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Vibrations, Tunneling, and Transition Dipole Moments in the Water Dimer
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The wave functions of the dimers {8), and (D;O), computed earlier [Groenenboom et &l.Chem. Phys.

200Q 113 6702] are analyzed. Their tunneling and vibrational behavior is inspected and compared with
earlier experimental assignments of the tunneling and vibrational modes. The transition dipole moments between
different vibration-rotation—tunneling states are computed, and suggestions are made for possible spectroscopic
observations of new far-infrared lines. A group-theoretical analysis shows that only the statesyaimetry

of the water dimer have a permanent dipole moment. A model is presented which relates the values of the
parallel transition dipole moments associated with tunneling between statélé arid Bli symmetry and
between states of, andB, symmetry to the permanent dipole moment of Eiestates.

1. Introduction vibrational-rotationat-tunneling (VRT) levels and spectra of
the dimef®2'this potential produced good agreement with the
experimental data. Subsequently, we used one of the experi-
mentally observed level splittings to tune some of the parameters
in this potential, then referred to as SAPT-5st. Comparison with
high-resolution microwave da&#?’ and the extensive far-
infrared data from the Berkeley grot¥p3* has shown that this
SAPT-5st potential is far better in its description of dimer spectra
than any of the empirical effective potentials. It is also much
better than earlier ab initio potentials and it is even somewhat
better than the recent VRT(ASRV) potential of Fellers et &
The latter is derived from the ASPN potential of Millot and
Stone® Fellers et al. fitted some of the parameters in this
potential to a large number of transitions in the experimental
VRT spectra. When supplemented with ab initio calculated
three-body interactions, the SAPT-5st potential nicely repro-
duced?® the experimental water trimer spectra as well. All of
the results described in the present work are based on the SAPT-
5st potential.

Previously, we computed the ground-state tunneling levels
of (H20), and (D:0), with energies up to 20 cnt above the

applicability is much wider than that of any of the earlier effec- ground state. The splittings of these energy Ieyels are cgused
by the fact that the corresponding wave functions are linear

tive pair potentials, even the TIP5P potential shows the limitation M - . g . ) )
of such potentials. So, there is still quite some interest in the _comblnatlons_ of functions localized in the elght equivalent min-
study of water pair potentials. The best testing ground for the ima of the dimer. Or, stated somewhat differently, they are

quality of such potentials is formed by the spectra of the dimer. caused.by the Funnelmg of the system through the barriers
In earlier paper&®1°we discussed several representations of separating the eight minima. We also calculated energy levels

i i i 1
a water pair potential obtained from symmetry adapted perturba—"’mCI wave functions n th? region 5200 cm _above t_he_
tion theory (SAPT) calculations on the dimer. The bestdise ground state. These yield intermolecular vibrational excitation

a site—site fit of the ab initio SAPT potential, called SAPT-5s, e'ner.gieséhwkllich lvve compargql Witn expe(rjir?r? ntal result;. In ats-
with eight sites per molecule, five of which are symmetry- skl]gnlngd ebevse S'kV\f pro(;nsmna KétggTh' € nameslglven 0
distinct. It is based on rigid monomers in their vibrationally the modes by Saykally and co-wor - This nomenclature

averaged ground-state geometry. In a computation of the V&S first introduced in 1984 by Reimers and Wé&ttThese
workers considered all internal degrees of freedom and made a

*To whom correspondence should be addressed. E-mail: avda@theochem12-dimensional normal-mode analysis of the dimer. From the
kun.nl. Fax: +31 24 3653041. experimental numbers obtained in Saykally’s group, we know
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Liquid water is the most important biological substance. If
extraterrestrial life resembles that on Earth it will definitely
require liquid watet. This is why the recent discoveryof
sources of liquid water beneath the surface of Mars has drawn
worldwide attention. See refs 3 and 4 for further reviews of
many different aspects of liquid water and see, for instance, ref
5 for a discussiofrfrom a pure physicochemical point of view
of why water is such an intriguing fluid.

Despite the many years of study (see the recent work in refs
6—8), the quantitative statistical thermodynamical theory of
liquid water and ice is still not complete. There are good reasons
to believe that this is due to an insufficient knowledge of the
pair and many-body interactions between water molecules. In
computer simulations of water, it is common to use so-called
effective water pair potentials in which the many-body interac-
tions are implicitly included. However, ab initio calculations
have showfr16that three-body effects are substantial and cannot
accurately be accounted for by effective pair potentials. Very
recently, Mahoney and Jorgen$énbtained a new empirical
pair potential: TIP5P. Although the temperature range of its
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in retrospect that the harmonic frequencies calculated for the TABLE 1. Reference Geometry fag] of Water Monomer.
intermolecular normal modes (ranging from 115 to 782¢m  O—H Distance: 1.8362a,. Angle H—O—H: 104.69

were in the correct energy range. Reimers and Watts did not o) H; H,
present a detailed analysis of the nature of their modes but™ 0.000 00 145365 1.453 65
simply assumed that their modes were pure and were energy 0.000 00 0.000 00 0.000 00
ordered as donor torsion (DT), acceptor wag (AW), acceptor z 0.124 63 —0.997 06 —0.997 06

twist (AT), stretch (S), in-plane-bend (IB), and out-of-plane bend
(OB). The fact that this assignment is oversimplified is already
clear from ref 37, as an improvement of the normal-mode
analysis by the approximate inclusion of anharmonicity gave a O H: Ha . Hs Ha
reordering of the levels. Incidentally, this anharmonicity cor- x —0.10370 0.82960 0.82960 0.109 540.182 91 —1.569 71
rection raised the lower frequencies by about a factor of 3 and, ¥ 0.00000 1.45365-1.45365 0.00000  0.00000  0.000 00
thus, took the calculated levels far outside the correct energy * 546253 608472 608472005945 1.75321-0.80201
range. aUnit: a. First three columns give the hydrogen bond acceptor A,
In this paper, we will first investigate the nature of the the lastthree columns give the donor D, cf. Figure 1.
tunnelings and the intermolecular vibrations. To that end, we
inspect the wave functions obtained in our earlier wdrk. M

TABLE 2: Geometry of Minimum Energy (SAPT-Fifth
Potential)?

Because these wave functions depend on six coordinates, this 8 A A
inspection is highly nontrivial. Our general strategy is to plot A /

cuts through the wave functions with two variables running and R é//o

the other coordinates fixed at values corresponding to the global — W z

energy minimum of the dimer. The pair of running variables is BD \

chosen to describe, as closely as possible, the relevant path on ny D .

the potential energy surface. First, we consider the different
vibrational ground state wave functions, the energies of which Figure 1. Euler angles describing the orientations of the two monomers
are split by tunneling, along different tunneling paths that run in t.he water dimer. The figure on the right is a Newman projection in
from one equivalent minimum to another. Next, we consider Which we look alongR from D to A.
librational/vibrational paths; the corresponding wave functions S . .
are vibrationally excitgd and have oneF:)r mor% nodal planes in vectors in this table W'th the matrik, — R(180.0, 123.69,
addition to the tunneling nodes. By making a 6-dimensional 90.0°), followed by a shit 3'9”9 the-axis over 5.531 6@o.
intermolecular normal-mode analysis on the same SAPT-SstThe latter number is the d|sta_n® be'gween the monomer
potential surface, we can compare the nature of the harmonicCeNters of mass. The dqnor D is obtained from the reference
normal modes with the nature of the modes found from the 9€0MEWYXo by rotation withRp = R(0.0°, 118.49, 0.0°). The
inspection of the exact wave functions. rotation matrices

The second topic treated in this paper is the computation of .
dipole transition F|c)>robabilities. Quaati?ative knowledge of the R(ox. By 7x) = R{GIR(BIRAy,) with X = A, D (1)
intensities of spectral lines is useful for several purposes. In
the first place, it can guide spectroscopists in their search for
new transitions. With not all of the VRT levels having been
determined experimentally yet, we hope that some of the
transitions that we predict to be (weakly) allowed will be
observed in the future. In particular, we wish to point out tha
the K = 0 acceptor tunneling splitting has not been measure
separately. Only the sum & = 0 andK = 1 splittings has
been observed for (#D),, whereas for (PO), the “experimen-
tal” value of theK = 0 splitting is based on the assumpfibn
that the size of this splitting in the ground state is the same as
in the excited state corresponding to the antisymmetrddO
stretch vibration of the acceptor,O monomer. Second, the
line strengths of transitions that are forbidden in the harmonic
approximation gauge the amount of anharmonicity of the
potential. Last, but not least, we note that water dimers may
play a role in atmospheric processes. As was recently
discussed® 43 dimers may be present in sufficient densities in
the earth’s atmosphere to give appreciable absorption of solar
radiation. To model the solar absorption by dimers in the earth’s
atmosphere one must know the dipole transition probabilities.

are in the active Euler convention, see for instance refs 44, 45
for their explicit form. Thus, we obtain the equilibrium dimer
geometry given in Table 2. See Figure 1 for a graphical
illustration of the Euler angles and the equilibrium geometry
t of the dimer. Note that it has reflection symmetry with respect
g to thexzplane, point groufCs.

As we already discussed in the Introduction, several kinds
of motion of a dimer consisting of rigid monomers can be
distinguished. In the first place, the dimer may tunnel between
eight equivalentpermutationally distinetequilibrium struc-
tures. Three different tunneling processes allow the dimer to
interconvert between the minima: acceptor tunneling, denor
acceptor interchange, and bifurcation tunneling. The first
tunneling is an interchange of the acceptor protons, whereas
donor—acceptor interchange and bifurcation tunneling both
involve breaking of the hydrogen bond. These tunnelings are
illustrated in Figure 2, the level splitting pattern caused by these
tunneling processes is shown in Figure 3. The second kind of
dimer motion is the intermolecular vibration, where we distin-
guish six fundamental modes following ref 37. Finally, the dimer
rotates in isotropic space. With respect to rotation the dimer
behaves as a prolate near-symmetric rotor. The rotational

2. Theory and Computational Details quantum numbeK = K, is the projection of the total angular
momentumJ with quantum numbed on the long axis.
The two water monomers have the reference geomégry To describe the symmetry of the dimer, we label the acceptor

given in Table 1. The coordinates of the hydrogen bond acceptorprotons by 1 and 2 and the donor protons by 3 and 4. These
A in the global minimum of the dimer SAPT-5st potential are four protons are identical, as are the two oxygensatd Q.
obtained by left-multiplication of the matriXy of column Not all 4! x 2! permutations are feasible. The permutation
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. 2
2 Acceptor Tunneling H=T,+T,+ 1 [_ tha_ R4+ P +j/2-\B _
/ % 3 D N 2upgR IR
L It _
A 4 @ pg I T V(R Bp v Bar Ve Aa- 0g) (2)

wherewx = (ax, fx, yx) (X € {A, B}) are the Euler angles of
the respective monomers. These Euler angles, the same as those
used in eq (1), are defined with respect to the dimer two-angle
embedded franféobtained by rotating a space-fixed frame over
the polar angles®, ©) of the intermolecular vectdR = Rag

(of length R) connecting the centers of mass of monomers A
and B such that theaxis of the rotated system is aloRy The
operatord is the total angular momenturjys = ja + jg is the
sum of the monomer angular momenta, ang is the dimer
reduced mass. The kinetic energy operator of monomer X is
given by

Figure 2. Three different hydrogen bond rearrangement processes in T =A gx “+ BX(J)BW *+ CX(JEZ ? ®3)
the water dimer which connect the eight equivalent, permutationally
distinct, equilibrium structures: acceptor tunneling with Pl operation with the rotational constant&y, Bx and Cx. The superscript
(12), donor-acceptor interchange tunneling with P1 operationQ@g)- BF (body-fixed) implies here thax, y, and z refer to the
(1423), and bifurcation (or donor) tunneling with Pl operation (12)- components off along the principal axes of monomer*XThe
(34). guantityV is the SAPT-5st potentidk

B A We determine the bound statestbfariationally and expand

EE the wave functions in the basis

A} B;

(Za+ D(Zg + 1)(2 + 1)}
n, I; IM= @ (R) X
2567°

in ie
> Acc. It Bl z A z A D(rk:)kA (0 Dﬂng (@g)* Jamy; JoMelj asKLx
B wn, tun. tun. MA=~Ja M= —Jp

~ D{K(®, ©, 0)* (4)

in which | = {ja, Ka, jg, k&, jas, K}, Oama; jemeljaeKDis a
Clebsch-Gordan coupling coefficient, an®d%), (wx) is a
B Wigner D-function. The basis of eq (4) extends to functions
with ja = jg = 11 inclusive. For the radial basi,(R), we use
a contracted sinc function discrete variable representation
' (DVR).*748 The basis is adapted to the symmetry graBig
Ace.Int. B ' and the eigenvectors of the Hamiltonian are computed separately
e for each irrep. The small, off-diagonal Coriolis coupling is

J=K=0 J=K=1 .
Figure 3. Tunneling splitting pattern of the rovibrational levels of the neglected, which make an exact quantum numbg.

water dimer by the mechanisms shown in Figure 2. Th? components of the dipgle moment operatdiR, wa,
wg) With respect to the body-fixed dimer frame are expanded

inversion (PI) group, which by definition consists of feasible in the basi¢® (L = 1)

permutations only, is generated by (12), (3B = (01 Oy)

(13)(24) andE*. The latter operation is the inversion with B8 (w,, wg) = Mg‘ DA (,)*DEE) (wg)*

respect to the dimer center of mass. This PI group is denoted ro v Be

by Gie. Note, parenthetically, that reflection in the mirror plane [L,M,; LgMg|LKO (5)
of the equilibrium structure is equivalent to (123 (12) E*.

The VRT levels of the water dimer are labeled by the irreducible whereLaMa: LgMg|LkCis a Clebsch-Gordan coefficient and
representations (irreps) @ Ay, Bi, andE*. The acceptor A — {La Lg, L, Ka, Kg}. The dipole then becomes
tunneling motion yields a relatively large splitting between the

Ar, E%, Br, levels on one hand, and tig, E7, B; levels on WEFR wpy wg) = Zdi',:k(R) B, (0 wp) (6)
the other, whereas interchange tunneling yields a smaller

splitting between the respective and B levels @, and B,

etc.), cf. Figure 3. The bifurcation (donor) tunneling causes no wherek = 0O refers to the component parallel to the dirreixis
splitting, but leads to a shift of thE symmetry levels and an  (the vectorR) andk = %1 to the perpendicular components.

opposite shift of the levels o0& andB symmetry. The relation between the SF and BF dipole components is
For the convenience of the reader we summarize briefly how

we obtained the VRT functiors. These functions are eigen- wr = Z (R, 0y, wg) DD, ©, 0)* (7)

functions of the Hamiltonian
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The matrix elements of the dipole moment operat®r are'
mv’ I’, Jv Mr| ‘uiﬂn, I, JMD: (_l)M'+j'A+j'B+j'AB+k’A+kB X

(Y + D@+ 1D)E@'a+1)@'s+1)(Ea+1)(Ze + 1)

DY)

Jr
_M'

17
m M

17

(2'ps T D(@ns+ 1)]”2( c K

Pn Lal
(2L + 1)@, (RIAT(RIP,RH e K Q)
H H 1! i J L |
I'se Lg lg\[l'ae L ias }'A LA }A (8)
—k'B KB kB _Kr k K .'B B .B
) AB L IaB

where the expressions in round and curly brackets paa®9
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latter six are the three Cartesian coordinates of the monomer
center of mass and the three Euler angles describing its
orientation, both with respect to a space-fixed frame. For the
Euler angles, we took the expression for the metric tensor that
can be extracted from the well-known kinetic energy operétor.
To compute the 6<x 6 matrix G we used the Jacobian of the
transformation from those 12 monomer coordinates to the six
dimer coordinates, defined with respect to a body-fixed dimer
frame.

3. Tunneling and Vibrations in the Water Dimer

3.1. Method of Analysis.From here on, we will often refer
to the monomers as D (the hydrogen bond donor) and A (the
acceptor) rather than A and B. The nomenclature of the normal
modes by Reimers and Waitsuggests that a good approxima-

symbols, respectively. If we assume that the transition momentstion to these modes is given by infinitesimal changes in the

are purely determined by the monomers’ dipole moments, the
operatord$, becomes simply

d/B\',:k = 5L505K506LA15LA14“KA + 5LA05KA05L315LBL#KB ©)

independent ok, whereug, = Q¢ and ux, = Qc_ are the

components of the permanent dipoles on the monomers,

expressed in the monomer frames. For the dipole moment

induced on monomer A by the permanent multipole moments
kBB of monomer B, the coefficients in eq (6) are

d3¥(A—B) = Z (—1)M[(2La + 1)@ + 2L + 1)

I, +Lg L 1
)(o k —k)x

:f}Q:ZBB aKA(lJA;LA) R_IA_LB_]- (10)

21, + 2L

(2L + 1)]*2 (2|A

|

whereay, (M« are the irreducible components of the (mixed)
dipole—2'a-pole polarizability tensor of monomer A, with respect
to the monomer fram&:*°The expression in curly brackets is

a § symbol. The expansion coefficient (B < A) of the
dipole moment induced on monomer B by the permanent
multipole moments of monomer A can be written similarly. The
transition moments given in section 4 are calculated using dipole
moments and polarizabilities onljx(= Iz = 1). The monomer
dipole momentQé = u, = —0.7277ea and dipole polariz-
ability oxx = 9.98803, o,y = 8.91003, 0o, = 9.470a3, with

the atomic coordinates defined as in Table 1, were taken from
ref 50. Induction by quadrupole and higher multipole moments,

I, +Lg Lg
La 1

monomer Euler angles and in the distanRefrom their
respective equilibrium values (cf. Figure 1). Thus, one associates
donor torsion (DT) with changes ia = ap — aa, acceptor
wag (AW) with 34, in-plane bend (IB) wittfp, stretch (S) with

R, acceptor twist (AT) withya, and out-of-plane bend (OB)
with yp. However, a priori it is not evident that each of the
normal modes is described by the infinitesimal variation in one
Euler angle only. And, indeed, as we will see below, the
harmonic modes are mixtures of different linearized coordinates.
Moreover, we expect the harmonic approximation not to be valid
for the water dimer as the intermolecular potential is not at all
guadratic in the Euler angles. Further, we recall that a well-
known disadvantage of the harmonic approximation is that it
departs from a single well-defined equilibrium geometry so that
it cannot describe tunneling processes.

In this section, we will study intermolecular vibrations and
tunneling effects. To that end, we analyze the exact nondegen-
erate VRT wave functions. The nodal planes in the vibrationally
excited states)(K, v) are orthogonal to the vibrational directions
and, hence, allow a definite characterization of the modes. The
quantum numbep labels the vibrational states in increasing
energy;v = 0 gives the vibrational ground state. The states are
further characterized by their reflectiorCq point group)
symmetry: A" or A". The wave functions corresponding to the
upper tunneling levels have nodal surfaces that are orthogonal
to the tunneling paths.

By plotting the wave functions as functions of the above
coordinates, the classification of the modes may be determined.
In the plots, two coordinates are taken as variables at a time,
the others kept fixed at suitable values. If not mentioned
otherwise, we choose the equilibrium values for the fixed
coordinates. For the distanBewe choose the point on the DVR

dispersion, and short-range (penetration and exchange) contribugrid (step sizex 0.1ag) nearest to the equilibrium distance; there

tions to the dipole moment function were neglected, as we

the amplitudes of the nonstretching modes are close to their

expect these to be considerably smaller than the contributionsmaxima. The amount of stretch variation may be described

that we do include, and the transition intensities cannot be
measured very accurately anyway.
We end this theory section by briefly explaining how we

quantitatively by AR = [[R — [RD?32 as well as by the
expectation valu€R(l Both are a measure of the displacement.
Tables 3 and 4 contain the values for all the vibrational states

computed the harmonic frequencies and normal modes fromconsidered here. The vibrations resembling hindered internal

the same SAPT-5st potential as the nearly exact VRT wave
functions. We used the standard Wilson GF-matrix methed

to solve the six-dimensional harmonic oscillator problem. The
6 x 6 force constant matrif was obtained from the potential
by numerical differentiation with respect to the distaftand

the anglesfa, ya, fBs, Y8, & = aa — op. The inverse metric
tensorG corresponding to these coordinates was derived by
starting from 12 dimer coordinates, six for each monomer. The

rotations (librations) can be characterized quantitatively by the
extrema of the wave functions. These are listed in Tables 5 and
6 for the HO and O dimer, respectively. The paths from the
minima to the maxima correspond to the directions of the
vibrations.

The states withK| = 1 are more complicated than those with
K = 0 because the internal and external rotations around the
long axis do not separate. After substitution of the WigbDer
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TABLE 3: Energies, Radial Expectation Values and

Displacements of (HO), States (,K,v)?

Smit et al.

TABLE 5: Locations of Maxima and Minima in the (H ;0),
Wave Functions atR = 5.56 a5 (Re = 5.53 &)

state Csirrep energy mode RO AR state irep  « o ¥b Pa 7
J=K=0 (0,00 A 0.00 GS 5.6326 0.2201 equil geom 180.00 118.49 0.00 123.69 90.00
001 A 85.72 DT 5.6369 0.2233 J=K=0 (000)f) A 180.00 119.96 0.00 134.93 90.00
00.2) A 111.98 AW 56482 0.2514 0,0,1)@" ‘1* 146.10 116.04 1.93 150.16 124.13
(0,03) A’ 12111 AT 5.6342 0.2252 00.DE") A : : - : :
(0,04) A 139.83 (DT} 5.6185 0.2330 , 213.90 —-1.93 55.87
(0,05) A 165.64 S 5.7177 0.3403 (0,0,2)@) B, 180.00 108.15 0.00 108.03 90.00
(0,0,6) A" 185.18 DT+ AW 5.6918 0.3190 128.95 180.00
J=|KI=1 (1,1,00 A 7.37 GS 5.6308 0.2195 (0,0,3)&") Al 159.97 119.60—-15.37 130.40 62.20
(1,1,1) A" 85.42 DT 5.6338 0.2225 200.03 15.37 117.80
112 A 119.22 AW 5.6319 0.2317 (0,04)Q) A 180.00 123.94  0.00 134.67 90.00
1,13 A 136.85 (DT}® 5.6477 0.2559 115.07 —4.91 120.73
1,14 A 15450 S 5.7135 0.3345 244.93 4.91 59.27
(1,1,5) A" 17010 AT 5.6064 0.2247 (0.0,5)@) Af 180.00 12499  0.00 152.02 90.00
aThe energy (in cmt) of each vibrational state, relative to the ground 0.06)@") B, 104.12 120.70 —8.71 159.59 144.39
state (GS), is the average over all tunneling components belonging to 255.88 8.71 35.61
the one-dimensionah and B irreps, see ref 21. Fal = K = 0 the J=K=1 (110#) p; 180.00 119.77  0.00 133.98 90.00
resultsTRJand AR refer to theA] andA; components, fod = |K| = (111)@") p; 14720 11651  1.63 138.83 109.61
1 to theB; components? The assignment of this mode from its nodal 212.80 —1.63 70.39
character is uncertain, because of the intertwinement of the nodal planes (1.1,2)@) g, 180.00 107.36  0.00 107.51 90.00
in the torsional coordinate and in the anglet in the overall rotation 129.08 180.00
wave function withK = +1. (1,1,3)@) B, 180.00 108.62 0.00 108.98 90.00
129.76 180.00
TABLE 4: Energies, Radial Expectation Values and (114)@) B, 180.00 12546  0.00 157.68 90.00
Displacements of (BO), States. for Explanations, See Table (L15)A") g 171.06 112.17 10.81 130.62 124.66
3 ' 188.94 —10.81 55.34
state Csirrep energy mode RO AR . ) o .
J=K=0 (000) A 000 GS 56309 02078 1/ DLE6: Locations of 2"?;"2;?@“2 'g“S”L'{gS in the (D 20)
(0,01) A" 67.35 DT 5.6430 0.2138 : e” >
(0,02) A 91.58 AW 5.6476 0.2276 state  irrep o fo v Pa ya
(0,0,3) A" 92.04 AT 5.6283 0.2090 :
0.04) A 123.07 (DT} 56379 02151 equil geom 180.00 116.72 0.00 125.46 90.00
(0,05 A 146.82 S 5.6470 0.2493 J=K=0 (0,0,0/) AI 180.00 117.90 0.00 132.48 90.00
(00,6) A" 146.06 DT+AW 5.6448 0.2253 (0.0.1)A") Af 148.86 11554 167 137.61 107.06
J=|KI=1 (1,1,0) A 3.96 GS 5.6301 0.2075 211.14 —1.67 72.94
(1,11 A" 69.68 DT 5.6413 0.2132 (0,0,2)) B; 180.00 107.39  0.00 110.58 90.00
(112) A 93.18 AW 5.6329 0.2159 o B 19779 16458 '
(1,1,3) A 10079 (DT}* ~ 5.6368 0.2217 003)A") Af 163.80 117.80-13.20 129.36 67.68
1,14 A" 122.61 DT+ AW 5.6383 0.2154 0.0.3)&" A ' ' X ' '
(115) A 14615 S 56621 0.2705 0,04Q) A+ igg'gg 126.19 1%20% 148 321156350
aThe assignment of this mode from its nodal character is uncertain, ' 120.92 —2.06 113.86
because of the intertwinement of the nodal planes in the torsional 239.08 2.06 66.14
coordinatea. and in the angleéx in the overall rotation wave function (005)@) A 180.00 107.01  0.00 106.42 90.00
with K = +1. 126.58 160.76
, ) ] 00 (006)Q") B, 14282 121.55 ~7.63 166.86 9.01
functions in the basis of eq (4):')”‘)_<kx(wx)* = expmxox) 217.18 763 170.99
dis i (Bx) explkxyx), the function expfoop) expimaaa) can J=|KI=1 (11,0@) g, 18000 117.86 0.0 132.29 90.00
be rewritten in terms of the internal angle= op — aa and (111@’) p; 150.06 11559  0.98 13520 104.55
the overall rotation angla = (op + aa)/2 as expl(mp — ma)o/ 209.94 —0.98 75.45
2] exp(iKa), with K = mp + ma. Each basis function in eq (4) (1,1.2)@) p; 180.00 107.47  0.00 110.97 90.00
can then be factorized into an external part: épj D{ (@, , 127.92 165.05
) s . ; (113)Q) p- 180.00 107.62  0.00 110.70 90.00
0, 0)* = Dyk(®, ©, a)* depending on the overall rotation 1 127.70 164.85
angles®, @, & and an internal part depending 68, yo, Ba, (L14)Q) g 149.78 11192 090 124.73 105.10
ya anda [cf. eq (B19) in ref 46]. However, the adaptation of Y 51022 ~0.90 74.90
the basis to th&;s symmetry gives linear combinations of such (115@) p; 180.00 12569  0.00 177.61 90.00

basis functions, see Table 2 of ref 21, and the exact wave

functions are linear combinations as well. Such combinations The three different tunneling paths in the water dimer, see
are no longer separable inand@ and it is not trivial to view Figure 2, have been investigated by WdiésVales defines a
the internal part of the wave functions, without being hindered tunneling path as a one-dimensional (curved) route of minimum
by the nodal behavior of the external part. We solved this energy over the six-dimensional intermolecular potential surface
problem by first plotting the wave function as a function of from one global minimum to another, equivalent, minimum. In
bothap andoa and then fixing the external rotation angle= reality, however, tunneling does not take place on a one-
(ap + ap)/2 at a suitable value, while choosing the path of dimensional path because the zero-point kinetic energy and the
torsional rotation, such that one avoids the nodes in the externalstrong coupling in the potential between all of the six intermo-
wave function. To get pure real or imaginary vibrational lecular degrees of freedom lead to a delocalization of the wave
functions as in the case & = 0, the anglesb and©® as well function in all directions. Still, we expect to obtain useful insight
as the quantum numbéf must be chosen adequately. into the nature of the three different tunneling processes if we
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Figure 4. Cuts through the potential surface (irEgp relevant for the
different tunneling processes in the®ldimer. Closed contours denote
negative energy, detdashed contours positive energy. The tunneling
paths are indicated by a bold dashed line. (a) Acceptor tunneling; (b)
Interchange tunneling; (c) Bifurcation tunneling. The angieandya

are defined in section 3.1.

plot two-dimensional cuts through the wave functions in
coordinate planes that contain the one-dimensional paths foun
by Wales. Figure 4 shows the three corresponding two-
dimensional cuts through the six-dimensional intermolecular
potential surface.

The acceptor tunneling path, according to Wales, may be
described as a rotation of the acceptor aroundytbgis from
Ba to 360 — Sa (Figure 4a), with a simultaneous torsion
over 180, see Figure 2.

The preferred acceptedonor interchange tunneling path is
a geared rotation of the acceptor and dotigkt the end-point

J. Phys. Chem. A, Vol. 105, No. 25, 2008217

. A
Np = [— cos(3p) — %(S;ﬂ()ﬁ), —1, sin3p) —
cosBp) sin(Ap)
i—@ap | @

with A = 180° — fp — ffa = —62.18 andy = 105.47.
Numerically, the normalized rotation axes amg= (—0.888,
—0.459,—0.040) andnp = (0.888,—0.459, 0.040). We now
describe the donetacceptor interchange analytically as a
simultaneous (geared) rotation of A and D around their
respective axes over anglgs and yp, which run from 0 to
105.47, see Figure 4b. The two-dimensional cuts of the
tunneling wave functions illustrate their dependence on both
XA andXD.

Bifurcation tunneling, see Figure 2, can be represented as a
simultaneous increase @i andSp (Figure 4c¥® and we plot
the wave function dependence on both these coordinates.

3.2. Results

Tunneling. Figures 5 and 6 show the wave functions in the
tunneling regions defined in Figure 4. The largest level splitting
occurs as a result of acceptor tunneling, see Figures 2 and 3.
This process is clearly visible in Figures 5a and 5b: Aje
andB; wave functions do not possess a node between the two
equivalent potential minima shown in Figure 4a, whereas the

% andB, wave functions have a nodal plane between these

minima that is nearly orthogonal to the acceptor tunneling path.
This confirms that acceptor tunneling indeed occurs by a
concerted motion in the acceptor wagging coordinéteand

the torsional coordinate.

The donor-acceptor interchange tunneling leading to the
smaller splittings between th&] andB; levels and between
the A, andB, levels is illustrated in Figure 5, parts ¢ and d.
The A andA, wave functions do not show a node, whereas
the B, andB, wave functions have a nodal plane in the angles

of this concerted rotation the acceptor and donor have changedya andyg nearly orthogonal to the tunneling path of Figure 4b.

roles. It is not trivial to find a two-dimensional surface in the

We may conclude that these angles, the construction of which

six-dimensional coordinate space that contains this path. Weis described in section 3.1, present a clear view of the
developed a two-variable analytic representation that comesinterchange tunneling process.

close to describing such a surface. Recall that we earlier

introduced the matriceRa andRp which generate the orienta-
tions of the acceptor A and donor D, starting from a reference
geometryX,. Rotation of the acceptor by (7)RpR ,:1 and of

the donor byRy(7)RaR 51 about their respective centers of

As explained in ref 21, bifurcation tunneling does not lead
to a further splitting of the energy levels. In accordance with
this finding, we observe in Figure 5e that none of the wave
functions belonging to the differer@®s irreps has a node in
the anglegp andfa which vary along the bifurcation tunneling

mass leads to an equivalent equilibrium structure with the roles Path of Figure 4c.

of acceptor and donor interchanged. The rotation around the

We noticed in ref 21 that the tunneling level splittings are

y-axis overr is necessary because the rotation of the acceptor generally larger in the vibrationally excited states than in the
and the donor does not interchange their positions. The matrix ground state. In some cases, as for example, for the acceptor

Ry(m)RaR 51 being orthogonal, it may be expressed as a
rotation around a certain axis, over an anglep.** Similarly

the acceptor rotatiofRy(r)RpR ;1 is equivalent to a rotation
aroundnp over ya. The rotation angle is determined by the
trace of the orthogonal matrix and thys = yp = y. It is not
difficult to derive that

sin(B,) sin(AB) .
N, =|cos@,) + #s@ﬁ)' —1,sin@,) —
cosf3,) sin(Ap)
1-@p | Y

and

splitting in the donor torsion (DT) excited state, this is a very
pronounced effect. Plots of the wave functions of the vibra-
tionally excited levels are discussed below but because of space
limitations the tunneling behavior of these vibrationally excited
wave functions is not explicitly displayed. Let us note here that
we observed a marked increase of amplitude of the excited wave
functions in the tunneling regions, relative to the ground-state
wave functions, in good correspondence with the increased
tunneling level splittings.

When comparing the wave functions of D), in Figure 6,
parts a-e, with those of (HO), in Figure 5, a-e, we note that
the former are clearly more localized, because of the larger mass
and smaller rotational constants of,@ Particularly, the
amplitudes of the wave functions in the tunneling regions are
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Figure 5. Tunneling wave functions of the dimer (0,0,0) states. Figure 6. Tunneling wave functions of the D dimer (0,0,0)4) states,

(a) Acceptor tunneling oB; (similar to AT); (b) Acceptor tunneling see caption of Figure 5.
of B, (similar toA;); (c) Interchange tunneling &, (similar toAf);

(d) Interchange tunneling oB, (similar to B;); (e) Bifurcation TABLE 7: Harmonic Frequencies (in cm2) and

tunneling ofB, (similar toA;, B, andA;). The amplitudes (im,>?) Displacements of the Internal Coordinates for the Normal

are multiplied by a factor of 1000. Modes of the HO Dimer Calculated from the SAPT-5st
Potential

markedly smaller in the BD dimer than in the KD dimer, in mode DT@") AT(A) AW(A) S@) IB(A) OB@A)
agreement with the much smaller energy level splitings in the _réd  121.01 14370 157.87 186.83 369.99 564.70
former system. o(rad) 1.1878 0.3466 0.0000 0.0000 0.0000 1.1544
Intermolecular Vibrations. Before discussing the exact wave Aa(rad) ~ 0.0000 0.0000 —0.7966  0.5882  0.7861  0.0000
Lu;:f?rgic?gii ?rfe the viprationally excited states, we present the }’32((:2?1)) _%‘%%%% %‘%%%70 _O%gggo ogggfﬂo'sgggoo 0'0%3817
quencies and normal modes computed from the,, raq) 00073 05179  0.0000 0.0000  0.00661.0267
same SAPT-5st potential. They are listed in Tables 7 and 8 for r(a,) 0.0000 0.0000 —0.3636 —0.5139 0.0161 0.0000
(H20), and (D:O),, respectively. We observed already in ref
21 that the harmonic frequencies of the lower intermolecular TagLE 8: Harmonic Frequencies (in cm) and
modes in (HO), are typically between 20% and 40% larger Displacements of the Internal Coordinates for the Normal
than those of the corresponding frequencies from nearly exactModes of the D,O Dimer Calculated from the SAPT-5st
anharmonic six-dimensional variational calculations. The latter Potential
were in very good agreement with the experimental data of Braly mode DT@’") AT (A") AW (A) S@A) IB(A) OB(A")
e]E allg’jl‘“ A|159 fOEV) tge highest o(?sbervBed Imode ?t a freqlfency freq 88.07 102.87 11852 172.84 27476 406.11
gend (IE(B:)nTwe”}o(urfd ?ér?sscl)%geagrgemr:nﬁ be;t\?vé:ns tlr?epzeiggtly afrad) - —0.8743 1 0.2065  0.0000  0.0000  0.00060.8626
' - Y Ba(rad) 0.0000 0.0000-0.6732 0.1873—0.6367 0.0000
calculated frequency and the experimental value. The harmonicy,,(rad) 0.1948 0.6485 0.0000 0.0000  0.006D.3508
frequency of the IB mode is higher by a factor of 2.6, however, pp(rad) 0.0000 0.0000 —0.3345 0.1278 0.4095 0.0000
and we provisionally concluded in ref 21 that this mode was yo(rad) —0.0342 0.3743 ~ 0.0000 0.0000 0.0000 0.7184
incorrectly assigned. After discussing the character of the exactR(@) 0.0000 0.0000 —0.1836 —0.5677  0.0271  0.0000
vibrational wave functions, we will come back to this point.
Here, we state already that, with the qualifications given below, 40%, both for (HO), and (;O),. Furthermore, the ordering of
the assignment of the donor torsion (DT), acceptor wag (AW), the levels is not the same.
and acceptor twist (AT) modes was correct. Comparison of the  The eigenvectors given in Tables 7 and 8 indicate that the
results in Tables 7 and 8 with the exact frequencies in Tables character of the normal modes is not as simple as suggested by
3 and 4 shows that the harmonic frequencies of these modesReimers and Watt¥,and also by Xantheas and Dunnifig/ho
and also of the stretch (S) mode, are indeed too high by 20 topresented harmonic frequencies computed by the ab initio
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b)

Mgller—Plesset second-order (MP2) method. The character of 200

each normal mode, i.e., the amplitudes of displacement in the
six intermolecular coordinates, can be read from Tables 7 and
8. It is not straightforward to compare the different constituents
because the displacement coordinates are nonorthogonal, and
the amplitudes iR (ap) and in the angles (radians) are not even
in the same units. It is obvious that no mixing is allowed
betweerA’ andA" modes, which are even and odd, respectively,
with respect to the plane of reflection of the equilibrium
structure. The firstA") fundamental is indeed predominantly
DT (o), but with a nonnegligible admixture of ATyf). The
second (againA") fundamental is AT, with a substantial
contribution of OB {p) and some DT character. The third'Y
fundamental is AW ), with substantial 1B §p) and some S
(R) mixed in. The fourth ') fundamental is S with both some
AW and some IB character. The highest two fundamentals are
even more strongly mixed. The fifttA() mode should be IB,
but actually, the contribution of AW is larger. And the sixth
(A") mode should be OB but it contains a larger contribution
of DT and a substantial amount of AT. Yet, if one compares
the relative contributions of each displacement coordinate in o)
all of the normal modes, the nomenclature of refs 37 and 54 is 180
not unreasonable. One must realize, however, that each of the
normal modes contains a strong mix of all displacements of
the appropriate symmetry.

Similar considerations can be given for the exact wave
functions. Vibrational { = K = 0) wave functions that are of
A" symmetry under the point groups are ofA;, E*, B], A,
E~, B, symmetry under the full PI groufis and those that
are of A" symmetry undeiCs are of B, E-, A}, BS, E*, A}
symmetry underGis, see Table 1 of ref 21. Therefore, the
vibrational wave functions of' andA"” symmetry that do not
mix in the harmonic approximation, do not mix in the exact
calculations either, at least for the one-dimensiohaind B
irreps fork = 0. So, we may expect that mixing primarily occurs
in the DT @), AT (ya), and OB {p) coordinates, and in the
AW (Ba), S R), and IB (3p) coordinates.

Plots of the § = K = 0) vibrational wave functions are shown
in Figures 7and 8. The states are denoteda,(v). For each
vibrationally excited states(> 0) we could choose between
the different tunneling components. It turned out that, in contrast
with the ground state, the tunneling components belonging to
different Gy irreps have a slightly different appearance in the
vibrational coordinates. We mostly selected Ai’ecomponent
for the A’ vibrations and theA, component for theA"
vibrations. In two cases, (0,0,2)j and (0,0,6)&"), we preferred
to plot theB, andB; components because they display more
clearly the nodal character of the wave functions. Forkhe

o 360 : : :

360

1351

90

80k

) . L 1 0
4 5 6 7 8 0

R
Figure 7. Vibrational wave functions of the # dimer. (a) (0,0,1)-
(A") A; (b) (0,0,3)&") A; (c) (0,0,2)) By; (d) (0,0,4Q) A (e)
(0,05@) A" (f) (0,0,6)A") B;; The amplitudes (ina,*?) are
multiplied by a factor of 1000.

The lowest state &' symmetry, (0,0,2/'), is not pure AW
but has an IB contribution (Figures 7c and 8c). Figures 7e and
8e illustrate that the (0,0,5)() state corresponds to a stretch
vibration. This is confirmed by the comparatively largéR
values (0.3403 and 0.24@83, respectively) and shifts ifRCin
Tables 3 and 4. Figure 8e shows that in the case gdjsome
AW contributes to this mode. Hence, the DT, AW, AT, and S
modes are in qualitative agreement with the normal-mode
analysis, even though they have large amplitudes and a
substantial degree of anharmonic character.

More surprising is the analysis of the (0,0&)(state, which
in ref 21 was provisionally assigned to the IB vibration,
following the assignmep# 34 of the experimental data. A nodal
1 states we always investigated tBg components. plane in the wave function along the IB coordingke could

If the lowest excited (0,0,1X") vibrational state in Figures  not be discovered, however. Figure 7d shows beyond any doubt
7a and 8a were of pure DT character, the nodal plane would bethat this state actually corresponds to a DT overtone. Just as

perpendicular to the axis ata. = 18C°. Instead, one observes

a substantial amount of ATyf) admixture. Similarly, if the
third excited vibrational state (0,0,2y() were pure AT, the
nodal plane in Figures 7b and 8b would be perpendicular to
the ya axis, atya = 90°. Here, one observes considerable DT

the DT fundamental shown in Figure 7a, it contains a substantial
contribution of AT () excitation. The fact that the excitation
frequency of the (0,0,4X) state is nearly twice the frequency
of the lowest tunneling component of the DT fundamental
(0,0,1)@") supports this conclusion. It holds for both B,

admixture. In addition, the (0,0,3) state has some OB character,and (D;O),.

which may be seen in Tables 5 and 6 by the fact that the
maximum and minimum in the wave function are displaced in
yp With respect to the equilibrium value of this angle (by about
15°). It is noteworthy that the nodal planes in Figure 7, parts a
and b, and in Figure 8, parts a and b, although not horizontal
and vertical, are nearly orthogonal, in accordance with the
orthogonality of the two vibrational wave functions.

Another interesting result emerges from the analysis of the
wave function of the (0,0,6)’") state. This excited state may
be classified as a combination of the mixed DT/AT fya)
fundamental and the AW34) mode, see Figures 7f and 8f. The
data shown in Tables 5 and 6 confirm this assignment. The AW
contribution can be recognized from the fact that flaevalue
of the maximum in the wave function (about p@ consider-
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a) b) differentK, which appeared to be strongfydependent. In the
360 T T T 360 T T T . . . . .

“ presentation of the calculated intermolecular vibrations in Tables
5 and 6 and Figures 5 and 6 of ref 21, and also in the
assignmeri€—34 of the experimental data, it was assumed that
the vibrationally excited states withik| = 1 have nearly the
same mode character as the levels Witkr 0 which are close
to them in energy. The present analysis shows that this is not
always true, however. The (1,1,8)( state, just as the corre-
sponding state witld = K = 0, is a mixture of DT with AT.
The angles corresponding to the (1,1AU) state in Tables 5
and 6 are similar to those of the (0,0A)] state. The subsequent
(1,1,2)Q) state is similar to the (0,0,2() state and corresponds
to the AW mode. However, from there on, the character of the
K| = 1 states deviates considerably from e O states. The
(1,1,3) state corresponds to a vibrationGafsymmetryA', for
example, whereas the (0,0,3) state has symnwftryHence,
the (1,1,3) state cannot be the AT excited state, as the (0,0,3)
state is. Furthermore, the (1,1 A)state of (HO), corresponds
to a stretch mode, in contrast with the (0,0M)(state which is
a DT overtone. This is obvious from the larg® value (0.3345
ap) of the (1,1,4)Q) state in Table 3. For (fD), on the other
hand, the (1,1,4) state is a combination of DT/AT and AW and,
therefore, resembles the (0,08)] state (Table 6). The (1,1,5)-
(A") state of (HO), has mainly AT character, see Table 5,
whereas the (0,0,5)) state is stretch excited and the (0,0,6)-
(A") state is a combination of DT/AT and AW. The (1,18)(
state of (BO), is predominantly a stretch vibration with a large
AR = 0.2705a; (Table 4), just as the (0,0,5) state.

This observation, that several of the vibrational levels with
K| = 1 have a mode character that differs substantially from
the nearby levels witk = 0, explains why the calculate|
Figu_re 8. Vibrational wave functions of the f® dimer, see caption = 1 mnusK =0 energy differences are rather irregu|ar.
of Figure 7. Normally, one can extract the ground and excited-state rotational

constantdA from these differences. We noted already in ref 21
ably larger than thga value of the maximum in the ground-  that the excited-state constamiswhich were thus obtained
state wave function (about 130 which is close to the  |ooked anomalous and, in fact, reflect the internal motions of
equilibrium value ofsp ~ 125°. The assignment of the (0,0,6)-  the dimer.

(A") state as a combination of DT/AT and AW holds both for  Finally, we observe that, as expected, the vibrational states
(H20) and (D:0), but with somewhat differently weighted  are more localized in (BD), than in (HO),. This is obvious
contributions. Moreover, this state has some stretch characteffrom the wave function plots in Figures 7 and 8, as well as
in (H20), as is evident from the relatively large value SR from the AR values in Tables 3 and 4 and from the displace-

= 0.3190ay, see Table 3. Figures 7f and 8f were plotted with ments of the angles in Tables 5 and 6. The harmonic eigen-
Pp values taken from Tables 5 and 6 in order to obtain a clearer yectors in Tables 7 and 8 show the same effect.

view of the wave function. We note, however, that for this state,
in which the excitation depends to a similar extent on three 4. Transition Moments
different angles, a two-dimensional plot is only of limited value. ) ) ) .

With the assumed IB band being assigned as the DT overtone !N this section, we study the dipole transitions between
band in our exact six-dimensional calculations, one may wonder different VRT states. To discuss their selection rules, we first
whether we could identify the actual IB (and OB) vibrations. "ecall that the grou:e, which is isomorphic to the point group
Our calculations are presently limited to vibrational levels up DPan iS @ direct product groupGis = PI(Ds) ® PI(C), with
to about 200 cm above the ground state. Taking into account P1(C) = {E, E*}. We distinguish here the permutation-inversion
that the harmonic model overestimates the frequencies by 20(P!) group from the corresponding point group by the prefix
to 40%, we may expect the IB mode to have a frequency of Pl- Sometime® Pl groups are designated by the suffix thus
about 250 cmt and the OB mode of about 400 cin(for e.g.,PI(D,) = D4(M). The permutatiofrinversion groug?l(Ds)
(H-0),). Even if we would know all the exact wave functions contains pure (unstarr_ed) permutanons only. The irreducible
in the proper energy range, it is questionable whether we could P1(D2) projectors are given in Table 9. For future reference we
indentify these modes. We saw already from the harmonic NOte thatPag is the only generator dss that interchanges the
calculations that there are no pure IB and OB modes. In the hydrogen and oxygen labels of the monomers. See Table 10
exact anharmonic calculations we expect, moreover, a strongor the action of the generators on the coordinates.
coupling with the various overtone and combination states that Because the dipole operataf,” defined in eq 7 is totally
occur at such high energies. symmetric under any permutation, it transforms Aaswith

Upon investigation of the states with> 0 and|K| > 0 we respect tdPl(D,) and the dipole selection rule is accordingly
always foung-not unexpectediythat the internal part of the ~ — T, with T' indicating an irrep ofPI(Ds). Further,uy is
wave functions is very nearl§-independent. A surprise arose, antisymmetric undeE*, so that it belongs toA; of Gi6 and

however, when we analyzed the vibrational wave functions of hence only the transitiors* — I'T are allowed. The selection
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TABLE 9: Symmetry Projectors onto Irreps T of PI(D,)?2

r projector spin
A Yg[E + Pas][E + (34)][E + (12)] pP—p
Ay Yg[E — Pag][E — (34)][E — (12)] 0—0
B1 '/g[E — Pas][E + (34)][E + (12)] pP—p
B, Yg[E + Pas][E — (34)][E — (12)] 0—0
Ex YJE — (34)][E + (12)] 0—p
E Y4Pas[E — (34)][E + (12)] p—o

aHere Pag = (010,)(13)(24). Projectors onto irreds* of Gy are
obtained by multiplication withE 4 E*]. In the column marked “spin”
o andp refer to the ortho and para coupling of the spins of the hydrogen
nuclei in each monomer. This assignment is fop@h3; for (D2.0), o
and p must be interchangedEx and E, are partners in the two-
dimensional irrefE.

TABLE 10: Action of the G;5 Generators on the
Coordinatest

E (12) (34) Re E*
D P P D+ ®+a
(] (] (C] 77— 0 77— 0
oP oP oP —ah T —aP
ﬁD ﬁD D T — ﬁA ﬁD
,},D },D T+ 'J/D T+ },A _VD
o oA ot —aP T —ah
ﬁA A ﬁA — ﬂD ﬁA
yA T + yA yA T + VD _VA

a See Figure 1 for the definition of the Euler angles. The an@les
and® are the spherical polar angles®{s with respect to an arbitrary
space-fixed frame

rules on the rotational transitions are simply given by the 3
symbol in the square root of the HiBLondon facto?®

J 117
K K) (13)

That is, parallel transitionk(= 0) satisfy|AK| = 0, whereas
perpendicular transitiongk{ = 1) satisfy|AK| = 1. Further,
|AJ] = 0,1. Recall that thej3ymbol vanishes unless= K' —
K.

The symmetry of the wave functions under the permutations
(12) and (34) follows directly from the basis in eq 4. Even/odd
quantum numberga andkg determine whether the functions
are symmetric/antisymmetric under (12) and (34). This sym-
metry is associated with the hydrogen nuclear spinandlg
of monomers A and B. Writing for ortho (x = 1, kx is odd),
andp for para (x = 0, kx is even), where X= A or B, we find
for (H20), the assignment in Table 9. (Table 2 of ref 21 is
incorrect: the spin statistical weightg,o0), must be 1, 3, 0, 6,
for AT, A5, By, andBj, respectively. This error has its origin
in a similar error forwp,o), in Table 5 of ref 56.) For BO,
ortho (x = 0,2) is associated with evég, para (x = 1) with
odd kx. Note that the nuclear spin is conserved under dipole
transitions, as one would expect.

dy; ek = [(27 + 1)1+ 1)]“2(
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internal part of the wave function is the part dependingRon

B, b, Ba Ya, anda, cf. section 2. Note, parenthetically, that
no transitions (0,0,0%) — (1,0v)(A") are listed in Table 13
because these transitions are forbidden. The corresponding
selection rule follows from the correlation of tl@& irreps A’
andA"" with the G¢ irreps (see Table 1 of ref 21) and the fact
that the total dipole is ofA; symmetry. Out of the perpen-
dicular transitions only those wit\J| = 1 are selected. The
Q-type (AJ = 0) transition moments are to a very good
approximation equatwith the exception of the square root of

a Hml-London factor $/,)Y2—to the correspondind®- and
R-type transitions, again because the internal parts of the states
(0,0p) and (1,0y) are nearly identical.

Analysis of Permanent and Tunneling Transition Dipole
Moments. Obviously the water dimer has a large permanent
dipole moment. However, all VRT states are of well-defined
parity and,urSnF is of A, symmetry; hence, the expectation value
of the SF dipole moment vanishes with respecng state. To
explain the very existence of the permanent dipole of the water
dimer, we must consider the symmetry of the BF dipole, cf. eq
6. Let us first focus on the paralléhAK| = k = 0 moments.
Their values are givenafter contraction over the eigenvector
coefficients and integration over the radial functiefiyy eq 8.
Becausel, J M', M K', K andk = 0 are fixed, we can divide
out the rotational or “external” factor that depends on these
guantum numbers. Note that this external factor is in essence
the square root of the Hd—London factor given in eq 13. The
3j-symbol containingM' and M, which drops out of the
formalism after averaging over all spatial directions, is not
included in this Hal—London factor. The part of the transition
dipole moment remaining after this division is referred to as
the “internal” (transition or permanent) moment.

The parallel dipole operator, the= 0 term in eq 7, has as
the “external” part the functioerT% (®, ©, 0)*. Table 10
shows that the functionB{)®, ©, 0)* are invariant under
(12) and (34). The following relations are easily derived

PasDO)(®,0,0)* = E*DY), (,0,0)* =
(1)’ DY (®,0,0)* (14)

Clearly, the functiorD%(d), ©, 0)* is antisymmetric undee*
andPag and is symmetric under the other generators and thus
is of B, symmetry for allm. This follows by inspection of the
projectors in Table 9. The total dipole being &f symmetry,

the “internal” partug” has symmetnB;. In the case of one-
dimensional irreps, the product of bra and ket in an expectation
value has symmetry\j, so that the expectation value of the
internal dipole moment vanishes for all states of one-dimensional
symmetry species. Because the prodE€t® E° (0 = &)
contains theB; irrep?” states ofE* symmetry may have a

In Tables 11 and 12, we present a list of moments belonging nonvanishing internal dipole expectation value. As we discussed

to transitions between ground vibrational tunneling states (
0). In Table 13 we find some of the transitions from the 0

in the preceding paragraph, this internal dipole may be extracted
from the total transition dipole matrix elemeri®,0,0)E")|

states to the excited vibrational states. A complete table of ﬂ?ﬁ(l,0,0)EﬂDin the first block of Table 12 by division with

vibrational transitions is provided as Supporting Information
(Table 13S). Different values of = 0,1 andK = 0,1 are
considered. These tables contain results foiQd as well as
for (D20),. Not all allowed transitions are given because many

the square roady; kk of a Honl—London factor; her&l;go0 =
—1. Note that the internal part of the wave function is practically
J-independent, so that bra and ket in this transition matrix
element differ only in the external parts labeled by 0 and

have equal transition moments. For instance, we do not list 1, respectively. The internal part of the matrix element is an

parallelAJ = —1 transitions because (1,0;8) (0,0p) transition

expectation value that represents the permanent dipole of the

moments are nearly identical to those associated with (0,0,0)water dimer.

— (1,0p) transitions. This follows from eq 8 and the fact that
the internal part of the wave function hardly dependsl.chhe

To interpret the calculated values of the internal (permanent
or transition) moments, we introduce a simple group-theoretical
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TABLE 11: Ground State Tunneling Transition Moments u (absolute values ineay)?

(H20), (D20),
transition E—E u (@) E—E u (@)
(0,0,0)— (1,0,0)
AN — AT 0.00— 1.14 0.934 (0.834) 0.00-0.42 0.893 (0.805)
1 1
BI —B; 0.72—0.42 0.934 (0.834) 0.04-0.38 0.893 (0.805)
C A 11.21—12.28 0.903 (0.807) 1.69 2.11 0.884 (0.797)
A A,
B, — B; 11.86— 11.63 0.903 (0.807) 1.732.07 0.884 (0.797)
(0,0,0)— (1,1,0)
AT — A7 0.00— 15.43 0.172 (0.185) 0.06-5.49 0.126 (0.134)
1 1
BI —B; 0.72— 14.72 0.172 (0.184) 0.04-5.46 0.126 (0.134)
A, — A; 11.21—12.66 0.112 (0.120) 1.69-4.94 0.112 (0.119)
B, ~ A 11.86—12.13 0.112 (0.120) 1.73-4.91 0.112 (0.119)
(1,1,00—(1,1,0)
A=A 14.72— 15.43 1.042 (0.934) 5.46 5.49 1.086 (0.979)
B, —B, 15.43— 14.72 1.042 (0.934) 5.49-5.46 1.086 (0.979)
A — AT 12.13— 12.66 1.051 (0.942) 4.914.94 1.089 (0.982)
2 2
B —B 12.66— 12.13 1.051 (0.942) 4.94 4.91 1.089 (0.982)
2 2

2 EnergiesE; andE¢ in cm™?, u includes the induced dipole moment€) only the permanent dipoles of the monomers. Thgy@nbol depending
on the “external” quantum numbekd’ andM in eq 8 is omitted from the calculated valuesigfbecause it does not explicitly appear in the line
strengths.

TABLE 12: Ground State Rotational and Tunneling Transition Moments (in ea) of E* States. For Explanations, See Table 11

(H20), (D20),
transition E— E u (@) E —E u (@)

(0,0,0)— (1,0,0)

Et—E" 0.41—0.8% 0.926 (0.833) 0.0+ 0.38 0.892 (0.804)
E-—E" 11.58— 12.0¢ 0.897 (0.807) 1.7+ 2.08 0.884 (0.797)
(0,0,0— (1,1,0)

Ef—E- 0.41— 12.36 0.006 (0.007) 0.0+ 4.94 0.002 (0.002)
E-—E" 11.58—12.36 0.113 (0.120) 1.7+ 4.94 0.111 (0.119)
Ef—E- 0.41— 15.05 0.174 (0.185) 0.0% 5.49 0.127 (0.135)
E —E* 11.58— 15.05 0.003 (0.004) 1.745.49 0.0002 (0.0003)
(1,1,0— (1,1,0)

Ef —E- 12.36— 12.38 1.123 (1.010) 4.94~ 4.94 1.087 (0.980)
Et—E 15.05— 15.0% 1.113 (1.001) 5.49-5.49 1.084 (0.977)
Ef—E- 12.36— 15.05 0.080 (0.072) 4.94 5.49 0.022 (0.020)

aThis is a pure rotationaAJ = 1 transition, depending on the permanent (parallel) dipole morhdihiis is a transition between two components
split by asymmetry doubling; the Coriolis coupling giving the very small splitting between these components was not included.

model in the same spirit as in earlier work on the ammonia with |[DACE |DOJAD These functions are both localized, although
dimer38 We assume that we have two primitive functions, one in the second one the labels of the nuclei are interchanged by
localized in the donor orientation and denoted y(3,4) Pag. With the BF dipole operator transforming & and,
(depending on @and protons 3 and 4) and one localized in therefore,PABugFPAB = _ﬂgF, we readily derive

the acceptor orientation denoted $y(1,2) (depending on ©

and protons 1 and 2). The dependence on the oxygen labels is DA, Ef|ptgF|DA, E:Dz —[DA, E;|ygF|DA, E;r[;z 0
suppressed in the notation. So, we start from a situation where

the hydrogen nuclei 1 and 2 are associated with the acceptorThis expression gives the internal dipole for e states; the

and 3 and 4 with the donor. . argument is completely analogous for tBe states. Writing
Internal functions ofE symmetry are projected from the BF _

inte _ \ : _ _ ug” = ugy + uh according to eqs 9 and 10 we see that
primitive functions with the aid of the projectors in Table 9.
After projection, we get the model monomer functions DA, E;fl/tgFlDA, E;D= [IDlptngEH- @\IﬂQIAD
j— '
IDE= No[E — BAIE + BT 1yp(3,41 This result confirms that the expectation values of the dipole
with respect to internal states Bfsymmetry are nonvanishing.
|[ACE= NA[E + (12)][E + E¥] |yA(1,2)D (15) In addition we find, becaus@and|ACare localized, that the
absolute value of the left-hand side (0.98&) must agree
where 1 and 2 remain on the acceptor A and 3 and 4 on thereasonably well with the clamped nucleus value of the parallel

donor D, i.e., the functions are localized. The constalatsnd dipole moment at the equilibrium geometry of the dimer. At
Na are normalization constants. The dimer wave functions of this geometry, the sum of permanent plus induced dipole
E* symmetry become moments is 0.81@&. The difference between these values is
due to the averaging over the vibrational ground state, which
|DA, E;rljz DA turns out to increase the dipole moment of the water dimer by

about 10%.
" Nearly the same internal dipole, but with opposite sign, can
IDA, Ey L= Ppg| DAL (16) be obtained from the (0,0,8¢) — (1,0,0)E") transition
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TABLE 13: Vibrational Transition Dipole Moments (in ea).
Explanations, See Table 11
(H20) (D20).
transiton  E — E¢ u (W@ E—E u (@)
(0,0,0)A) — (1,0,2)Q)
Al —A; 0.00—115.46 0.212(0.186) 0.06:90.29 ~ 0.205 (0.187)
BIH B, 0.72— 112.86 0.252 (0.221) 0.04 90.14 0.205 (0.187)
A, — AJ 11.21—122.85 0.237 (0.209) 1.69 95.54  0.232 (0.211)
B, —B; 11.86—122.20 0.258 (0.228) 1.73 95.31  0.234 (0.213)
(0,0,00) — (1,0,4)@)
AIHAI 0.00— 139.27 0.065 (0.053) 0.06-108.06  0.121 (0.110)
B — B, 0.72—131.03 0.077 (0.067) 0.04 107.37  0.120 (0.109)
AL ﬁA;r 11.21—157.50 0.023 (0.028) 1.69- 140.96  0.008 (0.012)
B, — B;r 11.86— 156.94 0.023 (0.028) 1.73 140.83 0.012 (0.015)
(0,0,0)&) — (1,0,5)&)
Af —a; 0.00—153.14 0.132 (0.124) 0.06 145.52  0.057 (0.045)
BIQ By 0.72— 148.74 0.097 (0.094) 0.04 144.13 0.034 (0.027)
A, — AJ 11.21—202.37 0.156 (0.140) 1.69- 151.28  0.065 (0.053)
B, — B;r 11.86—183.76 0.132 (0.120) 1.73 151.26  0.066 (0.054)
0,0,0) —~ (1,1,1)@")
AIHAI 0.00—88.13 0.228 (0.243) 0.06- 68.69 0.205 (0.217)
Bf —B, 0.72—87.69 0.216 (0.230) 0.04-68.64  0.203 (0.214)
AT HA; 11.21—96.91 0.114 (0.122) 1.69-73.23 0.153 (0.162)
B, —B; 11.86—~94.40 0.106 (0.113) 1.73-73.09  0.151 (0.160)
0,0,0&) —~ (1,1,2)&)
AI —A] 0.00— 122.95 0.191 (0.204) 0.066- 93.52 0.146 (0.154)
B — B, 0.72—115.68 0.197 (0.210) 0.04 92.77  0.146 (0.155)
A, — A} 11.21—134.23 0.147 (0.157) 1.6995.98  0.190 (0.201)
B, — B;r 11.86— 129.46 0.074 (0.079) 1.73 95.43 0.189 (0.200)
0,0,00@) — (1,1,3)&)
AIHAI 0.00— 150.03 0.027 (0.029) 0.06-103.95 0.010 (0.010)
Bf — B, 0.72—145.69 0.010 (0.010) 0.04 103.52  0.013 (0.014)
A QA; 11.21—142.07 0.179 (0.192) 1.69 100.62 0.031 (0.032)
B, — B; 11.86—135.10 0.221 (0.236) 1.73 100.01 ~ 0.043 (0.045)
0,00) —~ (1,.1,4)&) 0,000 — (1,1,4)Q")
AI_’AI 0.00— 161.97 0.071 (0.074) 0.06-128.02 0.065 (0.068)
Bf — B, 0.72—161.12 0.076 (0.079) 0.04 127.70 0.062 (0.065)
A HA; 11.21—160.32 0.073 (0.077) 1.69 119.84 0.033 (0.035)
B, — B; 11.86—160.02 0.077 (0.081) 1.73 119.79 0.035 (0.037)
0,00&) ~ (1,1,5@") (0,0,0)&) — (1,1,5)&)
Al —a; 0.00—187.11 0.085 (0.090) 0.06-149.71 0.037 (0.039)
BY — B, 0.72— 177.27 0.038 (0.040) 0.04 148.18 0.056 (0.059)
A, —AJ 11.21—171.73 0.075 (0.079) 1.69146.35 0.034 (0.036)
B, — B; 11.86—168.08 0.029 (0.030) 1.73 143.85 0.032 (0.034)

moment in the second line of Table 12. This is again a pure
rotationald = 0 — 1 transition, now from the (0,0,@() state
that lies 11.17 cm® higher than (0,0,0§"). Thed = 0, E;
states are plotted in Figure 9. We see that the lower lying (0,0,0)-
(E™) state is of the kind depicted in Figure 1, that is, monomer
{O,, Hs, H4} plays the donor anflO,, H;, Hy} the acceptor
role, whereas for the higher state (0,0ED)Y, the roles are
reversed. We are considering here the first parien the E
irrep, which, as we see in Table 9, is of orthpara spin. Thus,
the energy of the state in which the donor has ortho spin is
11.17 cnt! more favorable than a state in which the donor has

para spin. The acceptor, being the more mobile partner in a
hydrogen bonded complex, is less localized in the angles than

the donor and hence haga= 0 component, which corresponds
to para spin. The donor has o#lg and is of ortho spin in the
energetically most favorable situation.

When comparing the third block of Table 12 with the first
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Figure 9. Wave functions of the kD dimer (0,0,0){') states ofE
symmetry, withkp = odd andk, = even (orthe-para). (a) lowesg"
state; (b) lowesE~ state. Notice that these functions are localized at
the DA and AD geometries foEt and E~, respectively, in contrast
with the corresponding states belonging to the one-dimensfaald

B irreps, cf. Figure 5, parts ¢ and d.

transitions between states wif| = 1 are about 20% larger
than the parallel transition moments between states With
0. This is due to the larger Hb—London factord;111 = 3/6
~ 1.22, instead oflipoo= —1, cf. eq 13. Hence, the vibrationally
averaged internal dipole of tHe* states with|K| = 1 is about
the same as foK = 0.

Let us now consider the tunneling transitions in the first block
of Table 11. We will show that the transition dipole moments
listed in this block are directly related to the size of the
permanent dipole of the dimer. The overall rotation function
with J = K = 0 is of A} symmetry and that witd = 1, K =
0 of B, symmetry, so that for instance the first transition
matrix element

[00,0,0)&)) | 1(1,0,0)&; ) [= 0.934

has an internal matrix element of symmef®; |u57|B; [ We
define model monomer functions

|ID'C= Np [E + (34)][E + EX] wp(3,4)0

IAT= Ny [E+ (12NE+Ep (1,20 (17)
localized in the donor and acceptor orientation, respectively,
with normalization constanthly: and Ny. Because the states
belonging toAIr and BI’ are symmetric and antisymmetric
underPag, the symmetry adapted internal dimer wave functions
are

IDA, A = iZ[E + P, ID'AT

/2

IDA, B = %Z[E — P,dl|ID'AD

with |D'A'[= |D'0A'0 These states are delocalized in the sense
that they are linear combinations of DA and AD states (with
equal Weightsillﬁ) in which Pag exchanges the labels of
the nuclei between A and D. The internal part of the dipole
transition is

(18)

DA, AT |uSFIDA, Bf 0= I'A'|ug [E — Pag]ID'A'T

Because the differential overlap betweep(3,4)pa(1,2) and
Pasp(3,4a(1,2) = va(3,4)p(1,2) is very small, cf. Figure
9, we may assume thaD'A'|uy Pag|D'A'T~ 0, and we find
that the “internalA;” — B transition dipole” actually corre-

block, one observes that the transition dipole moments of parallelsponds to the expectation vaIt[@'A’|ﬂSF|D'A'D (The dif-
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ferential overlap is not exactly zero, however, otherwise the moments only, the stretch transition would be forbidden. The
donor-acceptor interchange tunneling splittings would vanish.) final vibrational transition that we draw attention to is the
The ket|D'A'Uis obtained by projection ofyp(3,4)a(1,2)1 transition (1,1,0') — (0,0,6)@A"") given in the supplementary
with operators that do not exchange the labels between theTable 13S. The final states in this transition are (tunneling split)
monomers and accordingly is localized. This explains why this combinations of DT and AW. Harmonically, the transitions are
transition dipole moment is again close to the clamped nucleusforbidden, but here they are fairly strong, the largest transition
value of the water dimer dipole at the equilibrium geometry moment being 0.11da. To end the discussion of the vibrational
DA. Vibrational averaging increases the dipole moment by about transitions, we like to point out that quite a few of them have
10%, just as we saw for the statesEf symmetry. The same  been observed3* for (H,O),, as well as for (O),. On the
argument holds for the other “internal” transition moments in whole, the agreement between experimental and calculated

the first block of Table 11.
So far, we have considered parallel transitions only. Turning
to the perpendicular transitions, we first consider tBeg;

levels is strikingly good. See ref 21 for a detailed comparison
of the frequencies.
We end this section by emphasizing that the polarization

decomposition of the two-dimensional space carried by the effects give a nonnegligible contribution to the line strengths.

functions D%&((I), ® 0)*, k = —1,1, appearing in the total
dipole moment operatar;,’ in eq 7. In eq 14, it is stated that
effectively Pag = E* in this space. Inspection of the projectors
in Table 9 shows then that the exterifidl= 1 functions have
aB; and anA] component. From thé; symmetry ofuyr it
follows thatu;" andu®] have aB; and anA; component. The
A component ofi?'] gives a nonvanishing transition moment
if the symmetry of bra and ket differs only in theparity label

of the Gyg irrep. TheBI component connects statesAoindB

Everywhere in Tables 113, we have given the unpolarized
transition moments in parentheses. We see that the polarization
contributions are on the order of 10%. Because line strengths
contain the squared moments, the cross (interference between
permanent and induced dipole) terms add about 20% to the
intensity of the lines.

5. Conclusions

In this work, we analyzed the nature of the lowest vibrational
states of the dimers @®), and (xO),. The energies of these

symmetry with the same sub- and superscripts. Neither of thesestates are split due to tunneling of the dimer between eight

dipole components connects statesAgf and By symmetry
with states ofA; andB; symmetry. In other words, as one can

equivalent minima and the corresponding tunneling wave
functions are distinguished by their nodal planes. We considered

read off from Table 9, transitions between states belonging to the overall rotational statelk= 0 andJ = 1, with corresponding

one-dimensional irrep# and B are allowed only if they

K| = 0, 1. Considerable part of the VRT spectrum has been

conserve the symmetry under (12) and (34). It is the symmetry measured and the observed vibrational modes were tentatively

under (12) that is relevant here because (12) corresponds toassigned to pure modes such as “donor torsion”,

acceptor tunneling. The conservation of (12) symmetry implies
that only transitions occur from the upper prongs of khe 0
fork to the lower prongs of th& = 1 fork, cf. Figure 3, and
from the lower prongs oK = 0 to the upper ones df = 1.

"o

acceptor wag”,
and so forth. Having the VRT wave functions, we are in a
position to inspect the nature of these motions. We fetnd
already at the harmonic levethat none of the modes is pure:
all contain a strong mix of all displacements of the appropriate

These transitions are reasonably strong, on the order of 0.15symmetry. In most cases, the earlier assignments can be
eay, see Table 11. The perpendiculatransition moments that  maintained, however, at least with the qualifications mentioned
satisfy the same “selection rule” (i.e., upperlower prongs of in section 3.2. That is, in most cases the named mode is present
different forks) are also of this order of magnitude, but those in the state with a nonnegligible weight. There is one exception,
that break this “selection rule” are much weaker. They are, though, which is the (0,0,4)) state that earli€#3* was
however, not forbidden. If the frequency of either one of these assigned to the in-plane bend (IB) vibration. We found without
could be observed, it would give the information needed to fix any doubt that it is a donor torsion (DT) overtone. Also
experimentally the size of thik = 0 and theK = 1 acceptor noticeable in this respect is the state (0,088)( which is a
tunneling gaps separately. combination of a donor torsion and an acceptor wag mode.
Vibrational Transition Moments. All transitions discussed Another noticeable fact that emerged from our calculations
above were tunneling transitionsE < 20 cntt. Table 13 gives is that the internal states are strongly affected by the value of
transitions to vibrationally excited states. The parallel transitions |K|. We already pointed this out in our earlier papewhere
for K = 0 are between states that are symmetric ur@igA’ we saw that this strong dependence<deads to highly irregular
— A). The perpendicular and the parallek= O transitions do  values for the rotational constaAtof the dimer.
not satisfy a selection rule associated with The first block We also presented a set of transition moments, for the main
of transitions, WithAE ~ 120 cnt? for (H,0), and AE ~ 90 reason that they will help spectroscopists in finding new
cm~1 for (D,0),, are acceptor wag (AW) fundamental modes. tunneling and vibrational transitions. One likely candidate of
They are strongly allowed (transition momen.25ea). The observation is the perpendiculat — E~ tunneling transition.
fourth block AE ~ 90 cnt! for (H20), andAE = 70 cnt? for For (DxO),, this transition is at 4.93 cm and although it is
(D20O),) is also strongly allowed. The numbers in this block very weak (0.002ea), it is in the frequency range of the
pertain to the donor torsion (DT) fundamental. The transitons OROTRON?® This instrument may be sensitive enough to
in the second blockAE ~ 145 cm?! for (H;O), and AE ~ observe this transitioff. The observation of this transition will
120 cn1? for (D,0),) resemble a DT overtone. These transitions give the first direct experimental determination of the acceptor
would be strictly forbidden if the intermolecular vibrations were tunneling splitting fork = 0. To date only the sum of the =
harmonic. This not being the case apparently, they are allowed,0 and theK = 1 splitting has been measured for,(3),, whereas
although they are about an order of magnitude weaker than thefor (D»O), the K 0 splitting was obtained under the
corresponding fundamentals. The third block of transitions gives assumption that it is not affected by a simultaneou3Gstretch
stretch fundamentals; observe that these are strongly allowed.excitation. Another line that possibly may be seen is the parallel
If the stretch were pure, with no angular modes mixed in, and K = 1 transitionE™ — E~, which, although a hot band, is strong
the dipole moment function would correspond to permanent enough to be observable.
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To interpret the calculated transition dipole moments we
introduced a group-theoretical model, and we separated th
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calculated at the equilibrium geometry of the dimer. The

difference, a 10% increase, is due to vibrational averaging. For

internal states belonging to the one-dimensighahdB irreps

the expectation value of the dipole vanishes, but our model
enabled us to relate the value of nonzero parallel transition

moments associated with tunneling between tideardB states
directly to the permanent dipole of tie" states.

We expect the transition moments also to be useful in the
search for higher excited vibrational states. Knowledge of these
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in the excited stretch state betweRand the Euler angles was
envisioned. The transition to D¥ AW is forbidden in the
harmonic approximation. Finally, we recall that water dimers
may absorb appreciably solar radiation in the atmosptfefé.

The transition moments presented in this work might be useful

in models describing this absorption.
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