory
are repeated for completeness; however, the expressions fobf such barrier-related corrections may be found in section 3.3
Fourier components in classical angle variables, which dictate of the text by Childt3
the quantum off-diagonal matrix element scaling, are notreadily ~ Next, the Heisenberg correspondence between matrix ele-
available elsewhere. ments and classical Fourier componéhtsn be used to assess
The results in the appendix apply to the spherical pendulum, the magnitude and energy dependence of the coupling strength
which is free to rotate on the surface of a sphere under the at different orders. To take a familiar example, the semiclassical

II. Action/Angle Representation of the Pendulum

classical Hamiltonian equivalent of the harmonic oscillator creation operator is given
13
1 Py’ 0 Y
H=2{p,+—2—|+Bsif2 1) ‘
2\ " sirt g 2 al=-1(q—ip) =4/v+1e" 7)
V2 2

where p; is the angular momentum about tkeaxis, | is a ) ] ) )
moment of inertia, and is the maximal potential energy. Here ~Wherea is the relevant classical angle variable. The generic
in the main text we restrict our attention to the special case of form of the semiclassical wave function

ps = 0, for which the pendulum swings in a plane, but details 1
of the angle/action theory differ little witp,. Moreover, the Yy, =——=—e" (8)
general case is relevant to isomerization-type motions in, for varn

example, HCP and acetylene, which contain doubly degenerate -
bending vibrational modes that play a critical role in the therefore implies that
isomerization dynamics of each molecule. In such systems, there 1 1.
is an additional scaling of the matrix elements with the value  [7/|a'|s0= _fz”” 7+ 2d—v e g0 — /[, F 10, 4
of the vibrational angular momentupy, the form of which 21/ 0 2 ' ©)
can readily be deduced from the results in the appendix, but
we do not discuss this scaling further. after evaluatingy as the average of andv + 1.
Turning to the planar case, the action, which is the classical The same idea transfers to the present more complicated
equivalent of a quantum number, is defined as problem, although, becaugkis a cyclic variable, it is most
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Figure 1. (a) Classical frequency and quantum energy level spacings Figure 2. Planar pendulum scaling rules for classical or quantum

for the zero-order pendulum model. Thealues are scaled such that  resonances. The solid lines are @s obtained from Fourier expansion

the classical frequency approaches 1.@ as 0. The quantum energy  of the classical angles. The dots are the corresponding quantum matrix

levels are calculated using the parameters defined in section Ill. (b) elements. The dashed lines indicate linear and quadratic series expan-

Bifurcation diagram illustrating the frequencies of periodic orbits of sions for theC, coefficients. The linear approximation, which would

the system defined in eqs +25. Resonances occur as the pendulum be encoded in a harmonically coupled anharmonic oscillator model, is

frequency passes through integer ratios with the fixed stretch frequency,totally inadequate, while the quadratic approximation is reasonable

hws = 9. for € < 0.75. However, no series expansion can represent the cusps at
e=1.

appropriate to express the quantities of interest in terms of

trigonometric functions of). For example, it is shown in the @& model Hamiltonian of the form

appendix that H=H,+ H, + H, (12)
Sito= S C (€) cos a (10) hos 5, 2
P H,= (02 + ) (13)
wheree is the reduced energy and expressions for the coef- _ Ffd_2+ B 'rFQ 14
ficients Cy,(e) (once again expressed in terms of elliptic b™ 9 d6? Sl 2 (14)
integrals) are given by eqs A3A36. It follows that
H,. = Vg sin’ 6 (15)

. 1

e y|sm2 Blv —ul= 2(1 " é”O)CZM(GU) ) This Hamiltonian represents a pendulum which is periodically
. . - “kicked” by coupling to a harmonic oscillator. Such systems
Comparison between the dots and solid lines in Figure 2 o6 peen widely studied in the context of classical chaéfs;
demonstrates the remarkable accuracy ,Of the apovs COgyr central concern is the scaling of the Hamiltonian matrix
respondence, apart from some minor discrepancies in thegiements and the relationship of this scaling to vibrational
immediate vicinity ofe = 1. Not only are the relative magnitudes 4y amics; including classical chaos. This Hamiltonian differs
of different types of matrix elements clearly displayed but the 4 5 conventional resonance Hamiltonian by inclusion of the
classical curves are also universal functions of the red”CEd“pendulum" term designed to produce a saddle poirtt at .
energy, applicable to any pendulum Hamiltonian. Different gecong, the coupling term employs a properly periodic trigo-
parameter setB and| simply determine the positions of the g netric term in place of the more usual combinations of
quantum mechanical reduced energy Ieve,lsThus, €q 11 . harmonic oscillator creation and annihilation operators.
provides an example of the scaling associated with matrix 1 provide a concrete example of the relevance of this
elements _of the_ pendulum_ eigenstat_es; expressions for matrixyy s miltonian to molecular systems, HCP has a saddle point on
elements involving other trigonometric functions®tan also i ground electronic state surface at the linear configuration
be derived. The dashed lines, which follow power series of ~py @ = ) with an energy of roughl = 27 000 cm. The
different orders for th&, coefficients, will be discussed at the bend mode, at energie€ > B becomes a hindered internal
end of section IlI, in the context of the limitations of effective .- 1ode in which the hydrogen “orbits” around the CP core,
Hamiltonian models for reproducing the pendulum scaling rules. breaking/forming bonds to C and P in the process. Thus, we
For now, we note simply that no power series can reproduce |gpe| the pendulum mode in our model b for “bending”, although
the cusplike changes arouad= 1. this is only an appropriate label & < B. The harmonic
oscillator mode in the model, s, would in this context represent
the CP stretch in HCP, which is strongly coupled to the bend/
internal rotor mode. Although HCP inspired this model, no effort

To provide a practical demonstration of how the results in is made to model the behavior of any particular molecule. For
section Il can be used to dictate the scaling rules for a quantumthe purposes of illustration, the following parameter values
mechanical effective Hamiltonian, we consider in this section (expressed in scaled energy units) will be employBds= 100,

Ill. Pendulum-Based Scaling Rules in Practice: A Simple
Example
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hws = 9, A%/2l = 0.5, andV' = —3. These parameters lead to
a small-amplitude bending quantufizy, = 5, which is slightly
larger than half the stretching quantufiys = 9, and to a
bending quantum number of roughly 25 at the barrier maximum.

The simplicity of the model allows ready diagonalization in
a harmonic oscillator (stretch), spherical harmonic (bend/internal
rotor) product basis set. However, we have carried out these
“exact” quantum calculations primarily to validate our other
results, because we have demonstrated in section Il that
analytical scaling rules reproduce with excellent precision the
relevant matrix elements in a product basis set that employs
the pendulum eigenstates for the bend/internal rotor mode. The
classical mechanics can readily be solved by integrating
Newton’s equations of mation (in either the position/momentum
or action/angle representations), and periodic orbits, as well as -0.6 T T
classical chaos, can be identified with the aid of surfaces of the 0 100 200 300
section in ref 9.

As can be seen in Figure 1a, the pendulum frequency tunesFigure 3. (Upper) Energy errors resulting from including only the
downward through integral fractions of the stretching frequency ,[2'1 matrix elements in the quantum Hamiltonian. (Lower) Same as
as ¢ — 1 and then upward through the same resonance
conditions at higher energies, an important feature that is
underlined by the classical periodic orbit bifurcation diagram to the 2:1 resonance formu( is a positive integer) would
shown in Figure 1b. This latter diagram, taken from an earlier involve diagonalization in the product basisJu,Csuch that
fully coupled classical study of the same mo#lelearly shows
the sequential onset and persistence of 2:1, 4:1, and 6:1 (He+ Hy)lv =
resonances as the energy increases, although there are an infinite
number of resonances (which cannot be fully depicted on the
diagram) ate > B. However, the 2:1 resonance dominates the
dynamics until the energy almost reaches the saddle point, for N, = 2uvg+ v, = constant (17)
two reasons. First, the scaling of the zero-order pendulum
frequency is such that it decreases relatively slowly and quasi- Greater accuracy can, however, be obtained by including the
linearly at energies up to~ 0.75 and thus remains in a nearly relatively large diagonal matrix elemeni&,|sir? 6|up0in the
2:1 frequency ratio with the stretch. Second, as can be seen inzeroth-order Hamiltonian, because the mean Hamiltonian in a
Figure 2, the magnitude of the 2:1 resonance strength is given pendulum statépOreduces to the displaced harmonic
predicted to be larger than that of any other resonance ép to oscillator form
~ 0.75.

- : . S hw hw

At energies where the single (2:1) resonance approximation s 2 0 2 "Ys o, 2
holds, an approximately conservedlyadquantum numbér-18 el Hlvp= B, + 2 {ps o+ a'wp)] 2 a'(z)
can be defined all, = vy + 2ug this type of approximation is (18)
well established for HCP and many other small molecules. The \yhere
breakdown of this approximation, considered in detail else-
wheré and in summary here, is less well understood but is very V'Dl}blsinz 6|v,0
closely related to the scaling rules under consideration. The qo(vb) :h— (29)
breakdown in the single-resonance approximation occurs rapidly Ws
askE — B, again for two reasons. First, the pendulum frequency
begins to drop increasingly quickly. Second, the strength of the
2:1 resonance passes through zero, at roughly the same ben
energy € ~ 0.8) at which the 4:1 resonance strength passes . 0
through a maximum. Moreover, the 4:1 resonance cannot be Glvg vpl= w”s[qs+ q ()] (20)
ignored at any higher energy, particularly becauseliet
2|sir? 0|v, — 20matrix element in Figure 2 remains finite at all
€ > 1.

The importance of the higher order resonances is less clear.
The scaling rules illustrated in Figure 2 suggest that the strength 1 haw, 0, 2
of these high-order resonances, except at bend energies very s vplHedvs o= (Us + é)hws"' E,~ 5 d) (21)
near that of the saddle point, are substantially less than those
of the 2:1 and 4:1 resonances. In addition, comparison betweenwhile the off-diagonal terms are given by
parts a and b of Figure 1 shows that the minimum quantum
level spacing is well above the 6:1 energy quantai = hwd/6 s — 1, vy + ulHJvg v, — ul=
=15 o o ' ' V', — 1; v, + pladvg v, — w0y, + ulsir® 0]y, — u0(22)

To quantitatively assess these predictions, we investigate
single- and multiple-resonance approximations to the full in which the gs matrix element is taken between displaced
Hamiltonian, which contains an, in principle, infinite number harmonic oscillator functions. The upper panel of Figure 3 show
of resonances. The simplest reduction of the model Hamiltonian the discrepancies between the lowest 591 converged eigenvalues

he upper panel, except that both 4:1 and 2:1 matrix elements are
retained.

(us + %)hws +E, | ludl,0 (16)

subject to the polyad constraint

The eigenfunctions ofdy|H|vyare, therefore, parametrically
8ependent oy

wherey,(qgs) is the scaled harmonic oscillator function. The
diagonal matrix elements of the resonance Hamiltonian are,
therefore, given by



2838 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Jacobson and Child

of the full model (all of those withiE < 3B) and those derived  the saddle point, but the frequency associated with the poly-
from the 2:1 resonance Hamiltonian of eqs 21 and 22. It is nomial expansion will diverge to positive or negative infinity
evident that inclusion of the single 2:1 resonance accurately ase — 1, as the high-order terms begin to domin&te.
reproduces the spectrum at energies in the ré&geB = 100; A similar situation holds for the off-diagonal matrix elements.
the root-mean-square (rms) error of the 67 levels in this range The “cusps” in the magnitude of the matrix elements at 1
is 0.014. The level of agreement far> B = 100 is, however, (Figure 2) clearly cannot be accommodated by a polynomial
markedly inferior; the rms error of all states on the plotis 0.15. expansion. Moreover, the nonlinearity of the resonance strength
This observation is consistent with the discussion around Figureat E < B is often neglected entirely, as in the common
1, which shows that the single 2:1 resonance strongly dominates‘harmonically coupled anharmonic oscillator” models (even
at e < 1 but that the 4:1 resonance is nonnegligible at all when nonlinearity is included, consistency between the scaling
energies withe > 1. The lower panel shows that the inclusion of the resonance strength and the zero-order energies is seldom
of both the 2:1 and 4:1 resonance terms removes a large fractiorconsidered). To take a concrete example, the 2:1 resonance
of the remaining errors. As many as 91% of the total of 591 matrix elements in our model are scaled according to
eigenvalues belovie = 3B are now reproduced with an error
of less than 0.1. The remaining errors, which are generally quite W, —1,y,+ 1jq sin? Olvg, v, — 1) O «/;scz(fvb) (23)
small but increase with increasing energy, are accounted for
collectively by the 6:1 and higher order resonances. The overall with the form ofC, shown in Figure 2. By contrast, the simplest
picture that arises is that the 2:1 resonance dominates at allparametrization of the 2:1 resonance in a harmonic oscillator
energies, but the 4:1 resonance cannot be ignored at energiegffective Hamiltonian would be
near and above that of the saddle point; higher order resonances
play a relat|\{ely m|n9r role. _ G, — 1, v, + 1|ésag églvs, v, — 100 m (24)
We note in passing that the presence of multiple (here
primarily two) interacting resonances at energies above the In other words, the 2:1 resonance in the harmonic approximation
saddle point is essential for any theory of “isomerization” scales linearly with the quantum numbes, whereas the
between bending states with exponentially low amplitudes at pendulum scaling is highly nonlinear, evenet< 0.5. The
the saddle point and rotating states that circle through it. At nonlinearity can be partially reproduced in the effective Hamil-
least in a classical sense, the validity of a single-resonance modetonian by a more complex scaling of the form-181v, + Sovp?
restricts the classical dynamics to regular motion in a two- + ) /Usyb(yb+1) (that is, by introducing an expansion in the
dimensional phase space, in which case the isomerization couldhumber operators for the vibrational modes). However, any type
occur only by dynamical tunneling. The simultaneous action of series expansion, such as those represented by the dashed
of two or more resonances is essential for RRKM-like chaotic |ines in Figure 2 (see eq A46), will break down in the same
energy transfer between the two types of motion. Work is in manner as the Dunham expansionlfag> 1. In contrast, we
hand to assess such effects within the present 2:1 plus 4:1pelieve that the use of pendulum-based scaling rules can help
coupling model. to ensure consistency between the diagonal and off-diagonal
We wish to conclude this section with a brief discussion of matrix elements in systems with saddle points and permit the
the extent to which our model system, and real molecular description of states with “isomerization character” within an
isomerizing systems, can be represented by traditional harmoniceffective Hamiltonian framework. Comments on the practical
oscillator effective Hamiltonian models. That is, although the application of this method are provided in the discussion below.
scaling rules that we have derived for the pendulum are, by
design, exact for the model Hamiltonian, real molecular systems IV. Discussion
with saddle points have been adequately described by traditional \ye turn now to the implications of these results for the

effective Hamiltonian models with polyad quantum numbers, jnterpretation of molecular spectra, at energies near and above
at energies below and even above that of the saddle point (€.9.q saddle point, or indeed for analysis of the accurate quantum
in acetylen&?). The first critical point is that_ the_key parameter dynamics on ab initio potential energy surfaces. The present
for the breakdown of polyad effective Hamiltonians for describ-  qqel itself is clearly oversimplified for any specific application,
ing systems with saddle points is not the total energy but the pyt it does point to the advantages of identifying an accurate
amount of energy in the isomerizing mode. That is, as discussedzeroth-order part of any effective spectroscopic Hamiltonian,
in detail in ref 9, states with vibrational excitation primarily in  gq that the dependence of the coupling terms on the energy or
modes orthogonal to the isomerizing mode can continue to beqwjmtum number can be properly related to the appropriate
adeqL!ater described by harmon_ic oscillator models, even atzeroth-order states. One approach that we have explored
energies far above the saddle point. elsewher® is to combine information from the diagonal parts
The second critical point is that effective Hamiltonian models, of a conventional low-energy effective Hamiltonian, with ab
in addition to incorporating only the most important of the initio information on the saddle-point region to produce a more
generally infinite number of resonances (which we have shown realistic bending/rotating Hamiltonian form; a variant of the
above is appropriate for most states of the model system at alldiatomic molecule RKR methégélproved useful in this context.
energies), represemolynomial approximationso the proper The relevant zeroth-order states can be obtained quantum
scaling rules, such as those which we have derived for the mechanically, and the fitting problem reduces to determination
pendulum. The standard Dunham-type, polynomial expansionof the coupling functions or operators and possibly the
in the vibrational quanta provides a flexible parametrization for coordinate dependence of effective masses in the sy$tem.
the diagonal matrix elements of the effective Hamiltonian.  Another approach is to recognize that the pendulum model
However, such an expansion is, of course, fundamentally embodies the essential physics of the problem but to realize
incapable of reproducing the Dixon dip in the frequency of that the zeroth-order bending/rotating eigenvalues will not
pendulum-like modes. A sufficiently high order Dunham precisely follow the form in eq 4, witlfi(¢) derived from eqs
expansion can reproduce the frequency of the pendulum belowA42 and A51. One might, however, assume that the reduced
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energy scaling between the level spacing distributian(e)
and the Fourier componer®s,(¢) remains approximately valid.
The fitting problem would then reduce to estimation of the
barrier heighB and the modified pendulum eigenvalue distribu-

tion E,,. The predicted existence of a single dominant resonance
at energies below the saddle point suggests that a 2:1 polyad

analysis would yield information that could be extrapolated to
higher energies, by either of the above techniques.
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Appendix: Angle/Action Variables for the Spherical
Pendulum

Some relatively familiar materitflis repeated for complete-
ness, but the Fourier series for %ihin terms of the classical
angle variable are not readily available elsewhere.

A.1. Classical Actions and FrequencyThe action variables
for the spherical pendulum Hamiltonian

(pg +% +Bsirt S (A1)

are given, together with their quantum number equivalents, by

1
J,=mh=_—fp,dp =p, (A2)
1 1
‘]0 = (ne + é)h = E}{pe do =
o \/ZI(E - Bsinzg) Sin? 6 — P2
2
nﬁh sin@ do (A3)

wheref; and6, are the classical turning points. For reasons of
space, results are restricteddjp= mh = 0 and reference td,
andmwill be suppressed, but the method of derivation is readily
extended to nonzero.
Equations A2 and A3 determine the action for the individual
6 and ¢ motions, but it is convenient, for comparison with
standard vibrational theory, to employ the composite action
J,=(+1Dh=2],+ |3, (A4)
in place of Jy, in which casev reduces to the degenerate
harmonic oscillator quantum number in the linkt< B, for
which small-angle approximations are appropriate in eq Al.
Returning to the classical theory, eqs-A24 imply an angle/
action Hamiltonian of the form

E=H(Q,) (A5)

with frequency

w, = dH/3J, (A6)

The manipulations that follow are conveniently simplified
by introduction of the dimensionless quantities

2E8 b2=h_2

- B B (A7)

It is also convenient to define
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Z=cos6 (A8)
@t2(-2)=@z-22-2)2-2) (A9
c=—2 (A10)
44
where the rootg, are ordered ag > z > z.
One then finds by the use of standard tatfié%that
u+l=% ZZ1 (a+2dz
7 Nz~ 22— )z z)
2
= 2@ - ZEQ + @+ ZKE]  (ALD)

while the inverse of the quantum level spacing is given by

(% Vﬁ[Ja aaj@@—@

2c

K(k) (A12)

The functionsK(k) andE(k) in these expressions are complete
elliptic integrals of the first and second kinds, respectively, with
argument

(A13)

Thus, the ordering conventian > z, > z3 restrictsk to the
range 0< k < 1. Readers should note that Abramowitz and
Stegur! employ a variablam in place of the presené.

The convenience of this formulation is that eqs AK13
apply at all energies, although the following change in the root
positions

(z,2,25=(1,—a —1) E<B

=(1,-1,-a) E>B (A14)

alters the physical significance of the results, which are explored
in section A.3. Moreover, extension to nonzero valuesnof
involves two relatively minor changes. An additional term in
eq A9 shifts the position of the roots, and a further term
(expressible in terms of elliptic integrals of the third kind)
appears in eq Al1l.

A.2. Classical Angle and Fourier Components.Turning
from action to angle, the conjugate variableJois given by
the partial derivative of the generating functiéf?

S35 = [, PIHE,3,).3,61d0 + [73,dp (A15)

Thus, following the notation of Child to avoid confusion with
the spherical polar variables
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_3S_ l(aH) 0 sinf do
o,= ==
3J, J; 3, j;)l\/ (a+ cos6) sirf § — n’b?
= \/T(BH)I dz
V@& - 2E-2)2-2)
= ol )ors #
where
sirf = —— (A17)

_22

and F(y,k) is an incomplete elliptic function of the first
kind.19-2t

The next step is to use eq A16 to obtain Fourier expansions

in o, for trigonometric functions of the polar angle The most

Jacobson and Child

to be evaluated by the residue theorem. The contour is taken
around the unit cell, with corners2K, 2K, 2K + 2iK’, and
—2K + 2iK" slightly displaced to the right in order to enclose
the pole at K + iK'. The periodicity of snf) ensures that the
first and third segments of the contour integral differ by a factor
—¢@, while the second and fourth segments cancel. Hence, by
the residue theoreth

@a-q) f 'Z(Ksrf‘(u) " du =
27 [RY(K") + R¥Y(2K + iK')] (A25)

where RX(iK"), etc., denotes the residue akth-order pole.
One finds from eq A22 for the specific cades 2 andk = 4
that

v

2k2Kq

v/2

RA(K) = (—1)RP(2K +iK') = (A26)

convenient approach involves the use of Jacobian elliptic RY(K") = (—1)R¥(2K + iK') =

functions sng,k), cnu,k), etc1®2! Note first that the above
integrals over can be elegantly reduced to the formulas given
above, by means of the substitution

z, — 2,)SI(U,K)

together with the properties of the elliptic functions sk,
cn(u,k), and dn(,k)1°-21 and the identities

u=F(yk =

where the latter arise from the combination of eqs A12 and A16.
The function sng,k) itself has the known Fourier series

cosd=z=1z —( (A18)

20, K(K)/7 (A19)

o m+1/2

q

snu,k) = EZ& S|n(2m + 1)— (A20)
g™

2K(K)

where

K=vV1-K

and the argument that follows extends the derivation of this
result given by Whittaker and WatséhThe essential points
are that sn{,k) is doubly periodic in the complex variable

with periods &(k) and 2K'(K), whereK'(k) = K(v'1—k?), and
that sn(,k) has poles aiK'(k) andiK'(k) + 2K (k) [mod 4K(K),
2iK'(K)], around which it varies &3

q= exp~aK(K)/KK), (A21)

1 1+1—gk2

u? + Oo(uh)
(A22)

snu+iK') = —snu+2K+iK") =

The dependence of ank), K(k), andK'(k) onk is dropped in

eq A22 and subsequent equations for notational convenience:

The aim is to obtain a Fourier series for powers otgni/hich
are expressed in the form

sri(u) = (A23)

z f(Vk) o iuTi2K

y=—00
in which case the above properties ofigrdllow the coefficients

0 —

¢ 4K ZKSH((U) *IVUT[/ZK dU

(A24)

v

Tadk qV/2[4(1+ K2) — I (A27)

The factors 1)" in eqs A26 and A27 ensure thif[) andf(f)
vanish for oddv, while the factorv(q’2 — q=/2) implied by
egs A25-A27 means that® = ¥ for v = 0 andk = 2 or 4.
Consequently, $u,k) and sH(u,k) have the following cosine
series in the angle, = un/2K

srf(u,k) = iA(zf)(k) cos 2i0. (A28)

=
sri(u,k) = i M(K) cos (A29)

=

where
APk 2 u
Az (K) = szz(k) = u=0 (A30)
2_2
RGO = kz)—ll}(—qu‘_ll—,,,y u#0

(A31)

The coefficientsA?) and A", which are undetermined by the
above argument, may be obtained by direct integrafion.

@y — L K -1 _
Ao (k) =5 J, srf(u) du K (k)[K(k) ER] (A32)
A(K) = 7 j) sri'(u) du = (k)[(z + A)K(K) —

2(1+ KBEK)] (A33)

The practical consequence of these results, for the present
theory, is that

sinf 6 = iczﬂ(e) cos i (A34)
£

wheree = E/B and
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C(e 1— 23+ 272 (z. — 2)AP(K — 2)2A¥ (K Above barrier case ¢ > 1. The corresponding expressions
ol€) = 1) (2~ Z)Ag (k) 2 ACZA(3)5) at energies above the barrier are as follows:
2,2,2)=(1,-1,1— 2¢ A49
Ca) =222, ~ A — (2~ AW, wz (71222 = U
K=¢et (A50)
Equations A18 and A36A33 have been used to obtain these
results. Expressions fdt, z, andz in terms of the reduced YNGR
energye are given form = 0 in the following section. Equations v+1= R € E(e 2) (A51)
A34—A36 also apply to nonzero angular momentgprovided
that the roots{z} and hencek are derived from a suitably o
modified version of eq A9. (E) _ ﬂh € (A52)
A.3. Explicit Results. To make the theory explicit, the dvfm b= I K(e 1/2)
working formulas may be expressed as functions of the reduced
energy,e = E/B. Different expressions apply far < 1 ande . T 2 _ ol
> 1, because of the changes in assignedhlues given by eq Sin’ 6 =1 [1 ZSrf(u)] 4[sr|2(u) sn(u)]  (AS3)
A13. Useful limiting expressions for the Fourier coefficients, 1 3 3
Cau(€), may also be obtained with the help of the following Co=s—ro 2— e ® (A54)
seriesto-21 2 256 256
1 4 1225 Ll 7 2, 39 s
KK =3(1+3 R ) (a37) Co=ge "5t F ook (A55)
E(K) = E(1 Lo 34 Sue 175 20 ) (A38) Co=—syto2p 1o (A56)
2 4 64 25 1638 2 32 32
K K2 . (k|4 Ko 14 i 12 73 -3
q(K) :E[H 2(1) + 15(2) + 15({2) + ] (A39) Co=~g 16 2048 (AS7)

Below the Barrier Case: < 1. The following identities apply
at energies below the barrier
(1,1—2¢ 1)

(z,2,2) = (A40)

(A41)

4@ 1/2)

— K] (A42)

(aE)m= - _ah 1 (A43)

2 | K(€1/2)
Similarly, it follows from eq A15 that

sif 6 = 1 — [1 — 2esrf(u)]? = 4e[srP(u) — esr'(U)] (A44)
from which, with the help of eqs A28A36,

Co —2€—§€2—163
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