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We have developed a band-shape analysis of optical transitions in polarizable chromophores characterized
by large magnitudes of the transition dipole (intense transitions). The model is tested on steady-state spectra
of the coumarin-153 optical dye, employing an explicit solvent description accounting for dipole moment,
quadrupole moment, and polarizability of the solvent molecules. The calculations are performed for solvents
ranging from nondipolar to strongly dipolar. The solvent dependence of both the experimental Stokes shift
and the spectral width is satisfactorily reproduced over the whole polarity range. The optical width is shown
to demonstrate a qualitatively different solvent dependence for absorption and emission. The solvent-induced
absorption width increases with solvent polarity, whereas the solvent-induced emission width passes through
a maximum. This is a result of non-Gaussian statistics of the energy gap fluctuations in polarizable/electronically
delocalized chromophores. The total (i.e., solvent and vibrational) emission width tends to pass through a
broad maximum at low solvent polarities, decreasing with solvent polarity for highly polar solvents. This
results from the combined influence of a solvent-induced mixing of the vacuum adiabatic states and a decrease
of the vibrational reorganization energy with increasing solvent polarity. The latter effect arises as a result of
a coupling of the vibrational and solvent nuclear modes due to the electronic state occupation number difference,
making the vibrational reorganization energy solvent-dependent. The study revels a breakdown of the linear
relation between the solvent-induced width and Stokes shift. The model suggests that the Franck-Condon
factor of intense optical lines should significantly depend on the magnitude of the transition dipole.

1. Introduction

Shifts of optical lines in condensed phases reflect the overall
solvation power of the solvent produced by various types of
solute-solvent interactions. Each component of the total
interaction potential reflects some specific solvent property,
electrostatic or nonelectrostatic in nature, with a characteristic
relaxation time. The vertical Franck-Condon (FC) transition
of an optical excitation1 separates the overall solvation energy
into the components generated by the solvent modes that are
fast and slow compared to the characteristic time scale of the
transition.2 Two general classes of solvent excitations, associated
with the electronic and nuclear degrees of freedom, are usually
considered. They result in, correspondingly, the electronic and
nuclear components of the spectral shift. Electronic solvation,
responsible for dispersion and induction interaction potentials,
may account for a considerable portion of the solvent-induced
spectral shift, especially in weakly polar and nondipolar
solvents.3 Nuclear solvation, arising from permanent electrical
moments (e.g., modeled by fixed partial charges on the solvent
molecules), is more important in polar solvents.

Regardless of its quantitative significance for a particular
process, solvation by the solvent nuclear degrees of freedom is
the key driving force of many condensed phase nonequilibrium
phenomena such as solvation dynamics4a and radiationless
transitions.4b,c Understanding of energetics and dynamics of

nuclear solvation is therefore crucial for these applications. The
present study is a step toward better understanding of the
energetics of nuclear solvation and reorganization in liquid
solvents experimentally probed by band shapes of steady-state
optical spectra and activation barriers of charge transfer (CT)
reactions. In the remainder of the paper, the focus is primarily
on the “electron transfer” (ET) subset of CT processes, in which
the degree of CT is characterized by state occupation numbers
n (populations) defined in terms of a reference basis taken as
the vacuum adiabatic states.5,6 ET traditionally refers to the
situation in which the activation energetics can be calculated
as if a full electron is transferred in the process (i.e.,∆n )
15,6), even though, strictly speaking, due to nonzero electronic
overlap, the actual population shift may be appreciably less than
unity. We use the term CT to indicate that in the processes
studied here the solvent-induced mixing of the initial and final
states and partial transfer of the electronic density do affect the
FC factors of optical and thermal transitions.

The thermodynamic strength of nuclear solvation is tradition-
ally related to the solvent reorganization energyλs of optical
transitions or CT reactions.7 This parameter reflects the free
energy invested in achieving the resonance of electronic states
for thermal transitions and the bandwidth of inhomogeneously
broadened lines8 for optical transitions. Steady-state optical
spectroscopy is a principal experimental source of the reorga-
nization energies. The isomorphism between optical band shapes
and FC factors entering rate constants of thermally activated
transitions9 establishes a connection between optical CT bands10

and rates of CT reactions.11 Therefore, both band-shape analysis
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and modeling of redox reactions in solution present a need for
an accurate and reliable account of the key factors influencing
nuclear reorganization.12

Two observables are commonly extracted from optical
spectra: the first and second spectral moments. Both provide
information about the solvent reorganization energy. The
Marcus-Hush model of CT transitions9 relates the spectroscopic
Stokes shift to the total nuclear reorganization energy of the
system

where νjabs and νjem stand for the first spectral moments of
absorption (“abs”) and emission (“em”) lines; all energy
parameters appearing below are in wavenumbers (cm-1). The
intramolecular reorganization energyλv arises as a result of
displacements of solute vibrational modes caused by the
electronic transition. The vibronic band including the effects
of solvent and intramolecular vibrations is then formed as a
superposition of individual Gaussian lines created by a statistical
distribution of solvent configurations (inhomogeneous broaden-
ing).10

The second spectral moments13 of absorption and emission
lines,〈(δνj)2〉abs/em, are equal to each other in the Marcus-Hush
formalism14

They are related to the solvent and intramolecular reorganization
energies of the optical chromophore as follows:9b

whereνjv is a characteristic frequency of intramolecular vibra-
tions. Together, eqs 1 and 3 result in the fundamental relation
between the Stokes shift and the spectral width

whereâ ) 1/kBT (in cm).
Equation 4 provides a direct connection between the first and

second spectral moments, reflecting some fundamental assump-
tions of the Marcus-Hush model of ET that can be summarized
as follows. (1) A two-state solute is adopted (i.e., no excitations
to higher electronic states are included). (2) Neglecting electronic
coupling between the two states participating in the transition,
given by the off-diagonal Hamiltonian matrix element for
thermal transitions15 and by the transition dipole for optical
transitions, in defining the FC factors of optical and thermal
ET. (3) Decoupling of the vibrational and solvent nuclear modes.
(4) Linear solvent response: the reaction field induced by the
solute in the solvent is a linear function of solute’s charge
distribution.

Equations 2 and 4 give two predictions that can be verified
experimentally. First (eq 2), the width of the absorption line is
equal to the width of the corresponding emission line. Second
(eq 4), both the absorption and emission widths are linear
functions of the Stokes shift with unit slope. There are, however,
several indications in the literature that both these features can
be dramatically violated for some optical dyes. The widths of
absorption lines are sometimes substantially different from the
widths of emission lines.16,17 Furthermore, the progression of
the spectral widths with solvent polarity can be dramatically
different for absorption and emission, resulting in distinctly
different slopes when plotted against the Stokes shift. An

illuminating example of such a behavior is spectroscopy of
coumarin-153 (C153) dye, shown in Figure 1 (data according
to Reynolds et al18). The spectral widthσabs/emin Figure 1 is
obtained from the half-intensity widthΓabs/emas

The most puzzling feature is the opposite slopes of the
absorption and emission progressions of the width versus the
Stokes shift. The polarity decay of the emission width for C153
is not clearly supported by the data from other laboratories (see
Results below). Nevertheless, it seems to be fairly well
established in the literature that the solvent progression of the
width may be different for emission and absorption bands.19

The present work is a step toward better understanding of this
phenomenon.

In view of considerable deviations of the observed optical
widths from the prediction of the Marcus-Hush model (eqs 2
and 4), one can raise the question as to which of the above-
mentioned assumptions 1-4 are violated. The linear response
approximation (LRA, assumption 4) in applications to ET
reactions,20 solvation dynamics,21 and optical spectra22 has been
extensively tested on computer simulations and analytical
solvation theories. Although some deviations from nonlinearity
are indeed seen for solid media,23 protonated solvents,24 and
supercritical solvation,25 the nonlinear solvation effect is gener-
ally small for large chromophores in dense liquid solvents. The
other assumptions of the Marcus-Hush description, eqs 1-3,
need, however, closer scrutiny.

The omission of the effect of transition dipole on the FC factor
(assumption 2) can be justified only if the two states involved
in the transition do not mix under the influence of the nuclear
fluctuations in the system. Both in the adiabatic and diabatic
representations, this is achieved at zero transition dipole
moment.5,26,27 The analysis of optical band shapes in a two-
state model, in which the vacuum adiabatic states are mixed by
the adiabatic transition dipolem0,12, shows that the emission
width is smaller than the absorption width.5 Furthermore, the
emission width decays, and the absorption width increases when
plotted against the Stokes shift, in qualitative agreement with
the picture shown in Figure 1. Despite this qualitative agreement,
the two-state model (TSM, assumption 1) is very unrealistic
due to the neglect of excited electronic states of the chro-
mophore, leading, for instance, to a negative excited state
polarizability. The polarizability of the excited state of es-
sentially all known chromophores is, on the contrary, positive
and in the majority of cases is higher than that of the ground
state. This is the case for the C153 optical dye.28 Finally, the
decoupling of the solvent and vibrational nuclear modes
(assumption 3) breaks down when the electronic density is

2(λs + λv) ) ∆νjst, ∆νjst ) νjabs- νjem (1)

〈(δνj)2〉abs) 〈(δνj)2〉em (2)

〈(δνj)2〉abs/em) 2kBTλs + νjvλv (3)

â〈(δνj)2〉abs/em) ∆νjst + λv(âνjv - 2) (4)

Figure 1. Absorption (circles) and emission (squares) widths (eq 5)
vs the Stokes shift for 40 molecular solvents according to Reynolds et
al.31 The dashed lines are regressions drawn as a guide for the eye.

σabs/em
2 ) (Γabs/em

2)/(8 ln 2) (5)
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delocalized. The coupling of the electron to intramolecular
vibrations is proportional to the occupation number of the
corresponding electronic state,17 which in turn may be changed
by the fluctuating solvent nuclear field.

Another interesting problem raised by steady-state spectros-
copy of C15318 is that of the role of nondipolar solvation in
solvent reorganization. The traditional continuum dielectric
models of solvent reorganization in optical and thermal elec-
tronic transitions are intended for use with dipolar media,
yielding a virtually vanishing solvent reorganization energy,
λs ∝ (1/ε∞ - 1/εs), in nondipolar solvents (zero permanent dipole
moments), with the static dielectric constantεs very close to
the high-frequency dielectric constantε∞.7 On the other hand,
recent applications of the optical band-shape analysis to
intramolecular optical transitions in chromophores dissolved in
nondipolar solvents yield classical reorganization energies of
appreciable magnitude (λcl ) 0.1 - 0.4 eV).11 Combined
application of the band-shape analysis and Raman spectros-
copy30 allows separation of the low-frequency solute vibrational
and solvent components of the overall classical reorganization
energy. This analysis demonstrates a substantial solvent com-
ponent,λs, in λcl.30b-d A considerable solvent component in the
classical reorganization energy in nondipolar solvents is also
observed in Stokes shift measurements of C15331 and a more
recent study on a donor-bridge-acceptor molecule.32 The solvent
component of the Stokes shift is distinctly nonzero (about 0.08
eV for C153 in benzene), underscoring the fact that the
continuum cavity models are not appropriate for treating
solvation in nondipolar solvents.

A nonzero reorganization energy in some nondipolar solvents
has been attributed to solvation by solvent quadrupoles.31

Despite the fact that the importance of higher multipoles is
currently accepted in the literature,33,34there is still insufficient
understanding of the relative contribution of dipolar and
quadrupolar components to the overall nuclear solvent reorga-
nization. To explore this issue, we apply here a recently
developed perturbation approach to equilibrium solvation in
dipolar-quadrupolar solvents35 to model the solvent dependence
of the Stokes shift. This approach explicitly separates the dipolar
and quadrupolar components of solvation, a capability which
is not available in other models.34

The model proposed in this study includes several features
that are significant for a correct description of optical band
shapes: (1) Delocalization of the electronic density between
the two states participating in the transition and coupled by a
transition dipole. (2) Solute polarizability due to the solute’s
excited states other than the two states participating in the
transition. (3) Microscopic modeling of the solvent-induced
Stokes shift, including both dipolar and quadrupolar solvation
mechanisms. (4) Coupling of the solvent and vibrational nuclear
modes, making the vibrational solvent reorganization energy
solvent-dependent. The theoretical procedure incorporates two
previously considered limiting cases: the spectral analysis of
the TSM,5 which excludes excitations to higher-lying electronic
states, and the theory of diabatic optical transitions in polarizable
chromophores (referred to as diabatic polarizable model,
DPM),29 which omits electronic delocalization effects. The
model developed here incorporates both delocalization and
polarizability effects and will be referred to as the adiabatic
polarizable model (APM). The theory is shown to reproduce
satisfactorily the solvent polarity progression of both the Stokes
shift and the widths of absorption and emission bands experi-
mentally observed for C153. The calculation procedure is de-

scribed in section 2. Results are given in section 3. Section 4
presents the discussion, and conclusions are outlined in section
5.

2. Calculation Procedure

2.1. Model. The goal of the present study is to develop an
algorithm to calculate the alteration of optical band shapes
induced by the solvent using the gas-phase chromophore
parameters as an input. We use the optical bands measured
experimentally in the gas phase and employ the solute param-
eters obtained from quantum-mechanical calculations. We start
with a basis of two electronic statesψi(r ,Q0) (i ) 1, 2) given
as functions of electronic coordinatesr at some configuration
Q0 associated with normal vibrational modes of the solute
Q ) Q1, ...,QN (crude adiabatic approximation36). The electronic
transition alters the constantsγin governing the electron-phonon
coupling. This situation is represented by the standard electron-
phonon Hamiltonian1

with

Here,T(Qn) refers to the kinetic energy associated with the mode
Qn, κn is the vibrational force constant (taken as state-
independent14), andai

+ and ai are the fermionic creation and
annihilation operators in the electronic states 1 and 2 involved
in the transition. The energiesEi in eq 6 correspond to electronic
states at the nuclear configurationQ ) Q0; the difference
∆E ) E2 - E1 is thus the gas-phase vertical absorption energy
at Q0.

When the chromophore is placed in a solvent, the vibronic
energies change as a result of solute-solvent interactions. For
a dipolar solute, the interaction Hamiltonian is

wherem̂0 is the solute dipole operator andR is the reaction
field of the solvent, including the quantum field of electronic
solvent polarization and a classical nuclear reaction field. If we
confine the description to only two electronic states, the system
Hamiltonian becomes

wherem0,12 ) 〈ψ1|m̂0|ψ2〉 is the gas-phase transition dipole,
m0i ) 〈ψi|m̂0|ψi〉 is the gas-phase dipole moment in theith state
(i ) 1, 2), andqn ) Qn - Q0n. The off-diagonal term here
describes a solvent-induced non-Condon mixing between the
states 1 and 2.2d,e,5,37The basis set of only two electronic states
clearly does not provide a complete physical picture of the
interaction of an optical chromophore with a condensed
environment. Virtual electronic transitions to higher-lying states
make a substantial addition to the polarizability of the two-
state solute. Under the action of a solvent reaction field, the
chromophore attains an induced dipole (higher induced multi-

H0 ) ∑
i)1,2

(Ei - ∑
n

γin(Qn - Q0n))ai
+ai + Hv (6)

Hv ) ∑
n

[κn(Qn - Qn0)
2

2
+ T(Qn)] (7)

Hint ) -m̂0‚R (8)

H ) H0 + Hint

) ∑
i)1,2

(Ei - m0i‚R - ∑
n

γinqn)ai
+ai -

m0,12‚R(a1
+a2 + a2

+a1) + Hv (9)
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poles are not considered here). For a complete modeling of the
solvent-induced shift and broadening of the spectral line, one
has to include both factors affecting the band shape: (i) direct
delocalization of the electronic density between the two states
participating in the transition5 and (ii) virtual transitions to other
excited states of the chromophore as part of the solute’s
polarizability response.29 The importance of delocalization for
modeling the spectral width has been recognized already in
previous computational37 and analytical5 studies of optical
spectra. A common approach adopted in computational model-
ing is to diagonalize the Hamiltonian matrix on the basis of a
few electronic states for each solvent configuration generated
by a molecular dynamics simulation.37b Polarizability converges
very slowly as a function of the number of basis states.38

Therefore, inclusion of only a few excited states may result in
an incorrect polarizability and, consequently, incorrect account
of the polarizability effects on the optical line-shape.

To incorporate correctly the chromophore polarizability on
one hand and generate explicit electronic delocalization on the
other, we adopt here a hybrid model. The two states participating
in the transition are explicitly considered. Transitions to all other
excited states of the chromophore are assumed to result in
polarization of the electron density defined by the dipolar
polarizabilityRj0i (i ) 1, 2). The total vacuum polarizability of
the solute, treated as input available from experiment or
independent calculations, is thus split into the polarizability from
the 1 T 2 transition and the componentRj0i from all other
transitions

Here,R andâ superscripts refer to the Cartesian components
of the transition dipole; “+” and “-” refer to i ) 1 andi ) 2,
respectively.

The common situation for redox reactions and visible/UV
spectra in solutions is that the frequency of electronic excitations
of the solvent is much higher than the adiabatic energy gap
between the ground and excited CT states of the solute. The
induced solvent dipole moments (given by the electronic
component of the solvent reaction fieldR) can then be integrated
out to generate instantaneous CT free energy surfaces depending
on the nuclear configuration of the system (i.e., constrained free
energy surfaces depending on the instantaneous values of the
nuclear coordinates).2d,29This approximation assumes adiabatic
separation of the characteristic time scales of the optical
transition and those of electronic excitations of the solvent.2

We also assume that the solute electronic states responsible for
Rj0i lie much higher in energy than the adiabatic states 1 and 2
participating in the transition. This assumption extends the
adiabatic separation of electronic time scales to all induced
dipoles in the system. This allows us to integrate out all the
induced dipoles and define the instantaneous CT free energy
depending on the nuclear configuration and occupations of states
1 and 2.2d,6,29

The effective Hamiltonian obtained by integrating out the
induced dipole moments in the system depends on the nuclear
configuration of the solvent solely through the nuclear reaction
field Rp

5

Here m̃av ) (m̃01 + m̃02)/2, and ae is the linear response
coefficient of the electronic polarization of the solvent (see
section 2.4). The diagonal energies depend linearly on the
nuclear reaction field of the solvent through the interaction with
the solute dipole and quadratically through the energy of solute
self-polarization

Here “0s” refers to the solute (“0”) interacting with the solvent
(“s”)

and

is the enhancement factor of the solute polarizability and the
dipole moment due to the field created by the solvent electronic
polarization.29,39The diagonal energyE0s

(i) in eq 12 includes the
solvation energy due to the dispersive solute-solvent interac-
tionsEi

disp and the free energy of solvation by induction forces

Diagonalization of the two-state matrix in eq 11 leads5 to
the lower,E-[Rp,q], and upper,E+[Rp,q], adiabatic free energy
surfaces depending on the nuclear reaction fieldRp and the
vibrational intramolecular modesq

where

In eq 17,∆E0s ) E0s
(2)[Rp,q] - E0s

(1)[Rp,q] and

Equations 16-18 are the major result of our treatment. They
establish the adiabatic free energy surfaces of a dipolar optical
chromophore as a function of the nuclear configuration of the
system and thus can be directly used to construct optical FC
factors.

2.2. Vibronic Hamiltonian. The upper and lower free energy
surfaces, depending on the system nuclear coordinatesRp and
q, are the starting point for building the absorption and emission
band shapes. The function∆E[Rp,q] is strongly nonlinear in
Rp andq, which makes it especially difficult to construct the
vibrational envelope. To make the problem tractable, we
linearize∆E[Rp,q] in q

around the equilibrium coordinateq0
( defined through the

relation

R0i
Râ ) (2

m0,12
R m0,12

â

∆E
+ Rj0i

Râ (10)

H̃ ) ∑
i)1,2

E0s
(i)[Rp,q]ai

+ai -

m0,12[Rp + 2aem̃av](a1
+a2 + a2

+a1) + Hv (11)

E0s
(i)[Rp,q] ) Ei + Ei

disp + Fi
ind - m̃0i‚Rp -

1

2
Rp‚R̃0i‚Rp - ∑

n

γinqn (12)

m̃0i ) fei‚m0i, R̃0i ) fei‚Rj0i (13)

fei ) [1 - 2aeRj0i]
-1 (14)

Fi
ind ) -aem0i‚fei‚m0i (15)

E([Rp,q] ) 1
2

(E0s
(1)[Rp,q] + E0s

(2)[Rp,q]) ( 1
2

∆E[Rp,q] + Hv

(16)

∆E[Rp,q] ) x(∆E0s[Rp,q])2 + 4(V12[Rp])
2 (17)

V12[Rp] ) m0,12‚Rp + 2aem0,12m̃av (18)

∆E[Rp,q] = ∆E[Rp,q0
(] +

∂∆E[Rp,q]

∂q |
q0

(
‚(q - q0

() (19)

∂E([Rp,q]/∂q|q0
( ) 0 (20)
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The q-derivatives in eqs 19 and 20 can be expressed through
the difference in electron occupation numbers of the upper and
lower surfaces at the same nuclear configuration of the system
(“vertical” occupation difference)6

with (see eqs 16 and 17)

One then obtains for theq-derivative of the free energy gap

where

The equilibrium coordinates of the nuclear normal modes are
different for the upper and lower adiabatic surfaces. This is
reflected by “+” and “-” superscripts inq0

(. Because of this,
the difference in vertical occupation numbers (eq 24) at an
equilibrium nuclear configuration is also state-dependent, which
is reflected by the corresponding “(” superscript. From eq 20,
q0

(’s are given by the self-consistent equation

whereγn
av ) (γ1n + γ2n)/2, ∆γn ) γ2n - γ1n, and for brevity,

we will suppress the dependence of∆n( onRp in the remainder.
Equation 25 indicates two important features characteristic

of vibronic spectra in delocalized systems. First, equilibrium
positions of normal vibrational modes shift with the change in
electronic populations induced by the solvent. The vibrational
Hamiltonian

couples the vibrational (q) and solvent (Rp) nuclear modes
through∆n( (eqs 24 and 25). Second, the force constants of
the normal modes (second derivative ofE( in q) also change
with ∆n(.17 Here, we will neglect the second-order effect of
force constant modulation. To minimize the impact of the first-
order expansion on our calculations, we will consider the al-
teration of the band shape relative to the spectrum in a nonpolar
reference solvent. Following Reynolds et al.,31 2-methylbutane
is considered as a reference below.

In the linearized form, the energy surfaces for intramolecular
vibrations are harmonic with the equilibrium coordinates given
by eq 25. Substitution of eqs 19, 23, and 25 into eqs 16-17
yields the upper and lower free energy surfaces in a form
convenient for modeling the solvent-related changes in the
spectral band relative to a reference band shape (the constant
term, independent ofRp, is omitted)

whereR̃av ) (R̃01 + R̃02)/2 andHv
([Rp] (eq 26) depends on the

field Rp via eq 25. The energy gap between the upper and lower

surfaces now depends on only one nuclear mode, the solvent
nuclear reaction field

Here41

is the diagonal energy difference shifted by the solvent relative
to the mean of absorption and emission first spectral moments
in the reference solvent

where

is the gas-phase 0-0 transition energy. In eq 29,∆m̃0 )
m̃02 - m̃01, ∆R̃0 ) R̃02 - R̃01, and δFind is the change in
induction stabilization relative to that in the reference solvent.

Equation 29 indicates that the effect of the solvent-induced
mixing of the electronic states on the instantaneous energy gap
is due to the line shift-∆τ(λv

ref with the delocalization factor43

and the vibrational reorganization energy in the reference
solvent,λv

ref ) ∆nref
( λv, where

is the gas-phase vibrational reorganization energy, measured as
one-half of the gas-phase vibrational Stokes shift. Changes in
the occupation number difference may result in asymmetry
between the absorption and emission vibrational envelopes even
in a nonpolar reference solvent. This effect, combined with a
possible alteration in effective vibrational force constants, leads
to a redistribution of intensities between the normal modes. This
distortion of the gas-phase band shape is indeed seen for C153
when the chromophore is transferred from the gas phase to
2-methylbutane.40 In the present modeling, this effect is taken
into account by adopting the experimental reference band shapes.
For the band shift induced in polar solvents in eq 29, we will
neglect the difference in absorption and emission reorganization
energies in the reference solvent and considerλv

ref to be equal
to one-half of the Stokes shift.

The delocalization parameter in eq 32 is given by the self-
consistent relation

Because of the large energy gap for the optical excitation of
C153 in the inverted CT region,∆τ( is very close to unity.
The variation in∆τ( depends on the solvent field and does not
exceed-0.1 in the present calculations.

∆n[Rp,q] ) n-[Rp,q] - n+[Rp,q] (21)

n([Rp,q] ) 1
2

-
∆E0s[Rp,q]

2∆E[Rp,q]
(22)

∂∆E[Rp,q]

∂q |
q0

(
) -∆n([Rp]∆γn (23)

∆n([Rp] ) ∆n[Rp,q0
(] (24)

q0n
( ) κn

-1[γn
av ( (∆n(/2)∆γn] (25)

Hv
( ) ∑

n
[κn

2
(qn - q0n

( )2 + T(qn)] (26)

E([Rp] ) Hv
([Rp] - m̃av‚Rp - 1

2
Rp‚R̃av‚Rp ( 1

2
∆E([Rp]

(27)

∆E([Rp] ) [(∆E0s
([Rp])

2 + 4(V12[Rp])
2]1/2 (28)

∆E0s
([Rp] ) νjm

ref - ∆τ(λv
ref + δFind -

∆m̃0‚Rp - 1
2
Rp‚∆R̃0‚Rp (29)

νjm
ref ) (νjabs

ref + νjem
ref)/2 ) ∆E00 + ∆Eref

disp + ∆Fref
ind (30)

∆E00 ) E2 - E1 - ∑
n

(1/2κn)(γ2n
2 - γ1n

2) (31)

∆τ( ) ∆n(

∆nref
( (32)

λv ) ∑
n

∆γn
2/2κn (33)

∆τ( )
∆E0s

([Rp]∆E([0]

∆E0s
([0]∆E([Rp]

(34)
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2.3. Optical Line-Shape.The dependence of the overall
transition intensity (Iabs/em(νj), whereνj is the wavenumber of
the incident light, cm-1) on system nuclear coordinates arises
both from transition moment, which results in additional powers
of the frequencyνj42 and the so-called density-of-states weighted
FC factor, FCWD.1 The normalized FCWD can be expressed
as

where

andνjn are vibrational frequencies of the normal modes defined
by the vibrational Hamiltonian in eq 26;ø(k are the vibrational
wave functions.14 m and k denoten-component vectors of
vibrational quantum numbers in the initial and final state for
each normal vibrational mode. The statistical average〈...〉-,v is
taken over the vibrational excitations in the initial state (“v”)
and the statistical distribution of the solvent nuclear reaction
field with

and

Here, P[Rp] is the probability of creating a nonequilibrium
nuclear reaction fieldRp in the solvent surrounding the
chromophore.

The transition from a reference, nonpolar solvent to a polar
solvent shifts the equilibrium coordinate of each normal mode,
q0n

( ) γn
av/κn ( ∆γn

ref∆τ(/2κn. This shift can be accounted for
by a rescaling of the difference electron-phonon coupling,
∆γn

ref f ∆γn
ref∆τ(, which also implies a rescaling of the

vibrational reorganization energy

Since quantum vibrational envelope is non-Gaussian, explicit
knowledge of the whole set{γn,νjn} is necessary for a complete
description of the solvent-induced alteration of the vibrational
envelope. An approximate solution is available by rescaling
spectra measured in the reference solvent.

In the harmonic approximation, the normalized spectral
distribution of absorption (“-”) and emission (“+”) in the
reference solvent is1b

where Cn
2 ) ∆γn

ref/2κnνjn, fn(x) ) i sin(x) - (2njn + 1)(1 -
cos(x)) andnjn is the average quantum number ofnth vibrational
mode. The scaled spectrum

then correctly reproduces polarity changes of the second
vibrational spectral moment for each normal mode but does not
give correct higher moments. The linear with∆τ( shift of the
first spectral moment is included in the energy gap in eq 29.
Equation 41 allows us to define the vibrational spectrum in a
polar solvent by simple scaling of the spectrum in the reference
solvent. Note that this approximation does not assume a
Gaussian form of the vibrational envelope. Each normal mode
is characterized by its own intensity, and the total spectrum can
be asymmetric. The vibrational spectrum in a polar solvent is
then given by the relation

The FC factor in eq 35 is then given by the convolution

Note that this convolution cannot be reduced to an integral over
the separate solvent-induced and vibrational envelopes because
the factor∆τ- depends on the nuclear reaction fieldRp.

Equations 27-43 establish a general solution for the solvent-
induced spectral band shape at arbitrary orientations of the dipole
momentsm0i andm0,12 and an anisotropic second-rank polar-
izability tensorR0i of the chromophore. The reaction fieldRp

serves as a three-dimensional reaction coordinate of the solvent
nuclear fluctuations driving CT. In fact, one does not need to
include all three components of the reaction field. For general
orientations of the difference and transition dipoles, it is
sufficient to consider only two components ofRp in the plane
formed by ∆m̃0 and m0,12: the longitudinal componentR|

parallel to∆m̃0 and the transverse componentR⊥ perpendicular
to ∆m̃0. This assumption, however, is possible if the polariz-
ability tensor of the chromophore is diagonal in the{R|,R⊥}
coordinates and the two polarizability components in the plane
formed by rotations aroundR| are equal to each other. As
insufficient information about polarizability anisotropy of C153
is currently available, we will assume an isotropic polarizability
R0i

Râ ) δRâR0i throughout the remainder of the paper.44

By applying the property of theδ-function

one can eliminates the integral overR| in eq 43, yielding

Here,R|
(k)(R⊥)’s are the solutions of the equation

FCWDabs/em(νj) ) ∑
m,k

〈|〈ø+k|ø-m〉|2δ(∆E([Rp] +

εk - εm - νj)〉-,v (35)

εk - εm ) ∑
n

νjnkn - ∑
n

νjnmn (36)

〈...〉- ) (Q-)-1∫...e-âE-[Rp]P[Rp] dRp (37)

Q- ) ∫e-âE-[Rp]P[Rp] dRp (38)

λv
( ) (∆τ()2λv

ref (39)

FCWDabs/em
ref (νjabs/em

ref + νj) ) ∫-∞

∞
(dx/2π)e-ixλv-iνjx∏

n

eCn
2fn(νjnx)

(40)

(∆τ-)-1FCWDabs/em
ref (νjabs/em

ref + νj/∆τ-) )

∫-∞

∞
(dx/2π)e-ix∆τ-λv-iνjx∏

n

eCn
2f(∆τ-νjnx) (41)

∑
m,k

〈|〈ø+n|ø-m〉|2δ(ε+k - ε-m - x)〉v )

(1/∆τ-)FCWDabs/em
ref (νjabs/em

ref + x/∆τ-) (42)

FCWDabs/em(νj) ) ∫-∞

∞
dx 〈(∆τ-)-1δ(νj - x -

∆E-[Rp])FCWDabs/em
ref (νjabs/em

ref + x/∆τ-)〉- (43)

∫-∞

∞
δ(x - f(x))g(x) dx ) g(x0)|f ′(x)|-1|x0)f (x0)

(44)

FCWDabs/em(νj) )
2π

Q-
∑

k
∫0

∞
dR⊥ R⊥ ×

∫-∞

∞ dx

∆τ-
FCWDabs/em

ref (νjabs/em
ref + x/∆τ-) ×

[∆E′-(R⊥,R|
(k)(R⊥))]-1P[R⊥,R|

(k)(R⊥)] ×
exp(-âE-[R⊥,R|

(k)(R⊥)]) (45)

∆E-[R|,R⊥] ) νj - x (46)
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that give roots depending on the transverse field component,
and

Equation 46 is formally a fourth-order polynomial inR|. It
contains, however, a complex dependence onRp through∆τ(.
The numerical solutionsR|

(k)(R⊥) are then searched as roots of
the fourth-order polynomial inR| within an iteration procedure
that includes a self-consistent calculation of∆τ( as given by
eq 34.

2.4. Solvent Response.Equation 45 gives a general recipe
for calculating the optical band shape in liquid solutions for a
general form of the solvent response given by the distribution
function P[Rp]. For an explicit calculation of the optical line-
shape, one should take two steps further: (i) define a specific
form for the distribution functionP[Rp] and (ii) formulate an
explicit solvent model relating the solvent response to parameters
of a particular liquid used as a solvent. As the first step, we
adopt here the LRA that givesP[Rp] in the form of a Gaussian
function

The linear response coefficientap defines the strength of nuclear
solvation. It relates the chemical potential of solvation by the
solvent nuclear degrees of freedom to the squared solute dipole
(see eq 51 below). Parameterap is a major factor in defining
nuclear reorganization effects on optical transitions. Apart from
ap, the solvent-induced band shape is affected by the response
coefficient ae, corresponding to the linear response by the
electronic solvent polarization. Their sum gives the total solvent
response coefficient

For a dipolar solute, linear response implies that the solvation
chemical potential is a quadratic function of the solute dipole
moment. The solvation chemical potential due to electronic
polarization is then

The nuclear polarization produces the solvation chemical
potential

wherefi ) [1 - 2aRj0i]-1 and the response coefficienta is given
by eq 49.

The second step in defining the solvent response is to
formulate an explicit solvent model to calculate the response
coefficientsae andap. We adopt here the representation of the
solvent as a fluid of hard-sphere (HS) particles with diameter
σ, permanent dipolem, quadrupole momentq, and isotropic
polarizability R. The vacuum dipole moments,45 quadrupole
moments,31 and dipolar polarizabilities45 for the solvents used
in the calculations are taken from the literature and are listed
in Table 1. The HS diameters of the solvent molecules are
empirically fitted to isothermal compressibilities of real sol-
vents.45 The choice of the solvents listed in Table 1 is limited
by the requirement to have both the HS diameters45 and
quadrupole moments available.31 The solute is represented by
a HS of the radiusR0 with a centered dipole momentm0i and
the isotropic polarizabilityR0i. The latter is split into the
component due to the 1f 2 electronic transition and the
polarizability Rj0i due to virtual transitions to all other excited
states (eq 10). The model does not include many specific
features of real solvents but incorporates several physically
important factors characteristic of molecular liquid solvents that
are often omitted both in continuum models and in computer
simulations of solvation. The continuum model does not account
for density fluctuations of the solvent. Solvent, as well as solute,
polarizability is often omitted from computer modeling of
solvation. The present approach has already shown its ability
to reproduce experimental entropies of reorganization, a quantity
incorrectly accounted for by cavity models,46 to give reasonable
rate constant prefactors when used to analyze the temperature
dependence of ET rates47 and to generate spectroscopic param-
eters for optical ET in high-density32 and low-density48 dipolar
and nondipolar solvents.

Another attractive feature of the polarizable dipolar-qua-
drupolar HS solvent model is that it permits an analytical
solution for the linear response coefficient through the Pade´-
truncated formulation of perturbative liquid state theories.49 The
response functions can be separated into factors involving the
effective solute radius (Reff) and the solvent polarity (Pade´
approximant,P)

The effective radius of a dipolar solute depends on the ratio of
HS solute and solvent diameters (respectively,σ0 and σ) and

TABLE 1: Solvent Properties (T ) 293 K)31,45a

solvent Stokes shiftb

solvent m, D q, D × Å σ, Å ηc R, Å3 ∆νjst
s dip. quad.

2-methylbutane (2-mb) 0.0 0.50d 5.60 0.477 10.1 0.0 0.0 0.0
toluene (tol) 0.38 7.92 5.66 0.534 12.3 0.50 0.11 0.39
benzene (φh) 0.0 8.35 5.27 0.515 10.4 0.59 0.0 0.59
p-xylene (p-xy) 0.02 7.69 6.00 0.550 14.2 0.37 0.06 0.31
chloroform (chl) 1.04 2.85 5.05 0.503 8.5 0.58 0.51 0.07
dichloromethane (dcm) 1.14 4.41 4.62 0.482 6.5 0.94 0.79 0.15
tetrahydrofuran (thf) 1.75 5.39 5.10 0.511 7.9 1.23 1.11 0.12
methyl acetate (mea) 1.76 10.41 5.77 0.524 10.5 1.23 0.87 0.36
acetone (acet) 2.85 4.71 4.78 0.464 6.3 1.69 1.64 0.05
nitromethane (nme) 3.57 5.42 4.36 0.483 5.0 1.94 1.90 0.04
dimethyl sulfoxide (dmso) 3.96 9.17 4.96 0.540 8.0 1.96 1.88 0.08
acetonitrile (acn) 3.90 2.49 4.14 0.424 4.5 1.89 1.87 0.02

a Solvents are listed in the order of increasing experimental Stokes shift.31 b Calculated (APM) solvent-induced Stokes shift (∆νjst
s ) and its

partitioning into dipolar (“Dip.”) and quadrupolar (“Quad.”) solvation components.c η ) (π/6)Fσ3 is the packing density of the solvent.d Calculated
in the present study.

∆E′-(R⊥,R|
(k)(R⊥)) )

∂∆E-[Rp]

∂R|
|
R|)R|

(k)
(47)

P[Rp] ) exp[-âRp
2/4ap] (48)

a ) ae + ap (49)

µe ) -ae feim0i
2 (50)

µp ) -ap fi feim0i
2 (51)

a ) Reff
-3P(m,q,R), ae ) Reff

-3P(0,0,R) (52)
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the reduced solvent density,Fσ3 (F is the solvent number
density), through the radial solute-solvent pair distribution
function g0s(r)

A polynomial fit of the numerical integral in eq 53 is given in
ref 49 and is compared to the results of computer simulations
in ref 49c. The Pade´ approximantP(m,q,R) of the dipolar-
quadrupolar solvent response was derived in ref 28 and is given
in Appendix A.

2.5. Parameters.Vacuum parameters of C153 taken from
experimental literature40,50 and calculations51,52 are listed in
Table 2. The present INDO/s53 configuration interaction (CI)
calculations, based on single excitations (CIS) from the self-
consistent field (SCF) ground state, yield the dipole moments,
m01 ) 7.4 D and∆m0 ) 7.6 D, in reasonable agreement with
available experimental data and results from other semiempirical
calculations (Table 2). Ab initio54 CIS calculations (6-21G*
basis) yield a smaller∆m0 value (3.9 D). The choice of the
INDO/s dipole moments instead of the ab initio values in the
present solvation calculations is supported by the solute radius
fitting to experimental Stokes shift data (see below). When the
ab initio∆m0 is used in the fit, the maximum of the dependence
of the Stokes shift on the solute HS radius (R0 ) σ0/2) falls far
below experimental values, and the fitting procedure does not
yield a reasonable estimate forR0. For the transition dipole,
the experimental gas-phase magnitude,m0,12 ) 5.78 D,40 is
adopted for the calculations (the calculatedm0,12values in Table
2 are quite similar to the experimental value).

Ab initio values forR01 ) 25.8 Å3 and ∆R0 ) 4.4 Å3 are
employed here. The choice of ab initio over INDO/s values for
∆R0 is adopted since the INDO/s results are based on a sum-
over-states perturbative result, whereas the ab initio calculations
use essentially an exact treatment within linear response (for
the given basis set). The ab initio∆R0 compares favorably with
the Stark data,28 and the ab initioR01 is close to theR01 ) 28
Å3 obtained from the Miller’s empirical method of additive
hybrid atomic polarizabilities.55

In addition to the calculated and experimental gas-phase
parameters, we use the experimental band-shape absorption and

emission profiles FCWDabs/em
ref (νj) in 2-methylbutane. The only

solute parameter that remains undefined from the gas-phase
measurements and quantum calculations is the effective HS
radius of the chromophore,R0. This radius was obtained as the
best-fit value reproducing experimental Stokes shifts31,56(Table
3, second column). The resulting valueR0 ) 4.89 Å coming
out of the fit is somewhat higher than the value of 4.76 Å
calculated by Rechthaler and Ko¨hler on the basis of molecular
dimensions of C153.52 The quality of the fit is shown in Figure
2 (filled points). [The open points refer to the calculation that
does not take into account the coupling of the solvent and
intramolecular vibrational modes (see below).] Note thatR0 is
the only fitting parameter of the model; the optical band-shape
calculations are based on the vacuum properties of C153,
experimental spectra in 2-methylbutane, and the radiusR0.

Fitting the solute radius is not a trivial problem in the case
of polarizable/delocalized chromophores. The procedure is
complicated by the fact that the Stokes shift as a function of
the solute radius passes through a maximum in strongly polar
solvents (Figure 3). This behavior is very different from the
naive expectation of a trend∝ ∆m0

2/R0
3, as in the case of

localized systems. Two factors contribute to the more compli-
cated dependence. The decrease of the radius leads to a stronger
solvation power both directly through the effective radiusReff

in eq 53 and through the correction coefficientf. Electronic
delocalization plays an opposite role. An increase of solvation
power related to the decrease inR0 enhances delocalization. As
the degree of delocalization (defined in terms of the vacuum
adiabatic basis) becomes appreciable, the Stokes shift starts to
decrease and eventually dominates over the increase due to a
stronger solvent response, yielding a maximum as a function
of the solute radius. The existence of a broad maximum implies

TABLE 2: Parameters of C153 from Experiment and
Calculations

m01, D ∆m0, D m0,12, D R01, Å3 ∆R0, Å3

experiment 6.6a 5.8-7.0b 5.78c 4-6b

4.9d 5.70e

present calculations
INDO/s 7.4f 7.53f 6.11f 19.5f 13.5f

ab initio 6.14g 3.74g 6.03g 25.8g 4.4g

other semiempirical
results

6.4-6.7h 7.0-7.3h 5.46i 20.0j 13.0h

a Ref 50a; dielectric measurements in chloroform solution. See: C.
R. Moylan et al.,Chem. Mater.1993, 5, 1499.b Stark measurements
in toluene and 2-Me thf.28 c Gas-phase transition dipole from ref 40.
d Refs 50d and 28 contain the most recent lists of∆m0 from different
sources.e Average from absorption spectra in 14 solvents, ref 50b.
f Results obtained by the INDO/s method of Zerner et al53 within the
framework of single-excitation configuration interaction (CIS) based
on the ground-state self-consistent (SCF) wave function. Polarizabilities
were obtained using second-order perturbation theory.g Ab initio results
using a 6-21G* basis and CIS wave functions (see footnote f).54

Polarizabilities were based on exact linear response calculations within
the CIS framework (for a chosen orbital basis).h AM1 calculations from
ref 51. i AM1 calculations from ref 50b.j Semiempirical calculations
from ref 40.

Reff
-3 ) 3∫0

∞ dr

r4
g0s(r) (53)

TABLE 3: Experimental Stokes Shifts and Half-intensity
Widths for C153 (103 cm-1)

∆νjst
exp Γabs

exp Γem
exp

solvent Ia II b I II I II III c

toluene 4.62 3.67 3.35
benzene 4.77 3.65 3.31 2.86
p-xylene 4.80 3.67 3.48
chloroform 4.85 3.69 3.20
dichloromethane 5.06 3.68 3.20 3.45 3.02
tetrahydrofuran 5.34 6.01 3.79 4.21 3.36
methyl acetate 5.55 3.87 3.37
acetone 5.72 6.26 3.83 3.30 3.43 3.06
nitromethane 5.73 3.89 3.18
dimethyl sulfoxide 5.71 6.71 3.91 4.09 3.32 3.38
acetonitrile 6.03 6.45 3.89 4.06 3.27 3.42 3.07

a Ref 31.b Ref 57.c Ref 52.

Figure 2. Experimental Stokes shift of C15331 vs the calculated (APM,
filled circles) Stokes shift for 10 solvents (2-methylbutane and
acetonitrile excluded) listed in Table 3, based onR0 ) 4.89 Å. Open
circles show the result of calculation excluding the vibrational-solvent
coupling. The dashed and dash-dotted lines are linear regressions
through the filled and open points, respectively. The regression slopes
are 0.999 (dashed line) and 0.707 (dash-dotted line).
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that there is a wide range of radii that result in essentially the
same magnitude of the Stokes shift so that, in practical
applications, one should exercise caution when fitting geo-
metrical parameters to experimental data in strongly polar
solvents. Weakly polar solvents may be more reliable in this
sense, as they demonstrate only a monotonic decay of the Stokes
shift with the solute radius (dcm in Figure 3).

3. Results

The theoretical derivation presented above shows that the
inclusion of solvent-induced mixing of the vacuum adiabatic
states leads to profound qualitative changes in the way the
optical FCWD factor in condensed phases is calculated.
Noteworthy is that partial CT couples the solvent and vibrational
nuclear modes, making it impossible to use the convolution
relation

mixing the solvent-induced spectral profile FCWDabs/ems(νj) with
the reference vibrational envelope FCWDabs/em

ref (νj) measured in
the gas phase or in a reference nonpolar solvent. It is instructive,
however, to understand the effects of electron delocalization
on the solvent-induced and vibrational profiles separately. We
will therefore start with considering the solvent-induced FC
envelope

assuming no vibrational modes coupled to the transferred
electron (γin ) 0).

3.1. Solvent-Induced Band.The solvent effect on the
transition between the states 1 and 2 considered in the present
model includes three components: (i) solvation of the fixed
charges (dipole moments) of the chromophore, (ii) self-
polarization of the solute’s electronic cloud due to polarizability,
and (iii) change in the electronic occupation numbers induced
by the off-diagonal coupling of the transition dipole to the
solvent field. Here we consider the consequences of these factors
for the line position and width.

The average over the nuclear reaction field in eq 55 reduces
to integrals over the longitudinal and transverse components of
the field. Theδ-function in eq 55 eliminates the integral over
the longitudinal field (eq 44). The solvent-induced line is then
given in terms of a one-dimensional integral over the transverse
reaction field (similarly to that in eq 45) that can be taken
analytically in two limiting cases: (i) zero transition dipole
(DPM, m0,12 ) 0)29 and (ii) the TSM (Rj0i ) 0) (Appendix B).5

In the case of the C153 dye, both factors, the polarizabilityRj0i

and the transition dipolem0,12, considerably affect the spectra,

thus requiring consideration at the more general APM level
developed in the present study. Figure 4 compares the solvent-
induced absorption and emission profiles (eq 55) generated in
the TSM, DPM, and APM approximations. Solid lines indicate
the APM model (eq 55), the dashed lines refer to the DPM
(m0,12 ) 0, eq B1), and the dash-dotted lines correspond to
the TSM (Rj0i ) 0, eq B5). The emission line is broader than
the absorption line due to a higher excited-state polarizability
when electron delocalization is neglected (DPM). The inclusion
of electronic delocalization through the transition dipole (APM)
narrows the emission line and reduces the maxima separation.
Finally, the neglect of polarizability from higher lying electronic
states in the TSM generates an even narrower emission band.
The line shape is therefore a result of a compensation between
the polarizability effect tending to increase both the emission
width and the Stokes shift for∆R0 > 0 and the opposite effect
of electronic delocalization. The results for the solvent-induced
Stokes shifts and width in different solvents calculated using
the TSM, DPM, and APM are summarized in Table 4.

Solvent-induced Stokes shifts were calculated as the differ-
ence between first spectral moments for absorption and emission.
Splitting of the calculated Stokes shift into the dipolar and
quadrupolar components (Appendix A) is given in Table 1,
which lists also the dipole and quadrupole moments of the
solvents used in the analysis. The quadrupolar solvation effect
is negligible (on a relative basis) for strongly polar solvents
like acetonitrile and nitromethane but is the major solvation
component for nondipolar or very weakly nondipolar solvents
(toluene, benzene,p-xylene). The general outcome of this
analysis is that, except for some solvents with very high
quadrupole moment (methyl acetate), quadrupolar solvation
makes a very moderate impact on the Stokes shift in polar

Figure 3. Calculated Stokes shift∆νjst
s vs the solute radiusR0 in

acetonitrile (acn), dimethyl sulfoxide (dmso), and dichloromethane
(dcm).

FCWDabs/em(νj) ) ∫-∞

∞
FCWDabs/ems

s (νj - x)FCWDabs/em
ref (x) dx

(54)

FCWDabs/em
s (νj) ) 〈δ(∆E-[Rp] - νj)〉- (55)

Figure 4. Absorption (abs.) and emission (em.) solvent-induced line-
shapes of C153 in acetonitrile calculated according to the present model
(APM, solid lines), neglecting electronic delocalization (DPM, dashed
lines),29 and in the two-state model (TSM, dash-dotted lines).5 Solute
and solvent parameters are from Tables 1 and 2 withR0 ) 4.89 Å.

TABLE 4: Spectral Parameters of the Solvent-Induced
Band Shapes (103 cm-1) Calculated in the Present Adiabatic
Polarizable Model (APM), the Two-State Model (TSM), and
the Diabatic Polarizable Model (DPM)

APM TSM DPM

solvent ∆νjst
s σabs

a σem
a ∆νjst

s σabs
a σem

a ∆νjst
s σabs

a σem
a

toluene 0.50 0.45 0.46 0.28 0.30 0.26 0.46 0.46 0.46
benzene 0.59 0.55 0.56 0.33 0.35 0.30 0.57 0.56 0.57
p-xylene 0.37 0.31 0.31 0.21 0.22 0.20 0.32 0.31 0.32
chloroform 0.58 0.54 0.54 0.33 0.35 0.30 0.55 0.54 0.55
dichloromethane 0.94 0.94 0.92 0.48 0.54 0.41 0.98 0.96 0.99
tetrahydrofuran 1.23 1.27 1.17 0.58 0.69 0.48 1.33 1.28 1.35
methyl acetate 1.23 1.26 1.17 0.60 0.70 0.49 1.33 1.28 1.36
acetone 1.69 1.85 1.49 0.68 0.87 0.50 1.98 1.88 2.04
nitromethane 1.94 2.29 1.50 0.68 0.91 0.47 2.51 2.36 2.61
dimethyl sulfoxide 1.96 2.32 1.48 0.65 0.88 0.44 2.58 2.43 2.69
acetonitrile 1.89 2.16 1.51 0.69 0.92 0.49 2.37 2.23 2.47

a Calculated according to eq 5.
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solvents (Figure 5). This is a significant result, indicating that
even for weakly polar solvents (chloroform), one can rely on
dipolar solvent models, as had been done for many years1a and
was recently put into question31 (see Discussion).

The solid line in Figure 5 shows the result of splitting the
solvent-induced Stokes shift into dipolar and quadrupolar
components performed by Reynolds et al.31 As is seen, their
analysis, based on computer simulations of one solvent molecule
interacting with C153, gives a wider range ofm/Q ratios for
which quadrupolar solvation is significant. Especially for dipolar
solvents with large quadrupole moments, the many-body
dipole-quadrupole coupling between the solvent molecules
significantly affects the solvation energetics,35 and full-size
simulations may be necessary to include such effects. Note that
the inclusion of the solute quadrupole additionally to the dipole
moment considered here is expected to enhance the relative
contribution of the dipolar solvent component in the Stokes shift,
thus making the function in Figure 5 to rise even more steeply.
This is because the dipole-quadrupole interactions are stronger
and more long-ranged than the quadrupole-quadrupole interac-
tion, resulting in a stronger coupling of the solute quadrupole
to solvent dipoles than to solvent quadrupoles.

The solvent dependence of the Stokes shift and the line
position whenm0,12 * 0 shows only quantitative differences
compared to the traditional results corresponding tom0,12 ) 0.
The solvent dependence of the spectral width is, on the contrary,
qualitatively different from standard expectations. Our calculated
solvent-induced spectral widths (APM, TSM, and DPM) for 11
solvents are listed in Table 4. The main qualitative result is
that the solvent-induced absorption width approximately follows
the relation

where the subscript “s” stands for the solvent component. The
APM emission width deviates dramatically from this relation,
passing through a maximum as a function of solvent polarity
(Table 4, fourth column; Figure 6). The TSM qualitatively
reproduces this result but gives values too low for both the
Stokes shifts and the widths. The APM formalism, combining
features of both the TSM and DPM approximations, provides
a reasonable description of spectral profiles. This comparison
allows us to conclude that transitions to higher excited states
and solvent-induced mixing of adiabatic states are both crucial
for reproducing the optical band shape.

Equation 56 is a consequence of using the LRA, in conjunc-
tion with the separation of the electronic and nuclear time scales
and the assumption of state-independent polarizability. Another
consequence of these assumptions is the linear relation between
the absorption/emission width and the solvent-induced shift22

wherem01/2 is equal tom01 for absorption andm02 for emission.
Figure 7 shows the dependence of the APM widths on the APM
solvent-induced shifts for absorption and emission (relative to
the gas-phase transition). The dependence ofâσabs

2 on ∆νjabs
s is

close to a linear one. The trend deviates considerably from a
linear one for emission. This is the reason for the curved
dependence ofâσem

2 on ∆νjst seen in Figure 6.
3.2. Solvent-Vibrational Band. The total Stokes shift and

spectral widths are the results of the combined effects of the
shifts and inhomogeneous broadenings due to solvent and
vibrational nuclear modes. These are calculated from eq 45 and
compared to experiment in Figures 8-10 and Table 5. The
experimental Stokes shifts are prone to considerable uncertain-
ties, as first spectral moments are noticeably affected by the
choice of the frequency range used for integration. For instance,
Gustavsson et al.57 have reported higher Stokes shifts than those
given by Reynolds et al.31 (respectively, the columns labeled II
and I in Table 3). Along with the higher absolute values, there
are also qualitative differences: dimethyl sulfoxide (dmso)
appears to be a more polar solvent than acetonitrile according
to Gustavsson et al.,57 in contrast to the data from Reynolds et
al.31 We used the latter data for the theory-experiment com-
parison, as they provide the most comprehensive list of spectral
data in various solvents compared to other literature data. They
are seen to agree generally well with our calculations.

The most puzzling feature of the solvent progression of the
spectral widths of C153, as is seen from the results of Reynolds
et al. (Figure 1),31 is the opposite signs of the slopes ofâσabs

2

andâσem
2 versus the Stokes shift. Comparison of the data from

Reynolds et al.31 used in Figure 1 to other literature data (Table
3) does not offer clear support for an unambiguous decay of
the emission width with solvent polarity. A conservative analysis
of the data from Reynolds et al.,31 from Gustavsson et al.,57

Figure 5. Fraction of the dipolar component in the solvent-induced
Stokes shift from data listed in Table 1 (points). The regression lines
correspond to the fit 1- exp(-pm/Q), with p ) 6.8 for the present
data (dashed line) andp ) 3.2 for the analysis by Reynolds et al.31

âσs
2 ) 2λs (56)

Figure 6. Calculated (APM) solvent component of the width vs the
solvent-induced Stokes shift for absorption (circles) and emission
(squares). Points indicate 11 solvents from Table 1 (2-methylbutane
excluded). The dashed lines are regressions through the points.

Figure 7. Calculated (APM) solvent-induced spectral width (eq 5) vs
the solvent-induced shift (relative to the gas-phase spectrum) of
absorption (circles) and emission (squares) lines. Points indicate the
solvents listed in Table 1 (2-methylbutane excluded), and dashed lines
are regressions through the points.

-∆νjabs/em
s ) âσabs/em

2
m01/2

∆m0
+ (m02

2 - m01
2 )ae (57)
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and from Rechthaler and Ko¨hler,52 suggests that the emission
width is essentially constant or decreases slightly with increasing
solvent polarity and the absorption width increases with
increasing solvent polarity.

To within experimental uncertainties, our present calculations
are in accord with the data given by Reynolds et al.31 (Figures
8-10, Table 5). Both emission and absorption experimental
spectra are excellently reproduced for polar acetonitrile and
acetone (Figure 8), but there is an insufficient red shift in the
calculations forp-xylene (Figure 9). We should remind at this
point that the dispersion spectral shift (Ei

disp in eq 12), which
does not affect the Stokes shift,41 is not included in the present
calculations. This shift component is proportional to the solvent
Lennard-Jones (LJ) energy,εLJ, and is small for acetone and
acetonitrile (εLJ/kB ) 296 K for acetone58). For p-xylene with
εLJ/kB ) 725 K58 (the highest LJ energy among the solvents in

Table 1), the dispersion spectral shift may be more significant,
which is reflected by an insufficient red shift of calculated
spectral lines. This viewpoint is supported by the fact that a
good agreement between the calculated and experimental spectra
is achieved by a uniform shift of both calculated spectra by
-900 cm-1 (dot-dashed lines in Figure 9). A part of the red-
shift mismatch may arise from the solute quadrupole not taken
into account in the present calculations. However, an absence
of a considerable discrepancy between the calculated and
experimental Stokes shift suggests that, even if important in
each of the chromophore’s states, the quadrupole moment does
not change significantly with excitation. Furthermore, a good
agreement between the calculated and experimental spectra in
polar solvents points to a more probable effect of dispersion
forces responsible for the red shift. Note also that, by adopting
the experimental energyνjm

ref in eq 29, the dispersion stabiliza-
tion in 2-methylbutane is included in our calculations. Only
substantial deviations from that value should generate a notice-
able uniform shift of the calculated spectra.

The solvent dependence of the overall Stokes shift is
reproduced for a broad range of solvent polarities, from
nondipolar to strongly polar solvents. The absorption width
agrees well with the experiment, and the change of the emission
width relative to 2-methylbutane is negative in strongly polar
solvents, a feature seen in experiment (Figure 10). The present
calculations, however, do not yield a negative shift of the
emission width relative to 2-methylbutane in nondipolar and
weakly polar solvents: the overall emission width shows a
maximum similar to but less pronounced than that seen for the
band shape due only to solvent (Figure 6). The last three
columns in Table 5 list the Stokes shifts and widths calculated
by neglecting the solvent-vibration coupling induced by
electron delocalization (∆τ( ) 1 in eq 45). They are therefore

TABLE 5: Experimental 31 and Calculated (APM) Stokes Shifts and Widths Relative to 2-methylbutane (103 cm-1)

experimental31 calculated

solvent ∆νjst
a σabs

b σem
c ∆νjst

a σabs
b σem

c ∆νjst
d σabs

d σem
d

toluene 0.26 0.06 -0.17 0.41 0.58 0.43 0.45 0.61 0.51
benzene 0.41 -0.06 -0.41 0.49 0.58 0.43 0.56 0.73 0.67
p-xylene 0.44 0.06 0.59 0.28 0.41 0.31 0.30 0.43 0.31
chloroform 0.49 0.19 -1.02 0.48 0.67 0.43 0.53 0.73 0.67
dichlormethane 0.70 0.13 -1.02 0.79 0.93 0.55 0.94 1.09 0.98
tetrahydrofuran 0.98 0.84 -0.12 1.00 1.10 0.45 1.23 1.34 1.19
methyl acetate 1.19 1.37 -0.06 1.01 1.19 0.49 1.23 1.34 1.19
acetone 1.36 1.10 -0.46 1.29 1.46 0.17 1.68 1.77 1.36
nitromethane 1.37 1.50 -1.14 1.40 1.64 -0.38 1.91 2.08 1.36
dimethyl sulfoxide 1.35 1.64 -0.35 1.38 1.73 -0.56 1.91 2.14 1.30
acetonitrile 1.67 1.50 -0.63 1.39 1.64 -0.21 1.86 2.02 1.41

a Relative to the Stokes shift in 2-methylbutane.b Calculated as [â(Γabs
2 - Γref

2)]/[8 ln 2], whereΓref is the spectral width in 2-methylbutane.
c Calculated as [â(Γem

2 - Γref
2)]/[8 ln 2]. d Calculated neglecting the solvent-vibrational coupling, as in eq 54.

Figure 8. Normalized experimental31 (dashed lines) and calculated
(solid lines) spectra for absorption (abs.) and emission (em.) in
acetonitrile (acn) and acetone (acet).

Figure 9. Same as in Figure 8, but withp-xylene (p-xy) as the solvent.
The dot-dashed spectra are obtained by a uniform shift of the calculated
spectra by-900 cm-1.

Figure 10. Experimental (open points) and calculated (APM, closed
points) width for absorption (circles) and emission (squares) relative
to the absorption and emission width in 2-methylbutane (see Table 5)
vs the total Stokes shift. Dashed lines are regressions drawn through
the filled points as a guide for the eye.
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obtained through the convolution of the reference spectral band
in 2-methylbutane with the solvent-induced band (eq 54), both
considered as independent of each other. The difference of about
40% between the Stokes shifts calculated with account for the
coupling between the vibrational and solvent modes and without
this coupling in highly polar solvents accounts for the delocal-
ization-induced decrease in the vibrational Stokes shift (see
Discussion below). Also, no negative shift of the emission width
with respect to 2-methylbutane can be obtained unless the
solvent-vibrational coupling is turned on.

4. Discussion

4.1. Model.The classical models of radiative and radiationless
transitions in condensed phases usually operate in the framework
of one basic scheme that separates the transition probability into
two factors: coupling between the electronic states and a FC
factor (FCWD) defining the statistical probability of bringing
the two electronic states in resonance or to generate an energy
gap equal to the photon energy.1,4,9-12 When dipolar optical
transitions are considered, the transition dipole is responsible
for the electronic coupling effects. The transition dipole interacts
with the external electric field of the radiation,E0(t), leading
to dipolar optical transitions caused by the interaction pertur-
bation

A perturbation treatment to the first order in this interaction
then leads to the following general form for the absorption and
emission intensities:59

Here, the FCWD depends solely on diagonal matrix elements
of the Hamiltonian and is independent of any off-diagonal matrix
elements.

When a chromophore is placed into a solvent, the interaction
with the solvent reaction fields adds to the interaction with the
external field

Since the local molecular fieldR can be very strong, much
exceeding the external radiation fieldE0(t), we cannot generally
use a perturbation expansion in the interaction in eq 60. This
term is therefore retained in the FCWD.60 As a result, the FCWD
of an intense optical transition in polar liquids includes a
dependence on the transition dipole and the general form of
transition intensity should be changed to

The interaction term in eq 60 is responsible for mixing of the
orthogonal gas-phase adiabatic states changing the electronic
occupation numbers (n() of the ground and excited states. These
occupation changes are damped by virtual transitions to other
excited states when∆R0 > 0. An opposite effect of enhancement
of delocalization by polarizability change occurs when∆R0 <
0 (this may be achieved in photoexcited CT). Since the coupling
of electronic states to intramolecular vibrations is proportional
to the electronic occupation number (n(),6 electronic delocal-
ization distorts the vibronic envelope, squeezing and shifting
the absorption and emission lines closer to each other. All three
of these effects combine to produce the optical bands calculated

here for 11 solvents ranging in polarity from nondipolar to
strongly polar.

The present model leads to a breakdown of the linear relation
between the spectral width and the Stokes shift (eq 3). The origin
of this effect is the intrinsic nonlinearity (generated by chro-
mophore’s polarizability and electronic delocalization) of the
coupling of the electronic subsystem to the nuclear modes.
Noteworthy is that this effect arises despite the fact that the
neat solvent is characterized by Gaussian fluctuations of its
electric field. The energy gap fluctuations are non-Gaussian, in
contrast to systems with fixed molecular charges.21c The change
in statistics is caused by a nonlinear dependence of the
instantaneous solute energy on the solvent field. It is reflected
in the transformation from a parabolic to a linear free energy
gap law for activated processes,29 in a nonlinear squeezing of
optical bands for charge delocalized systems,60 and in transient
bandwidths in time-resolved optical experiments.61 The solvent
progression of the inhomogeneous bandwidth obtained here
(Figure 6) is a manifestation of these nonlinear effects. It is
instructive to look deeper in the origins of this phenomenon.

4.2. Spectral Width. The prediction of a nonmonotonic
(passing through a maximum) polarity dependence of the
emission width is one of the central outcomes of the present
model. The standard interpretation of the spectral width is based
on the widely used picture of two displaced parabolic free energy
surfaces between which optical transitions occur. In this picture,
the width of the spectral distribution is directly related to the
parabolas’ curvatures: the more shallow the free energy surface
(smaller the curvature) is, the larger the width produced by
thermal fluctuations of the solvent will be. For a dipolar solute,
fluctuations of its electronic energy levels occur due to thermal
fluctuations of the reaction field and the relation between the
spectral width and the curvature of the free energy surface in
the parabolic approximation is given by the following math-
ematical relation:20c,21b,62b

The second derivative of the free energyE((R|,R⊥) is taken at
the point of equilibrium{R|

eq,0}, where∂E((R|,0)/R| ) 0. If
this definition of the spectral width is used for the data shown
in Figure 6, the second derivative of the excited free energy
surface should pass through a minimum as a function of solvent
polarity. This actually does not happen.

The diabatic, two-parabolas approximation for the CT free
energy surfaces is not applicable to spectral modeling in
electronically delocalized systems, and a nonmonotonic solvent
dependence of the emission width is an excellent demonstration
of this fact. The adiabatic splitting between the free energy
surfaces results in the major difference with the diabatic case
that there is a minimum energy gap between the free energy
surfaces. This fact, not very important for small electronic
overlap, becomes a crucial factor affecting spectral widths in
systems with strong electronic overlap. Light with energy less
than that of the minimum splitting (νjmin in Figure 11) cannot
be absorbed. Therefore, spectral intensity is zero atνj < νjmin.
Accordingly, when an optical band shifts closer to the boundary
νjmin (νjabs/em = νjmin), its red wing narrows because of the
proximity of the limiting frequency (Figure 11, lower panel).
Since emission lines are more red-shifted than the absorption
lines, they are closer to the limiting frequency (Figures 11 and
12, lower panels) and are more strongly affected by the existence
of the limiting frequency. As a result, a nonlinear line squeezing
builds up for emission lines, compensating for broadening

-m0,12‚E0(t) (58)

Iabs/em∝ |m0,12|2FCWDabs/em (59)

-m0,12‚R (60)

Iabs/em∝ |m0,12|2FCWDabs/em(|m0,12|) (61)

âσ(
2 ) ∆m̃0

2[∂2E(/∂R|
2]-1|R|)R|

eq,R⊥)0 (62)
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caused by increasing solvation power at higher polarities.
Analogous effects are responsible for asymmetry of optical
absorption bands in mixed-valence CT complexes.60,63,64

This is the reason the definition of the width through the free
energy curvature at the coordinate of its minimum does not have
any bearing on the observed width. Figure 12 (upper panel)
shows the dependence of the widthâσ(

2, defined in termed of
free energy curvature (eq 62), on the solvent-induced Stokes
shift for 11 solvents listed in Table 1. [The free energy surfaces
are given by eqs 16 and 17; we neglect here the solvent-
vibrational coupling (∆τ( ) 1) in order to emphasize the solvent
width component.] As is seen, the widths generated for
absorption and emission are very close to each other on one
hand, and their polarity dependence is monotonic on the other.
This indicates that the passing of the emission width through a
maximum is not caused by a change in the curvature of the
free energy surface at its minimum. The free energy surface is
essentially nonparabolic, and the maximum is a result of

nonlinear squeezing of the red wing of the band, with a resulting
narrowing of the overall bandwidth of the intensity at half-
height. The lower panel in Figure 12 shows that the emission
line gets very close to the limiting frequencyνjmin in polar
solvents, and this fact explains the appearance of the maximum
in the solvent dependence of the emission width.

4.3. Polarizability versus Delocalization.Optical transitions
in polarizable chromophores are affected by two physically
important factors: mixing of the adiabatic states involved in
the transition (through the transition dipole) and overall polar-
izability of the chromophore. These two effects are actually a
reflection of the same physical picture: coupling of the elec-
tronic states results in redistribution of electronic density
between them. If the extent of density redistribution is coupled
to the solvent, the system gains intrinsic nonlinearity, as reflected
by the spectral features considered here. Both the Stokes shift
and the spectral width are sensitive to the details of coupling
between the electronic states. A positive polarizability shift
(∆R0 > 0) gives rise to a wider emission line. On the other
hand, a nonzero transition dipole generates narrowing of the
emission line. The overall solvent-induced spectral width is the
result of compensation between these two effects. The narrowing
due to electron delocalization is stronger than the broadening
due to polarizability for emission, leading to narrower emission
lines relative to absorption lines (Figure 4).

4.4. Solvent-Vibrational Coupling. We achieved a quan-
titative account of the solvent dependence of both the Stokes
shift and the spectral width observed for C153. The calculations
reproduce a negative change of the total (solvent and vibrational)
emission width with increasing solvent polarity. This result
comes about from the explicit inclusion of the coupling of
solvent nuclear reaction field and vibrational modes of the
chromophore generated by electronic delocalization. The quali-
tative outcome of this analysis is that the vibrational reorganiza-
tion energy, when calculated according to eq 1, is solvent-
dependent (Figure 13). This effect was anticipated in some
previous publications.3b,65,66As is seen in Table 5, the omission
of the solvent dependence of the vibrational reorganization
energy leads to much higher values for absorption and emission
bandwidths.

Not only the width, but also the overall Stokes shift is affected
by the solvent-vibrational coupling. It amounts to up to 40%
overestimate of the Stokes shift in strongly polar solvents (Table
5). This result has an important bearing on the problem of the
relative contribution of quadrupolar solvation to nuclear reor-
ganization recently raised in the literature.31,34As is seen from
Table 5, the experimental Stokes shift (relative to 2-methylbu-
tane) changes by a factor of 3 when passing from benzene to
dmso. This change is much more moderate than could be

Figure 11. Upper panel: upper (E+(X)) and lower (E-(X)) free energy
surfaces as functions of the reaction coordinateX ) ∆m̃0R|. The
absorption, emission, and minimal energy gaps are indicated. Lower
panel: absorption and emission solvent-induced spectral line-shapes
corresponding to the transitions shown in the upper panel. The dashed
line indicates the position of the minimal transition frequency.
Calculations are for C153 in acetonitrile.

Figure 12. Upper panel: spectral width for absorption (circles) and
emission (squares) according to eq 62 vs the solvent-induced Stokes
shift. Lower panel: absorption (circles) and emission (squares) first
moments minus the minimum transition energy (see Figure 11). Points
indicate the solvents listed in Table 1 (excluding 2-methylbutane). The
dashed lines are regressions drawn as a guide for the eye.

Figure 13. Solvent Stokes shift (squares,∆νjst
s , Table 1) and the

vibrational Stokes shift (∆νjst
v , circles) vs the total APM Stokes shift.

The vibrational Stokes shift is obtained by subtracting the calculated
solvent component from the total calculated Stokes shift. Lines are
regressions through the points.
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expected from dielectric cavity models, and it has been ascribed
to quadrupolar solvation in nondipolar solvents neglected by
dielectric models.31,34 However, such a moderate variation of
the Stokes shift with solvent polarity is also hard to explain
within the molecular model employed here, which explicitly
incorporates solvent quadrupoles.35 As is seen from Table 1,
the solvent component of the Stokes shift changes more strongly
with increasing solvent polarity than is seen for the overall
Stokes shift (open points in Figure 2). The puzzle is resolved
by the present model, which shows that the increase in the
solvent Stokes shift is partially compensated by a decrease of
the vibrational Stokes shift due to electronic delocalization
effects (Figure 13). Note that similar effects may be important
in treating the dynamic solvent response that should include
the solvent-driven decay of the vibrational Stokes shift along
with the traditionally considered time-dependent solvent Stokes
shift.

4.5. Spectral Modeling.The present model is designed to
generate spectra in polar solvents from solute charge distribution,
polarizability, and experimental spectra measured in a reference,
nonpolar solvent. The latter feature is incorporated to avoid the
necessity to calculate often complex vibrational envelopes of
large optical dyes. Several novel effects turned out to be
important for an accurate description of the solvent dependence
of the first two spectral moments of C153. Not all of them
should necessarily be included in the spectral analysis of other
chromophores. Here we estimate relative importance of various
contributions.

The solvent-vibrational coupling presents the main complex-
ity to the present analysis. Its importance can be estimated from
the change in the Stokes shift due to the vibrational-solvent
couplingδνji ) λv|∆τ+ + ∆τ- - 2|. In many practical cases,
the off-diagonal contributionV12[Rp] to the instantaneous
adiabatic energy gap∆E[Rp,q] is small compared to∆E0s[Rp,q]
(eq 17). Expansion of∆τ( in V12[Rp]/∆E0s[Rp,q] yields for the
Stokes shift components due to the vibrational-solvent coupling

For C153 in acetonitrile, the above equation gives 300 cm-1,
on the same order as the difference of 460 cm-1 between
columns 7 and 8 in Table 5. Because of a large vibrational
Stokes shift and a large transition dipole, the vibrational-solvent
coupling becomes important for modeling the solvent depen-
dence of the overall Stokes shift of C153. This component will
be less important for chromophores with smaller vibrational
reorganization energy and/or smaller transition dipoles. The
effect of vibrational-solvent coupling is scaled with the energy
gapνjabs/em

2 in eq 63. The energy gap, large for UV transitions
in C153, is usually much smaller when the electronic density
is delocalized between a CT state and a locally excited state of
the donor-acceptor complex. The solvent-vibrational coupling
should be more important in such systems.66

Effects of polarizability variation and electronic delocalization
are expected to be more abundant than solvent-vibrational
coupling in optical spectroscopy. Figure 4 shows that correct
modeling of the solvent-induced shift and width on emission
lines demands inclusion of both effects. On the other hand, the
absorption line shape is well modeled within the DPM. This
simplified, analytical version of the model can be used for
absorption lines. Note also that emission lines are not dramati-
cally different from the prediction of the DPM as well. They

can be modeled by adopting an effective polarizability of the
excited state. To summarize, the present model provides a
convenient theoretical framework for spectral modeling that goes
beyond the Marcus-Hush picture. The present analysis includes
two independent components: equilibrium solvation and spectral
band shapes. The model is formulated in terms of linear
solvation response coefficients which can be calculated in any
appropriate solvation model. Depending on the chromophore
and transitions considered, the spectral analysis may be based
on a hierarchy of approximations: DPM, APM, or APM
combined with the vibrational-solvent coupling.

5. Conclusions

This study is a step toward deeper understanding of the optical
band shape in condensed phases, yielding a self-consistent
account of the solvent variation of both the position and the
width of a spectral line. We have developed a band-shape
analysis of optical lines of polarizable chromophores, which
accommodates transitions involving a variable degree of elec-
tronic delocalization. The theory is used to reproduce experi-
mental band shapes of the coumarin-153 dye in a broad range
of solvents from nondipolar to strongly polar. The major result
of the analysis is a qualitative difference in solvent progressions
of optical widths for absorption and emission. The solvent-
induced absorption width increases with the Stokes shift and
the solvent-induced emission width goes through a maximum
with increasing Stokes shift. The total spectral width of emission
transitions essentially reproduces this trend. The present model
demonstrates that inclusion of the transition dipole in the FC
factor of an optical or radiationless transition is a necessary
component of a correct description of optical band shapes and
radiationless rates between strongly coupled electronic states.
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Appendix A: Solvent Response Coefficients

The Pade´ approximation represents the solvent response
function as a ratio of polynomials of two polarity densities,yd

andyq.35,49 The density of polarizable dipoles of the solvent

depends on the effective dipole moment of the solvent molecules
in the liquid (m′), and the solvent polarizability (R); m′ is
calculated from the corresponding gas-phase values (Table 1)
using the Wertheim self-consistent approach.67 Similarly, the
density of solvent quadrupoles is defined by the relation35

where we neglect the quadrupolar polarizability of the solvent
molecules.

With liquid-state dipolar and quadrupolar densities defined
in this manner, the Pade´ approximant for the total response
function in eq 52 is given by the following expression

δνi = 8(apm0,12m0i)
2

∆νjst
ref

νjabs/em
2

(63)

yd ) (4π/9)âF(m′)2 + (4π/3)RF (A1)

yq ) (2π/5)âFQ2/σ2 (A2)
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with

In the above equations,I4
(2) and I6

(2), depending only on the
reduced solvent densityF* ) Fσ3 and the solute-solvent size
ratio R0/σ, are two-particle perturbation integrals obtained by
direct perturbation expansion of the chemical potential in the
solute-solvent interaction potential (Reff

3 ) σ3/I4
(2)). The three-

particle perturbation integralsI(3) also depend on the reduced
solvent densityF* and R0/σ; the correction factorsκd,q,dq are
introduced to bring the results of the analytical theory in
agreement with computer simulations. They depend onR0/σ
only. All the parameters used in eqs A3-A5 are tabulated in
refs 28 and 33a.

Separation of the total solvent response

into the components arising from dipolar,Pd(m,q,R), and
quadrupolar,Pq(m,q,R), solvation mechanisms is achieved by
noting that, in linear response, the solvation chemical potential
is one-half of the average solute-solvent interaction energy.49c

One can then use the equations for average dipolar and
quadrupolar solute-solvent interaction energies given in ref 35.
This procedure yields

and

Note that one cannot obtain, e.g., the dipolar solvation com-
ponent by assumingyq ) 0 in eq A3. This happens because the
dipolar and quadrupolar components of the solvent response
are highly intermingled due to dipole-quadrupole correlations
between the solvent molecules.

Appendix B: Diabatic and Two-State Approximations

The integral over the transverse reaction fieldR⊥ in eq 45
leads to analytical expressions for the solvent-induced line-shape
in two limiting cases of the DPM and TSM. In the former case,
the solvent-induced inhomogeneous broadening results in the
band-shape function29

whereI1(x) is the first-order modified Bessel function andAi is
the normalization factor

Equation 1 sets up two band shapes (i ) 1 for absorption and
i ) 2 for emission), each characterized by three parameters:
Ri, λi, and X0. The parametersλi are solvent reorganization
energies for absorption and emission of a chromophore with
different polarizabilities in the ground and excited states. They
are not equal because of a quadratic solute-solvent coupling
in the instantaneous energy gap caused by a nonzero polariz-
ability shift of the chromophore.29 The parametersRi(R2 )
1 + R1) determine the extent of deviation of the inhomogeneous
band from a Gaussian band; a Gaussian band shape is recovered
in the limit R1 f ∞.

The reorganization energiesλi are related to each other
through the non-Gaussian parameterR1 as follows:68

The parameterX0 defines the boundary of the band of optical
excitations for which nonzero spectral intensities exist (analo-
gously toνjmin in Figure 11). It is related to the gas-phase energy
gap between initial and final states, the dispersive and induction
stabilization free energies, and the differences in the dipole
moment and polarizability through the equation

In the TSM, there is no dependence of the instantaneous energy
surfaces on the transverse field component and the integral in
eq 45 becomes60

where the sum now runs over the two roots of the second-order
polynomial equation∆E[R|

(k)] ) νj.
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2
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FCWDabs/em
s (νj) ) ∑

k

4πap
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or â(4ap)
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(2))yq

1 + f (3)/f (2)
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