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The Heisenberg correspondence between classical Fourier components and quantal matrix elements is used
to demonstrate remarkably accurate scaling laws, by which the matrix elements scale simply with the reduced
energy (Eh/B), whereB is a characteristic energy parameter andEh is the average energy of the relevant states.
Applications to the Morse oscillator, a cylindrically symmetric double well (champagne bottle) potential and
to the spherical pendulum are described. The relevance of the scaling rules to modeling highly excited molecular
vibrational states close to saddle points on the potential surface is discussed. Significant differences between
Morse oscillator and vibron oscillator matrix elements are reported.

I. Introduction

Resonant energy flow in polyatomic molecules continues to
attract substantial experimental and theoretical interest, particu-
larly the interplay between “chaos” and localization at high
vibrational excitation, and its implications for mode selective
chemistry. A simple but powerful class of models for studying
resonant vibrational dynamics (from quantum, classical and
semiclassical viewpoints) is based on effective Hamiltonians,
which may either be parametrized to reproduce experimental
data or derived from ab initio potential energy surfaces by
perturbation theory.1,2 In either case most current models are
expressed, implicitly or explicitly, as expansions in harmonic
oscillator shift operators. In other words the quantum (and, by
the correspondence principle, classical action angle) dynamics
are fundamentally based on harmonic oscillator scaling rules,
which are particularly simple, because it is always possible to
separate the spectroscopic parameters from the quantum num-
bers. For example, diagonal energies can always be expressed
in terms ofV + δ, whereδ is a Maslov index dependent on the
dimensionality of the system. Similarly, the coupling matrix
elements can be written in terms of scaled shift operators,a
and a†, with matrix elementsxVδV′,V-1 and xV+1δV′,V+1

respectively. There is also a widely used3,4 semiclassical version
of effective Hamiltonian theory, based on replacement ofV +
δ by the classical actionI and of the shift operators byxIe(iR,
whereR denotes the classical angle variable conjugate toI.5,6

Such harmonic scaling rules permit the prediction of quantum
and classical dynamics, for many systems, at any energy of
interest. However real molecular vibrations always exhibit some
degree of anharmonicity. Weakly anharmonic systems are
commonly handled by “harmonically coupled anharmonic
oscillator” theories which use Dunham expansions on the
diagonal and harmonic shift operators for the off-diagonal
coupling. No such harmonic oscillator based model can however
cope with the extreme anharmonicity encountered when a Morse
oscillator approaches dissociation or, even more severely, when
a system approaches a saddle point.7,8 Any accurate theory of
resonant vibrational dynamics in regions of strong anharmonicity

must utilize scaling rules that reflect the anharmonicity of the
physical system.

The purpose of this paper is to lay the foundations for such
a theory by pointing to the existence of remarkably accurate
semiclassical scaling laws for the matrix elements. The aim is
to provide scaling laws for strongly anharmonic zeroth-order
models that can be used in place of the standard harmonic
oscillator based theories. The simplest and most familiar zeroth-
order model considered is the Morse oscillator, but we also
introduce new scaling rules for two model systems with saddle
points: a cylindrically symmetric double well (dubbed the
“champagne bottle”9) and a planar or spherical pendulum.10 The
champagne bottle model applies, for example, to quasi-linear
systems, such as the bending vibration of water, which can pass
through linearity with eight vibrational quanta of excitation in
the bending mode. The pendulum is relevant to systems which
can undergo internal rotations, such as the bond-breaking
internal rotation of HCP (rotation of H around the CP core)
when the available bending/rotational energy exceeds∼27 000
cm-1.11 Thus the results of this paper permit, for example, the
derivation of scaling laws for a 2:1 resonance between Morse
oscillators, or between a Morse oscillator an a symmetric double-
well potential.

Each of the zeroth-order systems is expressed as a three-
parameter model with a massµ (or moment of inertiaI in the
case of the pendulum) and a potential function of the form
BV(ar) whereB scales the energy anda the coordinater. The
theory employed involves angle-action transformations of the
classical mechanics to obtain laws relating the scaled quantum
numbers (n + δ)a/x2µB to the reduced energyE/B. Hereδ is
the Maslov index (δ ) 0, 1/2, or 1 according to the dimensional-
ity of the system). Expressions for representative coupling
operators are then obtained in terms of the reduced energy and
the classical angle variable. Finally the resulting formulas for
the classical Fourier components are related to the quantal matrix
elements, and shown to be remarkably accurate, by invoking
the Heisenberg correspondence principle.12 The present angle-
action scaling rules are all analytical, though the corresponding
quantal matrix are only analytical for the Morse oscillator; those
for the systems with saddle points can only be determined
numerically.

The basis of the correspondence principles and scaling laws
are established in section II. Section III is concerned with the
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Morse oscillator, while sections IV and V are devoted to the
champagne bottle and spherical pendulum systems, respectively.
Mathematical details of the angle-action transformations for the
latter systems are covered in the Appendices. The conclusions
are summarized in section VI.

II. Correspondence Principles and Scaling Laws

The fundamental classical/quantum correspondence relates
the classical actionI to the quantum numbern by the equation6,13

whereδ ) 0 for rotation in a plane,δ ) 1/2 for vibration or
libration (e.g., orbital motion) andδ ) 1 for a two-dimensional
isotropic oscillator. As an immediate consequence, the quantum
mechanical eigenvalues may be approximated as

while the local energy level separations are related to the
classical frequenciesω ) Hcl/I by the equation

Turning to the quantum mechanical matrix elements, there
is no strict angle-action formulation of quantum mechanics,14-16

but a systematic semiclassical theory6 may be based on the
existence of action operators

whereR is the classical angle conjugate to the actionI. The
notationR is preferred to the more commonφ for this classical
angle5 to avoid later confusion with the spherical polar azimuthal
angle. The eigenfunctions ofÎ are clearly given by

which means that the matrix elements of an operatorÂ ) A(Î,R)
may be expressed as

in which Ih is an average action, which is taken for the scaling
laws that follow as the action at the average energyEh )
(En + En′)/2. Equation 6 expresses the Heisenberg corre-
spondence principle between quantal matrix elements and
classical Fourier components.12 The parentheses (n′|Â|n) in eq
6 are used henceforth for the Fourier components and bracket
combinations〈n′|Â|n〉 for exact matrix elements.

The above results are particularly interesting for systems with
three-parameter Hamiltonians of the form

whereB anda-1 determine the energy and distance scaling of
the potential function. The classical action then takes the form

wherex( are the classical turning points. The combination of
eqs 1 and 8 implies that

where the reduced energy and action scaling parameters are
given by

and

Equation 9 implies that the scaled quantum number (n + δ)-
b is a universal function of the scaled energyε for systems with
the potentialBV(ax). Alternatively, by inverting eq 9,

wheref[(n + δ)b] is the inverse function toF(ε). Taken together
with eqs 3 and 6, these results imply that the quantum level
separations and the quantum matrix elements scale simply with
the reduced mean energyεj ) Eh/B, regardless of the precise
massµ and parametersB anda-1, applicable to the situation in
hand.

Similar arguments apply to separable systems, such as
degenerate oscillators, with angular momentum. Suppose, for
example, that

It follows that

which rearranges to

where

Herez ) ar while ε andb are again given by eq 10. Inversion
of eq 16 implies that

in which both (nr + 1/2) andmare scaled by the same parameter
b, which may be regarded as a quantum capacity parameter.
Formulas are given below to relate it to the quantum number at
E ) B for the various model systems.

It should be noted in passing thatnr defined by eq 14 is the
radial quantum number, related to the number of radial nodes
in the wave function, or the quantum numberVbent in the
literature on quasi-linear vibrations.17 The quantum numberV

I = (n + δ)p (1)

En = Hcl(I) ) Hcl[(n + δ)p] (2)

1
2
(En+1 - En-1) =

dEn

dn
) dI

dn

∂Hcl

∂I
) pω (3)

Î ) p(-i
∂

∂R
+ δ) (4)

ψn(R) ) 1

x2π
einR (5)

(n′|Â|n) =
1

2π∫-π

π
A(Ih,R)ei(n-n′)R dR (6)

Hcl ) 1
2µ

p2 + BV(ax) (7)

I ) 1
2π

Ip(x) dx ) 1
π ∫x-

x+ x2µ[E - BV(ax)] dx (8)

(n + δ)b ) F(ε) (9)

ε ) E
B

, b ) xa2p2

2µB
(10)

F(ε) ) 1
π ∫z-

z+ xε - V(z)dz, z ) ax (11)

En ) Bf[(n + δ)b] (12)

Hcl ) 1
2µ (pr

2 +
pφ

2

r2) + BV(ar), pφ ) mp (13)

Ir ) (nr + 1
2)p ) 1

π∫r-

r+ x2µ{E - BV(ar) - m2p2

2µr2} dr

(14)

(nr + 1
2)b ) F(ε,mb) (15)

F(ε,mb) ) 1
π ∫z-

z+ x(ε - V(z) - m2b2

z2 ) dz (16)

Enr,m ) Bf[(nr + 1
2)b,mb] (17)
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) 2nr + |m|, which is employed for the pendulum model,
corresponds toVlinear in the terminology of Johns.17

III. Morse Oscillator

The case of a Morse oscillator is taken as a familiar
introductory example. The Hamiltonian takes the form

(with B in place of the usualD for the sake of uniformity) and
the scaled energy levels may be expressed as

where the parameterb is given by eq 10. Put in another way,
b is related to the quantum numbernB at E ) B by b ) (nB +
1/2)-1. It is also readily verified that

which confirms that the local level spacing scales as a function
of the reduced energy.

The canonical transformation between position-momentum
(x, p) and angle-action (I,R) variables6 may also be expressed
in terms ofε rather thanI:

It follows from eqs 6, 21, and 22 that the Fourier components
of any power or combination ofx, p, and the Morse variabley
) [1 - exp(-ax)] may be expressed in terms of the parameters
B andb, the average reduced energyε, and the quantum number
differencen - n′. For example,

It may also be verified that the corresponding off-diagonal
Fourier components ofx, p, andy are related by

The diagonal Fourier component ofp vanishes and that ofx is
given by

The upper part of Figure 1 shows the remarkable agreement
between (n′|y|n) given by eq 23 and the corresponding exact
quantum mechanical form18

whereγ is related to the scaling parameterb of eq 10 byγ )
(2/b). The points are values of〈n + j|y|n〉 plotted against the
mean reduced energyεj ) (εn + εn′)/2 for the OH bond Morse
parameters in a local mode model for H2O,19 namely,ωe )
3874.62 andωexe ) 81.20. The lines are the classical Fourier
components given by eq 23.

A similar comparison is given in the lower part of Figure 1,
between the above diagonal Fourier components and the quantal
matrix elements18

whereψ(0) is the digamma functionψ(0)(z) ) d ln Γ(z)/dz21 and

Note that the matrix elements ofx, unlike those ofy, become
infinite as ε f 1. It is unnecessary to give other graphical
comparisons because it may be verified, by use of the approxi-
mation

Figure 1. Matrix elements (points) and Fourier components (lines) of
the Morse variabley ) 1 - e-ax (upper) and ofax (lower). The quantum
results are given for Morse parameters applicable to the OH local bond
vibrations of H2O, ωe ) 3874.62, andωexe ) 81.20 cm-1.

〈n + j|y|n〉 ) δ0,j + (-1)j+1

x[n + j]!Γ(γ - n - j)(γ - 2n - 2j - 1)(γ - 2n - 1)

n!Γ(γ - n)γ2

(26)

〈n|x|n〉 ) a-1 ln γ + a-1 ∑
m)0

n

Cm{2[ψ(0)(m + 1) - ψ(0)(1)] -

ψ(0)(γ - n - m - 1)} (27)

Cm ) (γ - 2n - 1)
n!Γ(γ - n - m - 1)

(n - m)!Γ(γ - n)
(28)

x1 - ε ) 1 - (nj + 1
2) ω

2B
=

γ - 2n - j - 1
γ

(29)

H ) 1
2µ

p2 + B[1 - e-ax]2 (18)

εn )
En

B
) 2(n + 1

2)b - (n + 1
2)2

b2 (19)

pω ) (∂E
∂n) ) 2bBx1 - ε (20)

x ) a-1 ln(1 + xεcosR
1 - ε ) (21)

p ) - x2µB(xε(1 - ε)sin R

1 + xεcosR ) (22)

(n + j|y|n) ) δ0,j - 1
2π ∫- π

π (1 - ε)e-ijR

1 + xεcosR
dR )

δ0,j + (-1)j+1x1 - ε{1 - x1 - ε

xε
}j

(23)

(n + j|y|n) ) ax1 - ε(n + j|x|n) )
i(n + j|p|n)

x2µB
, j g 1

(24)

(n|x|n) ) a-1 ln(1 + x1 - ε

2(1 - ε) ) (25)
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that the known relationships between〈n′|y|n〉, 〈n′|x|n〉, and
〈n′|p|n〉18 are matched by the Fourier component identities in
eq 24.

In view of the relevance to spectroscopic resonance models,
it is also interesting to compare the∆n ) (1 Morse oscillator
matrix elements with those of “harmonically coupled Morse
oscillator”19 and “vibron oscillator”20 models. The former
depend on the standard harmonic oscillator creation operator
identity

wherenj ) n + 1/2 is the mean quantum number. Bearing in

mind thatµωe ) x2µa2B for the Morse oscillator, eqs 23 and
24 show that the corresponding Morse oscillator Fourier
coefficient is given by

whereb is given by eq 10. In other words, within the validity
of the correspondence principle, the true Morse matrix element
of â† is proportional to the square root of the scaled mean energy
εj rather than that of the mean quantum number. The upper part
of Figure 2 illustrates the difference between the forms in eqs
30 and 31 as a function of the reduced energyεj. The solid line
shows the behavior of the true Morse Fourier component ofa†,
the open circles are the harmonic matrix elements〈n + 1|â†|n〉.
It is evident that “harmonically coupled anharmonic oscillator”
models (open circles) significantly overestimate the true creation
operator coupling (solid line) as soon as the energy exceeds
40% of the dissociation energy.

Finally, the vibron model employs states|N,V}, with V running
from 0 toN at the dissociation limit. The zeroth-order diagonal
energies follow the Morse form in eq 19, withN + 1/2 in place
of b-1, and the off-diagonal elements are given by

they clearly reduce to the harmonic form in the limitVj , N
but they fall off to 1/x2 as Vj f N, instead of increasing
monotonically withVj. In the lower part of Figure 2, the vibron
matrix elements{N,V + 1|C+|N,V} (filled circles, usingN )
24) are compared with the Morse scaling (n + 1|â†|n) [eq 31]
and with the matrix element (n + 1|y|n) [eq 23]. The first two
plots are multiplied byxb and the second byx2 for scaling
convenience. The comparison reveals no clear connection
between the important∆n ) (1 matrix elements, except in the
low ε limit. The vibron matrix elements (filled points) clearly
correspond neither to the Morse oscillator creation/annihilation
matrix elements (solid line) nor to the matrix elements of the
variabley ) 1 - e-ax (dashed line), which were chosen for
comparison in view of the qualitatively similar falloff asε f
1. Moreover, even if one could find more complicated operators
with Morse matrix elements closer to the elements{N,V +
1|C+|N,V}, it is extremely unlikely that they would carry the
vibron selection rule∆n ) (1. The upshot of this discussion
is that there seems little benefit in trying to establish a close
connection between the two types of theory. Morse oscillator
methods have the benefit of a close connection with potential
energy formulations of vibrational structure, while the vibron
method is a more formal algebraic technique with particularly
simple vibrational coupling rules.

IV. The Champagne Bottle

Details of the angle-action theory for the champagne bottle
Hamiltonian

are given in Appendix B for arbitrary angular momentumpφ )
mp. Results are given in terms of the rootszi of the cubic
polynomial equation

and the combination

whereε andb are given by eq 10, and the roots are ordered as
z1 > z2 > z3. Explicit formulas, given in Table 1, are available
for the special casem ) 0. Note that, although the functional
forms are complicated, thezi andk and thus the scaling rules

Figure 2. Comparison of∆n ) (1 matrix elements of various models.
In the upper part, the semiclassical scaling for the Morse oscillator
(specifically that of the creation operator, solid line) is compared with
the predictions of a harmonically coupled Morse oscillator model (dots).
In the lower part the vibron matrix elementsxb{N,V + 1|C+|N,V} are
compared with the Morse oscillator Fourier componentsxb(n +
1|a†|n) (upper line) andx2(n + 1|y|n) (lower line). Parameter values
were taken asN + 1/2 ) b-1 ) 24.5.

〈n + 1| â†|n〉 ) 〈n + 1| 1

x2p(xµωex - i
p

xµωe
)|n〉 )

xnj + 1
2

(30)

(n + 1|â†|n) ) (n + 1| 1

x2p(xµωex - i
p

xµωe
)|n) ) εj

2b

(31)

TABLE 1: Root Positions and Parameter Values for the
Champagne Bottle (“champ”) and Spherical Pendulum
(“pend”) in the Special Casem ) 0

z1 z2 z3 k2

εchamp< 1 1 + xε 1 - xε 0 2xε/(1 + xε)
εchamp> 1 1 + xε 0 1 - <xε (1 + <xε)/2xε
εpend< 1 1 1-2ε -1 ε
εpend> 1 1 -1 1-2ε ε-1

{N,V + 1|C+|N,V} ) x(Vj + 1/2)(N + 1/2 - Vj)

(N + 1/2)
; (32)

Hchamp) 1
2µ (pr

2 +
pφ

2

r2) + B(1 - a2r2)2 (33)

z3 - 2z2 + (1 - ε)z + m2b2 ) 0 (34)

k2 )
z1 - z2

z1 - z3
(35)
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are uniquely determined by the reduced energyε and the product
mb. The quantum capacity parameterb itself may be shown,
with the help of eqs B5-B7, to be related to the quantum
numberVr

B at E ) B by

To take a concrete example, we can considerr to be a scaled
bending variable approaching the bent to linear transformation
in, for example, H2O, andm to be the signed angular momentum
around thea-axis (normally denotedka). The symmetry of such
situations requires that any coupling must involve even powers
of r. We therefore consider matrix elements ofr2 which are
given according to eq B13 by

whereA2µ
(2)(k) is given by eq A19. The Fourier components of

r2 therefore become

Figure 3 shows the very close agreement between the classical
Fourier components, given by eqs 38, and the quantum
mechanical matrix elements ofr2, for a model withVr

B ) 7.15,
obtained by a best fit to the calculated pure bending levels of
H2O,22 with a barrier atB ) 11000 cm-1. Assuming a reduced
mass for O and a pair of H atoms,µ ) 1.78 amu, this would

imply a ) 1.35 Å-1, according to eqs 10 and 36. The mean
value ofε, used for the quantum mechanical points, was taken
asεj ) (EVr+µ + EVr)/2B.

The general level of agreement between the quantum me-
chanical points and the classical lines is a remarkable testimony
to the accuracy of the scaling laws, for a system whose classical
motions experience dramatic changes on crossing the barrier at
E ) B. Minor discrepancies occur however in the immediate
vicinity of the barrier maximum,ε ) 1, where the underlying
Bohr quantization condition is known to require corrections.6,9

Not surprisingly, the accuracy of the scaling is also seen to
improve on passing fromm ) 0 to m ) 2, because the
semiclassical phase correction decreases with increasingm.9 It
should also be noted that the Fourier component plots form )
0 are universal functions for all parameter sets (µ, a, B).
However those form* 0 must be computed for the appropriate
composite quantum number,b ) ap/x2µB, becauseb appears
in eq 34 for the rootszi, and hence for the variablek, via eq 35.

V. Spherical Pendulum

Elements of the angle-action theory for the spherical pendu-
lum, for which

are given in Appendix C. Results are given in terms of the roots
zi of the cubic polynomial equation

and the combination

whereε ) E/B andâ ) p/xIB. Table 1 gives expressions for
the zi and fork2 in the special casem ) 0.

As discussed in Appendix C, states are labeled bym and a
quantum numberV equivalent to that of a degenerate harmonic
oscillator in the small amplitude limit. It follows from eq C8
that the capacity parameter,â, is related toVB at E ) B by the
identity

We also recognize that motions coupled to the spherical
pendulum must interact via even trigonometric functions of the
angleθ. The function sin2 θ, which was taken earlier10 as the
leading term for Fermi resonance coupling to a stretching mode,
is selected for illustrative purposes. Equations 6 and C11-C13
show that

where

in which A2µ
(2)(k) andA2µ

(4)(k) are given by eqs A19 and A20.
The comparisons given in Figure 4 have the same qualitative

character as those given for the champagne bottle in Figure 3.
They relate to a previous study10 with p2/2I ) 0.25 andB )

Figure 3. Matrix elements (points) and Fourier components (lines) of
(ar)2 for the champagne bottle withm ) 0 (top) and withm ) 2
(bottom). The quantum mechanical points were obtained from a model
with µ ) 1.78 amu,B ) 11000 cm-1, and a ) 1.35 Å-1, roughly
consistent with the bending motions of H2O.

Vr
B + 1

2
) 2x2

3πb
(36)

r2 ) a-2[z1 - (z1 - z2) ∑
µ ) 0

∞

A2µ
(2)(k) cosµRr] (37)

(Vr + µ|r2|Vr) ) a-2[z1 - (z1 - z2)A0
(2)(k)] µ ) 0

) - 1

2a2
(z1 - z2)A2µ

(2)(k) µ * 0 (38)

Hpend) 1
2I (pθ

2 +
pφ

2

sin2 θ) + B sin2 θ
2
, pφ ) mp (39)

(2ε - 1 + z)(1 - z2) - m2â2 ) 0 (40)

k2 )
z1 - z2

z1 - z3
(41)

VB + 1 ) 4x2
πâ

(42)

(V + µ|sin2 θ|V - µ) ) (1 - z1
2)δµ0 + 1

2
(1 + δµ0)C2µ (43)

C2µ ) 2z(z1 - z2)A2µ
(2)(k) - (z1 - z2)

2A2µ
(4)(k) (44)
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100 in a common system of energy units. Again there is a sharp
break in the classical curves associated with drastic changes in
the nature of the classical motions below and above the barrier
at E ) B. The changes are more strongly marked form ) 0,
for which there is an unstable classical fixed point at the barrier
maximum, than form ) 2. There is also again very close
agreement between the lines marking the classical Fourier
components and the points that represent the quantal matrix
elements.

VI. Summary and Conclusions

The purpose of this paper is to demonstrate some remarkable
scaling laws for the matrix elements of representative coupling
operators between strongly anharmonic vibrational states. The
rules follow from the correspondence principles between
classical actions and quantum numbers, and between Fourier
components and matrix elements. They are presented for three-
parameter Hamiltonians characterized by a massµ (or moment
of inertia I) and a two-parameter potential of the formBV(ax),
in which case the reduced energyε ) E/B is found to be
functionally dependent on the scaled actionIa/x2µB and vice
versa, where the functional form depends on the nature ofV(ax).
Consequentlyany coupling function or operator, expressed in
action-angles, can equally be expressed in terms of the reduced
energy and the classical angles. It follows that the classical
Fourier components may be treated as functions of the scaled
energyε. Thus, by the Heisenberg correspondence principle,12

the same must be true for the quantum mechanical matrix
elements.

Illustrations were provided for three strongly anharmonic
oscillator systems: the Morse oscillator, a cylindrically sym-
metrical double well potential (champagne bottle) and the
spherical pendulum (rotating over the surface of a sphere under

a uniform field). In each case, remarkable quantitative agreement
between classical and quantum results was found for the whole
family of possible matrix elements. Figures 1-4 show at a
glance how the magnitudes of the matrix elements vary with
the reduced energyε and with the quantum number change,
∆n or ∆V. The results are all expressed in analytical form,
despite the fact that quantum mechanical treatments of the
champagne bottle and the spherical pendulum can only be
performed numerically. Moreover the scaling with reduced
energy allows the presentation of all matrix elements for systems
of the given type in a single diagram, regardless of the precise
mass, energy, and length scale parameters for the physical
problem under consideration.

The Morse oscillator example is relatively simple, because
the results involve merely powers and square roots of familiar
functions, which are simpler to visualize than the combinations
of gamma functions that make up the exact matrix elements.18

It was also possible to demonstrate the absence of any simple
connection between Morse oscillator matrix elements and those
employed in superficially similar vibron oscillator theories.20

The champagne bottle and spherical pendulum models require
more sophisticated analysis, much of which is placed in the
Appendix. The results are typically expressed in terms of
complete elliptic integrals, for which subroutines are available
in Numerical Recipes.23

The results presented here suggest that the off-diagonal matrix
elements (resonant interactions) in polyatomic molecule effective
Hamiltonian models should be carefully parametrized to reflect
the underlying dynamics, rather than parametrized in an ad hoc
manner to reproduce eigenstate spectra. At energies well below
dissociation or a saddle point, harmonic oscillator based effective
Hamiltonian models may be appropriate, but care must be taken
to ensure that the (off-diagonal) resonance scaling is consistent
with the (diagonal) zeroth-order energy level spacings. By
contrast, at energies approaching and exceeding a saddle point,
harmonic oscillator based scaling rules break down catastrophi-
cally, and intrinsically anharmonic zeroth-order models must
be used; no harmonic oscillator based theory can reproduce the
cusps in Figures 3 and 4.

Although real molecular vibrations will not conform precisely
to the above model systems, these systems undoubtedly provide
betterzeroth-ordermodels for certain vibrational modes than
the simple harmonic oscillator. Thus, it may prove possible to
use perturbation theory to derive rapidly convergent effective
Hamiltonians from one of our strongly anharmonic systems as
a zeroth-order model. We suggest two possible approaches to
directly fitting eigenstate spectra:

1. The analytical scaling rules derived above could provide
a reasonable model for scaling the off-diagonal matrix elements,
but higher order terms, essentially empirical in nature, could
be added to the model diagonal energy terms to provide a better
fit to experiment. This approach is conceptually analogous to
the common harmonically coupled anharmonic oscillator model,
except that one of our scaling systems replaces the harmonic
oscillator as the zeroth-order model.

2. A more arbitrary zero-order model (for example a Fourier
series, with the pendulum as the lowest order term) might be
defined to reproduce the zeroth-order energy level spacings, after
which numerical solution of the angle-action classical-mechanics
for this potential could be used to generate matrix element
scaling rules, in place of the analytical expressions presented
here. Reference 24 gives an example of this approach.

Acknowledgment. M. P. J. and C. D. C. acknowledge
financial support from the U.K. EPSRC.

Figure 4. Matrix elements (points) and Fourier components (lines) of
sin2 θ for the spherical pendulum withm ) 0 (top) and withm ) 2
(bottom). The quantum mechanical points were obtained from a model
with B ) 100 andp2/2I ) 2, both expressed in scaled energy units.
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Appendix A: Mathematical Preliminaries

The angle-action theory in the following sections makes use
of Jacobian elliptic functionssn(u,k), cn(u,k), anddn(u,k),21,25,26

of which sn(u,k) is implicitly defined by the equation

The nature of the integrand in eq A1 ensures thatsn(u,k)
vanishes foru ) 0, and reaches a maximum value of unity for
real u, at which point

whereK(k) is the complete elliptic integral of the first kind. In
the theory that follows, the variableu is proportional to the
classical angle variable, and it will be useful to remember that
sn(u,k) is periodic inu with period 4K(k).

The functionscn(u,k) and dn(u,k) are related tosn(u,k) by
the equations

from which it may be verified by differentiation of eq A2 that

One convenient application of these Jacobian elliptic functions
is for the evaluation of integrals involving square roots of cubic
or quartic polynomials.25,26Suppose in the cubic case, which is
relevant below, that the polynomial roots are ordered such that
z1 > z2 > z3 and that the integral is taken betweenz2 andz1.
The substitution

leads with the help of eqs A3-A5 to

and

Reference to the parameterk is suppressed in eqs A6-A10 but
we note thatu ) K(k) whenz ) z2. It is readily verified with
the help of eqs A3-A10 that

One also finds by use of appropriate tables25,26 that

and

where

The functionsE(k) andΠ(R2,k) in these equations are complete
elliptic integrals of the second and third kinds25,26 and the
variablep in eqs A13-A14 is assumed to be distinct from the
zi. All other complete integrals involving the same cubic square
roots may be reduced to combinations ofI1, I2, and I3. It will
also be convenient to recognize that the incomplete form ofI1

above yields

A second type of application stems from the fact that the
Jacobian elliptic functions are doubly periodic in the complex
variableu, with periods 4K(k) and 2iK′(k), where

The periodicity on the realu axis is of particular relevance, in
view of the connection with classical angle variables. Fourier
series forsn(u,k), cn(u,k), and dn(u,k) are available in the
literature,21,25,26 and the following series forsn2(u,k) and
sn4(u,k)10 will be useful later

where

u ) ∫0

sn(u,k) dt

(1 - t2)(1 - k2t2)
, k2 < 1 (A1)

u ) ∫0

1 dt

(1 - t2)(1 - k2t2)
) K(k) (A2)

cn2(u,k) ) 1 - sn2(u,k) (A3)

dn2(u,k) ) 1 - k2sn2(u,k) (A4)

(∂sn
∂u )k

) cn(u,k)dn(u,k) (A5)

z ) z1 - (z1 - z2)sn2u (A6)

z1 - z ) (z1 - z2)sn2u (A7)

z - z2 ) (z1 - z2)cn2u (A8)

z - z3 ) (z1 - z3)dn2u, k2 ) (z1 - z2)/(z1 - z3) (A9)

dz ) -2(z1 - z2)snu cnu dnu (A10)

I1 ) ∫z2

z1 dz

x(z1 - z)(z - z2)(z - z3)
) 2

x(z1 - z3)
∫0

K(k)
du )

2K(k)

x(z1 - z3)
(A11)

I2 ) ∫z2

z1 x(z - z3) dz

x(z1 - z)(z - z2)
) x2(z1 - z3) ∫0

K(k)
dn2u du )

2x(z1 - z3)E(k) (A12)

I3 ) ∫z2

z1 dz

(z - p)x(z1 - z)(z - z2)(z - z3)
)

2

x(z1 - z3)
∫0

K(k) du

1 - R2sn2u
)

2Π(R2,k)

x(z1 - z3)
(A13)

R2 ) (z1 - z2)/(z1 - p) (A14)

∫z

z1 dz

x(z1 - z)(z - z2)(z - z3)
) 2u

x(z1 - z3)
(A15)

K′(k) ) K(x1 - k2) (A16)

sn2(u,k) ) ∑
µ)0

∞

A2µ
(2)(k) cos[µuπ/K(k)] (A17)

sn4(u,k) ) ∑
µ)0

∞

A2µ
(4)(k) cos[µuπ/K(k)] (A18)

A2µ
(2)(k) ) 2π2

k2K2(k)

µ
qµ-q-µ

, µ * 0

) 1

k2K(k)
[K(k) - E(k)], µ ) 0 (A19)

A2µ
(4)(k) ) π2

3k4K2(k) [4(1 + k2) - µ2π2

K2 ] µ
qµ - q-µ

, µ * 0

) 1

3k4K(k)
[(2 + k2)K(k) - 2(1 + k2)E(k)], µ ) 0

(A20)
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and

Appendix B: Angle-Action Theory for the Champagne
Bottle

The champagne bottle Hamiltonian9 may be expressed for
present purposes in the form

so that the radial action may be expressed as

whereε andb are given by eq 10 and

The zi are roots of the polynomial equation

Substitution forz as given by eq A6, coupled with the
identities26

leads to

where

Notice thatR2 andk2 depend, via the polynomial rootszi, on
the reduced energyε, and the productmb. Consequently, eq
B7 provides an implicit equation for the reduced energy in terms
of mb and (Vr + 1/2)b.

The radial classical frequencyωr, obtained by differentiation
of eq B2 with respect toJr, takes a simpler form because

It remains to determine the classical angleRr, conjugate toJr,
by differentiation of the classical generator

with respect toJr; thus, in the light of eqs A15, B1, and B3,

The combination of eqs B9 and B11 means that

It therefore follows from eqs A6, A17, and B3 that

Equation B13 provides the Fourier components required in
section IV of the text.

Appendix C: Angle-Action Theory for the Spherical
Pendulum

Details of the angle-action theory of the spherical pendulum,
with the Hamiltonian

are given elsewhere.10 The following summary, which is
formulated from the elliptic function standpoint, is given to
support the discussion in section V of the main text.

Integrals are cast into the forms in Appendix A by means of
the substitution

where thezi are roots of the cubic equation

in which

Notice thatâ differs fromb in eq 10 because there is no formal
range parameter in the potential, because the variablez lies in
the dimensionless range-1 < z < 1. In view of the fact that

q(k) ) exp(-πK′(k)

K(k) ) (A21)

Hchamp) 1
2µ (pr

2 +
pφ

2

r2) + B(1 - a2r2)2 (B1)

Jr ) (Vr + 1
2)p ) 1

2π
Ipr dr

) p
2πb∫z2

z1 xεz - z(1 - z)2 - m2b2

z
dz

) p
2πb∫z2

z1
(z1 - z)(z - z2)(z - z3)

zx(z1 - z)(z - z2)(z - z3)
dz (B2)

z ) (ar)2m ) pφ/p (B3)

εz - z(1 - z)2 - m2b2 ) 0, z1 > z2 > z3 (B4)

j1(k) ) ∫0

K
cn2u dn2udu) 1

3k2
[(1 + k2)E(k) - (1 - k2)K(k)]

(B5)

j2(R
2,k) ) ∫0

K cn2u dn2u

1-R2sn2u
du )

1

R4
[R2E(k) + (R2 - 1)k2K(k) + (R2 - 1)(R2 - k2)Π(R2,k)]

(B6)

Vr + 1
2

)
(z1 - z2)xz1 - z3

πb
[j2(R

2, k) - j1(k)] (B7)

R2 )
z1 - z2

z1
k2 )

z1 - z2

z1 - z3
(B8)

ωr
-1 ) (∂Jr

∂E)
m

) p
4πbB∫z2

z1 dz

x(z1 - z)(z - z2)(z - z3)
)

p
4πbB

2

xz1 - z3

K(k) (B9)

S) ∫ pr dr + ∫ pφ dφ (B10)

Rr ) (∂S
∂Jr

) ) p
4bB(∂E

∂Jr
)

m
∫z

z1 dz

x(z1 - z)(z - z2)(z - z3)
)

p
4bB (∂E

∂Jr
)

m

2u

xz1 - z3

(B11)

Rr ) uπ
K

(B12)

r2 ) a-2z ) a-2[z1 - (z1 - z2)sn2u]

) a-2[z1 - (z1 - z2) ∑
µ)0

∞

A2µ
(2)(k) cosµRr] (B13)

H ) 1
2I (pθ

2 +
pφ

2

sin2 θ) + B sin2 θ
2
, pφ ) mp (C1)

cosθ ) z ) z1 - (z1 - z2)sn2u (C2)

(a + z)(1 - z2) - m2â2 ) 0, z1 > z2 > z3 (C3)

a ) 2E
B

- 1 â2 ) p2

IB
(C4)
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the small amplitude oscillations reduce to those of a degenerate
harmonic oscillator, it is convenient to adopt a composite action

where

It follows with the help of eqs A11-A13 that

where the parameterk is given by eq A9.
Expressions for the classical frequency, obtained by dif-

ferentiation of eq C6 and of the classical generator, analogous
to S in eq B10, are given by

and

The combination of eqs A17, A18, C2, and C10 means that

and it may also be verified that

where
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JV ) (V + 1)p ) 2Jθ + |Jφ| (C5)

V + 1 ) 2
πâ∫z2

z1 (a + z)(1 - z2) - m2â2

1 - z2
dz + |m|

) |m| + 4

πâxz1 - z3
[∫0

K
{(a + z1) -

(z1 - z2)sn2u} du (C6)

- m2â2

2 ∫0

K { 1

(z1 + 1)(1 - R+
2 sn2u)

-

1

(z1 - 1)(1 - R-
2 sn2u)} du]

R(
2 )

z1 - z2

z1 ( 1
(C7)

V + 1 ) 4

πâxz1 - z3
[(a + z3)K(k) + (z1 - z3)E(k) -

m2â2

2 {Π(R+
2 ,k)

(z1 + 1)
-

Π(R-
2 , k)

(z1 - 1) }] + |m| (C8)

pωV ) (∂E
∂V)

m

) [ 2
πâB∫z2

z1 dz

x(z1 - z)(z - z2)(z - z3)]
-1

)

πâBx(z1 - z3)

4K(k)
(C9)

RV ) 1
âB (∂E

∂V)m
∫z

z1 dz

x(z1 - z)(z - z2)(z - z3)
)

1
âB (∂E

∂V)m

2

x(z1 - z3)
u ) uπ

2K(k)
(C10)

cosθ ) z1 - (z1 - z2)sn2u

) z1 - (z1 - z2) ∑
µ)0

∞

A2µ
(2)(k) cos[2µRv] (C11)

sin2 θ ) ∑
µ)0

∞

C2µ cos[2µRv] (C12)

C2µ ) (1 - z1
2)δµ0 + 2z1(z1 - z2)A2µ

(2)(k) - (z1 - z2)
2 A2µ

(4)(k)

(C13)
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