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The distance matrix of a chemical graph can be computed in quadratic time and from it can be obtained the
distance level patterns (DLP); Wiener, Szeged, and Balaban indices; as well as the distance eigenvalues.
Point-group symmetry places bounds on the numbers of distinct DLP and distance eigenvalues. Angular-
momentum arguments rationalize the distance spectrum for near-spherical cages. Wiener and Balaban indices
are inversely correlated and select fullerenes from general cubic polyhedra and isolated-pentagon from general
fullerenes. In combination with hexagon-neighbor information, all three named indices select low-energy
isolated-pentagon fullerenes at 84 and 100 atoms.

1. Introduction considerable body of data on fullerene energetics that is already
available.

The current paper has therefore the following aims: (a) to
correct some erroneous literature claims for distance-level
patterns of fullerenes and to explore the distance spectrum as a

property correlations. The oldest topological invariant is the mgthematlcally well defined a!ternatwe; (b) to present an
Wiener index, which was proposed over half a century'@go efficient a'go_f'th”? for computation O.f the distance matix

a measure of compactness of acyclic alkanes correlating with and_ related invariants and to appl_y It to f“"e"?F‘es and_other
boiling points and other thermochemical properties. Many cubic polyhedra; and (c) to investigate the ability of Wiener

variants have since been devised, some including generalizeoand related_ indices to distinguish fullerenes from general cubic
distances and volumes for chemical grépasd applications polyhedra, isolated-pentagon fullerenes from general fullerenes,

of the Wiener index itself have been proposed for ever wider and stable.from unstable fu.IIerenes.

classes of moleculésWiener indices have been calculated for 1€ outline of the paper is as follows. After a summary of
a number of fullerene isome#sé and for some systematic séts, basic definitions (section 2), the correct relationship between
but correlation with energetic or other properties of these already YViener index and distance level patterns is stated (section 3)

compact pseudospherical molecules does not seem to have bee@nd 9eneral features of the distance spectra of polyhedra are
reported. analyzed using symmetry arguments and an analogy with

It has been suggested that more of the information that is SIMPIEr systems (section 4). A brief discussion of efficient
contained in the full distance matri® could be used with algorlthms (section 5) is foIIowed.byareport of explicit c_alcu-
advantage in the study of fullerene® {s the matrix with lations on fullerenes and other trivalent polyhedra (section 6).

elementsD; the number of edges in the shortest walk along
edges fromi to j). For example, Balasubramant&obtains a

Perhaps the most natural description of a molecular graph is
in terms of the distances, geometric or topological, between its
pairs of vertices. Distance-based invariants have a long history
in chemistry and have found useful application in structure

2. Definitions

distance leel pattern and a correspondinglistance leel The distance matri© is defined as follows: if = j, then
diagramby ordering the entries of one column Bfand then
thedistance spectrurand itsdistance characteristic polynomial D.=0 (1)

by diagonalizingD. Various features of distance spectra of
fullerenes are noted in passing. The level pattern itself is also b
advanced in those papers as a candidate for a discriminatory
structural invariant of fullerenes, though as will be shown below,
this cannot be correct, because the details of the pattern depend
on the choice of root vertex. It seems desirable to evaluate the
various literature proposals by making a systematic survey thatWhered is the length of the shortest walk froito j. A walk

uses an efficient algorithm, includes rigorous consideration of is defined here as a sequence of consecutive edges starting from

the symmetry properties ob and takes advantage of the the vertex and terminating at vertgxand its length is measured
by the number of edges traversed, without considering their
*To whom correspondence should be addressed. geometric lengths. The adjacency matixf the graph is then
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if and only if dj = 1, and otherwise where

A =0 4) .
=3A (12)
5= 3

The Wiener indexXV is
is the degree of the vertéxFor any regular graphy, is trivially
1n n n n/2.
W=—Z Zdij = Z d; (5) The radiusR and diameteD of a graph are also readily
21 £ i*7=1 calculated fronD. If the eccentricityof a vertexi is defined as
the largest entry in the rojd;}, the centerof the graph is
i.e., the sum of shortest pairwise distances taken over all distinctthen the set of vertices of minimal eccentricity, and tadius
pairs of vertices. The average distance between noncoincidents the eccentricity of these central vertices. Themeteris the

vertices in the graph id and is recovered froriV as largest eccentricity of any vertex and obeys< 2R. Some
conjectured relations betwedh, R, and other invariants for
- 2W fullerenes are given by the GRAFFITI progré#? and are

d= n(n — 1) (6) subjected to computational test in ref 14. The recently progésed

“reverse Wiener index” combines diameter alicand is equal

A related quantity is the Szeged index introduced by Gutfnan, © n(n — 1b/2 = W.

which has contributions from all edges of the graph: 3. Distance Level Patterns

it is possible to define thdistance leel patternas the ordered
sequence of valuad; running through consecutive integers up
to the eccentricity of vertek This distance level pattern is also
known in mathematical graph thedfas thelevel representa-
tion of the graphG with respect to the verteix More compactly,
the pattern is given as the list of the multiplicitigsof distance
k. Thus, a vertex of the dodecahedral@ullerene has three
neighbors at distance 1, six at distance 2, six at 3, three at 4,
and one (the antipodal vertex) at distance 5; in the notation of
ref 6, the distance level pattern for the vertex is therefore 0(1),
1(3), 2(6), 3(6), 4(3), and 5(1), or simpfa, 3, 6, 6, 3, }.
. . . Note that, unusually among fullerenes, this sequence fpisC
tmhsr?-ogdodn?;crgls?m but not, e.g., in a polyhedron with one or palindromic. [An infinite set of graphs for which every DLP is
T i ) ) o palindromic is that of thel-dimensional hypercubes;. Each
A third invariant defined from the distance matrix is the v4 has diameted and DLP equal to thed(+ 1)th row of the

Sz= Z nn, @) For a given vertexin a fullerene or other cubic polyhedron,
edges

where, for any edgg, n; counts the vertices @ that are closer

to vertexi than toj andn; counts those that are closerjtthan

to i, with vertices equidistant fromandj being ignored. This

is a natural generalization of the Wiener index, because (7) is
actually the formula used by Wiener to evalusitefor trees

(for which W = Sz), and the two indices correlate for various
derivative classes of graghFor cubic graphs, the naive
asymptotic upper bound on Sz4s3n%/8, achieved if all &/2
edges simultaneously have the maximak n, = n/2 (as in

Balaban indexJ*° Pascal triangle{1} ford =0, {1, 1} ford=1,{1, 2, 1 for
b d= 2, etc.]
J= @ dj)*llz ®) However, in contradiction to statements in at least two

published sourcex? the distance level pattern i®t invariant
to the choice of in general fullerenes. Indeed, an assumption
of invariance would fail at only the second fullereng,,@vhich
already has two distinct level patterns (Figure 1). Among
isolated-pentagon fullerenes, the assumption would also fail at
the second instancezghas five distinct distance level patterns
. of two different lengths:{1, 3, 6, 8, 10, 11, 11, 10, 7} 3{1,
d=YSd ) 3,6,8,11,11, 11, 10, 6 }3{1, 3, 6, 8, 10, 10, 10,9, 7,4} 2
i Z i {1, 3, 6, 8, 10, 10, 11, 9, 6;}6and{1, 3, 6, 9, 10, 11, 12, 9,

= 6, 3}, where the first two are each realized by 20 and the last
three by 10 vertices. Only the polar vertices have distances equal
to the full diameter of the grapD(= 10).

Vertices of a polyhedron fall intorbits, i.e., sets of equivalent
points such that symmetry operations permute vertices within
but not between sets, and for a given polyhedron, the distance
level patterns are equal for symmetry-equivalent vertices but
WJ= 1ueZ/f (10) not necessarily for vertices belonging to different orbits. Only

2 Coo andly, Cgo are one-orbit fullerenes and are, thus, tmdy
two fullerenes guaranteed by symmetry to have vertex-invariant

C+ 1 ¢fges

whereb is the number of edges,is the number of primitive
cycles b = 3n/2 andc + 1 = n/2 + 2 for a cubic graph), and
d; is the row sum

For the specifigpolyhedralgraphs in which all vertices have
the same row sum (e.g., the Platonic and Archimedean solids),
a simple relationship connects the Balaban and Wiener indices
via the numbers of faces, edges, and verti€es, v:

(If the polyhed_ron is cubic, the RHS of (10) is™®4(v + 4))-_ distance level patterns. In the language of graph theogy, C
Balasubramaniamotes the analogy betwedrand the Randic  and G are both vertex-transitive./gis also, uniquely among
connectivity indek! the fullerenes, edge-transitive.
Although the DLP for an individual vertex is not a graph
¥ = (4 Uj)—l’2 (11) invariant, invariants based on the whole sets of level patterns

€dges can of course be constructed. The simplest such combination
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TABLE 1: Distance-Level Patterns (DLP) for Selected Fullerenes, &

n:m G D W {94 (k=3,...D) Ns n:m G D W {g¢ (k=3,...D) Ns
2001 5 500 6 3 1 20 8 9 8 6 3 0 12
241 Dey 5 804 6 5 3 12 7 10 9 6 2 0 6
7 5 2 12 8 9 8 5 4 0 6
2621 Dy 6 987 6 5 5 6 4473 T 8 383 6 9 9 6 3 1 4
6 6 3 1 2 7 9 9 6 3 0 12
7 6 3 0 12+6 8 9 8 5 4 0 12
282 T 6 1194 6 6 6 O 4 8 8 8 7 3 0 12
7 7 3 1 12 9 9 6 6 3 1 4
7 6 5 0 12 46:115C; 8 4281 7 8 9 8 4 O 3
301 Dsy 6 1435 6 6 6 2 10 7 9 9 7 4 0 3
7 7 5 1 10 7 9 9 6 5 0 83
8 7 4 1 10 7 8 8 7 6 0 3
323 Dy 7 1696 6 6 6 3 1 26 8 9 8 7 3 1 33
7 7 6 2 0 12 8 8 8 8 3 1 3
8 8 5 1 0 12 7 9 9 7 31 3
36:15 Den 7 2292 7 8 7 3 1 24 8 10 8 5 5 0 3
8 8 6 3 1 12 8 10 8 6 3 1 83
382 Dz 8 2651 6 6 6 5 5 6 9 9 8 6 4 0 3
6 6 6 6 3 1 2 8 9 9 6 4 0 83
7 7 7 5 2 0 12 9 9 9 6 3 0 1
8 9 8 3 0 O 12 48:188 b 8 4764 7 8 9 8 6 O 6
9 10 7 2 0 O 6 7 9 9 8 4 1 6
40:39 Dsg 7 2990 7 8 7 6 2 20 7 9 9 7 6 0 6
8 8 8 5 1 10 8 9 9 8 3 1 6
8 10 8 3 1 10 9 10 8 6 5 0 6
40140 T4 7 3000 7 9 8 4 2 12 8 10 9 6 4 1 6
8 8 7 5 2 24 8 9 8 8 4 1 6
6 9 9 6 O 4 8 9 9 7 4 1 6
4245 Dy 7 3390 7 8 8 6 3 6 50:271Dsh 8 5276 7 10 9 7 6 1 10
7 9 8 5 3 6+6 8 9 9 8 5 1 20
8 8 8 6 2 6 8 9 9 8 6 O 10
8 9 7 6 2 6 8 10 9 7 4 2 10
8 9 8 5 2 66  52:437 T 8 580 7 10 @@ 7 5 3 12
44:72 Dy, 8 3818 6 9 9 6 3 1 2 8 10 9 8 5 2 12
7 9 8 55 0 6 8 9 9 8 6 2 w12
8 8 8 7 3 0 12 9 9 9 9 6 O 4

alsomers are labeled:m (wheren is the number of vertices and is the position in the lexicographic order of spiral codesG is the point
group of the fullereneD is its diameter, andlVis the Wiener index. The distinct patterns are listed for each isomfaggsk = 3, ...D. The values
0o =1, 01 = 3, andg, = 6 are common to all fullerenens is the number of sites with the given DLP. Table 1 of ref 5, of which the present table
is a correction, also includes isolated-pentagon fullerenes 60:1, 70:1, 76:1,5/80:7, 84:1, 90:1, 90:2, and 90:16; all but 60:1 have multiple
DLP.

for this orbit, then the Wiener index of the whole graph is

1K D
W= Ekzl ;nklgl,k (13)

whereK is the total number of orbits. This orbit-by-orbit version
of the formula corrects an expression given in ref 6. Group-
theoretical aspects of the calculation &% for graphs
with symmetry have been treated in detail by Fuji and
Huaien!’

Table 1 lists the distinct distance patterns for a subset of
fullerenes, correcting Table 1 of ref 5. As the recognition that
each fullerene may have many DLP makes the data much more
voluminous, only the lower fullerenes {Gh < 60) from ref 5

0,1 are listed here.
Figure 1. Schlegel diagram of the uniquesCfullerene, of Deg Another invariant which can be obtained by summing DLP

symmetry. The twelve polar vertice®) have distance level pattern entries over all vertices of the graph is Mbe_ner polynomiat®
0(1), 1(3), 2(6), 3(7), 4(5), and 5(2) and the twelve equatorial vertices NOW more often called thelosoya polynomialA graphG has
(O) have pattern 0(1), 1(3), 2(6), 3(6), 4(5), and 5(3). Each vertex is Hosoya polynomial

labeledi,j wherei is its distance fron® andj is its distance fron®;

these labels are easily assigned by the algorithm described in (section
) y assigned by the alg ( H(GX) = ZO d(G, 1) X
is the Wiener index itself. If the size of tHeh orbit is ng and where d(G,l) is the number of distinct pairs of vertices at

distancd occurs with degeneraay in the distance level pattern  distancd. Its coefficients follow from the DLP entries, which
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in the orbit formulation are

d(G, 0) = an

1
dG,1=1)=-3Yn
( ) ZZ e

and it has the propertied(G, 0) = n, d(G, 1) = m, (dH(G,
X)AdX)x=1 = Y120 1d(G, I) = W(G), H(G, 1) = n(n + 1)/2 for an
n-vertex,m-edge graph. Hosoya polynomials for the fullerenes
featured in Table 1 are straightforwardly recovered from the
data listed there. For the two single-orbit fullerenes

H(Cy X) = 20+ 30x + 60x° + 60X° + 30x" + 10x°

H(Cqo, X) = 60+ 90x + 180¢ + 240¢ + 300¢* + 300¢ +
300¢ + 240 + 90 + 30¢°

4. Distance Spectra

The distance matribD can be diagonalized, and as a real
symmetricn x n matrix, it hasn real eigenvalue§iP}. The
symmetry spanned by the eigenvectors fis T'x(v), the

permutation representation of the vertices in the maximal point

group of the fullerene. It is identical to the symmetry spanned

J. Phys. Chem. A, Vol. 105, No. 25, 2008235

equivalent by symmetry may still have equal separation, and
thus

1
Z?@+D—%2D (16)

The equality is realized bgistance transitie graphs. A distance
transitive graph is one in whiadth = d,, implies that the vertex
pairs {, j) and (i, v) are equivalent by symmetry. Such graphs
have D + 1 distinct adjacency eigenvaluéds.?l Cy is an
example which illustrates the fact that distance-transitive graphs
do not necessarily have + 1 distinct distanceeigenvalues
D-
If To(v) has a block withe; = 1, the eigenvectors dD of
that symmetry are fully determined and, hence, coincide with
those ofA in the same symmetry block for the graph in question.
For fullerenes without symmetry, (16) reduces to the loose
bound
1
En(n -1)=D a7
As concrete examples, consider the dodecahediala@d
truncated icosahedralggfullerenes, both of, symmetry. For
Coo, the vertex representation is

[(20)= Ay + Gy + Hy + Ty, + Ty, + G, (18)

by the eigenvectors of the adjacency matrix, which correspond and

to eigenvalue§ 1”}. Multiplication by the representation of a
local basis function (which for a polyhedron with “radiat’
orbitals isT, the totally symmetric representation) gives the
representation of the 'Hlel molecular orbitals (i.e., the linear

[T,(20)] — T,(20) = 5A, + 2T, + 2T, + 7G, + 11H, +
A, + 5T, + 5T,, + 6G, + 7H, (19)

matrix al + SA wherea. andf are constants).

The two matriced\ andD carry exactly the same information
content, becaude can be computed from the powersfAfand
the nonzero components Afare simply the set of unit entries
in D.2° However, it can be anticipated that the information
content/discriminatory power of thspectrum{AP} will be
smaller than that of 1A} because many distance spectra have

190 shortest walks of nonzero length fall into 5 distinct sets,
one for each length= 1-5. All eigenvectors ofA for Cyo are
therefore also eigenvectors bf The separate orbits of vertex
pairs span representations reflecting the site gra@psCs, C,,

I(1=1)=A,+ G, + 2H;+ Ty, + Tp + G, + H, (20)

very high “accidental” degeneracies of the zero eigenvalue. I'(l = 2) = Aj + T,y + T, + 2G, + 3Hy + 2T, + 2T,, +

Balasubramanian has calculated characteristic polynomials and

numerical eigenvalues @ for a sample set of fullerenés.

The permutation representation of the vertices carries Sym-p( =3) =

metry information on botW andD. In its reduced formlI",(z)
is a linear combination of the irreducible representatibnef
the relevant group:

r)=yar (14)

In this expansiong (the coefficient oflg) is equal to the
number of distinct orbits of vertices. The symmetric square
[T(v)?] gives the representation of all possible distinct pairings
of vertices (including pairings of a vertex with itself). Subtrac-
tion of the zero-length walks give§'§(v)q] — T',(v), and the
number of copies of in this representation is therefore

1
> @+ 1)~ a (15)

which is equal to the number of orbits of symmetry-distinct
vertex pairs in the graph. The number of numerically distinct
entries inD may of course be smaller, as pairs that are not

2G,+ 2H, (21)

Ay + Tyy+ Toy + 2G, + 3H, + A, + Ty, +
T+ 2G, + 3H, (22)
[(=4)=A,+ G+ 2H,+ T, + T,,+ G, + H, (23)
I(=5)=A,+G,+H, (24)

C..,, andDgy of the pairs with different separations. FogoC
the vertex representation is

I' (60)= Ag + Tlg + ng + 2Gg + 3Hg + 2T, + 2T,, +
2G,+ 2H, (25)
and

[I“U(60)2] — I';(60) = 23A; + 37T 4 + 37T,, + 60G; +
83H, + 14A, + 44T, + 44T,, + 58G, + 72H, (26)
again implying a single orbit of vertices but now 23 distinct

orbits of pairs. A pair with unit separation ins§; for example,
could be one of two types: in a single or a double bond of the
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main Kekulestructure (pentagon-hexagon or hexagon-hexagon spectrum to crowd toward zero. The idealized sphedisthnce
edges, respectivelyp for Cgp is 9. The bound (16) is sharp  spectrum therefore has a folded pattern
for Cy but not for Go.

Several properties of the spectrum of thematrix follow $>D>G>..>H>F>P (28)
easily from its definition. All elements dD are integers, and
so all momentsy, = ,(A")" of the spectrum are also
integral. D is traceless, and therefore, its eigenvalues sum to
zero:

with degeneraciesl2+ 1. This sequence is in contrast to the
model adjacencyspectrum, where eigenvalues fall monotoni-
cally with L:

S>P>D>F> .. (29)

n

M= /IP =0 (27) Point-group induced splittings and details of the construction
= of the individual graph may split degeneracies and blur the traces

of spherical ancestry of the eigenvalues for batndD, but
the spherical sequence remains a useful guide for symmetrical
systems. A more detailed spherical-harmonic theory of distance
spectra of polyhedra could be developed along the lines of
Stone’s tensor-surface harmonic treatment of their adjacency
spectra?

Table 2 lists the analytical forms of the distance and adjacency
eigenvalues for g and G, and Figure 2 shows their relation
to the spherical classification. The range of the spectrum of
s always 3> {14} = —3 for a trivalent polyhedron, but the
range of the distance spectrum when expressed in units of the
largest eigenvalue is predicted to shrink witls the sphere is
sampled at more points, and indeed, the calculated separation
. : . b (A — AD)/A2 does fall from 1.333 for the tetrahedron to 1.274
adjacency matrix of theomplete grapfon n Vert|ces./'{ IS a for the dodecahedron and 1.248 for the truncated icosahedron.
relic of this ancestry. The ground eigenvector bf has An intriguing aspect of the fullerene distance spectra pre-
coefficient 14/n on every vertex. In the one-orbit case, where gented in ref 6 is that whereas nearly all contain zero eigenvalues
all vertices of the graph are equivalent by symmetry, this would \yitp high multiplicity (e.g., 9 for Go, 24 for Tq Cao, 63 for Iy
also be an eigenvector @ with eigenvaluely exactly equal  Cyo) some highly symmetric graphs have no zero at all. Some
to 2W/n, the sum of the unique distance pattern level. The statistics on the distribution of this eigenvalue for wider samples
equality holds for, e.g., cycleS,, prisms and antiprisms, the  of fullerene and nonfullerene cubic polyhedra are given below.
platonic and archimedean polyhedra, and the complete graphs Al of these features of distance spectra can be seen more
Kn. In the fullerene class, the equality is forced by symmetry clearly for monocyclic rings, where a full analytical solution is
for Czoand G only but also occasionally holds “accidentally”.  ayailable. As is well-known from Fizkel theory?” the eigen-
D for Cgo has two distinct DLP, but both sum to 440. ORg  vectors and eigenvalues of the adjacency matrix oNagon
eigenvector has equal contributions on all VertiCES)aﬁd440; can be classified by an axial angu|ar momentum quantum
the other hast = 0 and coefficients in the ratie-3:1 on numberA (= 0, 1, £2, ... (N — 1)/2 (N odd) or+N/2 (N
hexagonal:pentagonal vertices. The same two eigenvectorseven)). The eigenvalues are
correspond to eigenvalues3 and—1 of the adjacency matrix

Inspection of some sample speéfrauggests that for fullerenes
and other polyhedra there is generally one large positive
eigenvalue/ﬂ3 ~ 2WIn, approximately counterbalanced by
three large negative eigenvalug§ , ~ 1>, ~ iD. The
remainder of the spectrum is crowded around zero, with a scatter,
of small positive and negative values, and often, but not
invariably, it will include a highly degenerate zero eigenvalue.
The appearance of just one large positive eigenvalue in the
spectrum can be rationalized by noting the resemblance betwee
D and another familiar off-diagonal matrix. If all nonzero
distances irD were replaced by their averagk the new matrix
D would have one eigenvalug and 6 — 1)d = 2W/n and
(n — 1) eigenvalues- d, asD would be a scaled version of the

of Cgo. Cgp also therefore obeys (10) exactly, gividg= 60/77. lﬁ = 2 cos(2ZrA/N) (30)
Likewise, the four-orbit G0 has accidental row-sum degen-
eracy, with all sums equal to 2312, and herice; 2312 and) and are degenerate fat|A|; singly degenerate eigenvalues

= 8100/17629. For multiorbit cas%? > 2WIn, because the  occur forA = 0 (all N) andA= +N/2 (N even). The coefficient
largest eigenvalue of a nonnegative real symmetric matrix is at on vertexr (r = 1, ...,N) for a vector with eigenvalud can be
least the average row sum and the ground eigenveciorafs chosen as
in general a different coefficient for each orbit of vertices.

A more detailed understanding of the spectrunbdbllows CA= (1/\/N) exp(27i(r — 1)/N) (31)
from the spherical model for a polyhedron. In this picture, the
3D structure of the polyhedron is replaced by an average Because the adjacency eigenvectors for ¢Ac¢lspan distinct
spherical shell onto which all vertices are projected andnthe irreducible representations of the cyclic groufy, they are
eigenvectors are then approximated by sampling the first simultaneous eigenvectors of bothandD. With some work,
independent spherical harmonics at the vertex positions. Modelsthe eigenvalues dD can therefore be obtained as expectation
of this kind have been useful in the qualitative theory of values over these vectors. All monocycles have a nondegenerate

electronic, geometrical, and vibrational structure of cluste®s, largest distance eigenvalue
In the spherical model, the ground eigenvectobois then
the nodeless S’ harmonic (angular momenturh = 0), and A/[i:o: 2WIN (32)

the three P” harmonics (angular momentuin = 1) account

for the trio of large negative eigenvalues noted earlier. Initially, (hereW = 1/8(N — 1)N(N + 1) for oddN, 1/8N2 for evenN),

the eigenvalues will be dominated by contributions from and the other termﬁ?\ in the spectrum are-1/4 csé(A/2N)

antipodal and near-antipodal points and, hence, will tend to take (N odd, A odd), —1/4 seé(@A/2N) (N odd, A even),
positive signs for thegeradeharmonicsL = 0, 2, 4, etc. and —cs@(wA/2N) (N odd, A odd), and 0l even,A even). This
negative for theingerade l= 1, 3, 5, etc. A4 rises, the number  last case implies that whet is even,D has a N — 2)/2 -fold

of angular nodes increases and internal cancellation causes thelegenerate zero eigenvalue.
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TABLE 2: Spectra of Adjacency and Distance Matrices of Gg and Cg, Classified According to Irreducible Representations
(irreps) of Icosahedral Point-Group Symmetry?

irrep AA (Czo) AP (Czo) AA (C(;o) AD (Cso)
A +3 +50 +3 +278
Tig (/5-13)2 +¢
Ty —¢? —¢t
Gy -2 0 +1,-2 —(2+ /5)
Hg +1 0 +1, (14 V13)2 —2.9275, 0.8784, 3.0791
Ay
Tw +5 —7-35 @EVI—p D2 —69.0607,~1.8622*
T -5 -743V5 @2+ vV9+¢)2 —5.466,-0.6213"°
Gu 0 -2 ~(W17T+1)2 ~(3++/8)
H ¢l —¢ —(3+v/5)

a{AA are eigenvalues of the adjacency mathix{ A°} are the eigenvalues of the distance mabiX’ Solutions ofi® — 12 — 91 + 8. ¢ Ty, and
T, solutions together are the roots &f + 7712 + 56312 + 10224 + 436.

A

3 3 T2u
- 47 33se Gy
1 A

0 4 3 eeee Gu
1 2 eeees Hp
2 1 eee Ty
3 o . Ag

?

2.4

Tlu

Gu

T2u
Hg Gg

Ag

78 vt GuTZg
6 _ eee Gy

65" §it.0 HyTa®
6 TS
5 eeess Hu

47 lttesee. GoHg
33 cese G“Tzu
2 sesee g

ol 10 ATH

WwW

0

. Ag

Figure 2. Spherical harmonic interpretation of adjacency and distance eigenvalue spectra of fullerenes. Spectra of the adjacency (left) and distance
matrix (right) of (&) Go and (b) Go are labeled by irreducible representations withisymmetry g, Ty, ...) and angular momentum within the
spherical groupl{ = 0, 1, 2, ...). Adjacency spectra are roughly monotonikc,ibut distance spectra converge on the zero eigenvalue from opposite

directions for odd and even values lof

This simple monocyclic problem exhibits the relation of the a computer. For each vertex, the number of operations is

largest eigenvalue to the Wiener index, the folding of the

series about zero,

D D D D
Ap=0™ AMp=2 > > Apo3 > Ajy

fullerene polyhedra.

5. Algorithms

(33)

proportional to the number of edges. (One must check once for
all edges incident with a given vertex whether their neighbors
are unlabeled and, if so, label and store them.) Because the edge
count isO(n) for chemical graphs, which have a bounded vertex
degree, and equal toW2 for cubic graphs, the total number of
the multiple zero eigenvalues seen for some systems, andoperations iSO(n?). Because the distance matrix which is the
systematic absence of zeros for others, all as observed foroutput has? elements, there is a lower bound@fn?) on the
number of operations and the algorithm is the best possible, up
to a constant factor, i.e., it i8(n?).

Contrast thisf(n?) algorithm with the procedure based on
taking powers of the adjacency matfiXA contains information

Calculation of distance matrices is a standard operation in of walks of unit length and, in general, the elemeh); of its
computational graph theory and highly efficient procedures are Nth power is equal to the number of walks of lendgtihat go
known. The simplest algorithm for unweighted sparse graphs from vertexi to j. A strategy for computind is therefore to
consists of finding distances from each vertex in turn, chosen take successively higher powers, setting eBgho the lowest
as origin for shortest paths to all others. To do this, the chosenvalue ofN for which (AN); is nonzero. The matrix multiplication
vertex is labeled 0, unlabeled neighbors receive the label 1, theiris carried on until every element has been set, i.e., until the
unlabeled neighbors receive label 2, etc. This algorithm is easy cumulative totall + A + A2 + A% + ... no longer has zero
to use by hand, even for fairly large graphs, and very quick on entries. This algorithm is conceptually straightforward, but its
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TABLE 3: Distance Invariants of Icosahedral Fullerenes G, it is tempting to speculate that the invariants in Table 3 should
with n < 3000 all be analytical functions of the Goldberg parameters. At least
n i jRD W Sz J J LIS as far as the tabglgtion ?s taken, dia}meters qflmllerenes
20 10 5 5 500 1920 150000 9 50 f|téhe;_formyla_sD(_|,|) =6i-1 %ndD("%) =10 — 1, and the
60 11 9 9 8340 51840 091052 o 278  ladifit R =9 +1—i(mod 2)andR(i0) =5 +1—i
80 20 11 11 17600 157440 0.77922 63 440 (mod 2). Relations for other invariants and for the chiral cases
140 2 1 13 14 71390 753390 0.60058 24 1019.87 appear to be more complicated.
180 3 0 15 17 135120 1890780 0.52790 127  1501.68  Hints of other regularities are also evident in the table. The
240 2 2 19 19 277440 4250880 0.45947 170 2312 lationshin (10) b oW andJ. which derived onlv {
260 3 119 19 338800 5357580 0.44215 0 260625 'elationship (10) betweew andJ, which was derived only for
320 4 0 21 23 571620 10931100 0.39819 222 357359 the case when all rows of the distance matrix have the same
380 3 223 24 878040 17203020 0.36618 68 4621.28 sum, is in fact obeyed surprisingly closely by all of the
‘5%8 g é gg gg Ei;ggg igggggig 8-2‘1‘&5‘2 36% %%g-g% icoahedral fullerenes tested. For four members of the serigs (C
540 3 3 27 29 2119320 51606900 0.30731 370 7849.56 Coo Ceo and Gag), the relationship is exact, in the first two
560 4 2 28 28 2319730 57064260 0.30202 157 8284.80 Cases because the row sums are equal by symmetry and in the
620 5 1 29 31 2991650 79177380 0.28729 50 9651.68 others because the sums are equal by accident, as noted earlier.
;ig 2 g g; 3451 jgggggg ig;ggg?gg g-ggggg 423 gggﬁ-g;’ In all other cases in the Table, the fullerene has more than one
. _ ; 5 .
780 5 2 33 34 5317320 157738920 0.25613 0 13634.46 lrow Sﬁm b3:t tggquotlent 4(t 4)W Jon® exceeds unity by
860 6 1 33 37 6785730 215120400 0.24414 120 15783.30 €SS than 3x 10°%
960 4 4 37 39 8949420 298962900 0.23075 661 18645.32
980 5 3 37 38 9419270 316200480 0.22848 0 19223.09 6. Results
980 7 0 35 41 9412420 325192080 0.22871 665 19214.74 _ o _ o _
1040 6 2 38 39 10922430 381125340 0.22196 140 21005.60 Given an efficient algorithm, it is possible to make a
l%gg 7139 43 12288338 Zoggggggg 8-%21; 228 52123-82 systematic examination of the chemical relevance of Wiener
1 54 41 44 1 10 61 20479 24 721. P ;
1260 6 3 42 43 17663490 681998550 0.20159 562 28037.56 andhrelated indices f_orfullerlenes. Calcfulagpns vlver:e performed
1280 8 0 41 47 18357700 728828460 0.20024 839 28692.51 ON three test sets: (i) complete sets of cubic polyh&ran n
1340 7 2 43 45 20589850 825868140 0.19565 24 30733.22 vertices (1= 20, 22, and 24), (i) the complete set of fullerenes
1460 8 1 43 49 25506370 1073740980 0.18756 160 34947.58 C, on 60 vertices, and (iii) complete sets of isolated-pentagon
1520 © 4 46 45 26251090 1208964700 016353 332 3717252 LIereNes G (n =84, and 100). Set i was generated using the
1580 7 3 47 48 31100310 1357249230 018010 0 39379.62 Plantr” program of Brinkmann and McKa, sets ii and iii
1620 9 0 45 53 33089280 1484362140 0.17807 1083 40863.27 from the spiral algorithm of Manolopoulos et*dMore efficient
1680 8 2 48 51 36246150 1643201340 0.17480 130 43154.18 procedures for fullerene generation are kndwhut the spiral
1620 6 5 50 54 4433950 2030153920 016772 180 4872623 Concs Symmelry and other properties of the graphs in a
1860 7 4 51 52 46805160 2226859770 0.16595 40 50328.48 trlansparent r‘:\’é? a||1d f?;rgs ﬁart of standar%lUPﬁC nomen-
1940 8 3 52 54 51976100 2535051630 0.16250 240 53585.27 clature for the molecules. The strategy with each set is to
2000 10 0 51 59 56046920 2803357200 0.16031 1298 56063.85 compare the performance of the distance invariants with in each
2060 9 2 52 57 60355910 3050178270 0.15791 160 58604.76 case an invariant that is already known to correlate with total
2160 6 6 55 59 68059260 3506532300 0.15396 1392 63020.55 gnergy
2180 7 5 55 58 69634180 3606283770 015328 300 6388548 ~ TS\ polbo e \withic i binatoriall losi
2220 10 1 54 61 72751770 3816780120 0.15218 280 65557.83 (1) Cubic Polyhedra. Within the combinatorially explosive
2240 8 4 56 58 74504060 3919333140 0.15126 887 66522.23 humber of all cubic (trivalent) polyhedra, fullerenes form a tiny
2340 9 3 57 59 83054190 4481563710 0.14809 50 70989.76 subset. Chemically, however, they are favored structures for
gigg 1(1) 2 g? gg ggg;gggg ggiégggggg g-iiggg 1%3 Z;‘Z’gi’-gé carbon cages, and their special role is confirmed by explicit
2540 7 6 59 64 102066310 5715039960 0.14200 300 80369.90 COMPUtation of relative energies. A simple measure of proximity
2580 8 5 60 62 106114470 6014477610 0.14002 280 82259.90 Of @ given cubic polyhedron to a fullerene is thgaramete¥
2660 11 1 59 67 114347030 6591011400 0.13905 240 85996.66
2660 9 4 61 63 114491360 6596544960 0.13884 0 86085.22 F=Y1(6—r) (34)
2780 10 3 62 65 127773510 7556572200 0.13590 60 91929.13 = Zr
2880 12 0 61 71 139494600 8416987680 0.13364 1837 96900.62 T
2940 11 2 62 69 146891400 8944767630 0.13224 520 99941.66
2940 7 7 63 69 147148500 8914967280 0.13199 2012 100105.45 wheref; is the number of faces of size If a fullerene exists
2960 8 6 64 68 149645420 9109938660 0.13156 390

101113.72 for the given number of vertices, it will have= 12 (fs = 12
aEach fullerene is labeled by the two Goldberg paramétérs, andfs = n/2 — 10), and this is the minimum possible. Where
that specify its netR andD are the radius and diameter of the graph.  a fullerene does not existy (< 20 andn = 22), the polyhedron
W, §, andJ are its Wiener, Szeged, and Balaban indices, respectively. of minimal F is still apparently that of lowest energyF can
;hin‘i':agff spectrum haszero eigenvalues and largest positive  yherefore be used to rank cubic polyhedra, at least crudely, for
9 Uhmax relative energy.
complexity isO(n*) and it rapidly becomes unworkable when Figure 3 shows scatter diagrams for the Wiener indéand
large graphs or large numbers of graphs are to be consideredJ against for 20-, 22- and 24-vertex cubic polyhedra. All three
The relative efficiency of the first algorithm is illustrated by indices are highly degenerates isF itself, and the plotted
Table 3, whereR, D, W, J, distance level patterns, largest distributions show wide dispersion. Howev&Y, and J show
eigenvalues, and numbers of zeroes in the distance spectrungood selectivity for fullerenes. The twe= 12 data points for
are listed for all icosahedral fullereneg @ n < 3000 vertices. the unique fullerenes & and G4 (marked by crosses) stand
The fullerenes are generated by the Goldberg construétion. out from the cloud of £, W) and §, J) pairs. For Gy, the
Calculations ofR, D, W, S,, J, and DLP take a few seconds in  situation is less clear, as the minimdMmaximumd points
total; it is estimated that the second algorithm would take orders haveF = 16, beating narrowly the near-fullereneFat= 14 (f,
of magnitude longer to produce these data. Given that each= 1, fs = 10, andfs = 2). The differences iW (645 vs 646)
icosahedral fullerene is constructible using just two integérs, andJ (1.414 35 vs 1.426 98) are small, and this is compatible
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Figure 3. Dlstance invariants for general cubic polyhedra. (a) Wiener indéxp) Szeged index$, (c) Balaban indexJ, for the complete set$
of (top to bottom) 7595 20-, 49 566 22-, 339 722 24-vertex cubic polyhedra, plotted agafB4), which measures the deviation of each polyhedron
from the fullerene idealR = 12). The unique fullerenes,gand G, and the minimaF C,;* are shown as crosses on the diagrams.

with the small difference in computed energy of the carbon adjacencie$>36Each pentagon fusion in a fullerene cage carries
cages In contrast, the Szeged index shows no preference for an energy penalty of the order of 1 eV, and the isomers of lowest
the fullerenes and near-fullerenes; the minifatages lie in energy at eacl have the lowest achievable numbé,, of
the middle of the range and would not be picked out without such fusions. Pentagon adjacencies are forced far &ll60.
other information. Thus, only two of the three indices are able  Figure 5 shows scatter diagrams for the Wiener indesg,,
to pick out the fullerene or near-fullerene cages from the massand J against the number of pentagon adjacencies for the
of general cubic polyhedra. This feature is of course shared by fullerene isomers of g. It is clear thatW, S, andJ have a
the easily compute& function. qualitative tendency to select fullerenes of Idyand, hence,
Wiener and Balaban indices can be expected to be closelypick out the class of low-energy isomers. The unique isolated-
related, because both depend on the row sums of the distancgentagon & cage minimize&V andS, and maximizes within
matrix and, as we have seen, they give the same predictionsthe set. The broad scatter {8 vs N, again suggests that the
for extremal polyhedra. In addition, Figure 4 shows thaand Szeged index is less physically relevant thadhor J. The
J also follow closely an inverse proportionality relation for stronger correlation fo/V andJ is again a useful feature, though
nonextremal polyhedra. The whole set of 7595 20-vertex it does notimprove on the known and easily calculatgdlhe
polyhedra cluster around the hyperbola predicted by (10) for degeneracy oV as an index for the & fullerenes was noted
fully symmetric polyhedra. Though not as close a fit as noted by Balaban et al’;the 1812 isomers support only 116 distinct
earlier for the icosahedral fullerenes, this is a clear indication values of W which, according to the criterion used in ref 7,
that the two invariants share the same physical content. indicates an information deficit of 5.1062 for this index. Our
(ii) General Fullerenes.It is known that a major determinant  interest here is somewhat different, in that, the aim is not to
of energy of small fullerenes is the number of pentagon find an index that distinguishes all isomers but one that picks
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Figure 4. Correlation betweerwV and J indices for the 20-vertex 62500 ]
polyhedra. The curve for fully symmetric polyhedra in which all 20 B
vertices are equivalent\( J = 750, (10)) is closely followed, even = .
though onlyl, Cy satisfies this requirement rigorously. 60500 ot :
out low-energy structures from general fullerenes; in this respect, ] = - I f !
W, S,, andJ are all successful. 58500 - . l ' :
(iii) Isolated-Pentagon Fullerenes.Beyond the very clear T ! iiL
indications of the isolated-pentagon (minimal pentagon adja- ] : I ! i
cency) rule, it is less easy to predict the fine detail of the energy 56500 | P R
ordering among the class of favored isomers. Some progress % i ; : ! ' ;
can be made with the hexagon-neighbor indt&xvhich, for . : ! S PR
example, rationalizes the predictions of a number of independent ~ 343% 7 2 '
guantum mechanical methods that isomers 84:22 and 84:23 (in - )
the spiral notation) are the iso-energetic best of the set of 24 7
: . ) ; 52500
Csq fullerenes?” a result in agreement with experimental isomer 4 N,
ratios® and selects low-energy candidates from 6063 isolated- T . T )
pentagon isomers of 1@3° H can be defined as the second 0 5 10 15 20
moment proper? j n=60
092
H= Zkzhk (35)
091 @
whereh is the number of hexagonal faces of a fullerene which 1 I I I ' | | | -
have exactlyk hexagonal neighbors. 0.90 T : l e
Correlation with distance invariants is poor within this tightly Py
defined set. For example, the 24 isolated-pentagon isomers of g |
Cg4 (Table 4) span a range id from 548 to 572, with three
isomers (84:21, 84:22, and 84:23) achieving the minimal value, 088
of which two are iso-energetic components of the experimental )
product®® Minimization of W, or maximization ofJ, would
select the least stable of the IPR isomers, 84:1, and minimization %87 7]
of S, would select 84:4, also energetically unfavorable. Clearly,
a pure strategy of finding extremal distance invariants does not 0.86
yield the low-energy isomers. The next examplggCgives N
the clue to a more successful strategy. Plot8\f,, andJ vs 0.85 : , , P
H show (Figure 6) that the isomer favored in quantum- 0 5 10 15 20

mechanical energy calculatioffs(D, 100:459) which is an  Figure 5. Distance invariants for 1812 fullerene isonférsf Ceo. (a)
expansion of the experimental:{somer, is one of 38 with Wiener index,W, (b) Szeged index3, (c) Balaban index), (top to
the minimal value oH (820), butfor that value of H it is the bottom), plotted againd,, the number of pentagon fusions. The unique
isomer with the lowestV andS, and highes8. Thus, although isolated-pentagon isomer, corresponding to the e_xperimentally observed
W, S,, or J alone cannot select the low-energy isomer from the Ceo Molecule, is shown as a larger dot in the diagrams.
already favored isolated-pentagon set, any one of the pairingssubclass of cubic polyhedra, then minimiggto find isolated-
(HW), (H,S), or (H,J) suffices to pick the known best isomer pentagon fullerenes, then minimigg and finally minimizew
out of the 450 candidates. orS,.

An optimum strategy for finding low-energy carbon cages  (iv) Distance Spectra.As the spherical harmonic model of
would seem to be to first minimiz€ to find the fullerene the distance spectrum shows, the largest eigenvalDecafries
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TABLE 4: Invariants for the 24 Isolated-Pentagon Isomers?
of C84a

nm G R D W S J H

84:1 D> 10 11 19646 156660 0.77197 572
84:2 C 10 11 19664 156576 0.77114 564
84:3 Cs 10 11 19686 157409 0.76997 554
84:4 Dy 10 11 19666 155138 0.77088 556
84:5 D> 10 11 19682 156280 0.77032 556
84:6 C, 10 11 19674 157602 0.77036 556
84:7 C, 10 11 19712 160766 0.76887 552
84:8 C 10 11 19699 159246 0.76939 552
84:9 C 10 11 19715 161714 0.76875 552
84:10 G 10 11 19730 163094 0.76814 550
84:11 C; 10 11 19705 161662 0.76910 552
84:12 C; 10 11 19723 162869 0.76840 550
84:13 G, 10 11 19730 163964 0.76813 552
84:14 G 10 11 19688 159972 0.76979 556
84:15 G 10 11 19714 161336 0.76875 550
84:16 G 10 11 19714 163298 0.76874 552
84:17 Cp; 10 11 19724 164344 0.76837 554
84:18 C; 10 11 19704 162692 0.76914 556
84:19 Di 11 11 19716 163848 0.76867 552
84:20 Ty 10 11 19686 162054 0.76987 564
84:21 Do 10 11 19734 163248 0.76796 548
84:22 D 10 11 19720 162756 0.76849 548
84:23 Dy 10 11 19718 162182 0.76857 548
84:24 Den 11 11 19716 163896 0.76866 552

aG is the maximum symmetry of the polyhedrds,is the second
moment of the hexagon neighbor signature (35), Wh&,, andJ are
the Wiener, Szeged, and Balaban indices.

4(11), and 1(13). The polyhedron of highest symmetry, the
dodecahedron, has a high but not maximal number of zeros (9);
the unique polyhedron with 13 zeros is the dodecagonal prism.
The 1812 (o fullerenes again exhibit a descending series for
N(i,) [741(0), 406(1), 258(2), 120(3), 84(4), 45(5), 39(6),
40(7), 29(8), 17(9), 5(10), 9(11), 4(12), 3(13), 3(14), 3(15),
3(16), 1(20), 1(23), and 1(26)], but now the most symmetrical
and unique isolated-pentagon fullerene is just one of many
without a zero eigenvalue. The extremal 26-zero case is the
cylinder with hemidodecahedral caps. For the icosahedral
fullerenes listed in Table 3, the number of zero distance
eigenvalues varies erratically with the number of vertices. At
980 vertices, for example, one icosahedral fullerene has 665
zeros and the other has none. Some systematics undoubtedly
lie behind these numbers, biytdoes not appear to be directly
related to isomer energy.

Conclusion

Distance matrices give rise to a variety of connected
invariants-the radius; diameter; set of distance level patterns;
distance eigenvalues; Hosoya polynomials; Wiener, Szeged, and
Balaban indices; and many others. The simplest distance
invariants can be computed cheaply for fullerenes and other
polyhedra. They offer discrimination between fullerenes and
nonfullerenes and between isolated-pentagon and general
fullerenes. In combination with hexagon-neighbor information,
they have been shown to select low-energy isomers from among
the isolated-pentagon fullerenes at@nd Goo More detailed
consideration of the distance level patterns or distance spectra
may offer further insight; the present paper has corrected

signature second moment. The cross marks 100:449, the isomerjiterature statements on the former and given the basis for a
predicted to be of lowest total enertfy.

qualitative interpretation of the latter in terms of spherical

information similar to that from the Wiener index itself. The harmonics.

variation in the number of zero eigenvalues is potentially more
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