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Scaling Laws for Strongly Anharmonic Vibrational Matrix Elements
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The Heisenberg correspondence between classical Fourier components and quantal matrix elements is used
to demonstrate remarkably accurate scaling laws, by which the matrix elements scale simply with the reduced
energy E/B), whereB is a characteristic energy parameter &nid the average energy of the relevant states.
Applications to the Morse oscillator, a cylindrically symmetric double well (champagne bottle) potential and

to the spherical pendulum are described. The relevance of the scaling rules to modeling highly excited molecular
vibrational states close to saddle points on the potential surface is discussed. Significant differences between
Morse oscillator and vibron oscillator matrix elements are reported.

I. Introduction must utilize scaling rules that reflect the anharmonicity of the
i ) ) physical system.

Resonant energy flow in polyatomic molecules continues 1o~ e hyrpose of this paper is to lay the foundations for such
attract substantial experimental and theoretical interest, particu-, theory by pointing to the existence of remarkably accurate
larly the interplay between “chaos” and localization at high gemiciassical scaling laws for the matrix elements. The aim is
vibrational excitation, and its implications for mode selective ;4 provide scaling laws for strongly anharmonic zeroth-order
chemistry. A simple but powerful class of models for studying mgdels that can be used in place of the standard harmonic
resonant vibrational dynamics (from quantum, classical and gggillator based theories. The simplest and most familiar zeroth-
semiclassical viewpoints) is based on effective Hamiltonians, order model considered is the Morse oscillator, but we also
which may either be parametrized to reproduce experimentalintroduce new scaling rules for two model systems with saddle
data or derived from ab initio potential energy surfaces by points: a cylindrically symmetric double well (dubbed the
perturbation theory:* In either case most current models are  “champagne bottl€) and a planar or spherical penduldfThe
expressed, implicitly or explicitly, as expansions in harmonic champagne bottle model applies, for example, to quasi-linear
oscillator shift operators. In other words the quantum (and, by systems, such as the bending vibration of water, which can pass
the correspondence principle, classical action angle) dynamicsthrough linearity with eight vibrational quanta of excitation in
are fundamentally based on harmonic oscillator scaling rules, the bending mode. The pendulum is relevant to systems which
which are particularly simple, because it is always possible to can undergo internal rotations, such as the bond-breaking
separate the spectroscopic parameters from the quantum numimnternal rotation of HCP (rotation of H around the CP core)
bers. For example, diagonal energies can always be expressed/hen the available bending/rotational energy excee2is 000
in terms ofv + , whered is a Maslov index dependent on the cm1.11 Thus the results of this paper permit, for example, the
dimensionality of the system. Similarly, the coupling matrix derivation of scaling laws for a 2:1 resonance between Morse
elements can be written in terms of scaled shift operatrs, oscillators, or between a Morse oscillator an a symmetric double-
and af, with matrix elementsﬁéugwl and v v+10, 41 well potential.

respectively. There is also a widely udédemiclassical version Each of the zeroth-order systems is expressed as a three-
of effective Hamiltonian theory, based on replacement ef parameter model with a mags(or moment of inertid in the
0 by the classical actiohand of the shift operators by/feiia, case of the pendulum) and a potential function of the form

wherea denotes the classical angle variable conjugate®tb ~ BV(ar) whereB scales the energy arathe coordinate. The
Such harmonic scaling rules permit the prediction of quantum theory employed involves angle-action transformations of the
and classical dynamics, for many systems, at any energy of classical mechanics to obtain laws relating the scaled quantum
interest. However real molecular vibrations always exhibit some Numbers i + 6)a/v'2uB to the reduced enerdy/B. Hered is
degree of anharmonicity. Weakly anharmonic systems are the Maslov index = 0, /5, or 1 according to the dimensional-
commonly handled by “harmonically coupled anharmonic ity of the system). Expressions for representative coupling
oscillator” theories which use Dunham expansions on the Operators are then obtz_alned in terms of the ret_juced energy and
diagonal and harmonic shift operators for the off-diagonal the classlcal ang_le variable. Finally the resulting formulas for_
coupling. No such harmonic oscillator based model can however the classical Fourier components are related to the quantal matrix
cope with the extreme anharmonicity encountered when a Morse€léments, and shown to be remarkably accurate, by invoking
oscillator approaches dissociation or, even more severely, whenth® Heisenberg correspondence princigi@he present angle-

a system approaches a saddle pdfhany accurate theory of action scaling rules are all analytical, though the corresponding

resonant vibrational dynamics in regions of strong anharmonicity duantal matrix are only analytical for the Morse oscillator; those
for the systems with saddle points can only be determined

numerically.
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Morse oscillator, while sections IV and V are devoted to the wherex, are the classical turning points. The combination of
champagne bottle and spherical pendulum systems, respectivelyeqs 1 and 8 implies that

Mathematical details of the angle-action transformations for the

latter systems are covered in the Appendices. The conclusions (n+d)b = F(e) 9)

are summarized in section VI. ) )
where the reduced energy and action scaling parameters are

Il. Correspondence Principles and Scaling Laws given by
The fundamental classical/quantum correspondence relates E 242
the classical actiohto the quantum numberby the equatiof'3 €=5 b= % (10)
| =(n+d)h Q) and

whered = 0 for rotation in a plane¢ = %, for vibration or 1

libration (e.g., orbital motion) andl = 1 for a two-dimensional F(e) = p ff Ve —V(2dz, z=ax (11)

isotropic oscillator. As an immediate consequence, the quantum

mechanical eigenvalues may be approximated as Equation 9 implies that the scaled quantum number ©)-
_ b is a universal function of the scaled eneegipr systems with

E, = Hy(l) = Hgl(n + 6)A] @) the potentiaBV(aX). Alternatively, by inverting eq 9,
while the local energy level separations are related to the E, = Bf[(n + d)b] (12)

classical frequencie® = Hg/l by the equation
wheref[(n + 0)b] is the inverse function t&(e). Taken together
U5, _ dl OHyg _ 3 with egs 3 and 6, these results imply that the quantum level
an _dn a1 ¥ ©) separations and the quantum matrix elements scale simply with
the reduced mean energy= E/B, regardless of the precise
Turning to the quantum mechanical matrix elements, there massu and parameter® anda™?, applicable to the situation in

1 dE
2 n+1 E 1)

is no strict angle-action formulation of quantum mechattc hand.
but a systematic semiclassical thebrpay be based on the Similar arguments apply to separable systems, such as
existence of action operators degenerate oscillators, with angular momentum. Suppose, for
example, that
P= h(—ii + a) )
oo 1 p¢ —
_ _ _ Hy= u pe+—2| + BV(an), p, = Mh (13)

wherea is the classical angle conjugate to the actioffhe

notationa is preferred to the more commgnfor this classical
angle to avoid later confusion with the spherical polar azimuthal
angle. The eigenfunctions dfare clearly given by

It follows that

21 2
L=(n+ih=21" [2dE - BVar) - ™ g
_ 1 e ! 2 TTY - |—2
wn(a) =——¢€ (5)
N 21 14)
which means that the matrix elements of an operatsrA(l,o) which rearranges to
may be expressed as 1
. | (nr + E)lo = F(e;mb) (15)
(MIAIn) =~ 7 AQL0)e™ ™ da (6)
where
in which 1 is an average action, which is taken for the scaling n12
laws that follow as the action at the average eneEgy- _ _ b?
(En + Ep)/2. Equation 6 expresses the Heisenberg corre- F(emb) = f V(9 dz (16)

spondence principle between quantal matrix elements and
classical Fourier componentsThe parentheses'(A|n) in eq Herez = ar while € andb are again given by eq 10. Inversion
6 are used henceforth for the Fourier components and bracketof eq 16 implies that
combinations®’ |AinCfor exact matrix elements.

The above results are particularly interesting for systems with E = BI{(n + l)b mq 17)
three-parameter Hamiltonians of the form ’

1 2 in which both @ + %,) andm are scaled by the same parameter
ZM b, which may be regarded as a quantum capacity parameter.
Formulas are given below to relate it to the quantum number at
whereB anda~! determine the energy and distance scaling of E = B for the various model systems.
the potential function. The classical action then takes the form It should be noted in passing thatdefined by eq 14 is the
radial quantum number, related to the number of radial nodes

_1 _1 ™ o aaa in the wave function, or the quantum numbefen in the
! anp(x) o nj;— 2ulE — BV@]dx  (8) literature on quasi-linear vibratiod$.The quantum number

Hy + BV(ax) (7)
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= 2n, + |m|, which is employed for the pendulum model,
corresponds t@jineqr in the terminology of John¥.

I1l. Morse Oscillator

The case of a Morse oscillator is taken as a familiar
introductory example. The Hamiltonian takes the form

1 0
2,“

(with B in place of the usudD for the sake of uniformity) and
the scaled energy levels may be expressed as

1), _ 1)2, 2
2)b (n+2)b

where the parametdris given by eq 10. Put in another way,

H= + B[l — e 2 (18)

En
G=g= Z(n + (19)

b is related to the quantum numbeft atE = B by b = (n® +
;)71 1t is also readily verified that
o = ( ) 2bBVI — (20)

which confirms that the local level spacing scales as a function
of the reduced energy.

The canonical transformation between position-momentum
(%, p) and angle-actionl (o) variable€ may also be expressed
in terms ofe rather than:

x=at In(l +1«/_Eceosa) 1)
Je(d— o)sin a)

= — VuB[———"— 22

P e 1+ Vecosa (e2)

It follows from eqgs 6, 21, and 22 that the Fourier components
of any power or combination of, p, and the Morse variablg
= [1 — exp(~ax)] may be expressed in terms of the parameters
B andb, the average reduced enekgyand the quantum number
differencen — n'. For example,

™1+ Vecosx

0j zﬂf
Ogy + (VI - e{l_T Vl_e]] 23)
€

It may also be verified that the corresponding off-diagonal
Fourier components of, p, andy are related by

1- e)e d=ae ™ -

(n+jlyin) =4

(n+jlyln) = Vl—e(n+j|x|n)=%, jz(;)

The diagonal Fourier component pfvanishes and that ofis
given by

1, [1+A1—€

nxny=a - In|~—=——— 25

(nlxin) (zu—a) (25)

(&
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Morse Oscillator
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Figure 1. Matrix elements (points) and Fourier components (lines) of
the Morse variablg = 1 — e (upper) and ofix (lower). The quantum
results are given for Morse parameters applicable to the OH local bond
vibrations of HO, we = 3874.62, andvexe = 81.20 cnTl.

The upper part of Figure 1 shows the remarkable agreement
between I{’|y|n) given by eq 23 and the corresponding exact
guantum mechanical forth

[+ jlyinC= dg; + (=1
/JM+HW@—n—MV—%—a—D@—ZP4)

niT(y — n)y?

wherey is related to the scaling parameteof eq 10 byy =
(2/b). The points are values @h + jly|nOplotted against the
mean reduced energy= (e, + €y)/2 for the OH bond Morse
parameters in a local mode model fop®{:° namely, we =
3874.62 andvexe = 81.20. The lines are the classical Fourier
components given by eq 23.

A similar comparison is given in the lower part of Figure 1,
between the above diagonal Fourier components and the quantal
matrix elements

(26)

mxnd=a *iny +a* ZOCm{Z[zp(O)(m +1)— @) -

¥y —n

wherey @ is the digamma functiop©(z) =

—m-—1)} (27)
d InT(2)/d2* and

Ny —n—m-—1)
(n=m!T(y —n)

Note that the matrix elements &f unlike those ofy, become
infinite ase — 1. It is unnecessary to give other graphical
comparisons because it may be verified, by use of the approxi-
mation

Co=(y—2n-1) (28)

(]

[ e y—2n—j—-1
1 @+ﬁ%_ ” (29)
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Morse Oscillator

<
S~
E § harmonically oe*’
Gé) 2, coupled Morse «*?®
S E oo
BS 05 f
LT
£ 5
R + true Morse
s 3 (n+1la’|n)
54
0 T T T T
0 0.2 04 0.6 0.8 1
€ (unitless)
g 1
g 8 .
£ £ {n+1]a’|n)
g &
g E
58 0.5 1 ....oooo....
E 5 "'o
f=aat <
=3
=3 {N+C,IN.v) (n+lly]n)
0 T T T T
0 0.2 04 0.6 0.8 1

€ (unitless)

Figure 2. Comparison oAn = 1 matrix elements of various models.

In the upper part, the semiclassical scaling for the Morse oscillator
(specifically that of the creation operator, solid line) is compared with
the predictions of a harmonically coupled Morse oscillator model (dots).
In the lower part the vibron matrix elememéf){ N,v + 1|C4|N,v} are
compared with the Morse oscillator Fourier componen'fg(n +

1jaf|n) (upper line) anck/i(n + 1]y|n) (lower line). Parameter values
were taken ad + Y, = b1 = 24.5.

that the known relationships betweén |y|n[] [@'|x|n[] and
' |p/n¥® are matched by the Fourier component identities in
eq 24.

In view of the relevance to spectroscopic resonance models
it is also interesting to compare tien = +1 Morse oscillator
matrix elements with those of “harmonically coupled Morse
oscillator’® and “vibron oscillator®® models. The former
depend on the standard harmonic oscillator creation operator
identity

M+ 1] &'|nC= B+ 1‘%(@; - i\//%)‘nD:

1
n+2 (30)

wheren = n + 1/, is the mean quantum number. Bearing in

mind thatuwe = v 2ua’B for the Morse oscillator, eqs 23 and
24 show that the corresponding Morse oscillator Fourier
coefficient is given by

(n+1a|n) = (n + 1‘%(@% - i\/;_%) n) = %
31)

whereb is given by eq 10. In other words, within the validity

of the correspondence principle, the true Morse matrix element
of a' is proportional to the square root of the scaled mean energy
€ rather than that of the mean quantum number. The upper part
of Figure 2 illustrates the difference between the forms in egs
30 and 31 as a function of the reduced energ¥he solid line
shows the behavior of the true Morse Fourier componeat,of
the open circles are the harmonic matrix eleménts 1|af|nC]

Child et al.

TABLE 1: Root Positions and Parameter Values for the
Champagne Bottle (“champ”) and Spherical Pendulum
(“pend”) in the Special Casem = 0

z b3 z k?
€champ < 1 1+ \/E 1- JE 0 2\/2/(1 + \/E)
€champ™ 1 1+\/; 0 1-— <\/g (l+ <\/;)/2\/;
€pend< 1 1 1—-2¢ -1 €
€pend™> 1 1 -1 1-2¢ e!

Finally, the vibron model employs stat®o}, with » running
from 0 toN at the dissociation limit. The zeroth-order diagonal
energies follow the Morse form in eq 19, with+ %/, in place
of b~1, and the off-diagonal elements are given by

@+ )N+, — )
(N+Y,) ’

{N,v+ 1|C,|N,s} = (32)

they clearly reduce to the harmonic form in the lirmit< N

but they fall off to 1¥/2 asv — N, instead of increasing
monotonically withz. In the lower part of Figure 2, the vibron
matrix element{N,» + 1|C+|N,»} (filled circles, usingN =

24) are compared with the Morse scaling+ 1|a'|n) [eq 31]

and with the matrix elemenn(+ 1|y|n) [eq 23]. The first two
plots are multiplied by\/B and the second bﬁ for scaling
convenience. The comparison reveals no clear connection
between the importatn = +1 matrix elements, except in the
low € limit. The vibron matrix elements (filled points) clearly
correspond neither to the Morse oscillator creation/annihilation
matrix elements (solid line) nor to the matrix elements of the
variabley = 1 — e @ (dashed line), which were chosen for
comparison in view of the qualitatively similar falloff as—

1. Moreover, even if one could find more complicated operators
with Morse matrix elements closer to the elemefit§y +
1|C4IN,2}, it is extremely unlikely that they would carry the
vibron selection ruleAn = +1. The upshot of this discussion

is that there seems little benefit in trying to establish a close
connection between the two types of theory. Morse oscillator
methods have the benefit of a close connection with potential
energy formulations of vibrational structure, while the vibron
method is a more formal algebraic technique with particularly
simple vibrational coupling rules.

IV. The Champagne Bottle

Details of the angle-action theory for the champagne bottle
Hamiltonian

P

r2

1
champ™— Z
are given in Appendix B for arbitrary angular momentpyg—

mh. Results are given in terms of the roasof the cubic
polynomial equation

H p? +—| 4+ B(1 — a’r?)? (33)

2-2Z2+1—-e&z+nmb’=0 (34)
and the combination
-z
IE = 4" % (35)
24— 4

Itis evident that “harmonically coupled anharmonic oscillator” wheree andb are given by eq 10, and the roots are ordered as
models (open circles) significantly overestimate the true creation z; > z, > z3. Explicit formulas, given in Table 1, are available
operator coupling (solid line) as soon as the energy exceedsfor the special casen = 0. Note that, although the functional
40% of the dissociation energy. forms are complicated, the andk and thus the scaling rules
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Champagne Bottle imply a = 1.35 A1, according to egs 10 and 36. The mean
. value ofe, used for the quantum mechanical points, was taken
ase = (E,+, + E,)/2B.
084 , 22 The general level of agreement between the quantum me-
- g Var' V) chanical points and the classical lines is a remarkable testimony
;‘?:j g 06 to the accuracy of the scaling laws, for a system whose classical
EE - motions experience dramatic changes on crossing the barrier at
BG 04y MHllarly E = B. Minor discrepancies occur however in the immediate
£ (v43la’rIv) vicinity of the barrier maximume = 1, where the underlying
S 2 021 ﬂ\;}\ﬂ Bohr guantization condition is known to require correctiéfls.
u _J_,,.)A‘\u-._.__._‘_,_ Not surprisingly, the accuracy of the scaling is also seen to
0 0 05 j s 5 improve on passing froom = 0 to m = 2, because the
¢ (unitless) semiclassical phase correction decreases with increasfig
should also be noted that the Fourier component plotenfer
1 0 are universal functions for all parameter sets &, B).
3 m=2 However those fom= 0 must be computed for the appropriate
2 5“7 (va’rIv) composite quantum numbedy,= ah/+/2uB, becauséd appears
g g 06 - in eq 34 for the rootg;, and hence for the variable via eq 35.
L 5
E % 0 d W) V. Spherical Pendulum
S E (v+3fa’r|y) Elements of the angle-action theory for the spherical pendu-
02 <v+2\3‘1‘2\"7 lum, for which
0 et . 1 p2 0
0 0.5 1 1.5 2 — 2 ¢ 2 _
€ (unitless) Hieng 2l P + sinf 0 +Bsin 2' Py mh - (39)

Figure 3. Matrix elements (points) and Fourier components (lines) of . . . . .
(ar)? for the champagne bottle witm = 0 (top) and withm = 2 are given in Appendix C. Results are given in terms of the roots

(bottom). The quantum mechanical points were obtained from a model z of the cubic polynomial equation
with 4 = 1.78 amu,B = 11000 cm?, anda = 1.35 A°%, roughly
consistent with the bending motions os®l (2 —1+2)(1— 22) — mzﬂz =0 (40)

are uniquely determined by the reduced energgd the product and the combination
mb. The quantum capacity parameteitself may be shown,

with the help of eqs B5B7, to be related to the quantum 2 — 2~ 7
number.® at E = B by -1 (41)
Ll 2y2 (36) wheree = E/B and8 = h/v/IB. Table 1 gives expressions for
"2 3ab the z and fork? in the special casm = 0.

As discussed in Appendix C, states are labeledrbgnd a
guantum numbewr equivalent to that of a degenerate harmonic
oscillator in the small amplitude limit. It follows from eq C8
that the capacity parametét, is related ta® at E = B by the

To take a concrete example, we can considerbe a scaled
bending variable approaching the bent to linear transformation
in, for example, HO, andmto be the signed angular momentum
around thea-axis (normally denotek,). The symmetry of such

L . i > identity
situations requires that any coupling must involve even powers
of r. We therefore consider matrix elementsréfwhich are NG
given according to eq B13 by F+1= W (42)
2=a77 — - 2) z A(Z)(k) cosua, (37) We also recognize that motions coupled to the spherical
o\ = £ 2u " pendulum must interact via even trigonometric functions of the

angled. The function sif 6, which was taken earligt as the
O i ) leading term for Fermi resonance coupling to a stretching mode,
whereAj/(k) is given by eq A19. The Fourier components of s selected for illustrative purposes. Equations 6 and-G113

r2 therefore become show that
+ ulrilv) =a gz, — (z, — )AP(K =0 , 1
(v, + ulro) (22— @ - ATK] u (v + ulsin? Oy — ) = (1 — 2?)5,40"'5(1"' 0,0C,  (43)
—_ 1, _ @
=@ DAR w0 @)
Figure 3 shows the very close agreement between the classical Co =22z, — zz)A(zi)(k) —(z— ZZ)ZA({:B(k) (44)
Fourier components, given by egs 38, and the quantum
mechanical matrix elements of, for a model with,® = 7.15, in which AZ)(K) and AS(K) are given by egs A19 and A20.

obtained by a best fit to the calculated pure bending levels of The comparisons given in Figure 4 have the same qualitative
H,0,22 with a barrier aB = 11000 cnt!. Assuming a reduced  character as those given for the champagne bottle in Figure 3.
mass for O and a pair of H atomg,= 1.78 amu, this would They relate to a previous stuthywith #12/2l = 0.25 andB =
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Pendulum a uniform field). In each case, remarkable quantitative agreement
between classical and quantum results was found for the whole
family of possible matrix elements. Figures-4 show at a
glance how the magnitudes of the matrix elements vary with
the reduced energy and with the quantum number change,
An or Av. The results are all expressed in analytical form,
despite the fact that quantum mechanical treatments of the
champagne bottle and the spherical pendulum can only be
performed numerically. Moreover the scaling with reduced
energy allows the presentation of all matrix elements for systems
(v-2lsinBlv+2) of the given type in a single diagram, regardless of the precise

' mass, energy, and length scale parameters for the physical
problem under consideration.

The Morse oscillator example is relatively simple, because
0.8 the results involve merely powers and square roots of familiar
B functions, which are simpler to visualize than the combinations
{vlsin"6|v) of gamma functions that make up the exact matrix eleménts.

It was also possible to demonstrate the absence of any simple
connection between Morse oscillator matrix elements and those
(v-1sin"Qfv+1) employed in superficially similar vibron oscillator theori®s.
04 The champagne bottle and spherical pendulum models require
more sophisticated analysis, much of which is placed in the
Appendix. The results are typically expressed in terms of
04 : complete elliptic integrals, for which subroutines are available
0 0.5 1 15 2 in Numerical Recipe¥®
¢ (unitless) The results presented here suggest that the off-diagonal matrix
Figure 4. Matrix elements (points) and Fourier components (lines) of €lements (resonant interactions) in polyatomic molecule effective
sir? 6 for the spherical pendulum witin = 0 (top) and withm = 2 Hamiltonian models should be carefully parametrized to reflect
(bottom). The quantum mechanical points were obtained from a model the underlying dynamics, rather than parametrized in an ad hoc
with B = 100 andh?/2l = 2, both expressed in scaled energy units. manner to reproduce eigenstate spectra. At energies well below
dissociation or a saddle point, harmonic oscillator based effective
100 in a common system of energy units. Again there is a sharp Hamiltonian models may be appropriate, but care must be taken
break in the classical curves associated with drastic changes |rto ensure that the (off-diagona]) resonance sca]ing is consistent
the nature of the classical motions below and above the barrieryjth the (diagonal) zeroth-order energy level spacings. By
atE = B. The changes are more strongly marked for= 0, contrast, at energies approaching and exceeding a saddle point,
for which there is an unstable classical fixed pOint at the barrier harmonic oscillator based Sca”ng rules break down Ca’[astrophi_
maximum, than form = 2. There is also again very close cally, and intrinsically anharmonic zeroth-order models must

agreement between the lines marking the classical Fourierpe used; no harmonic oscillator based theory can reproduce the
components and the points that represent the quantal matrixcysps in Figures 3 and 4.

0.8

(V|sin26|v)

0.4

Matrix Elements /
Fourier Components

-0.4 T T
0 0.5 1 1.5 2

€ (unitless)

0.4

(v-3[sin’0|v+3)

Matrix Elements /
Fourier Components

(V-2|sin26|v+2)
T

elements. Although real molecular vibrations will not conform precisely
to the above model systems, these systems undoubtedly provide
VI. Summary and Conclusions betterzeroth-ordermodels for certain vibrational modes than

the simple harmonic oscillator. Thus, it may prove possible to

The purpose of this paper IS to demonstrate SOme remarkgbleuse perturbation theory to derive rapidly convergent effective
scaling laws for the matrix elements of representative coupling 44 miltonians from one of our strongly anharmonic systems as

operators between strongly anharmonic vibr_atiqnal states. The, ,aroth-order model. We suggest two possible approaches to
rules. followi from the correspondence principles betweer} directly fitting eigenstate spectra:

classical actions and quantum numbers, and between Fourier "y ‘rhe anaivtical scaling rules derived above could provide
components an(_:l matrix elements. _They are presented for threes, 1o 5onable model for scaling the off-diagonal matrix elements,
parameter Hamiltonians characterized by a mag® moment  p, + higher order terms, essentially empirical in nature, could

of inertial) and a two-parameter potential of the foBiv(ax), be added to the model diagonal energy terms to provide a better
in which case the reduced energy= E/B is found to be g 14 eyperiment. This approach is conceptually analogous to
functionally dependent on the scaled actlafv2uB and vice  the common harmonically coupled anharmonic oscillator model,
versa, where the functional form depends on the natuia).  except that one of our scaling systems replaces the harmonic
Consequenthyany coupling function or operator, expressed in  ggcillator as the zeroth-order model.
action-angles, can equally be expressed in terms of the reduced 2. A more arbitrary zero-order model (for example a Fourier
energy and the classical angles. It follows t.hat the classical ggries, with the pendulum as the lowest order term) might be
Fourier components may be treated as functions of the scaledgefined to reproduce the zeroth-order energy level spacings, after
energye. Thus, by the Heisenberg correspondence prinéile,  which numerical solution of the angle-action classical-mechanics
the same must be true for the quantum mechanical matrix for this potential could be used to generate matrix element
elements. scaling rules, in place of the analytical expressions presented
lllustrations were provided for three strongly anharmonic here. Reference 24 gives an example of this approach.
oscillator systems: the Morse oscillator, a cylindrically sym-
metrical double well potential (champagne bottle) and the  Acknowledgment. M. P. J. and C. D. C. acknowledge
spherical pendulum (rotating over the surface of a sphere underfinancial support from the U.K. EPSRC.
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Appendix A: Mathematical Preliminaries

The angle-action theory in the following sections makes use

of Jacobian elliptic functionsn(u,k), cn(u,k), anddn(u,k),?1-25:26
of which sn(u,k) is implicitly defined by the equation

Sn(uK) dt

o a—pu-ey <!

(A1)

The nature of the integrand in eq Al ensures trdt,k)

vanishes fou = 0, and reaches a maximum value of unity for

real u, at which point

1 dt _
u= [ Ry K(K) (A2)

whereK(K) is the complete elliptic integral of the first kind. In
the theory that follows, the variable is proportional to the

classical angle variable, and it will be useful to remember that

sn(u,K) is periodic inu with period &K(k).
The functionscn(u,k) and dn(u,k) are related tesn(u,k) by
the equations

cn?(uk) = 1 — sri(u,k)
dré(u,k) = 1 — Ksrf(u,k)

(A3)
(A4)
from which it may be verified by differentiation of eq A2 that

(83 (A5)

a—") = cn(uk)dn(uK)

U Jk

One convenient application of these Jacobian elliptic functions
is for the evaluation of integrals involving square roots of cubic
or quartic polynomiald>26 Suppose in the cubic case, which is
relevant below, that the polynomial roots are ordered such that

21 > 2z > zz and that the integral is taken betweenand z.
The substitution

=2 — (7~ Z)srfu (A6)
leads with the help of eqs A3A5 to
7z —z2=(zy — z)srfu (A7)
z—2,=(zy — z)crfu (A8)
= (2~ z)dru, K=(z-2)(z—2) (A9)
and
dz= —2(z; — z,)snu cnu dnu (A10)

Reference to the parameteis suppressed in eqs ARA10 but
we note thau = K(k) whenz = z. It is readily verified with
the help of eqs A3 A10 that

2 dz 2 K(K)
du
=L V@ —2z—2)z-2z) J(zl - z3>f

2K(K)

VEz —2z)

(A11)
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One also finds by use of appropriate taB¥$that

n N d
f \/% V22 — z) LK(k)dnzu du=
2\(z,— ZE(K) (A12)

and

|3 _ le dz _
“(z— pw(zl - 2(z— zz)(z - z,)

_200(0% k)

VEz—2z)

(A13)

KG9
«/(zl—z3 J 1- asr?u

where

o’ =(z—2)(z—p) (A14)
The functionsE(k) andTI(a?K) in these equations are complete
elliptic integrals of the second and third kiR®3® and the
variablep in eqs A13-Al14 is assumed to be distinct from the
z. All other complete integrals involving the same cubic square
roots may be reduced to combinationslgfl,, andls. It will

also be convenient to recognize that the incomplete fori of
above yields

le dz _ 2u
“Ja-2@-2)z-2z) J(z-

A second type of application stems from the fact that the
Jacobian elliptic functions are doubly periodic in the complex
variableu, with periods &(k) and 2K'(k), where

K'(K) =KW1 -

The periodicity on the real axis is of particular relevance, in
view of the connection with classical angle variables. Fourier
series forsn(u,k), cn(u,k), and dn(u,k) are available in the
literature?:2526 and the following series forsré(u,k) and
srt(u,k)® will be useful later

(A15)

(A16)

srf(u,k) = ”20 AZN(K) cosuur/K(K)] (A17)
sri(uk) = #i ASNK) cosfur/K(K)]  (A18)
where
2
AZ(K) = ﬁz(k) G w0

= 2K (k) [K(K) — E(K], u=0 (A19)

A0 = k4fz(k) R ey e o =0

3k4K(k) [(2 4+ K)K(K) — 2(1+ K)EK)], x =0

(A20)
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and

—JrK'(k)) (a21)

qk) = exp( KK)

Appendix B: Angle-Action Theory for the Champagne
Bottle

The champagne bottle Hamiltonfamay be expressed for
present purposes in the form

1
champ 2“

H p¢

pf+—| + B — ar?? (B1)

so that the radial action may be expressed as
1
Jr = (Ur + E)h =

R \/ — 21— 2*— rT12b2
"~ 2ab z

_h on @222z~ 2)
21072 2.[(2, - 22— )z 2)

1
Efpr dr

(B2)

wheree andb are given by eq 10 and
z= (ar)’m= p,/h (B3)

The z are roots of the polynomial equation
ez—2(1—2° — b’ =

0, z>2>2 (B4

Substitution forz as given by eq A6, coupled with the
identitieg®

(1 - KK®K]
(BS)

1109 = [ crfu drfudu= iz[(l +IDEK) —

oK) = fK crfu dnzu

0 1o sr12u
E‘[OLZE(k) + (0 — DKK(K) + (o — 1)(a® — KATI(a? K)]

(B6)
leads to
1 ~Z )«/Z .
%+§ VR 2k - i) (B7)
where
Z Z Z, — Z
W=t te= (B8)
4 L4

Notice thata? andk? depend, via the polynomial roots on
the reduced energy, and the productnb. Consequently, eq

Child et al.

The radial classical frequeney;, obtained by differentiation
of eq B2 with respect td,, takes a simpler form because

C()_l = (8—Jr) = h & dz =
- VI ATBE e - 2 - )z 2)
h

K(k) (B9)

2
47hB m

It remains to determine the classical angle conjugate taJ;,
by differentiation of the classical generator

S= [pdr+ [p,d¢
with respect tal; thus, in the light of eqs Al5, B1, and B3,

(B10)

N (as) h (aE) I dz _
AR @ - A Z)e-2)

_h [9E) __2u
40B\03 ) /2, — 2,

The combination of eqs B9 and B11 means that

(B11)

ur

=" (B12)

It therefore follows from eqs A6, A17, and B3 that

rP=a’z=a ‘[z — (z — z)sMy]

=az~ (3~ 2) iA&fB(k) cosua,]  (B13)
£

Equation B13 provides the Fourier components required in
section IV of the text.

Appendix C: Angle-Action Theory for the Spherical
Pendulum

Details of the angle-action theory of the spherical pendulum,
with the Hamiltonian

1
2

P
sin’ 6

are given elsewheré. The following summary, which is
formulated from the elliptic function standpoint, is given to
support the discussion in section V of the main text.

Integrals are cast into the forms in Appendix A by means of
the substitution

H=

P2+ )—i—Bsmz2 p,=mh (Cl)

cosf =z=2z — (z, — z)srfu (C2)
where thez are roots of the cubic equation
(a+2(1—2)—ng*=0, zy>2>2 (C3)
in which
_2E
E_1p=L (C4)

Notice thatj differs fromb in eq 10 because there is no formal

B7 provides an implicit equation for the reduced energy in terms range parameter in the potential, because the varialis in

of mband @r + 1/2)b.

the dimensionless rangel < z < 1. In view of the fact that
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the small amplitude oscillations reduce to those of a degenerate The combination of eqs A17, A18, C2, and C10 means that

harmonic oscillator, it is convenient to adopt a composite action

J,= v+ Dh=2J,+ 13, (C5)
where
_ 2 @t -2)—nip’
u+1—%j22 - dz+ |m|
p— 4 [ K —
=|m| +—nﬂ = 23.‘/; {(a+2)
(z, — z)srfu} du (C6)
_mp? fK 1 _
2 Jo {(z1 + 1)(1 — o®srfu)

1
(z, — 1)(1— aZsrfu)

g

2 475
oL = 211 (C7)
It follows with the help of eqs A11A13 that
4
v+1l=——T|(a+ z)K(K) + (7, — Z)E(K) —
7~z

2[TI(02 k) TI(o?, K
mip? [Tt e W1} -

2 |(z+1) (=1

where the parametdeis given by eq A9.

Expressions for the classical frequency, obtained by dif-
ferentiation of eq C6 and of the classical generator, analogous
to Sin eq B10, are given by

oE 2 dz o
(o) _ -
@y (Bu)m 7B j;z Vi —2z-2)z- 23)]
Bz~ z)
T(k) (C9)
and
_ 1 () pm gz =
&, B (8v)m j; \/(21 —2@zZ—2)(z—2z)
i % 2 _ ur
ﬁB(av)mmu KK (C10)

cosf =z, — (z, — z,)srfu

=2-@-2) Y A2Kcoslau,]  (C11)

U=

and it may also be verified that

00

sif 0= C,, cos[ua,]

ru=

(C12)

where

Cy, = (1= )00 + 221(2 — ALK — (1 — 2)° ASNK)
(C13)
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