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An atom—atom partitioning of the electrostatic energy between unperturbed molecules is proposed on the
basis of the topology of the electron density. Ateatom contributions to the electrostatic energy are computed
exactly, i.e., via a novel six-dimensional integration over two atomic basins, and by means of the spherical
tensor multipole expansion, up to total interaction rank | + Iz + 1 = 6. The convergence behavior of

the topological multipole expansion is compared with that using distributed multipole analysis (DMA) multipole
moments for a set of van der Waals complexes at the B3LYP/6-&(2d,p) level. Within the context of the
Buckingham-Fowler model it is shown that the topological and DMA multipole moments converge to a
very similar interaction energy and geometry (average absolute discrepancy of 1.3 kJ/mof arediegtively)

and are both in good to excellent agreement with supermolecule calculations.

1. Introduction of geometries and interaction energies, supplemented with
supermolecule calculations. Further novelties include the high
multipolar rank of interactionl(= |5 + Iz + 1 = 6, see Section

2, e.g., dipole-hexadecapole) and the use of analytical first and
second derivatives of the interaction energy with respect to rigid
body coordinatéd combined with the eigenvector following
method? to explore the potential energy surfaces. Finally, we
are presenting for the first time the exact electrostatic interaction
between topological atoms.

We have looked at a range of van der Waals complexes
containing HF including (HR) HF+*N,O, HF+-CO,, HF:-*
®H,0, HF+-NH3, HF-+-HCN, HF-+-H,CO, and the water dimer,
(H20)s.

It is well-known that the electrostatic energy often dominates
the interaction between molecules, especially polar ones. The
popular BuckinghamFowler model? benefits from this fact
as it successfully predicts the qualitative angular features of
hydrogen-bonded van der Waals complexes simply by using
an electrostatic and a simple repulsion term. In this model the
electrostatic component consists of interaction terms between
multipole moments provided by Stone’s distributed multipole
analysis (DMA)? while the short-range repulsion force is
simulated by hard spheres placed on the atomic centers. Th
DMA method has been used for many systéhthat benefit
from an anisotropic description beyond point charges. Moreover,
qualitative chemical insight into the nature of the charge
distribution can be obtained from a distributed model. It is here
that an alternative to DMA emerges in the form of the  The first-order term within the long-range perturbation
topological analysis of the electron density or the theory of theory!® corresponds to the electrostatic interaction energy
“Atoms in Molecules” (AIM)6-8 between moleculeMa and Mg, which is defined as

Cooper and Stutchbuthave successfully used the topologi-
cal partitioning method to study a series of van der Waals E.o(MaMg) = fdr fdr ProtMaiT )P MgiT 2) (1)
complexes. However, their work was criticized lafeon the elecATTB 1J 72 Ir,—r,)
grounds of poor convergence of the multipole expansion of the
electrostatic interaction. Because the higher atomic momentsyhere the total ground-state charge density of moletilis
are much larger than the overall molecular moments, it was given by
claimed? that “any form of distributed multipole analysis that
rests on a physical 9ivision of space into disjoint regions is Po(Mir) = %Zié(r — Ry — p(M;r) 2)
unlikely to be useful”. The main purpose of this paper is to i
scrutinize this statement and assess the convergence properties
of AIM multipole moments more rigorously. We show that In eq 2 p(M; r) is the ground-state electron density of an
although the AIM multipole expansion converges more slowly unperturbed molecul®l and the index runs over all nuclei in
than the DMA expansion, it is nonetheless useful (despite its moleculeM. Equation 1 expresses the exact classical interaction
computational expense) since both expansions converge to thesnergy of two molecular charge distributions in a form that does
same answer when high rank terms are included. This direct not depend on the multipole expansion. Although each molecular
and explicit comparison between DMA and AIM has never been charge distribution is described in its own coordinate system,
made before. Moreover the comparison is made both in termsthe position of the two molecules with respect to each other
must be known. Only when the relationship betweeandr;
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TABLE 1: Comparison? between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
EeledH20,H20) (kJ/mol), (b) the AIM Atom —Atom
Partitioning of the Electrostatic Energy, EeedA,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in A and Angles in deg) between
the Monomers in (H;0);

H‘S
_ O‘
o H, t\m
HS
Figure 1. Coordinate system used in the description of the electrostatic
!nteractior] _between two atomic bas#2s andQg. The vectoRa (Rg) (@)
is the position vector of the nucleus A(B), both referred to the global
origin 0. The vectoiRas = Rs — Ra is the internuclear vector ar AIM ¢ DMA®
(rs) marks the position of an infinitesimal charge elemenfin (2g) 1 —-371 -57
with respect tathe nuclear origirRa (Rg). The vectorras = (Rs + 2 —12.4 —14.0
rg) — (Ra +ra) = Rag — (ra — rg) measures the distance between 3 —24.7 —-21.0
two charge elements (with respect to the global origin). 4 —21.3 —-235
5 —24.6 —24.9
use the theory of AIM. In this theory an atom is defined as a 2xact _%gg 241
bounded portion of real space determined by the gradient vector
field of p(r). The gradient of the electron densiy(r) traces (b)
gradient paths, which are paths of steepest ascent thigfugh AIM L O, Hs
An infinite number of gradient paths originating at infinity o) 1 533.6 —236.3
terminate at a maximum ip(r), which practically coincides 2 535.1 —244.7
with a nuclear position. Such a collection of gradient paths 3 536.1 —242.2
occupies a portion of space called an atomic basin, denoted by 4 532.1 —241.4
Q. An atomic basin together with its nucleus constitutes an atom. g ggg'g :gﬂ'i
This procedure divides space up into nonoverlapping atoms in exact 529.0 —241.2
an exhaustive manner. Atomic properties are defined as volume H, 1 —388.8 160.0
integrals over the atomic basins; for example, the population 2 —351.6 157.2
associated with an atom is the volume integrap@) over the 3 —365.9 156.2
basin. 4 —361.3 156.6
The exact electrostatic energy between two aténasd B, 2 _ggi:g 122:?
belonging to molecul# andMg respectively, is then defined exact —367.8 156.7
as Hs 1 —235.0 102.8
2 —236.9 108.0
ProMail )P Mgt ) j _339'0 iO&i
EoedAB) = J, QAdrlf 0,02 Iry—r, 3) 5 zgg.g 133.1
6 —238.9 108.1
In view of the additivity of AIM atomic properties the exact —238.9 108.1
electrostatic interaction energy between two molecules is simply: (©)
1 coordinaté AIM DMA supermolecule
EeedMa,Mg) = —ZBEAEE,EL(A,B) (4) R(Os—H>) 2.104 2.107 1.943
27z 0(0s—H,—0y) 176.3 175.6 174.4
O(Hs—0s—Hy) 106.9 109.3 112.2

It is possible to computEge{A,B) directly without recourse

a2 The interaction betweengind other atoms is identical to that of

to a multipole expansion, in which case we refer to its value as Hs because of the mirror planéCorresponding to a minimization of
being “exact”. However, this does not mean that the six- the total interaction energy including the short-range repulsion (as in
dimensional integral in eq 3 is calculated analytically, because Tables 2-8). °Energies correspond to the respective equilibrium
we use a quadrature procedure. Integration by quadrature ove@deometries (as in Tables-3).

a single atomic basin is well-documenféd®but here we report

a double integration, i.e., a simultaneous quadrature over two We should keep in mind that even when the multipolar

atomic basins.

expansion converges the electrostatic energy thus obtained is

In the appendix we show that eq 3 can be re-expressed inonly an approximatiol§ to the true electrostatic energy obtained

terms of a multipole expansion as follows:

EcedAB) = % Tk, (Rag) Qi (LAQ i (28) (5)
IalgKaks

where T, .k 1S @ purely geometric interaction tensor, the
intersite-vectoRag = Rg — Ra (see Figure 1), an@y are the
2141 multipole moments of rankwith respect to the local frame
centered on each nucleus.

by 6D integration (see eq 3). The remaining difference is called
the penetration eneréyand arises at short range when the
charge clouds opa and pg sufficiently overlap. In contrast to
previous work” where the atoms were taken from supermol-
ecules, the atoms in this work do overlap because they were
taken from separate isolated monomers and superimposed
according to the geometry of the van der Waals complex. The
penetration effect results from the fact that nuclei on one
molecule will no longer be shielded by that molecule’s own
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TABLE 2: Comparison between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy Ee¢ed HF,HF)
(kJ/mol), (b) the AIM Atom —Atom Partitioning of the
Electrostatic Energy, EcedA,B), as a Function of the
Multipolar Expansion Rank L, and (c) the Geometry
(distances in A and Angles in deg)

Popelier et al.

TABLE 3: Comparison between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy

Eeled HF,N20) (kd/mol), (b) the AIM Atom —atom
Partitioning of the Electrostatic Energy, EeedA,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in A and Angles in deg) between
the Monomers in HF:+-N,O

H.t
F &g / R H, N, N, O,
o 6/’ (! e
.
(@)
(@) L AIM DMA
L AIM DMA 1 17.0 —45
— — 2 —43.4 —10.3
3 s e 3 1.4 -11.0
2 11.7 14.7
3 -17.3 -18.2 4 -8.4 —-115
4 —-16.9 -17.9 5 -12.8 -10.3
5 —-18.4 -17.8 —10.6 -10.6
6 —18.4 —-18.1 exact —12.7
exact —20.6 (b)
(b) L N3 Na Os
L Fs Ha Fu 1 —33.0 —55.0 61.7
Fi 1 230.3 —1985 2 11.4 —45.9 58.6
2 241.9 —215.4 3 9.3 —48.9 55.8
3 238.9 —215.0 4 6.1 —50.2 55.4
4 2385 —214.7 5 7.2 -50.0 55.5
5 238.0 —2146 6 7.0 —49.9 55.5
6 2381 2145 exact 6.4 —49.9 55.5
: —214. H. 1 47.3 70.6 —74.5
exact 237.8 214.5 2 E1a 80 ea
H> 1 -332.4 262.2 -
2 —298.7 260.6 3 -13.2 59.3 —60.8
3 —300.8 259.6 4 —-18.1 59.2 —60.9
4 ~300.4 259.7 5 -23.0 58.6 —61.0
5 —3015 259 6 6 —20.6 58.6 —61.0
6 —3016 2507 exact —22.4 58.7 —61.0
exact —303.4 259.5
(c)
(c) coordinate AIM DMA supermolecule
coordinate AIM DMA supermolecule R(H2—Ns3) 2.142 2.142 2.000
R(H—F3) 2.061 2065 1822 O(H2—N3s—Ny) 180.0 180.0 180.0
O(Hz—Fs—Ha) 116.9 119.2 115.6
O(Fi—Hx—F3) 169.6 168.2 166.2 EcedA,B), several calculations were repeated with different
O(H—F1—F3) 7.2 8.2 9.2 quadrature grids to check the stability of the direct integration.
O(F1—Fs—H.) 113.7 115.6 110.9

Deviations are on the order of 0.1 kJ/mol, depending on the
size and distribution of quadrature points in the integration grid.

electron density but will also experience an attraction for the For example, the computation &edNs,F) in HF...NH; by
electron density of the other molecule. The penetration energy o different quadrature grids of approximately two and one

is a negative correction to the interaction energy, and its jlion points yields an energy of 360.4 and 360.5 kJ/mol,
treatment in the context of the electrostatic penetration has only respectively.

recently been exploret!. Finally the program ORIENT3.2§ was used to evaluate eq

12, which has currently been implemented upte 4 + Iz +

1 = 6 or Rag™8 ORIENT is designed for the anisotropic
interaction between multipoles moments expressed with respect
to local axis systems that have an arbitrary relative orientation,
for example, between rigid monomers. In this work we make

3. Computational Methods

Three computer programs were used in our calculations. First,
the geometry optimizations and wave functions of isolated
molecules and molecular complexes were obtained by thefuII use of the capability of ORIENT.

9 -
program GAUSSIAN98? We used the B3LYP/6-311G(2d,p) The values for the pseudo-hard-sphere (i.e., slightly softened)

0,21 imi i
level of theory?21for both the geometry optimizations and the van der Waals radil are 1.47 A for F, 1.55 A for N, 1.52 A,

wave functions because it has proven to be a good compromise . . -
between accuracy and computational ¢8¢ for O and 1.70 A for C. Hydrogen is not assigned a radius. In

Spherical tensor AIM multipole momentsSwere computed the work of Buckingham and Fowfé(and also of Cooper and

by using a local version of the program MORPHY&L. Stutchbury) slightly different values were uséd.
MQRPHY also g.ener.ated.the pa(tltlorjed elgctrostatlc energy 4 Results and Discussion

defined in eq 3 via direct integration, i.e., without multipolar
expansion. The atomic basin was capped bydhe 1077 au The results for eight van der Waals systems are given in
isodensity envelope. The integration errors measuret (%2> Tables 1-8, each of which contains a labeling diagram of the
for single-basin 3D integrations were all beld x 10 au. corresponding equilibrium geometry. Each table consists of three

For the two-basin 6D integrations, required to evaluate parts: (a) the convergence behavior as a functioh of the
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TABLE 4: Comparison between DMA and AIM in Terms TABLE 5: Comparison? between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy of (a) the Total Electrostatic Interaction Energy
EeledHF,CO,) (kJ/mol), (b) the AIM Atom —Atom EeledHF,H20) (kJ/mol), (b) the AIM Atom —Atom
Partitioning of the Electrostatic Energy, EeedA,B) (kJ/mol), Partitioning of the Electrostatic Energy, EeedA,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c) as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in A and Angles in deg) between the Geometry (Distances in A and Angles in deg) between
the Monomers in HF+--CO, the Monomers in HF+++H,O
e =
L P by
W, 5o >
2 C, e H [P
o 2
N
I $
(@) Hs
AIM DMA
()
1 —44.2 —12.3
2 -6.1 -115 AlM DMA
3 5.1 —-12.0 1 —55.1 —12.0
4 —9.6 —10.3 2 —-21.2 —22.6
5 —-10.1 —9.4 3 —-34.8 —-29.8
6 —10.3 —9.7 4 —-28.7 -32.1
exact —11.6 5 —-32.4 -325
(b) 6 —32.6 —-32.4
exact —35.6
L O3 Cy Os )
F1 1 345.6 —522.2 206.7
2 348.4 —554.2 227.3 L Os Ha
3 339.2 —555.1 227.2 F. 1 351.4 —150.9
4 338.8 —555.4 226.8 2 375.0 —165.9
5 338.5 —554.9 226.7 3 375.2 —165.7
6 338.7 —554.8 226.7 4 374.5 —165.5
exact 338.5 —554.8 226.7 5 373.3 —165.3
H> 1 —496.3 670.6 —248.6 6 373.2 —165.3
2 —418.9 651.1 —259.8 exact 371.8 —165.3
3 —416.7 657.9 —257.6 H, 1 —506.5 200.9
4 —419.9 657.3 —257.2 2 —470.7 203.1
5 —420.1 657.1 —257.3 3 —482.4 201.9
6 —420.7 657.2 —257.3 4 —476.3 202.1
exact —421.9 657.2 —257.3 5 —479.0 202.0
© 6 —479.4 202.1
exact —481.0 202.1
coordinate AIM DMA supermolecule
R(Os—H>) 2.122 2.117 1.959 _ ©
O(H.—0s—Cy) 143.4 180.0 144.6 coordinate AlM DMA supermolecule
O(Fi—H2—03) 174.3 180.0 172.5 R(Os—Hy) 2.090 2.091 1.687
0(0s—Ho—Fy) 175.2 174.3 176.6
O(Hz—Os—Ha) 114.2 114.8 113.7
total electrostatic interaction energy between the two monomers, ¢ 47.7 46.3 475

denoted byEeiedMa,Ms) (see (_aq 4), (b) a comp!ete atammm_ a2 The interaction betweenghnd the other atoms is identical to that
breakdown of the electrostatic energy according to AlM, given of H, because of the mirror plane.

by individual contributionsEgedA,B) (see eq 3), and (c) a
comparison between selected geometrical parameters produced
by the DMA and AIM model and an ab initio calculation of tion energy, although we find values as low as 7 kJ/mal in

the complex. HF-N2O. In all systems the hydrogen-bonded atom pair (e.g.,
From part a in Tables-18 it is clear that for a multipole EciedH2,F3) in (HF),) has a negative electrostatic energy (for
expansion up td. = 6 the values ofEcedMa,Mg) are very = 6), which is typically more than 10 times larger than the

similar, showing an average absolute deviation of 1.3 kJ/mol, total interaction energy of the complex. This observation
with a minimum value<0.1 kJ/mol and a maximum value of emphasizes that the total interaction energy, which would be
3.9 kJ/mol. The exact energy, computed via 6D integration, is ascribed to hydrogen bond formation in all eight complexes, is
always lower than AIM'd. = 6 result, by an average value of in fact due to cancellation of large ateratom contributions.
2.9 kJ/mol, ranging between 0.7 and 6.6 kJ/mol. The corre- For example, in (HR) Eeed HF,HF) = Egjed F1,F3) + EeledF1,Ha)
sponding average deviation for DMA is 2.8 kJ/mol, ranging -+ EeedH2,F3) + EeledH2,Hg) = —20.6= 237.8— 214.5— 303.4
between 1.3 and 5.8 kJ/mol. In light of the discussion on the + 259.5 kJ/mol. The intermolecular interaction observed at
penetration energy in section 2, we do expect the exact= 1 warns that AIM monopoles must not be misunderstood to
electrostatic energy to be lower than the best possible convergede able to compete with point charges designed to model
multipole expansion. From these comparisons we conclude thatelectrostatic interactiord. The convergence ofEqedA,B)
DMA and AIM both tend to converge to the same total improves as the atoms are further away from each other. The
interaction energy. worse convergence occurs for the hydrogen-bonded atoms where
From part b, we see th&td{A,B) is typically about an order  EqedA,B,exact)— EeqedA,B,L = 6) ranges from-3.8 to—1.2
of magnitude larger than the total monomenonomer interac- kJ/mol (average= —2.0 kJ/mol). Beside impairing the multipole
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TABLE 6: Comparison? between DMA and AIM in Terms
of (a) the Total Electrostatic Interaction Energy
EeledHF***NH3) (kJ/mol), (b) the AIM Atom —Atom
Partitioning of the Electrostatic Energy, EeedA,B) (kJ/mol),
as a Function of the Multipolar Expansion Rank L, and (c)
the Geometry (Distances in A and Angles in deg) between
the Monomers in HF--*NH3

iy
(a)
AIM DMA
1 —48.6 —-8.3
2 —-30.0 —23.4
3 —60.7 —40.9
4 —39.3 —45.7
5 —49.0 —50.2
6 —45.0 —48.1
exact —51.6
(b)
L N3 Ha
F1 1 315.8 —90.3
2 354.1 -102.0
3 368.2 —-102.2
4 367.5 —-102.1
5 365.5 -102.0
6 365.0 —-101.9
exact 360.4 —101.9
H, 1 —454.0 120.2
2 —458.2 126.7
3 —498.6 125.4
4 —477.8 125.7
5 —485.3 125.6
6 —481.3 125.7
exact —483.4 125.7
(c)
coordinate AIM DMA supermolecule
R(N3—Hy) 2.112 2.109 1.664
O(Ns—Hx—Fy) 180.0 180.0 180.0

2 The interaction betweengH{Hs) and other atoms is identical to
that of H, because of the 3-fold axis.

convergence, such proximity also introduces a nonnegligible
penetration energy.

Popelier et al.

TABLE 7: Comparison? between DMA and AIM in Terms
of (a) the Total Electrostatic Energy Egjed HF+--HCN)
(kd/mol), (b) the AIM Atom —Atom Partitioning of the
Electrostatic Energy, Ece{A,B), as a Function of the
Multipolar Expansion Rank L, and (c) the Geometry
(Distances in A and Angles in deg) between the Monomers
in HF---HCN

Fe H
- ﬂc—’:/u,
N!
(a)
AIM DMA
1 —80.6 —26.4
2 -12.3 —-19.9
3 —-15.3 —28.6
4 —26.9 —27.2
5 —25.6 —28.1
6 —-25.0 —28.9
exact —27.6
(b)
L N3 (o9 Hs
F 1 336.6 —200.8 —39.6
2 344.7 —241.2 —43.7
3 335.8 —248.6 —44.2
4 336.5 —248.2 —44.1
5 336.7 —247.6 —44.1
6 336.6 —247.4 —44.1
exact 335.6 —247.4 —44.1
H> 1 —482.7 258.0 48.0
2 —419.9 2975 50.2
3 —413.9 304.9 50.7
4 —423.3 301.7 50.5
5 —422.7 301.6 50.5
6 —422.6 301.9 50.5
exact —424.1 301.9 50.5
(©)
coordinate AIM DMA supermolecule
R(N3z—Hy) 2.127 2.092 1.814
O(Ns—H2—Fy) 177.4 180.0 180.0
0(Cs4—N3—Hy) 153.7 180.0 180.0

AIM both converge to essentially the same geometrly &t 6,
except for two cases where complexes are very floppy.

Our results differ from those of Cooper and StutchBury
because of many possible factors, such as our use of an
analytical metho# to localize minima unambiguously, our
higher rank of multipole expansion (feasible by the avoidance
of Cartesian tensors), more elaborate basis set and inclusion of
correlation. These extra investments offer an overall improve-

Part ¢ shows that the supermolecular geometry is in good 10 yent in the quality of AIM results compared to the supermol-
excellent agreement with experiment. In total there are 18 anglesgje.

of which only 3 show large deviations between AIM and DMA.

In Table 9 we report the geometry changes in +#,CO as

The average absolute difference of the remaining 15 angles istne rankL increases. The DMA and AIM models, bothlat=

only 1.3, ranging between 0°2and 2.6. The three excluded
angles occur in the complexes HFEEO, and HF--HCN. Using

6, yield very similar angles[{(C4;—03—H,) and 0(C4—0O3—
F1)). At L = 3 the AIM angled]1(C4—03—H,) and[0(C4;—O3—

our basis set, supermolecule calculations predicts that, at bothr,) are almost 10smaller than at. = 6 and become very close

the B3LYP and the MP2 level, the most stable minimum of
the HF--CO, complex is bent by 0.4 and 0.3 kJ/mol respec-
tively, where the linear structure is a transition stateLAt 6,
DMA wrongly predicts a linear structure, while AIM generates
a structure that deviates by only a few degrees from the
supermolecular values. On the other hand, in the-HfCN
complex, DMA correctly predicts a linear geometry (as opposed
to AIM), but the difference between the linear and bent minima
is only 0.8 kJ/mol (B3LYP) or 0.2 kJ/mol (MP2). These
observations lead to the important conclusion that DMA and

to the supermolecular angles. This means that a cruder
electrostatic picture (i.el. = 3 versusL = 6) may yield
fortuitous agreement with the supermolecule. In other words,
to reproduce the supermolecular geometry for the correct reasons
theL = 6 picture must be supplemented by interactions omitted
in the present work, such as polarization. Extra nonelectrostatic
interactions would then correct the purely electrostatic picture
and decrease the two aforementioned angles and hence pull the
F closer to the H of HICO. Note that at the low rank &f = 2,
where only dipole-monopole and dipoledipole interactions
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TABLE 8: Comparison@ between DMA and AIM in Terms
of (a) the Total Electrostatic Energy Eeed HF,H,CO)
(kJ/moal), (b) the AIM Atom —Atom Partitioning of the
Electrostatic Energy, EcedA,B), as a Function of the
Multipolar Expansion Rank L, and (c) the Geometry
(Distances in A and Angles in deg) between the Monomers
in HF---H,CO

ﬁ‘“‘\,
HZ
(@)
AIM DMA
1 —73.0 —-19.4
2 —-10.1 —-19.1
3 —21.7 —25.0
4 —27.2 —25.0
5 —25.9 —25.4
6 —25.7 —26.4
exact —28.5
(b)
L O3 Cy Hs He
F1 1 342.7 —254.3 —-10.4 -7.9
2 358.9 —294.0 -12.0 —-11.7
3 354.8 —298.2 —-12.0 —-12.5
4 355.6 —297.1 —-11.9 —12.5
5 355.2 —296.9 —11.9 —12.4
6 355.0 —296.8 -11.9 -12.4
exact 353.9 —296.7 —-11.9 —-12.4
H 1 —492.4 327.0 12.7 9.7
2 —442.4 361.1 15.6 14.4
3 —446.1 362.5 14.8 15.0
4 —451.0 360.0 14.9 14.8
5 —450.2 360.6 14.9 14.8
6 —450.0 360.8 14.9 14.8
exact —451.9 360.7 14.9 14.8
(c)
coordinate AIM DMA supermolecule
R(H>—053) 2.101 2.100 1.696
0(Os—H2—Fy) 1715 171.3 168.4
0(C4—0s—Hy) 122.7 125.1 113.9
0(Cs—0Os5—Fy) 120.1 1225 109.8

are allowed, the complex becomes nonplanar within the AIM
model, suggesting that its planarity is due to the introduction
of the quadrupole interaction at= 3 in the AIM picture.
Finally an important new point needs to be added to our
discussion. An important feature of the DMA approach is that
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Current researcéh shows it is possible to introduce extra sites
inside the atomic basin, without fundamentally changing the
AIM multipole moments. Hence it is possible to accelerate the
convergence of the AIM multipole expansion without losing
the advantage of a rigorous atomic partitioning. One should bear
in mind that a correct comparison between the convergence
behavior of DMA and AIM can only happen with an equal
number of sites.

5. Conclusion

We have proposed an ateratom partitioning of the elec-
trostatic interaction based on the topology of the electron density
(AIM) and the compact multipole moments introduced by the
spherical tensor formalism. We were interested aagefultest
of this proposal in the context of the successful Buckingiram
Fowler model, using improved algorithms. Particular attention
was paid to the convergence of both the energy and the geometry
of a set of van der Waals complexes, with respect to the rank
L of the multipole expansion. For the first time this convergence
behavior has been contrasted with exact values, obtained without
multipole expansion, via 6D integration over two atomic basins.
We find that, although the AIM results converge more slowly
than the DMA results, excellent agreement is obtained between
the two methods at high rank (= 6), for both geometry as
well as intermolecular electrostatic interaction energy. This is
the first time that a direct, complete, and explicit comparison
between AIM and DMA has been made. Contrary to views
expressed before in the literature, this work opens an avenue to
introduce the topological approach in the construction of an
accurate intermolecular force field. It is here that the high degree
of transferability of the functional groups defined by AIM will
be extremely useful.

Acknowledgment. Gratitude is expressed to EPSRC who
sponsors this work via grant GR/M18119.

Appendix

Derivation of Multipolar Expansion of Electrostatic In-
teraction between Topological Atoms.In Figure 1 two
interacting atomic basin®, andQg are shown, each centered
on a nucleus with coordinatd®, and Rg, respectively. Note
that Ry and Rg are expressed with respect to a common lab
frame with origino. The charge density withif2a (Qg) is
described by the position vectok (rg), which is centered on
the respective nucleus. For the practical computation of the
electrostatic energy we ensure that both molecular charge
densities are referred to a common global frame. Hence, the
position vector of an infinitesimal charge elementy is Ra

additional sites may be chosen, so as to improve the description+ ra, andRg + rg for an element inQg. The electrostatic

of the interaction energy using only lower-rank multipoles.

interaction between two infinitesimal charge elements, one in

TABLE 9: Dependence of the Geometry (Distances in A and Angles in deg) of HFI,CO on the Total Rank L in the AIM and

DMA Multipole Expansion

R(Og— Hz)b g (03— Hz—Fl) g (C4—03—H2) g (C4—03— Fl)

L AIM DMA AIM DMA AIM DMA AIM DMA

1 2.073 2.102 180.0 180.0 180.0 180.0 180.0 180.0
2 2.148 2.100 161.4 180.0 129.4 180.0 123.9 180.0
3 2.127 2.100 162.9 173.1 116.1 133.2 111.0 131.0
4 2.099 2.103 171.4 171.2 125.3 131.9 122.7 129.2
5 2.101 2.098 171.2 173.4 125.3 122.3 122.6 120.2
6 2.101 2.100 1715 171.3 122.7 1251 120.1 122.5

2The complex is planar for all entries except here where the dihedral apg@HC,-Hs is 89.9.  The labels refer to the same labeling scheme

as in Table 8.
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each atom, containig; — rp| = |rag| whererag = (Rg + 'g)
- (RA + I'A) = Rag — (I'A - TB).

Substituting eq 2 into eq 3 (main text) we obtain for the exact
electrostatic energy between atosand B:

. PiolMail A)Prot(Mgil g)
Eelec(A!B) - fQAdrAfQBdrB |RAB _ (rA _ rB)|

= fQAdrA ProfMail A)Ve(ra) = ZaVe(Ra) —
S0, 0ra p(Mair a)Va(r,) (A1)
whereVg(ra) = [qgp dre pwt(Me;re)/|Ras — (ra — re)| is the

electrostatic potential generated by atom B in atom A.
The direct integration over two atomic basins is a feasible

but rather expensive calculation. To make substantial CPU time

savings we introduce multipole moments in analogy with the
computation of the electrostatic interaction in large monomer
clusters.

Following Stone (ref 13, pp 4143) we now derive in a self-

contained but concise way the expansion of the electrostatic

interaction energy in terms of spherical multipole moments (eq
5 of the main text). A binomial Taylor expansion of the
expressiorRag — (ra — rg)| ™! factors the electronicrg, rg)

and geometricRag) coordinates as follow:

1 —m
5 zoz( V'R -l

i m(Rag)
IRag = (ra — e (/:‘32)

whereRm(ra — rg) andlim(Rag) are the regular and irregular
normalized spherical harmonid§n(6,¢), respectively:

Rinlr) = o/ 55 Vl60) (A3a)
WD) = A5t Nil0g)  (A3D)

This expansiorformally converges providedra — rg| <
|IRag] = Rag. In other words if the atomic basins are small
compared to the internuclear distariR,gs, then the convergence
criterion will be obeyed. This convergence criterion is typically
violated if the relative orientation and size of the atomic basins
is such that two long and oppositely directed vectarandrg
arise.

Using an addition theorem for regular spherical harmoffics,
we can again factorizB, _(ra — rg), leading to a convenient
expansion of Rag — (ra — rg)| "t in terms of three separate
coordinateRag, ra, andrg:

1
|RAB_(

- B)|_

Is
ZDZOmA:— IANBZ BTl |BmAmB(RAB)RI mA(rA)RI mB(rB) (A4)
and

@, + 2lg + 1)
(21)!(21)!

) 11y ety (Rag) (AS)

TIAIBmAmB(G)(RAB) = (_1)|A
(|A|B L+ g
mMyMg — (mA + mg)

Popelier et al.

where the expression in large brackets is a Wignjey&bof!
and the superscript (G) reminds us everything is defined with
respect to one common global frame.

Substituting eq A4 into the defining equation, main eq 3
(realizing that|r; — ro] = |Rag — (ra — rg)|) leads to:

Z TIAIBmAmB (RAB)fQ dr o Maif 2) %

IalgMa

{AB) =

ele
RIA,mA(rA)fQB dr goio(Meil &)R, m, (V8

G G G
TIAIBmAmB( )(RAB)QIAmA( )(QA)QIBmB( )

(€25) (A6)

>

Ialgmamg

whereT,,m.m® is @ purely geometric interaction tensor and
Qm© are the 2+ 1 multipole moments of rankwith respect

to the global frame. With an eye on eq A3b, we can ap-
propriately group the terms in eq A6 according to the power of
the interaction distanc@ag ~(a*'e™D) = Rag L. In other words,

by definingL asla + Ig + 1 we collect interaction terms that
have the samB-dependence. For example, for= 3 the only
possible combinations atg = 0,1 = 2;la = 1,15 = 1; and

Ia = 2,lg = 0, which correspond to the monopelguadrupole,
dipole—dipole and quadrupotemonopole interactions, respec-
tively.

Equation A6 is not convenient for direct use because the
multipole moments of isolated monomers are computed in a
local frame that has an arbitrary orientation with respect to the
global frame. The moments in the local frame are related to
those of the global frame by

Qn'® = ZQ.J”[Dmk'(aﬂ,y)]* (A7)

where @.3,y) is the rotation that takes the global axes to the
local axes andD,]* is the conjugate of the Wigner rotation
matrix 13 Substituting eq A7 into eq A6 and rearranging yields

EeedAB) = T AIBkAkB(L)(RAB)QI AkA(L)(QA)QIBkB(L)(QB)
Ialgkaks
(A8)

where the “local” interaction tensof® is related to the
“global” one via

TIAIBkAkB(L)(RAB)Z Z TIAIBkAkB(G)(RAB)[DmAkAIA]*[ DranBlBr
Ialgkaks
(A9)

Explicit formulas for interaction tensors in the general case have
been published befofefor L < 5 orla + Ig < 4, while Hétig

and Hes¥ also listed explicit formulas fot= 6 orls + Iz =

5.

Finally, sinceYim(0,¢) is complex ifm = 0, the moments
Qm can be complex. It is convenient to work with real multipole
moments, which can be introduced by taking suitable linear
combinations? Real AIM spherical tensor multipole moments
were defined befofé and also used in our work on the
electrostatic potentidP-34
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