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A detailed comparison between three-dimensional classical surface hopping calculations and quantum
mechanical calculations is presented for the photodissociation of water in the B˜ band. Accurate coupled diabatic
potential energy surfaces are used in these calculations. Tully’s “fewest switches” method using an adiabatic
representation for the electronic states is applied for the surface hopping procedure. Studied are the energy
dependence of the branching ratios for the possible fragmentation channels, including electronically nonadiabatic
channels, and the probabilities for particular vibrational or rotational product states of the electronically excited
OH(A) fragment. Although the classical results generally agree well with the quantum results, some serious
errors in the classical calculations were detected. First, it is found that the calculated fractions for the
O(1D) + H2 and O(3P)+ H + H fragments are too large. Second, the absence of quantization of the vibrational
energy in classical mechanics has consequences for the details of the rotational product state distribution of
the OH(A,V)0) fragments. This is important for the “singleN phenomenon”, an experimentally observed
strong preference for populating the highest rotational product state for which the rotational barrier energy is
lower than the available energy (S. A. Harich, X. F. Yang, R. van Harrevelt, and M. C. van Hemert,Phys.
ReV. Lett., 2001). For a two-dimensional model, where the above-mentioned problems of classical trajectory
calculations do not occur, excellent agreement between classical and quantum results is found. Classical
trajectories were followed to explain the singleN phenomenon and the origin of the experimentally observed
vibrational excitation of OH(A) fragments.

I. Introduction

This paper concerns quasi-classical surface hopping calcula-
tions for the electronically nonadiabatic photodissociation of
water in the B̃band. This study has two objects. The first aim
is to test the accuracy of classical results by comparing with
accurate quantum mechanical results. Although classical me-
chanics is an approximation that is subject to zero point errors,
to excessively chaotic dynamics, and to potentially important
approximations in the treatment of electronically nonadiabatic
effects, the classical calculations are much easier to program
than quantum mechanical calculations and are in most cases
computationally less demanding. Thus, if the classical descrip-
tion is proven to be adequate in this case, it may be used for
other similar photodissociation processes.

The second purpose is to use classical mechanics to gain
insight into the photodissociation dynamics. For simple pro-
cesses, the expectation values of the quantum mechanical time-
dependent wave packet provide a clear picture of the photo-
dissociation dynamics. But for processes where the wave packet
splits into various components, or where the dynamics is
strongly energy-dependent, as is the case in the process studied
in this paper, this type of an analysis of quantum dynamics is
less useful. In those cases classical trajectories provide a more
transparent picture of the dynamics than quantum mechanical
wave packets.

There are many classical trajectory studies of photodissocia-
tion reported in the literature, with or without surface hopping:
see, for example, refs 1-9. In particular, the photodissociation
of water in the B̃band was studied extensively with classical
trajectory calculations.1-5 At the time that these calculations
were performed, an accurate three-dimensional potential energy
surface for the B˜ state was not yet available, except for ref 5.
Also, three-dimensional quantum mechanical calculations on
coupled potential energy surfaces were not yet possible at that
time. Only for a two-dimensional electronically adiabatic model
a comparison between quantum and classical results was given.1

Weide and Schinke1 found good agreement between classical
and quantum results for the OH(A) rotational distributions. The
photodissociation of water in the A˜ band is much simpler
because the direct photodissociation process proceeds on one
single potential energy surface. Three-dimensional classical
calculations, using an accurate potential energy surface for the
Ã state, are presented in ref 3. The classical rotational and
vibrational distributions were shown to agree well with quantum
results for the same surface.

The present classical surface hopping study differs from the
previous studies on the following points. First, we use an
accurate set of three-dimensional coupled potential energy
surfaces, the Dobbyn-Knowles (DK) surfaces.10,11Comparisons
between experimental and quantum results for OH(A) rovibra-
tional distributions12 indicate that this surface is better than the
surfaces used in previous studies. Second, classical results are
always compared with results of accurate three-dimensional
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quantum calculations on coupled potential energy surfaces, as
discussed in ref 13. Third, we discuss quantities such as the
branching ratios for different fragmentation channels, and the
probability for a particular rotational or vibrational state, as a
function of the photon energy. This is particularly important
because quantum mechanical branching ratios and probabilities
as a function of the energy usually show interference structures.

In this work, Tully’s ‘Fewest Switches’ (TFS) algorithm14 is
used to calculate the probability of surface hops. This method
is developed to minimize the number of surface hops. Since
every surface hop implies an unphysically abrupt change of the
momenta, the TFS method is expected to be more accurate than
other surface hopping techniques. Most of the calculations use
an adiabatic representation of the electronic states; however,
results for diabatic states are briefly considered. As far as we
know, the TFS method has not yet been applied to photodis-
sociation, but various comparisons between the TFS and
quantum results for reactive scattering are very encouraging,15-19

and very recently, the TFS approach has been used to study
quenching and reaction in OH(A)+ H collision using the same
potential surfaces20 used in the study presented in this paper.

Many interesting experimental results for photodissociation
of water in the B̃band have recently become available. Kinetic
energy release (KER) experiments have provided detailed
information on the electronic and rovibrational product state
distributions of OH or OD fragments from H2O, D2O, or HOD
molecules5 photolyzed with 121.6 nm light. These experiments
revealed interesting phenomena in the rotational product state
distributions of the diatomic fragments: interference structures
in the rotational distributions of the OH(X,V)0) fragments from
H2O,5 and the “singleN phenomenon” for the OD(A,V)0)
fragments from HOD.21 In the singleN phenomenon there is a
strong preference for populating the highest possible rotational
product state for which the rotational barrier energy is lower
than the available energy. In another recent experimental
study12,22 the wavelength dependence of the rovibrational
distribution of the OH(A)/OD(A) fragments was studied sys-
tematically, by measuring the fluorescence of the diatomic
fragments. In this paper, we will use classical trajectories to
study the origin of the vibrational excitation of the OH(A)
fragments. We also present a classical analysis of the singleN
phenomenon.

Finally, we want to stress that some experimentally observable
features are purely quantum mechanical in nature and must
accordingly be described quantum-mechanically. For example,
resonances in the absorption spectra,23 which are related to
Feshbach resonances on the adiabatic B˜ state.24 Also, the
interference pattern observed in the OH(X) rotational distribu-
tion25 is a typical quantum phenomenon.

II. Details of the Calculations
II.A. Potential Energy Surfaces. The Dobbyn-Knowles

(DK) coupled diabatic potential energy surfaces10,11 are used
in the present dynamical calculations. Adiabatic potential energy
surfaces for the B˜ and X̃states were calculated using the multi-
reference single and double excitations configuration interaction
(MRD-CI) method, with a large atomic basis set and a large
number of selected configurations. The transformation from the
adiabatic electronic states X˜ and B̃to diabatic statesΠ andΣ
was done with help of ab initio matrix elements of the electronic
angular momentum operator.10

In a previous study of the photodissociation of water, we used
the older Leiden potential energy surfaces,26 which were
constructed in a manner similar to that for the DK surfaces.
The basis set and the number of selected configurations was,

however, smaller, and therefore the DK surfaces are in general
more accurate than the Leiden surfaces, in particular with respect
to the electronic threshold energies for various fragments (OH-
(X) + H, OH(A) + H, O(1D) + H2, and O(3P) + H + H). For
example, the DK value for the electronic threshold energy for
OH(A) + H (9.42 eV), is closer to the experimental value (9.52
eV27) than the Leiden result (9.34 eV). Because the OH(A)+
H threshold energy is within the energy range of the dissociating
wave packet, the dynamics are quite sensitive to this threshold
energy. Also, a comparison between quantum results with
experimental data12 for the vibrational distributions of OH(A)
fragments indicates the Dobbyn-Knowles surface for the B˜ state
is more accurate than the Leiden B˜ surface.

In a previous study of photodissociation of water in the A˜
band,28 we have compared the DK and Leiden A˜ surfaces. We
used a simple empirical correction function to correct the OH-
(X) threshold energy. Remarkably, from comparisons between
theoretical and experimental OH(X) vibrational distributions,
we concluded that the corrected Leiden A˜ surface ismore
accurate than the corrected DK A˜ surface, in contrast to the
indication that the Leiden B˜ surface islessaccurate than the
DK B̃ surface. We have not used empirical corrections for the
B̃ state surfaces, because the dissociation dynamics on the B˜
surface is significantly more complex than the dynamics on the
Ã surface and is therefore more sensitive to minor details of
the correction function.

Besides the accuracy, an additional advantage of the DK
surfaces is that they are available in analytical forms, which is
convenient for classical calculations. In Figure 1, we show a
two-dimensional contour plot of the potential energy surface
for the adiabatic B˜ state, which explains the main characteristics
of the photodissociation dynamics. One OH bond length is fixed
at 1.8a0. All trajectories start on the B˜ state at the point indicated
with the cross, the Franck-Condon point. The trajectories move
toward the deep well at the linear HOH region (y ) 0). The
HOH minimum is the conical intersection, where many trajec-
tories hop to the ground state surface and end at OH(X)+ H.
Trajectories that are not transferred to the ground state, may
directly go to OH(A)+ H, or move toward the well at the linear
HHO geometry, which is also a conical intersection.

The coupling between the adiabatic X˜ and B̃ states arises
from the nonadiabatic coupling vectorg ≡ 〈φX|∇φB〉, where
φX and φB are Born-Oppenheimer wave functions and∇ is
the gradient operator with respect to all nuclear degrees of
freedom. This coupling can be determined from the DK dia-
batic potential energy surfacesVΠ and VΣ and the coupling
VΠΣ. Diagonalization of the electronic Hamiltonian in the
diabatic basis results in the Born-Oppenheimer potential energy

Figure 1. Dobbyn-Knowles potential energy surface for the adiabatic
B̃ state, for a fixed OH1 distance of 1.8a0. The O and H1 atoms are
located at (x, y) ) (0.0, 0.0) and (-1.8a0, 0.0), respectively. Energies
are in units of electronvolts; contour lines are drawn at 6.5, 7, 7.5, ...,
9.5, and 10 eV. The Franck-Condon point, where all trajectories start,
is indicated with X.
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surfacesVX and VB. The mixing angle is defined asR )
1/2 arctan(VΠΣ/|VΠ - VΣ|) and is related tog according tog )
∇R. Note that it is assumed that the matrix element of∇ in the
diabatic basis is zero, which is in general not true for polyatomic
systems.29

II.B. Quasi-Classical Surface Hopping Calculations.For
the quasi-classical trajectory (QCT) surface hopping calculations,
the procedure as reported by Gray et al.19 is followed. Gray et
al. studied nonadiabatic effects on the O(1D) + H2 reaction on
the same set of surfaces as used in the present calculations.
Modifications of this procedure for photodissociation processes
are described below.

In the classical calculations, Cartesian Jacobi coordinatesr
andR are used, wherer is the OH vector, andR is the H-OH
vector. In this paper we will only consider nonrotating water
molecules (J ) 0): hence all atoms remain in a fixed plane,
and we have four nuclear degrees of freedom. Actually, there
are only three independent degrees of freedom, due to the
conservation of the component of the angular momentum
perpendicular to the molecular plane, but we do not use this in
the classical calculations. Three independent degrees for freedom
are, for example,R, r, andγ, the magnitude ofR and r , and
the angle between these two vectors, respectively.

To determine the initial values of the components ofr and
R, and the conjugate momenta, we follow the Wigner ap-
proach.30,31 First, we calculate variationally the ground-state
vibrational wave functionψ(R,r,cosγ) for J ) 0, Then this wave
function is fitted to the following functional form:ψ(R,r,cosγ)
) ψR(R) ψr(r) ψcosγ(cosγ), where the functionψx (x ) r, R, or
cos γ) has the form:ψ(x) ) xRx/π exp(-Rx(x - xe)2). The
momenta conjugate tor and R are denoted asp and P,
respectively. The momentum space representations of the wave

functions also have a Gaussian form:φ(p′) ) x1/4Rxπ
exp(-p′2/4Rx), where p′ is P or p. The angular momentum
conjugate toγ is denoted asl. The angular momentum space
representationφ(l) does not have a Gaussian form. Numerical
tests, however, indicate thatφ(l) fluctuates around a Gaussian
function of the same form asφ(p′), and we therefore can make

the approximationφ(l) ≈ x1/4Rcosγπ exp(- l2/4Rcosγ). Initial
values ofr, R, cosγ, p, P, andl are generated with a probability
given by the Wigner functionPW: PW(R,r,cosγ,P,p,l) )
ψ(R,r,cosγ)2 φ(P,p,l)2. The Box-Moller method32 is used to
generate random numbers with a Gaussian distribution. The
coordinates of the nuclei, which always lie in theyzplane, are
given byry ) 0, rz ) r, py ) l/r, pz ) p, Ry ) R sin γ, Rz ) R
cosγ, Py ) R sin γ - j cosγ/R, andPz ) R cosγ + j cosγ/R.
Finally, the energy of a new trajectory is calculated. The
trajectory is integrated if the energy lies within a specified
interval.

For some calculations, one OH bond length (r) is fixed to an
arbitrary value, which reduces the complexity of the photodis-
sociation process. This is achieved using the Lagrange multiplier
method, as described in ref 33.

In accurate quantum mechanical calculations, the results
should not depend on the representation, diabatic or adiabatic.
The surface hopping method, however, is more a trick than a
theoretical algorithm. For example, the sudden, discontinuous
switch from one surface to the other is clearly an unphysical
process. Furthermore, the method is justified only for transitions
between degenerate electronic states. As a consequence, the
success of the method critically relies on the representation of
the electronic states, as was demonstrated in previous studies.16

We performed test calculations for the photodissociation of
water, and found that surface hopping in the diabatic representa-

tion completely failed in providing a realistic description, in
particular with respect to product state distributions, in contrast
to the good results obtained with the adiabatic representation.
This is easily understood from the shapes of the potential energy
surfaces. In the diabatic representation, the interaction between
the diabatic states is spread out over a wide range of nuclear
geometries, where the molecule has a bent geometry. Because
in these regions, the diabatic states are completely different in
character, a strong change in the nature of the trajectory occurs
after a successful hop, which is unphysical. This may be
particularly important because all trajectories start at bent
geometries.

In the adiabatic representation, the interaction is more
localized at the seam of the conical intersection at the linear
geometry, where the adiabatic states are nearly degenerate.
When surface hops occur in this region, there is no or little
change in the character of the trajectory. Trajectories to
OH(X) + H usually have only one single surface hop, about
half of these trajectories at the collinear HOH region, and the
other half at the collinear HHO region. Surface hops at the
collinear HOH region are strongly localized at the conical
intersection seam. Surface hops at the collinear HHO region
have a wider distribution, because the X˜ and B̃ surfaces are
almost degenerate in this region. About half of the trajectories
to OH(A) have no surface hop at all. For the other trajectories,
a hop from B̃to X̃ is almost immediately followed by a hop
back to the B˜ surface. Therefore, the nature of the trajectories
to OH(A) + H are hardly changed by surface hopping.

Thus for the present problem an adiabatic representation of
the electronic states appears necessary for a realistic description
of the photodissociation dynamics. At first sight this seems to
be in conflict with the usage of the diabatic representation used
in previous calculations by one of us for processes involving
the same set of coupled potential energy surfaces as for the
photodissociation of water: the O(1D) + H2 f OH + H
reaction,34 and the electronic quenching of OH(A) radicals due
to collisions with H,20 but it should be taken into account that
these processes are quite different from the photodissociation
of water. For the O(1D) + H2 f OH + H reaction it was found
that a diabatic representation was modestly better than the
adiabatic representation in describing transitions between the
same states that are considered in the present calculation. In
that case the coupling was weaker in the diabatic representation
due to the constraint in the reactive trajectories to near collinear
HHO geometries as a result of a barrier that must be surmounted
before the conical intersection is sampled. In view of these
comparisons (diabatic better for linear geometries, adiabatic best
for bent geometries), it is not clear whether the adiabatic or
diabatic representation is preferred in the OH(A)+ H collision
study reported in ref 20 where all possible orientations can
contribute to the electronic quenching process.

A subtle point in surface hopping methods is the constraint
of energy conservation during a surface hop. To impose energy
conservation, the component of the momentum parallel to the
nonadiabatic coupling vectorg is adjusted to conserve energy.
When the potential energy increases during a surface hop
attempt, it may occur that the projection of the momentum on
the vectorg is too small to be adjusted. This “frustrated” surface
hop is always rejected during the trajectory integration. It is a
common practice to reverse the component of the momentum
alongg in the case of a frustrated hop. For the present problem
we found that the momentum reversal does not change the
results of the surface hopping calculations significantly, as also
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found by Hack and Truhlar.15 Therefore, we have not applied
momentum reversal in our calculations.

When the trajectory has finished, the continuous rotational
angular momentumNcont ) l and the continuous semiclassical
vibrational action vcont are calculated for the OH fragment.Ncont

is given byNcont ) |r×p|, andVcont ) - 1/2 + Ip dr, where the
integration is carried out over a complete vibrational period.
Note thatVcont g -1/2. The equations of ref 35 have been used
in evaluatingVcont. To assign trajectories to discrete integer
valuesN and V, the continuous values ofNcont and Vcont are
truncated. For example,Ncont ) 19.7 is assigned toN ) 19.
The advantage of truncation is that classical and quantum barrier
energies are almost equal.

For the SH calculations, a time step of 1 au (0.024 fs) is
used. For calculations in which the coupling between the B˜ and
X̃ states is neglected, a larger time step of 5 au is sufficient.

II.C. Quantum Mechanical Wave Packet Calculations.The
wave packet calculations, using a diabatic representation of the
electronic states, have been described in detail in ref 13. For
the analysis of the singleN phenomenon, a larger grid for the
R coordinate was necessary. A grid of 144 points between 1
and 15a0 was found to be adequate for sufficiently converged
results. In contrast to the calculations in ref 13, the total angular
momentum was zero in the quantum calculations presented in
this paper, because the classical description is also for zero
rotational angular momentum of the H2O complex.

III. Results
III.A. Branching Ratios. Quantum and classical branching

ratios for the OH(X)+ H channel, the OH(A)+ H channel,
and the total branching ratio for the non-OH+ H channels
(O(1D) + H2 and O(3P) + H + H) are shown in Figure 2, as
functions of the photon energy. Note that the electronically
nonadiabatic channel to OH(X)+ H is dominant in the entire
energy range. Experimentally, branching ratios are only known
for a photon energy of 10.2 eV:5 0.66 (OH(X) + H), 0.13
(OH(A) + H), and 0.21 (other channels). The experimental
branching ratios are in good agreement with the quantum results.
The quantum branching ratios as presented here agree better
with the experimental data than previous results reported for
the Leiden surfaces,13 for which the fraction of OH(A) fragments
(0.3) is too large. The origin of the difference between the DK
and Leiden results is probably a difference in the symmetric
stretch potentials in the vicinity of the Franck-Condon region.
For the Leiden surfaces, the initial symmetric stretch motion is
more strongly excited than for the DK surfaces. This gives rise

not only to excessively high vibrational excitation of the OH(A)
fragments,12 but also to a large fraction of the wave packet
missing the well in the collinear HOH region. This fraction of
the wave packet reaches the conical intersection seam with
smaller kinetic energy, and therefore the probability of a surface
hop to the ground-state surface is smaller.

The quasi-classical branching ratios agree quite well with the
quantum mechanical results, except that the classical results
overestimate the branching to the O+ H2 and O(3P) + H + H
channels, in particular at energies above 10 eV. This can be a
consequence of the surface hopping method, but quantum effects
could also contribute. In a calculation in which the nonadiabatic
coupling between the electronic states was switched off, only
OH(A) + H and O(1D) + H2 fragments are possible. The
calculated fraction of O(1D) + H2 fragments at 10.2 eV are
0.3 and 0.6 for the quantum and classical calculations, respec-
tively. Thus, even without surface hopping, the branching to
the O(1D) + H2 channel is too large, which indicates that in
the classical calculations the energy flow in the triatomic
complex is more efficient. The excess of the non-OH+ H
channels in the coupled classical treatment is probably due to
the same effect.

Two-dimensional calculations in whichr was fixed at 1.8a0

have been performed in order to test the accuracy of the surface
hopping method without the complication of the presence of
the non-OH+ H channels. The quantum and classical prob-
abilities for OH(X), presented in Figure 3, are in excellent
agreement. This proves that the surface hopping procedure used
in the present calculations is quite accurate and suggests that
the deviations between the classical and quantum branching
ratios for the three-dimensional case are not due to an inaccurate
treatment of the nonadiabatic transitions.

In Figure 4, separate branching ratios for the O(1D) + H2

and O(3P) + H + H channels are shown. The strong increase
of the non-OH channels above 10 eV is mainly due to the
O(3P) + H + H channel. The trajectories to both non-OH
channels almost always have their first surface hop at the
collinear HHO well region. This suggests that for those
trajectories that pass the collinear HHO well region, the
O(1D) + H2 and O(3P) + H + H dissociation channels are
competitive. However, in both the classical and the quantum
calculations, the branching ratio for O(3P)+ H + H is probably
overestimated at the expense of the O(1D) + H2 channel,
because only two electronic states (X˜ and B̃) are considered in
the model. This is related to the following problem at the
asymptotic H2 + O region.

The problem is the crossing of the potential energy surfaces
corresponding to O(1D) + H2(X 1Σg

+) and O(3P) + H2(a 3Σu
+).

Figure 2. Branching ratios for the OH(X)+ H, OH(A) + H, and
non-OH+ H channels, as a function of the photon energy. Solid lines
are results from quantum calculations; the points are quasi-classical
results.

Figure 3. Branching ratio for the OH(X) channel, obtained from 2D
calculations withr ) 1.8 a0. Only OH(X) and OH(A) fragments are
possible. Solid line: quantum results. Open circles: classical results.
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When the O atom is infinitely far apart, the potentials corre-
sponding to these fragments cross at a H-H distance (rHH) of
3.1 a0, because the energy of O(3P) is about 2 eV lower than
the energy of O(1D). This is illustrated in Figure 5. As a
consequence, the ground state (X˜ ) surface has O(1D) + H2

(X1Σg
+) character forrHH < 3.1 a0 and O(3P) + H2(a3Σu

+)
character forrHH > 3.1 a0 at the asymptotic region. This is
clearly seen in Figure 5. The intersection atrHH ) 3.1a0 should
be a sharp kink, but due to the fitting of the surface with an
analytical function, the sharp kink is rounded off. For the B˜
surface, this problem does not occur, because there is only
one electronic state of A′ symmetry correlating with O(3P) +
H + H.

As a consequence, on the ground-state surface the following
dissociation process may occur: O(1D) + H2 f O(3P) + H +
H. For an infinite O-H2 distance, this process is an artifact of
the potential energy surface model, since this process can of
course never occur in nature. In a correct treatment, one should
include an electronic state correlating with both O(3P) +
H2(a3Σu

+), and O(1D) + H + H. This is the fifth state of A′
symmetry, or the second state of B2 symmetry for C2V
geometries. The coupling between this state and the X˜ state,
which for C2V geometries also has B2 character in the H2 + O
region, should be included in this correct treatment. The
complexity of such a treatment is, however, prohibitively large.

III.B. Rovibrational Distributions of the Diatomic Frag-
ments. In general, the classical rovibrational distributions for
the OH(X) and OH(A) fragments are in good agreement with

the quantum results. The OH(X) rotational and vibrational
distributions are hardly energy dependent. We found small
deviations between quantum and classical vibrational distribu-
tions for OH(X): the quantum vibrational distribution is
somewhat sharper peaked atV ) 0. For example, at 10.2 eV,
the quantum mechanical probabilities are 0.56 (V ) 0), 0.05
(V ) 1), 0.06 (V ) 2), and 0.05 (V ) 3). The corresponding
classical probabilities are 0.41 (V ) -1 and V ) 0), 0.10
(V ) 1), 0.07 (V ) 2), and 0.05 (V ) 3).

The classical calculations reported in this paper confirm the
picture presented by Dixon5 for the OH(X) vibrational distribu-
tion. He showed that for those trajectories that have their first
surface hop close to the collinear HOH region, the OH(X)
fragments are predominantly formed withV ) 0 andV ) 1. In
contrast, when the trajectory has the first surface hop at the
collinear HHO region, the final vibrational quantum number
can be very large (more than 10). The origin of the strong
vibrational excitation for these trajectories is the collision
between the OH fragment and the H atom.

For the OH(A) fragments, only vibrational levels withV e 3
are energetically accessible for energies below 10.4 eV. Classical
and quantum probabilities forV ) 1 andV ) 2 are presented in
Figure 6. Agreement between classical and quantum results is
good. Figure 7 shows typical trajectories to OH(A,V)0) and
OH(A,V)2). For the trajectory toV ) 0, the vibrational energy
increases smoothly when the trajectory moves toward the
collinear HOH region. For most trajectories toV ) 2, on the
contrary, the vibrational excitation results from a OH-H
collision at the collinear HHO region, the same mechanism
responsible for the high vibrational excitation of the OH(X)
fragments.

For the OH(X) fragments, the ratio of theV e 0 andV ) 1
probabilities is larger than for the OH(A) fragments. This is
probably because the trajectories with a large vibrational action
miss the deep HOH well (r ) 1.8 a0), and therefore reach the
conical intersection seam with a lower kinetic energy. Since
the probability of a B˜ -X̃ surface hop increases with the kinetic
energy, the OH(X) fragments have less vibrational action.

III.C. The Single N Phenomenon.In ref 21, a combined
experimental and theoretical study on the singleN phenomenon
in the photodissociation of HOD at LymanR (10.2 eV) was
presented. In both the experiment and the calculations a very
large probability was found (≈0.5) for the highest possible
rotational state for which the rotational barrier was lower than
the available energy. Rotational barriers, which arise from the
N(N + 1)/(2µRR2) term in the Hamiltonian, were shown to play
an essential role.

The rotational barrier energies can be calculated quantum
mechanically as follows. For a grid ofR values, the two-
dimensional Hamiltonian for the remaining degrees of freedom,

Figure 4. Classical branching ratios for the O(3P) + H + H and
O(1D) + H2 channels, as functions of the photon energy.

Figure 5. Dobbyn-Knowles potential energy surfaces for the adiabatic
X and B̃states, as functions of the H-H distance, for an infinitely far
oxygen atom. Solid line: X surface. Dotted line: B˜ surface. A schematic
potential energy curve for the repulsive a3Σu

+ state of H2, correlating
with O(3P), is indicated with the broken line.

Figure 6. Vibrational product state probability for the OH(A)
fragments, as a function of the photon energy, forV ) 1 andV ) 2.
Solid lines: quantum results. Points: classical results.
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γ andr, is diagonalized, using a Fourier grid forr and a basis
set expansion in Legendre polynomialsPl(cosγ). The coupling
between the motion forr andγ is neglected. The eigenvalues
form the set of rovibrationally adiabatic potentialsVVN(R);
VVN(∞) is equal to the energy of OH(V,N) + H. The adiabatic
potential energy curves have barriers for sufficiently highN
values. The locations of the barriers, atR> 6 a0, are far enough
outside the strong interaction region to justify the approximation
of decoupling motion in theR, r, andγ degrees of freedom.
The barrier energies are significantly higher than the threshold
energies, i.e., the asymptotic values of theVVN(R) curves. For
example, the OH(A,V)0,N)25) threshold and barrier energies
are 10.9 and 11.0 eV respectively.

Quantum wave packet calculations21 with the Leiden potential
energy surface indicate that singleN phenomenon occurs at
various energies around 10.2 eV for various rotational quantum
numbers, not only for the OD fragments of HOD but also for
the OH fragments from H2O. An important difference between
the H2O and HOD cases is, however, that the singleN
phenomenon occurs at higher energies for H2O (10.25-10.75
eV) than for HOD (10.0-10.5 eV), due to the difference in the
rotational constants of OH(A) and OD(A). Therefore, an
experimental detection of the singleN phenomenon may be
easier for HOD than for H2O. Furthermore, at energies higher
than 10.2 eV the effect of higher electronic states than the B˜
state may complicate the photodissociation dynamics.

In the previous study21 we used the Leiden surface. New
calculations with the DK surface confirm the picture obtained
from calculations with the Leiden surface, both for HOD and
H2O. In this paper we present DK results for H2O, both for a
full three-dimensional (3D) and a two-dimensional (2D) treat-
ment in whichr was fixed at 1.8a0. In the following, we discuss
the energy andN dependence of thePN(E) function, i.e., the
probability that the OH(A,V)0) fragment has rotational angular
momentumN for a total energyE. The total energy is the photon
energy plus the zero point vibrational energy of H2O (0.57 eV
for the 3D case).

Before presenting the classical results for thePN(E) function,
we first discuss the quantum results. The quantum result for
P25(E) as a function of the energy is presented in the left panel
in Figure 8. We choseN ) 25, because the maximum ofPN(E)

is largest for thisN value. The quantumPN(E) function rises
rapidly with the energy above the barrier energy, but decreases
again above the barrier energy corresponding toN ) 26.
Consequently, theP25 function has a maximum at an energy
between the barriers forN ) 25 and 26. At this energy (11.01
eV), the rotational population distribution is strongly peaked at
N ) 25: in other words, we observe the singleN phenomenon.
This is illustrated in the right panel of Figure 8, where
PN(E)11.01 eV) is plotted as a function ofN.

The classicalP25(E) function is included in Figure 8 (open
circles). Deviations between classical and quantum results,
clearly visible in this figure, are due to the averaging overVcont

between 0 and 1 for the classical results. A very simple solution
to this problem is to only consider trajectories for which the
continuous vibrational actionVcont lies in a small interval around
Vcont ) 0, e.g.,-0.05e Vcont e 0.05. ThePN function for this
Vcont interval is included the left panel of Figure 8 and is in
excellent agreement with the quantum result. This function still
has a lower maximum than the quantum function, because of
the averaging overNcont between 25 and 26, and because the
quantum function shows an interference structure, which
enhances the maximum probability.

In the right panel of Figure 8, the classical rotational
distributions forVcont intervals of-0.05 to+0.05 are included,
for energies where theP25 function has a maximum (11.02 eV).
The single N phenomenon is reproduced by the classical
calculations forVcont interval of -0.05 to +0.05, but not for
the standard interval 0-1. For the standard vibrational action
interval, the maximum of thePN function disappears in the
process of averaging overVcont, because the maximum of the
PN function shifts to higher energies with increasingVcont. For
example, for aVcont interval of 0.4-0.5, the maximum has shifted
to 11.22 eV.

For trajectories withVcontbetween-0.05 and+0.05, we found
good agreement between quantum and classical results. We
therefore conclude that the singleN phenomenon can be
described classically. However, because we throw away many
trajectories withVcontoutside the selected interval, a large amount
of trajectories, about 200 000, must be calculated for statistically
accurate results for thePN(E) function. The required computer
time is then comparable to the computer time for a quantum
calculation. Therefore, the narrow vibrational action interval
procedure is not suitable for practical applications.

In the two-dimensional model, wherer is fixed at 1.8a0, the
OH vibration problem does not occur. Therefore, the quantum
and classicalP24 functions, presented in Figure 9, agree well.

Figure 7. Two trajectories to OH(A) fragments for a photon energy
of 10.2 eV. In upper panels,R andr are plotted, in the lower panelsR
andγ. Trajectories A and B are typical trajectories to OH(A,V)0) and
OH(A,V)2), respectively.

Figure 8. Left panel: P25 as a function of the total energy (photon
energy plus zero point vibrational energy). Solid line: quantum result.
Open circles: standard classical trajectory results. Closed circles:
classical trajectory result for aVcont interval of -0.05 to+0.05. The
vertical dashed lines indicate barrier energies forN ) 25 andN ) 26.
Right panel: PN(E) as a function ofN, for E ) 11.02 eV. Crosses:
quantum results. Closed circles: classical trajectory result for aVcont

interval of -0.05 to+0.05.
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Results of classical calculations in which the coupling between
the electronic states was neglected, included in Figure 9, agree
very well with the fully coupled results. Since the main features
of the single N phenomenon are also found in the two-
dimensional single surface model, this simplified model is used
to study the mechanism of the singleN phenomenon.

In a previous paper21 we have interpreted the singleN
phenomenon in terms of dynamically constraint trajectories, i.e.,
trajectories that have turning points in the dissociation coordinate
R due to the rotational barrier. We have argued that this leads
to a preference for the highest finalN value for which the barrier
is below the available energy. The classical calculations confirm
this picture and make it possible to study this mechanism in
more detail than is possible in a quantum mechanical study.
We have followed single surface trajectories for the 2D model,
in which r was fixed at 1.8a0. The energy of the trajectories
was chosen in a bin of 11.1-11.2 eV, where the rotational
distribution shows a singleN phenomenon forN ) 24. Three
typical trajectories are shown in Figure 10. In the panels on the
left, R andγ during a trajectory are plotted, and on the panels
on the right,R and the rotational angular momentumN. The
trajectories first go to the region of the collinear HOH well,
where the rotational angular momentum reaches a maximum.
When the trajectories go to the other collinear region (HHO),
N initially decreases because the potential energy increases with
decreasing HOH bond angle, but afterγ ) 50°, the potential
decreases again. Depending on theR value at which the
trajectory passes the collinear HHO region,RHHO, the rotational
angular momentum reaches a second maximum when the
trajectory arrives at the collinear HHO region. The increase of
N is larger for trajectories with lowerRHHO values. For trajectory
A (RHHO ) 4.7 a0), N increases to such an extent that the
rotational barrier prevents direct dissociation, and the motion
in R has a turning point. For trajectory B,RHHO is a larger, and
althoughN has a maximum at the collinear HHO region, the
rotational barrier is low enough. This trajectory ends at the single
N (N ) 24). No substantial increase of rotational angular
momentum occurs when trajectory C approaches the collinear
HHO region, sinceRHHO is quite large (7.3a0).

The trajectories can be divided into three types, depending
on the value ofR at which the trajectories pass the collinear
HHO region for the first time: those withR < 5.5a0 (A), with
5.5 a0 e R e 6.5 a0 (B), and withR > 6.5 a0 (C). The three
trajectories in Figure 10 are typical examples of the three types
of trajectories. Type A trajectories are always indirect. We now

label the trajectories not only with the final angular momentum
N, but also with the type of the trajectory. Probabilities for a
rotational stateN and a particular type T (T) A, B, C), are
presented in Figure 11, for an energy bin 11.1-11.2 eV. The
rotational distributions for type A and type C trajectories are
strongly inverted but do not show the singleN phenomenon. In
contrast, the rotational distribution for type B trajectories shows
an extreme singleN phenomenon. We therefore conclude that
the singleN phenomenon originates from type B trajectories,
i.e., trajectories that pass the collinear HHO region with theR
values low enough to produce a visible increase inN, without
being trapped due to the rotational barrier.

III.D. Comparison with the OH(A) + H Collision Process.
It is interesting to compare the photodissociaton process
discussed in this paper with scattering of OH(A) on H, since
both processes occur on the same set of coupled potential energy
surfaces. A quasi-classical trajectory study of collision of OH(A)

Figure 9. P24 as a function of the total energy (photon energy plus
zero point vibrational energy), obtained from two-dimensional calcula-
tions. Solid line: quantum result. Open circles: classical results with
surface hopping. Closed circles: classical results without surface
hopping.

Figure 10. Three typical single surface trajectories for the 2D model.
On the panels on the left,γ and R are plotted, on the panels on the
right, N andR. The labels of the trajectories (A, B, and C) correlate
with the three types of trajectories, as discussed in the text. A contour
of the 2D potential is indicated in the panels on the left. The contours
are for energies between 11.5 and 6.5 eV, with an energy difference of
0.5 between each contour line.

Figure 11. Probability for the trajectory to have type T (A, B, or C)
and end with a rotational quantum numberN, as a function ofN. The
types of the trajectories are discussed in the text. The energy bin was
11.1-11.2 eV.
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with H has been reported recently.20 To compare photodisso-
ciation with the collision process, we performed OH(A)+ H
calculations for zero impact parameter, corresponding to a zero
overall rotation of the complex, for a H-OH translational energy
of 0.09 eV (2 kcal/mol). The calculated OH(X)+ H/OH(A) +
H/O(1D) + H2 branching of 0.78/0.07/0.15 is close to the
branching for the photodissociation process at 9.2 eV (see Figure
2). This is surprising, since the photodissociation and the
collision processes are quite different, as is evident from the
large difference between the OH(X) product vibrational and
rotational population distributions. For photodissociation, the
vibrational distribution is sharply peaked at peaked atV ) 0. In
contrast, the vibrational population distribution of the OH(X)
fragments from the collision is much broader. The rotational
distribution of the OH(X,V)0) fragments from photodissociation
is strongly inverted, with a maximum atN ) 38, while the
OH(X,V)0) rotational distribution for the collision has a
maximum atN ) 0. The main difference between the photo-
dissociation and the OH(A)+ H collision is that for photodis-
sociation all trajectories start at a bent geometry, whereas in
the collision the initial angle between the OH(A) molecule and
the H atom can have any value, with equal probability (see
Figure 1). OH(X) fragments formed after a collision of OH(A)
with H in a near-collinear arrangement (HOH or HHO) have a
low rotational angular momentum. Highly rotationally excited
fragments can only be produced for those collisions for which
the H atom attacks OH in the perpendicular direction.

IV. Conclusions
The first purpose of this work was to test the accuracy of

classical surface hopping calculations for an electronically
nonadiabatic process. Detailed comparisons between classical
and quantum branching ratios and OH(A) rovibrational distribu-
tions for a wide range of energies have been discussed in this
paper. The rovibrational distribution of the OH(X) fragments
are not discussed here, because our classical calculations confirm
the results obtained by Dixon21 for a photon energy of 10.2 eV
and because the OH(X) rovibrational distribution is hardly
energy dependent.

The classical results agree quite well with the quantum results,
provided that an adiabatic representation of the electronic states
was used. However, we found some inadequacies of the classical
calculations. The classical fraction of non-OH channels was too
large for energies above 10 eV, which is probably due to a more
efficient energy flow in the triatomic complex. Another problem
is that for studying subtle effects in the rotational distribution,
such as the singleN phenomenon, the absence of the quantiza-
tion of the vibrational action and of the zero point vibration in
classical mechanics is a serious problem.

For the 2D model, in whichr was fixed at 1.8a0, the above-
mentioned problems do not exist: non-OH channels are
impossible, and the vibrational action problem for the OH(A,V)0)
rotational distribution does not occur. Consequently, for the 2D
model we obtained excellent agreement between quantum and
classical results, both for the branching ratio and the singleN
phenomenon.

The second purpose of classical calculations is to help with
the interpretation of quantum results. For this purpose, the
classical calculations do not need to be accurate. The classical
calculations indicate that the strong vibrational excitation of
OH(A) results from OH-H collisions at the collinear HHO
geometry. Classical calculations also help to understand better
the singleN phenomenon. The singleN phenomenon can be
reproduced with classical trajectory calculations, both for the
two-dimensional model and for the three-dimensional system

with a small vibrational action interval. An analysis of 2D
trajectories indicates that the trajectories leading to the single
N are those trajectories that pass the collinear HHO region with
just the rightR value for an optimal increase of the angular
momentum without the trajectory being trapped due to too high
a rotational barrier.

Our final conclusion is that for photodissociation processes
classical results do not always agree quantitatively with quantum
results. In the absence of quantum results, the classical results
should be handled with skepticism. But a classical treatment is
realistic enough to mimic the qualitative aspects of the photo-
dissociation process. Classical calculations accompanying quan-
tum calculations will always increase the insight into the
dynamics.
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