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An atom-atom partitioning of the electrostatic energy between unperturbed molecules is proposed on the
basis of the topology of the electron density. Atom-atom contributions to the electrostatic energy are computed
exactly, i.e., via a novel six-dimensional integration over two atomic basins, and by means of the spherical
tensor multipole expansion, up to total interaction rankL ) lA + lB + 1 ) 6. The convergence behavior of
the topological multipole expansion is compared with that using distributed multipole analysis (DMA) multipole
moments for a set of van der Waals complexes at the B3LYP/6-311+G(2d,p) level. Within the context of the
Buckingham-Fowler model it is shown that the topological and DMA multipole moments converge to a
very similar interaction energy and geometry (average absolute discrepancy of 1.3 kJ/mol and 1.3°, respectively)
and are both in good to excellent agreement with supermolecule calculations.

1. Introduction

It is well-known that the electrostatic energy often dominates
the interaction between molecules, especially polar ones. The
popular Buckingham-Fowler model1,2 benefits from this fact
as it successfully predicts the qualitative angular features of
hydrogen-bonded van der Waals complexes simply by using
an electrostatic and a simple repulsion term. In this model the
electrostatic component consists of interaction terms between
multipole moments provided by Stone’s distributed multipole
analysis (DMA),3 while the short-range repulsion force is
simulated by hard spheres placed on the atomic centers. The
DMA method has been used for many systems4,5 that benefit
from an anisotropic description beyond point charges. Moreover,
qualitative chemical insight into the nature of the charge
distribution can be obtained from a distributed model. It is here
that an alternative to DMA emerges in the form of the
topological analysis of the electron density or the theory of
“Atoms in Molecules” (AIM).6-8

Cooper and Stutchbury9 have successfully used the topologi-
cal partitioning method to study a series of van der Waals
complexes. However, their work was criticized later10 on the
grounds of poor convergence of the multipole expansion of the
electrostatic interaction. Because the higher atomic moments
are much larger than the overall molecular moments, it was
claimed10 that “any form of distributed multipole analysis that
rests on a physical division of space into disjoint regions is
unlikely to be useful”. The main purpose of this paper is to
scrutinize this statement and assess the convergence properties
of AIM multipole moments more rigorously. We show that
although the AIM multipole expansion converges more slowly
than the DMA expansion, it is nonetheless useful (despite its
computational expense) since both expansions converge to the
same answer when high rank terms are included. This direct
and explicit comparison between DMA and AIM has never been
made before. Moreover the comparison is made both in terms

of geometries and interaction energies, supplemented with
supermolecule calculations. Further novelties include the high
multipolar rank of interaction (L ) lA + lB + 1 ) 6, see Section
2, e.g., dipole-hexadecapole) and the use of analytical first and
second derivatives of the interaction energy with respect to rigid
body coordinates11 combined with the eigenvector following
method12 to explore the potential energy surfaces. Finally, we
are presenting for the first time the exact electrostatic interaction
between topological atoms.

We have looked at a range of van der Waals complexes
containing HF including (HF)2, HF‚‚‚N2O, HF‚‚‚CO2, HF‚‚‚
H2O, HF‚‚‚NH3, HF‚‚‚HCN, HF‚‚‚H2CO, and the water dimer,
(H2O)2.

2. Atom-Atom Electrostatic Interaction Energy

The first-order term within the long-range perturbation
theory13 corresponds to the electrostatic interaction energy
between moleculesMA andMB, which is defined as

where the total ground-state charge density of moleculeM is
given by

In eq 2 F(M; r ) is the ground-state electron density of an
unperturbed moleculeM and the indexi runs over all nuclei in
moleculeM. Equation 1 expresses the exact classical interaction
energy of two molecular charge distributions in a form that does
not depend on the multipole expansion. Although each molecular
charge distribution is described in its own coordinate system,
the position of the two molecules with respect to each other
must be known. Only when the relationship betweenr1 andr2

is known can the interelectron distance|r1 - r2| and the six-
dimensional integral be computed.

The volume integrals in eq 1 extend over all space. To
partitionEelec(MA,MB) in terms of atom-atom interactions, we
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Eelec(MA,MB) ) ∫dr1∫dr2

Ftot(MA;r1)Ftot(MB;r2)

|r1 - r2|
(1)

Ftot(M;r ) ) ∑
i∈M

Z iδ(r - Ri) - F(M;r ) (2)
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use the theory of AIM. In this theory an atom is defined as a
bounded portion of real space determined by the gradient vector
field of F(r ). The gradient of the electron density,∇F(r ) traces
gradient paths, which are paths of steepest ascent throughF(r ).
An infinite number of gradient paths originating at infinity
terminate at a maximum inF(r ), which practically coincides
with a nuclear position. Such a collection of gradient paths
occupies a portion of space called an atomic basin, denoted by
Ω. An atomic basin together with its nucleus constitutes an atom.
This procedure divides space up into nonoverlapping atoms in
an exhaustive manner. Atomic properties are defined as volume
integrals over the atomic basins; for example, the population
associated with an atom is the volume integral ofF(r ) over the
basin.

The exact electrostatic energy between two atomsA andB,
belonging to moleculeMA andMB, respectively, is then defined
as

In view of the additivity of AIM atomic properties the
electrostatic interaction energy between two molecules is simply:

It is possible to computeEelec(A,B) directly without recourse
to a multipole expansion, in which case we refer to its value as
being “exact”. However, this does not mean that the six-
dimensional integral in eq 3 is calculated analytically, because
we use a quadrature procedure. Integration by quadrature over
a single atomic basin is well-documented,14,15but here we report
a double integration, i.e., a simultaneous quadrature over two
atomic basins.

In the appendix we show that eq 3 can be re-expressed in
terms of a multipole expansion as follows:

where TlAlBkAkB is a purely geometric interaction tensor, the
intersite-vectorRAB ) RB - RA (see Figure 1), andQlk are the
2l+1 multipole moments of rankl with respect to the local frame
centered on each nucleus.

We should keep in mind that even when the multipolar
expansion converges the electrostatic energy thus obtained is
only an approximation16 to the true electrostatic energy obtained
by 6D integration (see eq 3). The remaining difference is called
the penetration energy13 and arises at short range when the
charge clouds ofFA andFB sufficiently overlap. In contrast to
previous work17 where the atoms were taken from supermol-
ecules, the atoms in this work do overlap because they were
taken from separate isolated monomers and superimposed
according to the geometry of the van der Waals complex. The
penetration effect results from the fact that nuclei on one
molecule will no longer be shielded by that molecule’s own

Figure 1. Coordinate system used in the description of the electrostatic
interaction between two atomic basinsΩA andΩB. The vectorRA (RB)
is the position vector of the nucleus A(B), both referred to the global
origin o. The vectorRAB ) RB - RA is the internuclear vector andrA

(rB) marks the position of an infinitesimal charge element inΩA (ΩB)
with respect tothe nuclear originRA (RB). The vectorrAB ) (RB +
rB) - (RA + rA) ) RAB - (rA - rB) measures the distance between
two charge elements (with respect to the global origin).

TABLE 1: Comparisona between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
Eelec(H2O,H2O) (kJ/mol), (b) the AIM Atom -Atom
Partitioning of the Electrostatic Energy, Eelec(A,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in Å and Angles in deg) between
the Monomers in (H2O)2

(a)

L AIM c DMA c

1 -37.1 -5.7
2 -12.4 -14.0
3 -24.7 -21.0
4 -21.3 -23.5
5 -24.6 -24.9
6 -25.7 -24.7
exact -30.5

(b)

AIM L O 4 H5

O1 1 533.6 -236.3
2 535.1 -244.7
3 536.1 -242.2
4 532.1 -241.4
5 529.8 -241.2
6 529.7 -241.1
exact 529.0 -241.2

H2 1 -388.8 160.0
2 -351.6 157.2
3 -365.9 156.2
4 -361.3 156.6
5 -362.7 156.6
6 -364.0 156.7
exact -367.8 156.7

H3 1 -235.0 102.8
2 -236.9 108.0
3 -239.0 108.1
4 -238.9 108.1
5 238.9 108.1
6 -238.9 108.1
exact -238.9 108.1

(c)

coordinateb AIM DMA supermolecule

R(O4-H2) 2.104 2.107 1.943
∠(O4-H2-O1) 176.3 175.6 174.4
∠(H5-O4-H2) 106.9 109.3 112.2

a The interaction between H6 and other atoms is identical to that of
H5 because of the mirror plane.b Corresponding to a minimization of
the total interaction energy including the short-range repulsion (as in
Tables 2-8). c Energies correspond to the respective equilibrium
geometries (as in Tables 2-8).

Eelec(A,B) ) ∫ΩA
dr1∫ΩB

dr2

Ftot(MA;r1)Ftot(MB;r2)

|r1 - r2|
(3)

Eelec(MA,MB) )
1

2
∑
A

∑
B*A

Eelec(A,B) (4)

Eelec(A,B) ) ∑
lAlBkAkB

TlAlBkAkB
(RAB)QlAkA

(ΩA)QlBkB
(ΩB) (5)
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electron density but will also experience an attraction for the
electron density of the other molecule. The penetration energy
is a negative correction to the interaction energy, and its
treatment in the context of the electrostatic penetration has only
recently been explored.18

3. Computational Methods

Three computer programs were used in our calculations. First,
the geometry optimizations and wave functions of isolated
molecules and molecular complexes were obtained by the
program GAUSSIAN98.19 We used the B3LYP/6-311+G(2d,p)
level of theory20,21for both the geometry optimizations and the
wave functions because it has proven to be a good compromise
between accuracy and computational cost.22,23

Spherical tensor AIM multipole moments14,15were computed
by using a local version of the program MORPHY01.24

MORPHY also generated the partitioned electrostatic energy
defined in eq 3 via direct integration, i.e., without multipolar
expansion. The atomic basin was capped by theF ) 10-7 au
isodensity envelope. The integration errors measured viaL(Ω)25

for single-basin 3D integrations were all below 1 x 10-4 au.
For the two-basin 6D integrations, required to evaluate

Eelec(A,B), several calculations were repeated with different
quadrature grids to check the stability of the direct integration.17

Deviations are on the order of 0.1 kJ/mol, depending on the
size and distribution of quadrature points in the integration grid.
For example, the computation ofEelec(N3,F1) in HF...NH3 by
two different quadrature grids of approximately two and one
million points yields an energy of 360.4 and 360.5 kJ/mol,
respectively.

Finally the program ORIENT3.2j26 was used to evaluate eq
12, which has currently been implemented up toL ) lA + lB +
1 ) 6 or RAB

-6. ORIENT is designed for the anisotropic
interaction between multipoles moments expressed with respect
to local axis systems that have an arbitrary relative orientation,
for example, between rigid monomers. In this work we make
full use of the capability of ORIENT.

The values for the pseudo-hard-sphere (i.e., slightly softened)
van der Waals radii27 are 1.47 Å for F, 1.55 Å for N, 1.52 Å,
for O and 1.70 Å for C. Hydrogen is not assigned a radius. In
the work of Buckingham and Fowler2 (and also of Cooper and
Stutchbury9) slightly different values were used.28

4. Results and Discussion

The results for eight van der Waals systems are given in
Tables 1-8, each of which contains a labeling diagram of the
corresponding equilibrium geometry. Each table consists of three
parts: (a) the convergence behavior as a function ofL of the

TABLE 2: Comparison between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy Eelec(HF,HF)
(kJ/mol), (b) the AIM Atom -Atom Partitioning of the
Electrostatic Energy, Eelec(A,B), as a Function of the
Multipolar Expansion Rank L, and (c) the Geometry
(distances in Å and Angles in deg)

(a)

L AIM DMA

1 -38.4 -12.0
2 -11.7 -14.7
3 -17.3 -18.2
4 -16.9 -17.9
5 -18.4 -17.8
6 -18.4 -18.1
exact -20.6

(b)

L F3 H4

F1 1 230.3 -198.5
2 241.9 -215.4
3 238.9 -215.0
4 238.5 -214.7
5 238.0 -214.6
6 238.1 -214.5
exact 237.8 -214.5

H2 1 -332.4 262.2
2 -298.7 260.6
3 -300.8 259.6
4 -300.4 259.7
5 -301.5 259.6
6 -301.6 259.7
exact -303.4 259.5

(c)

coordinate AIM DMA supermolecule

R(H2-F3) 2.061 2.065 1.822
∠(H2-F3-H4) 116.9 119.2 115.6
∠(F1-H2-F3) 169.6 168.2 166.2
∠(H2-F1-F3) 7.2 8.2 9.2
∠(F1-F3-H4) 113.7 115.6 110.9

TABLE 3: Comparison between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
Eelec(HF,N2O) (kJ/mol), (b) the AIM Atom -atom
Partitioning of the Electrostatic Energy, Eelec(A,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in Å and Angles in deg) between
the Monomers in HF‚‚‚N2O

(a)

L AIM DMA

1 17.0 -4.5
2 -43.4 -10.3
3 1.4 -11.0
4 -8.4 -11.5
5 -12.8 -10.3
6 -10.6 -10.6
exact -12.7

(b)

L N3 N4 O5

F1 1 -33.0 -55.0 61.7
2 11.4 -45.9 58.6
3 9.3 -48.9 55.8
4 6.1 -50.2 55.4
5 7.2 -50.0 55.5
6 7.0 -49.9 55.5
exact 6.4 -49.9 55.5

H2 1 47.3 70.6 -74.5
2 -51.4 48.0 -64.1
3 -13.2 59.3 -60.8
4 -18.1 59.2 -60.9
5 -23.0 58.6 -61.0
6 -20.6 58.6 -61.0
exact -22.4 58.7 -61.0

(c)

coordinate AIM DMA supermolecule

R(H2-N3) 2.142 2.142 2.000
∠(H2-N3-N4) 180.0 180.0 180.0
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total electrostatic interaction energy between the two monomers,
denoted byEelec(MA,MB) (see eq 4), (b) a complete atom-atom
breakdown of the electrostatic energy according to AIM, given
by individual contributionsEelec(A,B) (see eq 3), and (c) a
comparison between selected geometrical parameters produced
by the DMA and AIM model and an ab initio calculation of
the complex.

From part a in Tables 1-8 it is clear that for a multipole
expansion up toL ) 6 the values ofEelec(MA,MB) are very
similar, showing an average absolute deviation of 1.3 kJ/mol,
with a minimum value<0.1 kJ/mol and a maximum value of
3.9 kJ/mol. The exact energy, computed via 6D integration, is
always lower than AIM’sL ) 6 result, by an average value of
2.9 kJ/mol, ranging between 0.7 and 6.6 kJ/mol. The corre-
sponding average deviation for DMA is 2.8 kJ/mol, ranging
between 1.3 and 5.8 kJ/mol. In light of the discussion on the
penetration energy in section 2, we do expect the exact
electrostatic energy to be lower than the best possible converged
multipole expansion. From these comparisons we conclude that
DMA and AIM both tend to converge to the same total
interaction energy.

From part b, we see thatEelec(A,B) is typically about an order
of magnitude larger than the total monomer-monomer interac-

tion energy, although we find values as low as 7 kJ/mol in
HF...N2O. In all systems the hydrogen-bonded atom pair (e.g.,
Eelec(H2,F3) in (HF)2) has a negative electrostatic energy (forL
) 6), which is typically more than 10 times larger than the
total interaction energy of the complex. This observation
emphasizes that the total interaction energy, which would be
ascribed to hydrogen bond formation in all eight complexes, is
in fact due to cancellation of large atom-atom contributions.
For example, in (HF)2, Eelec(HF,HF)) Eelec(F1,F3) + Eelec(F1,H4)
+ Eelec(H2,F3) + Eelec(H2,H4) ) -20.6) 237.8- 214.5- 303.4
+ 259.5 kJ/mol. The intermolecular interaction observed atL
) 1 warns that AIM monopoles must not be misunderstood to
be able to compete with point charges designed to model
electrostatic interactions.29 The convergence ofEelec(A,B)
improves as the atoms are further away from each other. The
worse convergence occurs for the hydrogen-bonded atoms where
Eelec(A,B,exact)- Eelec(A,B,L ) 6) ranges from-3.8 to-1.2
kJ/mol (average) -2.0 kJ/mol). Beside impairing the multipole

TABLE 4: Comparison between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
Eelec(HF,CO2) (kJ/mol), (b) the AIM Atom -Atom
Partitioning of the Electrostatic Energy, Eelec(A,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in Å and Angles in deg) between
the Monomers in HF‚‚‚CO2

(a)

AIM DMA

1 -44.2 -12.3
2 -6.1 -11.5
3 -5.1 -12.0
4 -9.6 -10.3
5 -10.1 -9.4
6 -10.3 -9.7
exact -11.6

(b)

L O3 C4 O5

F1 1 345.6 -522.2 206.7
2 348.4 -554.2 227.3
3 339.2 -555.1 227.2
4 338.8 -555.4 226.8
5 338.5 -554.9 226.7
6 338.7 -554.8 226.7
exact 338.5 -554.8 226.7

H2 1 -496.3 670.6 -248.6
2 -418.9 651.1 -259.8
3 -416.7 657.9 -257.6
4 -419.9 657.3 -257.2
5 -420.1 657.1 -257.3
6 -420.7 657.2 -257.3
exact -421.9 657.2 -257.3

(c)

coordinate AIM DMA supermolecule

R(O3-H2) 2.122 2.117 1.959
∠(H2-O3-C4) 143.4 180.0 144.6
∠(F1-H2-O3) 174.3 180.0 172.5

TABLE 5: Comparisona between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
Eelec(HF,H2O) (kJ/mol), (b) the AIM Atom -Atom
Partitioning of the Electrostatic Energy, Eelec(A,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in Å and Angles in deg) between
the Monomers in HF‚‚‚H2O

(a)

AIM DMA

1 -55.1 -12.0
2 -21.2 -22.6
3 -34.8 -29.8
4 -28.7 -32.1
5 -32.4 -32.5
6 -32.6 -32.4
exact -35.6

(b)

L O3 H4

F1 1 351.4 -150.9
2 375.0 -165.9
3 375.2 -165.7
4 374.5 -165.5
5 373.3 -165.3
6 373.2 -165.3
exact 371.8 -165.3

H2 1 -506.5 200.9
2 -470.7 203.1
3 -482.4 201.9
4 -476.3 202.1
5 -479.0 202.0
6 -479.4 202.1
exact -481.0 202.1

(c)

coordinate AIM DMA supermolecule

R(O3-H2) 2.090 2.091 1.687
∠(O3-H2-F1) 175.2 174.3 176.6
∠(H2-O3-H4) 114.2 114.8 113.7
φ 47.7 46.3 47.5

a The interaction between H5 and the other atoms is identical to that
of H4 because of the mirror plane.
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convergence, such proximity also introduces a nonnegligible
penetration energy.

Part c shows that the supermolecular geometry is in good to
excellent agreement with experiment. In total there are 18 angles
of which only 3 show large deviations between AIM and DMA.
The average absolute difference of the remaining 15 angles is
only 1.3°, ranging between 0.2° and 2.6°. The three excluded
angles occur in the complexes HF‚‚‚CO2 and HF‚‚‚HCN. Using
our basis set, supermolecule calculations predicts that, at both
the B3LYP and the MP2 level, the most stable minimum of
the HF‚‚‚CO2 complex is bent by 0.4 and 0.3 kJ/mol respec-
tively, where the linear structure is a transition state. AtL ) 6,
DMA wrongly predicts a linear structure, while AIM generates
a structure that deviates by only a few degrees from the
supermolecular values. On the other hand, in the HF‚‚‚HCN
complex, DMA correctly predicts a linear geometry (as opposed
to AIM), but the difference between the linear and bent minima
is only 0.8 kJ/mol (B3LYP) or 0.2 kJ/mol (MP2). These
observations lead to the important conclusion that DMA and

AIM both converge to essentially the same geometry atL ) 6,
except for two cases where complexes are very floppy.

Our results differ from those of Cooper and Stutchbury9

because of many possible factors, such as our use of an
analytical method11 to localize minima unambiguously, our
higher rank of multipole expansion (feasible by the avoidance
of Cartesian tensors), more elaborate basis set and inclusion of
correlation. These extra investments offer an overall improve-
ment in the quality of AIM results compared to the supermol-
ecule.

In Table 9 we report the geometry changes in HF‚‚‚H2CO as
the rankL increases. The DMA and AIM models, both atL )
6, yield very similar angles (∠(C4-O3-H2) and ∠(C4-O3-
F1)). At L ) 3 the AIM angles∠(C4-O3-H2) and∠(C4-O3-
F1) are almost 10° smaller than atL ) 6 and become very close
to the supermolecular angles. This means that a cruder
electrostatic picture (i.e.,L ) 3 versusL ) 6) may yield
fortuitous agreement with the supermolecule. In other words,
to reproduce the supermolecular geometry for the correct reasons
theL ) 6 picture must be supplemented by interactions omitted
in the present work, such as polarization. Extra nonelectrostatic
interactions would then correct the purely electrostatic picture
and decrease the two aforementioned angles and hence pull the
F closer to the H of H2CO. Note that at the low rank ofL ) 2,
where only dipole-monopole and dipole-dipole interactions

TABLE 6: Comparisona between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
Eelec(HF‚‚‚NH3) (kJ/mol), (b) the AIM Atom -Atom
Partitioning of the Electrostatic Energy, Eelec(A,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in Å and Angles in deg) between
the Monomers in HF‚‚‚NH3

(a)

AIM DMA

1 -48.6 -8.3
2 -30.0 -23.4
3 -60.7 -40.9
4 -39.3 -45.7
5 -49.0 -50.2
6 -45.0 -48.1
exact -51.6

(b)

L N3 H4

F1 1 315.8 -90.3
2 354.1 -102.0
3 368.2 -102.2
4 367.5 -102.1
5 365.5 -102.0
6 365.0 -101.9
exact 360.4 -101.9

H2 1 -454.0 120.2
2 -458.2 126.7
3 -498.6 125.4
4 -477.8 125.7
5 -485.3 125.6
6 -481.3 125.7
exact -483.4 125.7

(c)

coordinate AIM DMA supermolecule

R(N3-H2) 2.112 2.109 1.664
∠(N3-H2-F1) 180.0 180.0 180.0

a The interaction between H5 (H6) and other atoms is identical to
that of H4 because of the 3-fold axis.

TABLE 7: Comparisona between DMA and AIM in Terms
of (a) the Total Electrostatic Energy Eelec(HF‚‚‚HCN)
(kJ/mol), (b) the AIM Atom -Atom Partitioning of the
Electrostatic Energy, Eelec(A,B), as a Function of the
Multipolar Expansion Rank L, and (c) the Geometry
(Distances in Å and Angles in deg) between the Monomers
in HF ‚‚‚HCN

(a)

AIM DMA

1 -80.6 -26.4
2 -12.3 -19.9
3 -15.3 -28.6
4 -26.9 -27.2
5 -25.6 -28.1
6 -25.0 -28.9
exact -27.6

(b)

L N3 C4 H5

F1 1 336.6 -200.8 -39.6
2 344.7 -241.2 -43.7
3 335.8 -248.6 -44.2
4 336.5 -248.2 -44.1
5 336.7 -247.6 -44.1
6 336.6 -247.4 -44.1
exact 335.6 -247.4 -44.1

H2 1 -482.7 258.0 48.0
2 -419.9 297.5 50.2
3 -413.9 304.9 50.7
4 -423.3 301.7 50.5
5 -422.7 301.6 50.5
6 -422.6 301.9 50.5
exact -424.1 301.9 50.5

(c)

coordinate AIM DMA supermolecule

R(N3-H2) 2.127 2.092 1.814
∠(N3-H2-F1) 177.4 180.0 180.0
∠(C4-N3-H2) 153.7 180.0 180.0
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are allowed, the complex becomes nonplanar within the AIM
model, suggesting that its planarity is due to the introduction
of the quadrupole interaction atL ) 3 in the AIM picture.

Finally an important new point needs to be added to our
discussion. An important feature of the DMA approach is that
additional sites may be chosen, so as to improve the description
of the interaction energy using only lower-rank multipoles.

Current research30 shows it is possible to introduce extra sites
inside the atomic basin, without fundamentally changing the
AIM multipole moments. Hence it is possible to accelerate the
convergence of the AIM multipole expansion without losing
the advantage of a rigorous atomic partitioning. One should bear
in mind that a correct comparison between the convergence
behavior of DMA and AIM can only happen with an equal
number of sites.

5. Conclusion

We have proposed an atom-atom partitioning of the elec-
trostatic interaction based on the topology of the electron density
(AIM) and the compact multipole moments introduced by the
spherical tensor formalism. We were interested in acarefultest
of this proposal in the context of the successful Buckingham-
Fowler model, using improved algorithms. Particular attention
was paid to the convergence of both the energy and the geometry
of a set of van der Waals complexes, with respect to the rank
L of the multipole expansion. For the first time this convergence
behavior has been contrasted with exact values, obtained without
multipole expansion, via 6D integration over two atomic basins.
We find that, although the AIM results converge more slowly
than the DMA results, excellent agreement is obtained between
the two methods at high rank (L ) 6), for both geometry as
well as intermolecular electrostatic interaction energy. This is
the first time that a direct, complete, and explicit comparison
between AIM and DMA has been made. Contrary to views
expressed before in the literature, this work opens an avenue to
introduce the topological approach in the construction of an
accurate intermolecular force field. It is here that the high degree
of transferability of the functional groups defined by AIM will
be extremely useful.
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Appendix

Derivation of Multipolar Expansion of Electrostatic In-
teraction between Topological Atoms. In Figure 1 two
interacting atomic basinsΩA andΩB are shown, each centered
on a nucleus with coordinatesRA andRB, respectively. Note
that RA and RB are expressed with respect to a common lab
frame with origin o. The charge density withinΩA (ΩB) is
described by the position vectorrA (rB), which is centered on
the respective nucleus. For the practical computation of the
electrostatic energy we ensure that both molecular charge
densities are referred to a common global frame. Hence, the
position vector of an infinitesimal charge element inΩA is RA

+ rA, and RB + rB for an element inΩB. The electrostatic
interaction between two infinitesimal charge elements, one in

TABLE 8: Comparisona between DMA and AIM in Terms
of (a) the Total Electrostatic Energy Eelec(HF,H2CO)
(kJ/mol), (b) the AIM Atom -Atom Partitioning of the
Electrostatic Energy, Eelec(A,B), as a Function of the
Multipolar Expansion Rank L, and (c) the Geometry
(Distances in Å and Angles in deg) between the Monomers
in HF ‚‚‚H2CO

(a)

AIM DMA

1 -73.0 -19.4
2 -10.1 -19.1
3 -21.7 -25.0
4 -27.2 -25.0
5 -25.9 -25.4
6 -25.7 -26.4
exact -28.5

(b)

L O3 C4 H5 H6

F1 1 342.7 -254.3 -10.4 -7.9
2 358.9 -294.0 -12.0 -11.7
3 354.8 -298.2 -12.0 -12.5
4 355.6 -297.1 -11.9 -12.5
5 355.2 -296.9 -11.9 -12.4
6 355.0 -296.8 -11.9 -12.4
exact 353.9 -296.7 -11.9 -12.4

H2 1 -492.4 327.0 12.7 9.7
2 -442.4 361.1 15.6 14.4
3 -446.1 362.5 14.8 15.0
4 -451.0 360.0 14.9 14.8
5 -450.2 360.6 14.9 14.8
6 -450.0 360.8 14.9 14.8
exact -451.9 360.7 14.9 14.8

(c)

coordinate AIM DMA supermolecule

R(H2-O3) 2.101 2.100 1.696
∠(O3-H2-F1) 171.5 171.3 168.4
∠(C4-O3-H2) 122.7 125.1 113.9
∠(C4-O3-F1) 120.1 122.5 109.8

TABLE 9: Dependence of the Geometry (Distances in Å and Angles in deg) of HF...H2CO on the Total Rank L in the AIM and
DMA Multipole Expansion

R(O3-H2)b ∠(O3-H2-F1) ∠(C4-O3-H2) ∠(C4-O3-F1)

L AIM DMA AIM DMA AIM DMA AIM DMA

1 2.073 2.102 180.0 180.0 180.0 180.0 180.0 180.0
2 2.146a 2.100 161.4 180.0 129.4 180.0 123.9 180.0
3 2.127 2.100 162.9 173.1 116.1 133.2 111.0 131.0
4 2.099 2.103 171.4 171.2 125.3 131.9 122.7 129.2
5 2.101 2.098 171.2 173.4 125.3 122.3 122.6 120.2
6 2.101 2.100 171.5 171.3 122.7 125.1 120.1 122.5

a The complex is planar for all entries except here where the dihedral angle H2-O3-C4-H5 is 89.9°. b The labels refer to the same labeling scheme
as in Table 8.
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each atom, contains|r1 - r2| ) |rAB| whererAB ) (RB + rB)
- (RA + rA) ) RAB - (rA - rB).

Substituting eq 2 into eq 3 (main text) we obtain for the exact
electrostatic energy between atomsA andB:

whereVB(rA) ) ∫ΩB drB Ftot(MB;rB)/|RAB - (rA - rB)| is the
electrostatic potential generated by atom B in atom A.

The direct integration over two atomic basins is a feasible
but rather expensive calculation. To make substantial CPU time
savings we introduce multipole moments in analogy with the
computation of the electrostatic interaction in large monomer
clusters.

Following Stone (ref 13, pp 41-43) we now derive in a self-
contained but concise way the expansion of the electrostatic
interaction energy in terms of spherical multipole moments (eq
5 of the main text). A binomial Taylor expansion of the
expression|RAB - (rA - rB)|-1 factors the electronic (rA, rB)
and geometric (RAB) coordinates as follows;31

whereRlm(rA - rB) and Ilm(RAB) are the regular and irregular
normalized spherical harmonicsYlm(θ,æ), respectively:

This expansionformally converges provided|rA - rB| <
|RAB| ) RAB. In other words if the atomic basins are small
compared to the internuclear distanceRAB, then the convergence
criterion will be obeyed. This convergence criterion is typically
violated if the relative orientation and size of the atomic basins
is such that two long and oppositely directed vectorsrA andrB

arise.
Using an addition theorem for regular spherical harmonics,31

we can again factorizeRl,-m(rA - rB), leading to a convenient
expansion of|RAB - (rA - rB)|-1 in terms of three separate
coordinatesRAB, rA, andrB:

and

where the expression in large brackets is a Wigner 3j symbol31

and the superscript (G) reminds us everything is defined with
respect to one common global frame.

Substituting eq A4 into the defining equation, main eq 3
(realizing that|r1 - r2| ) |RAB - (rA - rB)|) leads to:

whereTlAlBmAmB
(G) is a purely geometric interaction tensor and

Qlm
(G) are the 2l + 1 multipole moments of rankl with respect

to the global frame. With an eye on eq A3b, we can ap-
propriately group the terms in eq A6 according to the power of
the interaction distanceRAB

-(lA+lB+1) ) RAB
-L. In other words,

by definingL as lA + lB + 1 we collect interaction terms that
have the sameR-dependence. For example, forL ) 3 the only
possible combinations arelA ) 0, lB ) 2; lA ) 1, lB ) 1; and
lA ) 2, lB ) 0, which correspond to the monopole-quadrupole,
dipole-dipole and quadrupole-monopole interactions, respec-
tively.

Equation A6 is not convenient for direct use because the
multipole moments of isolated monomers are computed in a
local frame that has an arbitrary orientation with respect to the
global frame. The moments in the local frame are related to
those of the global frame by

where (R,â,γ) is the rotation that takes the global axes to the
local axes and [Dmk

l]* is the conjugate of the Wigner rotation
matrix.13 Substituting eq A7 into eq A6 and rearranging yields

where the “local” interaction tensorT(L) is related to the
“global” one via

Explicit formulas for interaction tensors in the general case have
been published before13 for L e 5 or lA + lB e 4, while Hättig
and Hess32 also listed explicit formulas forL) 6 or lA + lB )
5.

Finally, sinceYlm(θ,æ) is complex if m * 0, the moments
Qlm can be complex. It is convenient to work with real multipole
moments, which can be introduced by taking suitable linear
combinations.13 Real AIM spherical tensor multipole moments
were defined before14 and also used in our work on the
electrostatic potential.33,34
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