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The distance matrix of a chemical graph can be computed in quadratic time and from it can be obtained the
distance level patterns (DLP); Wiener, Szeged, and Balaban indices; as well as the distance eigenvalues.
Point-group symmetry places bounds on the numbers of distinct DLP and distance eigenvalues. Angular-
momentum arguments rationalize the distance spectrum for near-spherical cages. Wiener and Balaban indices
are inversely correlated and select fullerenes from general cubic polyhedra and isolated-pentagon from general
fullerenes. In combination with hexagon-neighbor information, all three named indices select low-energy
isolated-pentagon fullerenes at 84 and 100 atoms.

1. Introduction

Perhaps the most natural description of a molecular graph is
in terms of the distances, geometric or topological, between its
pairs of vertices. Distance-based invariants have a long history
in chemistry and have found useful application in structure-
property correlations. The oldest topological invariant is the
Wiener index, which was proposed over half a century ago1 as
a measure of compactness of acyclic alkanes correlating with
boiling points and other thermochemical properties. Many
variants have since been devised, some including generalized
distances and volumes for chemical graphs2 and applications
of the Wiener index itself have been proposed for ever wider
classes of molecules.3 Wiener indices have been calculated for
a number of fullerene isomers,4-6 and for some systematic sets,7

but correlation with energetic or other properties of these already
compact pseudospherical molecules does not seem to have been
reported.

It has been suggested that more of the information that is
contained in the full distance matrixD could be used with
advantage in the study of fullerenes. (D is the matrix with
elementsDij the number of edges in the shortest walk along
edges fromi to j). For example, Balasubramanian5,6 obtains a
distance leVel pattern and a correspondingdistance leVel
diagramby ordering the entries of one column ofD and then
thedistance spectrumand itsdistance characteristic polynomial
by diagonalizingD. Various features of distance spectra of
fullerenes are noted in passing. The level pattern itself is also
advanced in those papers as a candidate for a discriminatory
structural invariant of fullerenes, though as will be shown below,
this cannot be correct, because the details of the pattern depend
on the choice of root vertex. It seems desirable to evaluate the
various literature proposals by making a systematic survey that
uses an efficient algorithm, includes rigorous consideration of
the symmetry properties ofD and takes advantage of the

considerable body of data on fullerene energetics that is already
available.

The current paper has therefore the following aims: (a) to
correct some erroneous literature claims for distance-level
patterns of fullerenes and to explore the distance spectrum as a
mathematically well defined alternative; (b) to present an
efficient algorithm for computation of the distance matrixD
and related invariants and to apply it to fullerenes and other
cubic polyhedra; and (c) to investigate the ability of Wiener
and related indices to distinguish fullerenes from general cubic
polyhedra, isolated-pentagon fullerenes from general fullerenes,
and stable from unstable fullerenes.

The outline of the paper is as follows. After a summary of
basic definitions (section 2), the correct relationship between
Wiener index and distance level patterns is stated (section 3)
and general features of the distance spectra of polyhedra are
analyzed using symmetry arguments and an analogy with
simpler systems (section 4). A brief discussion of efficient
algorithms (section 5) is followed by a report of explicit calcu-
lations on fullerenes and other trivalent polyhedra (section 6).

2. Definitions

The distance matrixD is defined as follows: ifi ) j, then

but if i * j

wheredij is the length of the shortest walk fromi to j. A walk
is defined here as a sequence of consecutive edges starting from
the vertexi and terminating at vertexj, and its length is measured
by the number of edges traversed, without considering their
geometric lengths. The adjacency matrixA of the graph is then* To whom correspondence should be addressed.
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Dij ) 0 (1)

Dij ) dij (2)

Aij ) 1 (3)
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if and only if dij ) 1, and otherwise

The Wiener indexW is

i.e., the sum of shortest pairwise distances taken over all distinct
pairs of vertices. The average distance between noncoincident
vertices in the graph isdh and is recovered fromW as

A related quantity is the Szeged index introduced by Gutman,8

which has contributions from all edges of the graph:

where, for any edgeij , ni counts the vertices ofG that are closer
to vertexi than toj andnj counts those that are closer toj than
to i, with vertices equidistant fromi and j being ignored. This
is a natural generalization of the Wiener index, because (7) is
actually the formula used by Wiener to evaluateW for trees1

(for which W ) Sz), and the two indices correlate for various
derivative classes of graph.9 For cubic graphs, the naive
asymptotic upper bound on Sz is∼3n3/8, achieved if all 3n/2
edges simultaneously have the maximalni ) nj ) n/2 (as in
the 2n-gonal prism but not, e.g., in a polyhedron with one or
more odd faces).

A third invariant defined from the distance matrix is the
Balaban indexJ10

whereb is the number of edges,c is the number of primitive
cycles (b ) 3n/2 andc + 1 ) n/2 + 2 for a cubic graph), and
di is the row sum

For the specificpolyhedralgraphs in which all vertices have
the same row sum (e.g., the Platonic and Archimedean solids),
a simple relationship connects the Balaban and Wiener indices
via the numbers of faces, edges, and vertices,f, e, V:

(If the polyhedron is cubic, the RHS of (10) is 9V3/4(V + 4)).
Balasubramanian5 notes the analogy betweenJ and the Randic´
connectivity index11

where

is the degree of the vertexi. For any regular graph,ø is trivially
n/2.

The radiusR and diameterD of a graph are also readily
calculated fromD. If the eccentricityof a vertexi is defined as
the largest entry in the row{dij}, the centerof the graph is
then the set of vertices of minimal eccentricity, and theradius
is the eccentricity of these central vertices. Thediameteris the
largest eccentricity of any vertex and obeysD e 2R. Some
conjectured relations betweenD, R, and other invariants for
fullerenes are given by the GRAFFITI program12,13 and are
subjected to computational test in ref 14. The recently proposed15

“reverse Wiener index” combines diameter andW and is equal
to n(n - 1)D/2 - W.

3. Distance Level Patterns

For a given vertexi in a fullerene or other cubic polyhedron,
it is possible to define thedistance leVel patternas the ordered
sequence of valuesdij running through consecutive integers up
to the eccentricity of vertexi. This distance level pattern is also
known in mathematical graph theory16 as theleVel representa-
tion of the graphG with respect to the vertexi. More compactly,
the pattern is given as the list of the multiplicitiesgk of distance
k. Thus, a vertex of the dodecahedral C20 fullerene has three
neighbors at distance 1, six at distance 2, six at 3, three at 4,
and one (the antipodal vertex) at distance 5; in the notation of
ref 6, the distance level pattern for the vertex is therefore 0(1),
1(3), 2(6), 3(6), 4(3), and 5(1), or simply{1, 3, 6, 6, 3, 1}.
Note that, unusually among fullerenes, this sequence for C20 is
palindromic. [An infinite set of graphs for which every DLP is
palindromic is that of thed-dimensional hypercubesγd. Each
γd has diameterd and DLP equal to the (d + 1)th row of the
Pascal triangle,{1} for d ) 0, {1, 1} for d ) 1, {1, 2, 1} for
d ) 2, etc.]

However, in contradiction to statements in at least two
published sources,5,6 the distance level pattern isnot invariant
to the choice ofi in general fullerenes. Indeed, an assumption
of invariance would fail at only the second fullerene, C24, which
already has two distinct level patterns (Figure 1). Among
isolated-pentagon fullerenes, the assumption would also fail at
the second instance; C70 has five distinct distance level patterns
of two different lengths:{1, 3, 6, 8, 10, 11, 11, 10, 7, 3}, {1,
3, 6, 8, 11, 11, 11, 10, 6, 3}, {1, 3, 6, 8, 10, 10, 10, 9, 7, 4, 2},
{1, 3, 6, 8, 10, 10, 11, 9, 6, 6}, and{1, 3, 6, 9, 10, 11, 12, 9,
6, 3}, where the first two are each realized by 20 and the last
three by 10 vertices. Only the polar vertices have distances equal
to the full diameter of the graph (D ) 10).

Vertices of a polyhedron fall intoorbits, i.e., sets of equivalent
points such that symmetry operations permute vertices within
but not between sets, and for a given polyhedron, the distance
level patterns are equal for symmetry-equivalent vertices but
not necessarily for vertices belonging to different orbits. Only
C20 and Ih C60 are one-orbit fullerenes and are, thus, theonly
two fullerenes guaranteed by symmetry to have vertex-invariant
distance level patterns. In the language of graph theory, C20

and C60 are both vertex-transitive. C20 is also, uniquely among
the fullerenes, edge-transitive.

Although the DLP for an individual vertex is not a graph
invariant, invariants based on the whole sets of level patterns
can of course be constructed. The simplest such combination

Aij ) 0 (4)

W )
1

2
∑
i)1

n

∑
j)1

n

dij ) ∑
i>j)1

n

dij (5)

dh ) 2W
n(n - 1)

(6)

Sz) ∑
edges

ninj (7)

J )
b

c + 1
∑

edges

(didj)
-1/2 (8)

di ) ∑
j)1

n

dij (9)

WJ) 1
2
Ve2/f (10)

ø ) ∑
edges

(ViVj)
-1/2 (11)

Vi ) ∑
j)1

n

Aij (12)
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is the Wiener index itself. If the size of thekth orbit is nk and
distancel occurs with degeneracygl,k in the distance level pattern

for this orbit, then the Wiener index of the whole graph is

whereK is the total number of orbits. This orbit-by-orbit version
of the formula corrects an expression given in ref 6. Group-
theoretical aspects of the calculation ofW for graphs
with symmetry have been treated in detail by Fuji and
Huaien.17

Table 1 lists the distinct distance patterns for a subset of
fullerenes, correcting Table 1 of ref 5. As the recognition that
each fullerene may have many DLP makes the data much more
voluminous, only the lower fullerenes (Cn, n < 60) from ref 5
are listed here.

Another invariant which can be obtained by summing DLP
entries over all vertices of the graph is theWiener polynomial,18

now more often called theHosoya polynomial. A graphG has
Hosoya polynomial

where d(G,l) is the number of distinct pairs of vertices at
distancel. Its coefficients follow from the DLP entries, which

TABLE 1: Distance-Level Patterns (DLP) for Selected Fullerenes, Cna

n:m G D W {gk} (k ) 3, ...D) ns n:m G D W {gk} (k ) 3, ...D) ns

20:1 Ih 5 500 6 3 1 20 8 9 8 6 3 0 12
24:1 D6d 5 804 6 5 3 12 7 10 9 6 2 0 6

7 5 2 12 8 9 8 5 4 0 6
26:1 D3h 6 987 6 5 5 6 44:73 T 8 3830 6 9 9 6 3 1 4

6 6 3 1 2 7 9 9 6 3 0 12
7 6 3 0 12+6 8 9 8 5 4 0 12

28:2 T 6 1194 6 6 6 0 4 8 8 8 7 3 0 12
7 7 3 1 12 9 9 6 6 3 1 4
7 6 5 0 12 46:115 C3 8 4281 7 8 9 8 4 0 3

30:1 D5h 6 1435 6 6 6 2 10 7 9 9 7 4 0 3
7 7 5 1 10 7 9 9 6 5 0 3+3
8 7 4 1 10 7 8 8 7 6 0 3

32:3 D3d 7 1696 6 6 6 3 1 2+6 8 9 8 7 3 1 3+3
7 7 6 2 0 12 8 8 8 8 3 1 3
8 8 5 1 0 12 7 9 9 7 3 1 3

36:15 D6h 7 2292 7 8 7 3 1 24 8 10 8 5 5 0 3
8 8 6 3 1 12 8 10 8 6 3 1 3+3

38:2 D3h 8 2651 6 6 6 5 5 6 9 9 8 6 4 0 3
6 6 6 6 3 1 2 8 9 9 6 4 0 3+3
7 7 7 5 2 0 12 9 9 9 6 3 0 1
8 9 8 3 0 0 12 48:188 D3 8 4764 7 8 9 8 6 0 6
9 10 7 2 0 0 6 7 9 9 8 4 1 6

40:39 D5d 7 2990 7 8 7 6 2 20 7 9 9 7 6 0 6
8 8 8 5 1 10 8 9 9 8 3 1 6
8 10 8 3 1 10 9 10 8 6 5 0 6

40:40 Td 7 3000 7 9 8 4 2 12 8 10 9 6 4 1 6
8 8 7 5 2 24 8 9 8 8 4 1 6
6 9 9 6 0 4 8 9 9 7 4 1 6

42:45 D3 7 3390 7 8 8 6 3 6 50:271 D5h 8 5276 7 10 9 7 6 1 10
7 9 8 5 3 6+6 8 9 9 8 5 1 20
8 8 8 6 2 6 8 9 9 8 6 0 10
8 9 7 6 2 6 8 10 9 7 4 2 10
8 9 8 5 2 6+6 52:437 T 8 5850 7 10 10 7 5 3 12

44:72 D3h 8 3818 6 9 9 6 3 1 2 8 10 9 8 5 2 12
7 9 8 5 5 0 6 8 9 9 8 6 2 12+12
8 8 8 7 3 0 12 9 9 9 9 6 0 4

a Isomers are labeledn:m (wheren is the number of vertices andm is the position in the lexicographic order of spiral codes32). G is the point
group of the fullerene,D is its diameter, andW is the Wiener index. The distinct patterns are listed for each isomer as{gk}, k ) 3, ...D. The values
g0 ) 1, g1 ) 3, andg2 ) 6 are common to all fullerenes.ns is the number of sites with the given DLP. Table 1 of ref 5, of which the present table
is a correction, also includes isolated-pentagon fullerenes 60:1, 70:1, 76:1, 78:1-5, 80:7, 84:1, 90:1, 90:2, and 90:16; all but 60:1 have multiple
DLP.

Figure 1. Schlegel diagram of the unique C24 fullerene, of D6d

symmetry. The twelve polar vertices (b) have distance level pattern
0(1), 1(3), 2(6), 3(7), 4(5), and 5(2) and the twelve equatorial vertices
(O) have pattern 0(1), 1(3), 2(6), 3(6), 4(5), and 5(3). Each vertex is
labeledi,j wherei is its distance fromb and j is its distance fromO;
these labels are easily assigned by the algorithm described in (section
5).

W )
1

2
∑
k)1

K

∑
l)0

D

nklgl,k (13)

H(G,x) ) ∑
lg0

d(G, l) xl
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in the orbit formulation are

and it has the propertiesd(G, 0) ) n, d(G, 1) ) m, (dH(G,
x)/dx)x)1 ) ∑lg0 ld(G, l) ) W(G), H(G, 1) ) n(n + 1)/2 for an
n-vertex,m-edge graph. Hosoya polynomials for the fullerenes
featured in Table 1 are straightforwardly recovered from the
data listed there. For the two single-orbit fullerenes

4. Distance Spectra

The distance matrixD can be diagonalized, and as a real
symmetricn × n matrix, it hasn real eigenvalues{λD}. The
symmetry spanned by the eigenvectors ofD is Γσ(V), the
permutation representation of the vertices in the maximal point
group of the fullerene. It is identical to the symmetry spanned
by the eigenvectors of the adjacency matrix, which correspond
to eigenvalues{λA}. Multiplication by the representation of a
local basis function (which for a polyhedron with “radial”π
orbitals isΓ0, the totally symmetric representation) gives the
representation of the Hu¨ckel molecular orbitals (i.e., the linear
combinations of basis functions that diagonalize the Hamiltonian
matrix RI + âA whereR andâ are constants19).

The two matricesA andD carry exactly the same information
content, becauseD can be computed from the powers ofA and
the nonzero components ofA are simply the set of unit entries
in D.20 However, it can be anticipated that the information
content/discriminatory power of thespectrum{λD} will be
smaller than that of{λA} because many distance spectra have
very high “accidental” degeneracies of the zero eigenvalue.
Balasubramanian has calculated characteristic polynomials and
numerical eigenvalues ofD for a sample set of fullerenes.5,6

The permutation representation of the vertices carries sym-
metry information on bothW andD. In its reduced form,Γσ(V)
is a linear combination of the irreducible representationsΓi of
the relevant group:

In this expansion,a0 (the coefficient ofΓ0) is equal to the
number of distinct orbits of vertices. The symmetric square
[Γσ(V)2] gives the representation of all possible distinct pairings
of vertices (including pairings of a vertex with itself). Subtrac-
tion of the zero-length walks gives [Γσ(V)2] - Γσ(V), and the
number of copies ofΓ0 in this representation is therefore

which is equal to the number of orbits of symmetry-distinct
vertex pairs in the graph. The number of numerically distinct
entries inD may of course be smaller, as pairs that are not

equivalent by symmetry may still have equal separation, and
thus

The equality is realized bydistance transitiVegraphs. A distance
transitive graph is one in whichdij ) duV implies that the vertex
pairs (i, j) and (u, V) are equivalent by symmetry. Such graphs
have D + 1 distinct adjacency eigenvaluesλA.21 C20 is an
example which illustrates the fact that distance-transitive graphs
do not necessarily haveD + 1 distinct distanceeigenvalues
λD.

If Γσ(V) has a block withai ) 1, the eigenvectors ofD of
that symmetry are fully determined and, hence, coincide with
those ofA in the same symmetry block for the graph in question.
For fullerenes without symmetry, (16) reduces to the loose
bound

As concrete examples, consider the dodecahedral C20 and
truncated icosahedral C60 fullerenes, both ofIh symmetry. For
C20, the vertex representation is

and

implying that all vertices belong to a single orbit but that the
190 shortest walks of nonzero length fall into 5 distinct sets,
one for each lengthl ) 1-5. All eigenvectors ofA for C20 are
therefore also eigenvectors ofD. The separate orbits of vertex
pairs span representations reflecting the site groupsC2V, Cs, C2,

C2V, andD3d of the pairs with different separations. For C60,
the vertex representation is

and

again implying a single orbit of vertices but now 23 distinct
orbits of pairs. A pair with unit separation in C60, for example,
could be one of two types: in a single or a double bond of the

d(G, 0) ) ∑
k

nk

d(G, l g 1) )
1

2
∑

k

nkgk,l

H(C20, x) ) 20 + 30x + 60x2 + 60x3 + 30x4 + 10x5

H(C60, x) ) 60 + 90x + 180x2 + 240x3 + 300x4 + 300x5 +

300x6 + 240x7 + 90x8 + 30x9

Γσ(V) ) ∑
i

aiΓi (14)

∑
i

1

2
ai(ai + 1) - a0 (15)

∑
i

1

2
ai(ai + 1) - a0 g D (16)

1
2
n(n - 1) g D (17)

Γσ(20) ) Ag + Gg + Hg + T1u + T2u + Gu (18)

[Γσ(20)2] - Γσ(20) ) 5Ag + 2T1g + 2T2g + 7Gg + 11Hg +
Au + 5T1u + 5T2u + 6Gu + 7Hu (19)

Γ(l ) 1) ) Ag + Gg + 2Hg + T1u + T2u + Gu + Hu (20)

Γ(l ) 2) ) Ag + T1g + T2g + 2Gg + 3Hg + 2T1u + 2T2u +
2Gu + 2Hu (21)

Γ(l ) 3) ) Ag + T1g + T2g + 2Gg + 3Hg + Au + T1u +
T2u + 2Gu + 3Hu (22)

Γ(l ) 4) ) Ag + Gg + 2Hg + T1u + T2u + Gu + Hu (23)

Γ(l ) 5) ) Ag + Gg + Hg (24)

Γσ(60) ) Ag + T1g + T2g + 2Gg + 3Hg + 2T1u + 2T2u +
2Gu + 2Hu (25)

[Γσ(60)2] - Γσ(60) ) 23Ag + 37T1g + 37T2g + 60Gg +
83Hg + 14Au + 44T1u + 44T2u + 58Gu + 72Hu (26)
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main Kekuléstructure (pentagon-hexagon or hexagon-hexagon
edges, respectively).D for C60 is 9. The bound (16) is sharp
for C20 but not for C60.

Several properties of the spectrum of theD matrix follow
easily from its definition. All elements ofD are integers, and
so all momentsµr ) ∑i)1

n (λi
D)r of the spectrum are also

integral.D is traceless, and therefore, its eigenvalues sum to
zero:

Inspection of some sample spectra5,6 suggests that for fullerenes
and other polyhedra there is generally one large positive
eigenvalueλi

D ≈ 2W/n, approximately counterbalanced by
three large negative eigenvaluesλn-2

D ≈ λn-1
D ≈ λn

D. The
remainder of the spectrum is crowded around zero, with a scatter
of small positive and negative values, and often, but not
invariably, it will include a highly degenerate zero eigenvalue.

The appearance of just one large positive eigenvalue in the
spectrum can be rationalized by noting the resemblance between
D and another familiar off-diagonal matrix. If all nonzero
distances inD were replaced by their average,dh, the new matrix
Dh would have one eigenvalueDh and (n - 1)dh ) 2W/n and
(n - 1) eigenvalues- dh, asDh would be a scaled version of the
adjacency matrix of thecomplete graphon n vertices.λ1

D is a
relic of this ancestry. The ground eigenvector ofDh has
coefficient 1/xn on every vertex. In the one-orbit case, where
all vertices of the graph are equivalent by symmetry, this would
also be an eigenvector ofD with eigenvalueλ1

D exactly equal
to 2W/n, the sum of the unique distance pattern level. The
equality holds for, e.g., cyclesCn, prisms and antiprisms, the
platonic and archimedean polyhedra, and the complete graphs
Kn. In the fullerene class, the equality is forced by symmetry
for C20 and C60 only but also occasionally holds “accidentally”.
D for C80 has two distinct DLP, but both sum to 440. OneAg

eigenvector has equal contributions on all vertices andλ ) 440;
the other hasλ ) 0 and coefficients in the ratio-3:1 on
hexagonal:pentagonal vertices. The same two eigenvectors
correspond to eigenvalues+3 and-1 of the adjacency matrix
of C80. C80 also therefore obeys (10) exactly, givingJ ) 60/77.
Likewise, the four-orbit C240 has accidental row-sum degen-
eracy, with all sums equal to 2312, and hence,λ ) 2312 andJ
) 8100/17629. For multiorbit cases,λ1

D g 2W/n, because the
largest eigenvalue of a nonnegative real symmetric matrix is at
least the average row sum and the ground eigenvector ofD has
in general a different coefficient for each orbit of vertices.

A more detailed understanding of the spectrum ofD follows
from the spherical model for a polyhedron. In this picture, the
3D structure of the polyhedron is replaced by an average
spherical shell onto which all vertices are projected and then
eigenvectors are then approximated by sampling the firstn
independent spherical harmonics at the vertex positions. Models
of this kind have been useful in the qualitative theory of
electronic, geometrical, and vibrational structure of clusters.22-26

In the spherical model, the ground eigenvector ofD is then
the nodeless “S” harmonic (angular momentumL ) 0), and
the three “P” harmonics (angular momentumL ) 1) account
for the trio of large negative eigenvalues noted earlier. Initially,
the eigenvalues will be dominated by contributions from
antipodal and near-antipodal points and, hence, will tend to take
positive signs for thegeradeharmonicsL ) 0, 2, 4, etc. and
negative for theungerade L) 1, 3, 5, etc. AsL rises, the number
of angular nodes increases and internal cancellation causes the

spectrum to crowd toward zero. The idealized sphericaldistance
spectrum therefore has a folded pattern

with degeneracies 2L + 1. This sequence is in contrast to the
modeladjacencyspectrum, where eigenvalues fall monotoni-
cally with L:

Point-group induced splittings and details of the construction
of the individual graph may split degeneracies and blur the traces
of spherical ancestry of the eigenvalues for bothA andD, but
the spherical sequence remains a useful guide for symmetrical
systems. A more detailed spherical-harmonic theory of distance
spectra of polyhedra could be developed along the lines of
Stone’s tensor-surface harmonic treatment of their adjacency
spectra.22

Table 2 lists the analytical forms of the distance and adjacency
eigenvalues for C20 and C60, and Figure 2 shows their relation
to the spherical classification. The range of the spectrum ofA
is always 3g {λA} g -3 for a trivalent polyhedron, but the
range of the distance spectrum when expressed in units of the
largest eigenvalue is predicted to shrink withn as the sphere is
sampled at more points, and indeed, the calculated separation
(λ1

D - λn
D)/λ1

D does fall from 1.333 for the tetrahedron to 1.274
for the dodecahedron and 1.248 for the truncated icosahedron.

An intriguing aspect of the fullerene distance spectra pre-
sented in ref 6 is that whereas nearly all contain zero eigenvalues
with high multiplicity (e.g., 9 for C20, 24 for Td C40, 63 for Ih

C80) some highly symmetric graphs have no zero at all. Some
statistics on the distribution of this eigenvalue for wider samples
of fullerene and nonfullerene cubic polyhedra are given below.

All of these features of distance spectra can be seen more
clearly for monocyclic rings, where a full analytical solution is
available. As is well-known from Hu¨ckel theory,27 the eigen-
vectors and eigenvalues of the adjacency matrix of anN-gon
can be classified by an axial angular momentum quantum
numberΛ () 0, (1, (2, ... ((N - 1)/2 (N odd) or+N/2 (N
even)). The eigenvalues are

and are degenerate for(|Λ|; singly degenerate eigenvalues
occur forΛ ) 0 (all N) andΛ) +N/2 (N even). The coefficient
on vertexr (r ) 1, ...,N) for a vector with eigenvalueΛ can be
chosen as

Because the adjacency eigenvectors for each|Λ| span distinct
irreducible representations of the cyclic group,CN, they are
simultaneous eigenvectors of bothA andD. With some work,
the eigenvalues ofD can therefore be obtained as expectation
values over these vectors. All monocycles have a nondegenerate
largest distance eigenvalue

(hereW ) 1/8(N - 1)N(N + 1) for oddN, 1/8N3 for evenN),
and the other termsλΛ

D in the spectrum are-1/4 csc2(πΛ/2N)
(N odd, Λ odd), -1/4 sec2(πΛ/2N) (N odd, Λ even),
-csc2(πΛ/2N) (N odd, Λ odd), and 0 (N even,Λ even). This
last case implies that whenN is even,D has a (N - 2)/2 -fold
degenerate zero eigenvalue.

µ1 ) ∑
i)1

n

λi
D ) 0 (27)

S> D > G > ... > H > F > P (28)

S> P > D > F > ... (29)

λΛ
A ) 2 cos(2πΛ/N) (30)

cr,Λ ) (1/xN) exp(2πi(r - 1)/N) (31)

ΛΛ)0
D ) 2W/N (32)
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This simple monocyclic problem exhibits the relation of the
largest eigenvalue to the Wiener index, the folding of theΛ
series about zero,

the multiple zero eigenvalues seen for some systems, and
systematic absence of zeros for others, all as observed for
fullerene polyhedra.

5. Algorithms

Calculation of distance matrices is a standard operation in
computational graph theory and highly efficient procedures are
known. The simplest algorithm for unweighted sparse graphs
consists of finding distances from each vertex in turn, chosen
as origin for shortest paths to all others. To do this, the chosen
vertex is labeled 0, unlabeled neighbors receive the label 1, their
unlabeled neighbors receive label 2, etc. This algorithm is easy
to use by hand, even for fairly large graphs, and very quick on

a computer. For each vertex, the number of operations is
proportional to the number of edges. (One must check once for
all edges incident with a given vertex whether their neighbors
are unlabeled and, if so, label and store them.) Because the edge
count isO(n) for chemical graphs, which have a bounded vertex
degree, and equal to 3n/2 for cubic graphs, the total number of
operations isO(n2). Because the distance matrix which is the
output hasn2 elements, there is a lower bound ofΩ(n2) on the
number of operations and the algorithm is the best possible, up
to a constant factor, i.e., it isθ(n2).

Contrast thisθ(n2) algorithm with the procedure based on
taking powers of the adjacency matrix.5,6 A contains information
of walks of unit length and, in general, the element (AN)ij of its
Nth power is equal to the number of walks of lengthN that go
from vertexi to j. A strategy for computingD is therefore to
take successively higher powers, setting eachDij to the lowest
value ofN for which (AN)ij is nonzero. The matrix multiplication
is carried on until every element has been set, i.e., until the
cumulative total1 + A + A2 + A3 + ... no longer has zero
entries. This algorithm is conceptually straightforward, but its

TABLE 2: Spectra of Adjacency and Distance Matrices of C20 and C60, Classified According to Irreducible Representations
(irreps) of Icosahedral Point-Group Symmetrya

irrep λA (C20) λD (C20) λA (C60) λD (C60)

Ag +3 +50 +3 +278
T1g (x5 - 3)/2 +φ

T2g -φ2 -φ-1

Gg -2 0 +1, -2 -(2 ( x5)
Hg +1 0 +1, (1( x13)/2 -2.9275, 0.8784, 3.0791b

Au

T1u +x5 -7 - 3x5 (φ2 ( x9 - φ
-1)/2 -69.0607,-1.8622*c

T2u -x5 -7 +3x5 (φ-2 ( x9 + φ)/2 -5.466,-0.6213*c

Gu 0 -2 -(x17 ( 1)/2 -(3 ( x8)
Hu φ-1, -φ -(3 ( x5)

a {λA} are eigenvalues of the adjacency matrixA, {λD} are the eigenvalues of the distance matrixD. b Solutions ofλ3 - λ2 - 9λ + 8. c T1u and
T2u solutions together are the roots ofλ4 + 77λ3 + 563λ2 + 1022λ + 436.

Figure 2. Spherical harmonic interpretation of adjacency and distance eigenvalue spectra of fullerenes. Spectra of the adjacency (left) and distance
matrix (right) of (a) C20 and (b) C60 are labeled by irreducible representations withinIh symmetry (Ag, T1g, ...) and angular momentum within the
spherical group (L ) 0, 1, 2, ...). Adjacency spectra are roughly monotonic inL, but distance spectra converge on the zero eigenvalue from opposite
directions for odd and even values ofL.

ΛΛ)0
D > ΛΛ)2

D > ... > ΛΛ)3
D > ΛΛ)1

D (33)
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complexity isO(n4) and it rapidly becomes unworkable when
large graphs or large numbers of graphs are to be considered.

The relative efficiency of the first algorithm is illustrated by
Table 3, whereR, D, W, J, distance level patterns, largest
eigenvalues, and numbers of zeroes in the distance spectrum
are listed for all icosahedral fullerenes Cn onn e 3000 vertices.
The fullerenes are generated by the Goldberg construction.28

Calculations ofR, D, W, Sz, J, and DLP take a few seconds in
total; it is estimated that the second algorithm would take orders
of magnitude longer to produce these data. Given that each
icosahedral fullerene is constructible using just two integers,28

it is tempting to speculate that the invariants in Table 3 should
all be analytical functions of the Goldberg parameters. At least
as far as the tabulation is taken, diameters of theIh fullerenes
fit the formulasD(i,i) ) 6i - 1 andD(i,0) ) 10i - 1, and the
radii fit R(i,i) ) 9i + 1 - i (mod 2) andR(i,0) ) 5i + 1 - i
(mod 2). Relations for other invariants and for the chiral cases
appear to be more complicated.

Hints of other regularities are also evident in the table. The
relationship (10) betweenW andJ, which was derived only for
the case when all rows of the distance matrix have the same
sum, is in fact obeyed surprisingly closely by all of the
icoahedral fullerenes tested. For four members of the series (C20,
C60, C80, and C240), the relationship is exact, in the first two
cases because the row sums are equal by symmetry and in the
others because the sums are equal by accident, as noted earlier.
In all other cases in the Table, the fullerene has more than one
row sum but the quotient 4(V + 4)W J/9n3 exceeds unity by
less than 3× 10-4.

6. Results

Given an efficient algorithm, it is possible to make a
systematic examination of the chemical relevance of Wiener
and related indices for fullerenes. Calculations were performed
on three test sets: (i) complete sets of cubic polyhedraPn on n
vertices (n ) 20, 22, and 24), (ii) the complete set of fullerenes
Cn on 60 vertices, and (iii) complete sets of isolated-pentagon
fullerenes Cn (n ) 84, and 100). Set i was generated using the
“plantri” program of Brinkmann and McKay;29 sets ii and iii,
from the spiral algorithm of Manolopoulos et al.30 More efficient
procedures for fullerene generation are known,31 but the spiral
encodes symmetry and other properties of the graphs in a
transparent way32 and forms part of standard IUPAC nomen-
clature for the molecules.33 The strategy with each set is to
compare the performance of the distance invariants with in each
case an invariant that is already known to correlate with total
energy.

(i) Cubic Polyhedra. Within the combinatorially explosive
number of all cubic (trivalent) polyhedra, fullerenes form a tiny
subset. Chemically, however, they are favored structures for
carbon cages, and their special role is confirmed by explicit
computation of relative energies. A simple measure of proximity
of a given cubic polyhedron to a fullerene is theF parameter34

wherefr is the number of faces of sizer. If a fullerene exists
for the given number of vertices, it will haveF ) 12 (f5 ) 12
and f6 ) n/2 - 10), and this is the minimum possible. Where
a fullerene does not exist, (n < 20 andn ) 22), the polyhedron
of minimal F is still apparently that of lowest energy.34 F can
therefore be used to rank cubic polyhedra, at least crudely, for
relative energy.

Figure 3 shows scatter diagrams for the Wiener indexW and
J againstF for 20-, 22- and 24-vertex cubic polyhedra. All three
indices are highly degenerate,7 as isF itself, and the plotted
distributions show wide dispersion. However,W and J show
good selectivity for fullerenes. The twoF ) 12 data points for
the unique fullerenes C20 and C24 (marked by crosses) stand
out from the cloud of (F, W) and (F, J) pairs. For C22, the
situation is less clear, as the minimum-W/maximum-J points
haveF ) 16, beating narrowly the near-fullerene atF ) 14 (f4
) 1, f5 ) 10, andf6 ) 2). The differences inW (645 vs 646)
andJ (1.414 35 vs 1.426 98) are small, and this is compatible

TABLE 3: Distance Invariants of Icosahedral Fullerenes Cn
with n e 3000a

n i j R D W Sz J iz λmax
D

20 1 0 5 5 500 1920 1.50000 9 50
60 1 1 9 9 8340 51840 0.91052 0 278
80 2 0 11 11 17600 157440 0.77922 63 440

140 2 1 13 14 71390 753390 0.60058 24 1019.87
180 3 0 15 17 135120 1890780 0.52790 127 1501.68
240 2 2 19 19 277440 4250880 0.45947 170 2312
260 3 1 19 19 338800 5357580 0.44215 0 2606.25
320 4 0 21 23 571620 10931100 0.39819 222 3573.59
380 3 2 23 24 878040 17203020 0.36618 68 4621.28
420 4 1 24 25 1127970 23888730 0.34858 0 5371.71
500 5 0 25 29 1747500 42383040 0.31942 366 6992.00
540 3 3 27 29 2119320 51606900 0.30731 370 7849.56
560 4 2 28 28 2319730 57064260 0.30202 157 8284.80
620 5 1 29 31 2991650 79177380 0.28729 50 9651.68
720 6 0 31 35 4352340 127954500 0.26659 461 12093.39
740 4 3 32 34 4663630 133992780 0.26278 60 12604.59
780 5 2 33 34 5317320 157738920 0.25613 0 13634.46
860 6 1 33 37 6785730 215120400 0.24414 120 15783.30
960 4 4 37 39 8949420 298962900 0.23075 661 18645.32
980 5 3 37 38 9419270 316200480 0.22848 0 19223.09
980 7 0 35 41 9412420 325192080 0.22871 665 19214.74

1040 6 2 38 39 10922430 381125340 0.22196 140 21005.60
1140 7 1 39 43 13736130 506946960 0.21217 320 24103.02
1220 5 4 41 44 16300010 616623300 0.20479 240 26721.96
1260 6 3 42 43 17663490 681998550 0.20159 562 28037.56
1280 8 0 41 47 18357700 728828460 0.20024 839 28692.51
1340 7 2 43 45 20589850 825868140 0.19565 24 30733.22
1460 8 1 43 49 25506370 1073740980 0.18756 160 34947.58
1500 5 5 45 49 27337500 1160781120 0.18470 1101 36451.50
1520 6 4 46 48 28251090 1205984700 0.18353 332 37172.82
1580 7 3 47 48 31109310 1357249230 0.18010 0 39379.62
1620 9 0 45 53 33089280 1484362140 0.17807 1083 40863.27
1680 8 2 48 51 36246150 1643201340 0.17480 130 43154.18
1820 9 1 49 55 44264770 2092969800 0.16804 180 48653.63
1820 6 5 50 54 44339550 2080153920 0.16772 180 48726.23
1860 7 4 51 52 46805160 2226859770 0.16595 40 50328.48
1940 8 3 52 54 51976100 2535951630 0.16259 240 53585.27
2000 10 0 51 59 56046920 2803357200 0.16031 1298 56063.85
2060 9 2 52 57 60355910 3050178270 0.15791 160 58604.76
2160 6 6 55 59 68059260 3506532300 0.15396 1392 63020.55
2180 7 5 55 58 69634180 3606283770 0.15328 300 63885.48
2220 10 1 54 61 72751770 3816780120 0.15218 280 65557.83
2240 8 4 56 58 74504060 3919333140 0.15126 887 66522.23
2340 9 3 57 59 83054190 4481563710 0.14809 50 70989.76
2420 11 0 55 65 90275900 4981183440 0.14576 1622 74630.77
2480 10 2 57 63 95989710 5348608500 0.14395 160 77421.66
2540 7 6 59 64 102066310 5715039960 0.14200 300 80369.90
2580 8 5 60 62 106114470 6014477610 0.14092 280 82259.90
2660 11 1 59 67 114347030 6591011400 0.13905 240 85996.66
2660 9 4 61 63 114491360 6596544960 0.13884 0 86085.22
2780 10 3 62 65 127773510 7556572200 0.13590 60 91929.13
2880 12 0 61 71 139494600 8416987680 0.13364 1837 96900.62
2940 11 2 62 69 146891400 8944767630 0.13224 520 99941.66
2940 7 7 63 69 147148500 8914967280 0.13199 2012 100105.45
2960 8 6 64 68 149645420 9109938660 0.13156 390 101113.72

a Each fullerene is labeled by the two Goldberg parameters28 i, j,
that specify its net.R andD are the radius and diameter of the graph.
W, Sz, andJ are its Wiener, Szeged, and Balaban indices, respectively.
The distance spectrum hasiz zero eigenvalues and largest positive
eigenvalueλmax

D .

F ) ∑
r

fr(6 - r)2 (34)
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with the small difference in computed energy of the carbon
cages.34 In contrast, the Szeged index shows no preference for
the fullerenes and near-fullerenes; the minimal-F cages lie in
the middle of the range and would not be picked out without
other information. Thus, only two of the three indices are able
to pick out the fullerene or near-fullerene cages from the mass
of general cubic polyhedra. This feature is of course shared by
the easily computedF function.

Wiener and Balaban indices can be expected to be closely
related, because both depend on the row sums of the distance
matrix and, as we have seen, they give the same predictions
for extremal polyhedra. In addition, Figure 4 shows thatW and
J also follow closely an inverse proportionality relation for
nonextremal polyhedra. The whole set of 7595 20-vertex
polyhedra cluster around the hyperbola predicted by (10) for
fully symmetric polyhedra. Though not as close a fit as noted
earlier for the icosahedral fullerenes, this is a clear indication
that the two invariants share the same physical content.

(ii) General Fullerenes.It is known that a major determinant
of energy of small fullerenes is the number of pentagon

adjacencies.35,36Each pentagon fusion in a fullerene cage carries
an energy penalty of the order of 1 eV, and the isomers of lowest
energy at eachn have the lowest achievable number,Np, of
such fusions. Pentagon adjacencies are forced for alln < 60.

Figure 5 shows scatter diagrams for the Wiener indexW, Sz,
and J against the number of pentagon adjacencies for the
fullerene isomers of C60. It is clear thatW, Sz, and J have a
qualitative tendency to select fullerenes of lowNp and, hence,
pick out the class of low-energy isomers. The unique isolated-
pentagon C60 cage minimizesWandSz and maximizesJ within
the set. The broad scatter forSz vs Np again suggests that the
Szeged index is less physically relevant thanW or J. The
stronger correlation forWandJ is again a useful feature, though
it does not improve on the known and easily calculatedNp. The
degeneracy ofW as an index for the C60 fullerenes was noted
by Balaban et al.;7 the 1812 isomers support only 116 distinct
values ofW which, according to the criterion used in ref 7,
indicates an information deficit of 5.1062 for this index. Our
interest here is somewhat different, in that, the aim is not to
find an index that distinguishes all isomers but one that picks

Figure 3. Distance invariants for general cubic polyhedra. (a) Wiener index,W, (b) Szeged index,Sz, (c) Balaban index,J, for the complete sets29

of (top to bottom) 7595 20-, 49 566 22-, 339 722 24-vertex cubic polyhedra, plotted againstF, (34), which measures the deviation of each polyhedron
from the fullerene ideal (F ) 12). The unique fullerenes C20 and C24 and the minimal-F C22

34 are shown as crosses on the diagrams.
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out low-energy structures from general fullerenes; in this respect,
W, Sz, andJ are all successful.

(iii) Isolated-Pentagon Fullerenes.Beyond the very clear
indications of the isolated-pentagon (minimal pentagon adja-
cency) rule, it is less easy to predict the fine detail of the energy
ordering among the class of favored isomers. Some progress
can be made with the hexagon-neighbor indexH which, for
example, rationalizes the predictions of a number of independent
quantum mechanical methods that isomers 84:22 and 84:23 (in
the spiral notation) are the iso-energetic best of the set of 24
C84 fullerenes,37 a result in agreement with experimental isomer
ratios38 and selects low-energy candidates from 6063 isolated-
pentagon isomers of C116.39 H can be defined as the second
moment property32

wherehk is the number of hexagonal faces of a fullerene which
have exactlyk hexagonal neighbors.

Correlation with distance invariants is poor within this tightly
defined set. For example, the 24 isolated-pentagon isomers of
C84 (Table 4) span a range inH from 548 to 572, with three
isomers (84:21, 84:22, and 84:23) achieving the minimal value,
of which two are iso-energetic components of the experimental
product.38 Minimization of W, or maximization ofJ, would
select the least stable of the IPR isomers, 84:1, and minimization
of Sz would select 84:4, also energetically unfavorable. Clearly,
a pure strategy of finding extremal distance invariants does not
yield the low-energy isomers. The next example, C100, gives
the clue to a more successful strategy. Plots ofW, Sz, andJ vs
H show (Figure 6) that the isomer favored in quantum-
mechanical energy calculations,40 (D2 100:459) which is an
expansion of the experimental C76 isomer, is one of 38 with
the minimal value ofH (820), butfor that Value of H, it is the
isomer with the lowestW andSz and highestJ. Thus, although
W, Sz, or J alone cannot select the low-energy isomer from the
already favored isolated-pentagon set, any one of the pairings
(H,W), (H,Sz), or (H,J) suffices to pick the known best isomer
out of the 450 candidates.

An optimum strategy for finding low-energy carbon cages
would seem to be to first minimizeF to find the fullerene

subclass of cubic polyhedra, then minimizeNp to find isolated-
pentagon fullerenes, then minimizeH, and finally minimizeW
or Sz.

(iv) Distance Spectra.As the spherical harmonic model of
the distance spectrum shows, the largest eigenvalue ofD carries

Figure 4. Correlation betweenW and J indices for the 20-vertex
polyhedra. The curve for fully symmetric polyhedra in which all 20
vertices are equivalent (W J ) 750, (10)) is closely followed, even
though onlyIh C20 satisfies this requirement rigorously.

Figure 5. Distance invariants for 1812 fullerene isomers32 of C60. (a)
Wiener index,W, (b) Szeged index,Sz, (c) Balaban index,J, (top to
bottom), plotted againstNp, the number of pentagon fusions. The unique
isolated-pentagon isomer, corresponding to the experimentally observed
C60 molecule, is shown as a larger dot in the diagrams.

H ) ∑
k

k2hk (35)
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information similar to that from the Wiener index itself. The
variation in the number of zero eigenvalues is potentially more
discriminating. Of the 7595 20-vertex trivalent polyhedra, the
numbers of isomersN(iz) with iz zeros are 4770(0), 1636(1),
719(2), 250(3), 112(4), 54(5), 22(6), 10(7), 13(8), 3(9), 1(10),

4(11), and 1(13). The polyhedron of highest symmetry, the
dodecahedron, has a high but not maximal number of zeros (9);
the unique polyhedron with 13 zeros is the dodecagonal prism.
The 1812 C60 fullerenes again exhibit a descending series for
N(iz) [741(0), 406(1), 258(2), 120(3), 84(4), 45(5), 39(6),
40(7), 29(8), 17(9), 5(10), 9(11), 4(12), 3(13), 3(14), 3(15),
3(16), 1(20), 1(23), and 1(26)], but now the most symmetrical
and unique isolated-pentagon fullerene is just one of many
without a zero eigenvalue. The extremal 26-zero case is the
cylinder with hemidodecahedral caps. For the icosahedral
fullerenes listed in Table 3, the number of zero distance
eigenvalues varies erratically with the number of vertices. At
980 vertices, for example, one icosahedral fullerene has 665
zeros and the other has none. Some systematics undoubtedly
lie behind these numbers, butiz does not appear to be directly
related to isomer energy.

Conclusion

Distance matrices give rise to a variety of connected
invariantssthe radius; diameter; set of distance level patterns;
distance eigenvalues; Hosoya polynomials; Wiener, Szeged, and
Balaban indices; and many others. The simplest distance
invariants can be computed cheaply for fullerenes and other
polyhedra. They offer discrimination between fullerenes and
nonfullerenes and between isolated-pentagon and general
fullerenes. In combination with hexagon-neighbor information,
they have been shown to select low-energy isomers from among
the isolated-pentagon fullerenes at C84 and C100. More detailed
consideration of the distance level patterns or distance spectra
may offer further insight; the present paper has corrected
literature statements on the former and given the basis for a
qualitative interpretation of the latter in terms of spherical
harmonics.
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