# Chemical Reactivity of Formaldehyde in a FeAlPO<sub>4</sub> Sieve<sup>†</sup>

#### Y. H. Yeom, N. Ulagappan, and H. Frei\*

Physical Biosciences Division, Calvin Laboratory, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720

Received: March 20, 2001

Formaldehyde gas loaded into a framework Fe aluminophosphate sieve (FeAlPO<sub>4</sub>-5) at 250 K was found to react with adsorbed H<sub>2</sub>O, CH<sub>3</sub>OH, H<sub>2</sub>O<sub>2</sub>, or lattice OH groups to yield the corresponding addition products, namely, CH<sub>2</sub>(OH)<sub>2</sub>, CH<sub>3</sub>OCH<sub>2</sub>OH, HO<sub>2</sub>CH<sub>2</sub>OH, or POCH<sub>2</sub>OH, respectively. Reactions were monitored in situ by static FT-IR spectroscopy, and assignments are based on experiments with CD<sub>2</sub>=O and CD<sub>3</sub>OD. Most efficient was the reaction with H<sub>2</sub>O<sub>2</sub>, as indicated by the fact that HO<sub>2</sub>CH<sub>2</sub>OH was formed at the exclusion of CH<sub>2</sub>(OH)<sub>2</sub> and POCH<sub>2</sub>OH when adsorbing formaldehyde onto a sieve loaded with H<sub>2</sub>O<sub>2</sub> and H<sub>2</sub>O. Methoxymethanol, methanediol, and POCH<sub>2</sub>OH were stable at 250 K but dissociated above 0 °C under release of formaldehyde. Hydromethyl hydroperoxide disproportionates to formic acid and water. Under 355 nm irradiation in a FeAlPO<sub>4</sub> sieve, HO<sub>2</sub>CH<sub>2</sub>OH was found to undergo efficient photofragmentation.

## I. Introduction

The constrained environment of microporous solids, combined with the robust nature of framework transition metals as chromophores and redox centers, offers opportunities for accomplishing demanding photosynthetic transformations. For small molecules, the gas-micropore interface is a particularly suitable reaction environment. The key to a successful search for transition metals and frameworks for a desired photochemical transformation is the knowledge of the redox properties of excited metal centers and a detailed mechanistic understanding of how reactants interact with the framework redox sites. We have recently employed in situ FT-IR spectroscopy to probe the reactivity of ligand-to-metal charge transfer (LMCT) excited Fe centers of FeAlPO<sub>4</sub>-5 (abbreviated FAPO-5) molecular sieve.1 The material consists of a one-dimensional system of 7.3 Å diameter channels.<sup>2</sup> O<sub>2</sub> was used as electron acceptor, and methanol was used as a donor. Formic acid (formate), H<sub>2</sub>O, and methyl formate were observed as final products, the latter emerging from a slow ester condensation of HCO<sub>2</sub>H and excess CH<sub>3</sub>OH. Formaldehyde and H<sub>2</sub>O<sub>2</sub> were proposed as twoelectron-transfer intermediates. These species could not be detected even when conducting the photoreaction at -100 °C.

In our effort to experimentally establish the step-by-step mechanism of this prototypical photoredox reaction at framework Fe centers, we have investigated the fate of formaldehyde in such a reaction environment. The lack of observation of formaldehyde could, in principle, be due to efficient reaction with CH<sub>3</sub>OH, framework OH groups, or coproducts  $H_2O_2$  or  $H_2O$ . To find out about the formation of such adducts and their possible role in the CH<sub>3</sub>OH+O<sub>2</sub> photoreaction, we report here an FT-IR study of formaldehyde interactions with various small molecules in FAPO-5 sieve. Knowledge of the spectra and stability of these adducts is a prerequisite for interpreting time-resolved FT-IR experiments of the CH<sub>3</sub>OH+O<sub>2</sub> photoreaction.

## **II. Experimental Section**

Synthesis and characterization of FAPO-5 materials used were described in detail in a previous report.<sup>1</sup> Self-supporting wafers of about 10 mg weight and 1 cm diameter were prepared with a KBr press and mounted in a miniature infrared vacuum cell equipped with CaF<sub>2</sub> windows. The cell was situated inside an Oxford Cryostat model DN1714, allowing us to vary the matrix temperature between 77 and 473 K with a programmable Oxford Controller model ITC-503. For each loading experiment, a pellet was prepared and dehydrated at 200 °C under high vacuum (2  $\times$  10<sup>-6</sup> Torr) using a turbomolecular pump (Varian model V-70). Gases were loaded into the molecular sieve through glass or stainless steel manifolds. Infrared spectra were recorded at 1 cm<sup>-1</sup> resolution using a Bruker model IFS88 FT-IR spectrometer equipped with a HgCdTe photon detector model Kolmar KMPV8-1-J2. Photochemical behavior of products under 355 nm irradiation was studied using the third harmonic emission of a Coherent laser model Infinity (10 Hz, 50 mJ cm<sup>-2</sup> pulse<sup>-1</sup>).

Methanol (EM Science, 99.8%) and methanol-D<sub>4</sub> (Aldrich, 99% D) were degassed by freeze-pump-thaw cycles before use. Formaldehyde gas was obtained by depolymerization of paraformaldehyde (Aldrich, 95%) or deutero paraformaldehyde (Cambridge Isotope Laboratories, 99% D) and purified according to literature procedure.<sup>3</sup> Hydrogen peroxide was loaded into the molecular sieve by putting one drop of  $H_2O_2/H_2O$  solution (30%, Sigma) onto the pellet mounted inside the infrared vacuum cell. Formaldehyde gas was added after evacuating the pellet for five minutes at room temperature.

## **III. Results and Discussion**

**Methanol** + **Formaldehyde.** Loading of 5 Torr of CH<sub>3</sub>OH gas into a FAPO-5 sieve at 250 K gave infrared bands at 1347 (shoulder), 1436, 1472, 2843, 2956, 3250, and 3619 cm<sup>-1</sup>. Subsequent exposure of the sieve to 2 Torr of CH<sub>2</sub>=O resulted in instantaneous depletion of methanol under concurrent formation of a product whose infrared spectrum is shown in Figure

<sup>&</sup>lt;sup>†</sup> Part of the special issue "Mitsuo Tasumi Festschrift".

<sup>\*</sup> To whom correspondence should be addressed.



**Figure 1.** Infrared difference spectra before and after admission of 2 Torr of CH<sub>2</sub>=O into FAPO-5 loaded with CH<sub>3</sub>OH at 250 K. (a) 2 min, (b) 8 min, (c) 18 min, (d) 60 min, and (e) 90 min after exposure to CH<sub>2</sub>=O gas. The weak band at 1628 cm<sup>-1</sup> emerging after 60 min is due to  $HCO_2^{-}$ ···Fe.

 TABLE 1: Absorption Frequencies of Methanol +

 Formaldehyde Product in a FAPO-5 Sieve (in cm<sup>-1</sup>)

| CH <sub>3</sub> OH +                | CH <sub>3</sub> OH +                | $CD_3OD(H) +$                          |                                  |
|-------------------------------------|-------------------------------------|----------------------------------------|----------------------------------|
| $CH_2=O \rightarrow$                | $CD_2=O \rightarrow$                | $CH_2=O \rightarrow$                   |                                  |
| CH <sub>3</sub> OCH <sub>2</sub> OH | CH <sub>3</sub> OCD <sub>2</sub> OH | CD <sub>3</sub> OCH <sub>2</sub> OD(H) | assignment <sup>a</sup>          |
| 1412                                |                                     | 1415                                   | $\gamma_{\rm w}({\rm CH_2})$     |
|                                     | 1443 (sh)                           |                                        |                                  |
| 1452                                | 1454                                |                                        | $\delta_{a}(CH_{3})$             |
| 1466                                | 1467                                |                                        | $\delta_{\rm a}({\rm CH}_3)$     |
| 1480                                |                                     | 1481                                   | $\delta(CH_2)$                   |
|                                     |                                     | 2069                                   | $\nu_{\rm s}({\rm CD}_3)$        |
|                                     | 2094                                |                                        | $\nu_{\rm s}({\rm CD}_2)$        |
|                                     | 2198                                |                                        | $\nu_{\rm a}({\rm CD}_2)$        |
|                                     |                                     | 2220                                   | $\nu_{\rm a}({\rm CD}_3)$        |
|                                     | 2245                                |                                        | $\nu_{\rm a}({\rm CD}_2)$        |
|                                     |                                     | 2450 (broad)                           | ν (OD)                           |
| 2782                                |                                     | 2786                                   | $\nu_{\rm s}$ (CH <sub>2</sub> ) |
| 2829                                | 2833                                |                                        | $\nu_{\rm s}$ (CH <sub>3</sub> ) |
| 2901                                |                                     | 2901                                   | $\nu_{\rm a}$ (CH <sub>2</sub> ) |
|                                     | 2911                                |                                        |                                  |
| 2938                                | 2938                                |                                        | $\nu_{\rm a}$ (CH <sub>3</sub> ) |
| 2966                                |                                     | 2966                                   | $\nu_{\rm a}$ (CH <sub>2</sub> ) |
| 3000                                | 3002                                |                                        | $\nu_{\rm a}$ (CH <sub>3</sub> ) |
| 3280 (broad)                        | 3280 (broad)                        | 3280 (broad)                           | $\nu(OH)$                        |

<sup>*a*</sup> Same assignment for more than one product band implies site or Fermi resonance effects.

1, trace a. All bands observed are listed in Table 1, first column. Although growth continues over a period of about 90 min (Figure 1b-e), the product spectrum is already well developed immediately after CH2=O loading. Hence, the reaction of formaldehyde with methanol is fast compared with the time scale on which the static FT-IR spectra are taken (2 min). The implication is that the reaction has a very low activation barrier. The only product we can conceive of that involves a low activation energy and has no C=O group (no product absorption around 1700 cm<sup>-1</sup>) is methoxymethanol, CH<sub>3</sub>OCH<sub>2</sub>OH<sup>4</sup> (the weak, broad band at 1630 cm<sup>-1</sup> exhibits an induction period and is due to formate, HCO2<sup>-...</sup>Fe<sup>1</sup>. Its origin will be discussed below). The infrared frequencies shown in column 1 of Table 1 agree with those reported for CH<sub>3</sub>OCH<sub>2</sub>OH in the gas phase<sup>5</sup> or isolated in solid Ar.<sup>6</sup> Assignments presented in the last column of Table 1 are based on quantum chemical work reported by Wrobel et al.6

The identification of the product as methoxymethanol was confirmed by D isotope labeling experiments. As in the case with the parent isotopes, initial reaction of  $CD_2$ =O adsorbed into the FAPO-5 sieve loaded with CH<sub>3</sub>OH was too fast for the detection of formaldehyde by static FT-IR spectroscopy. The

resulting product spectrum is shown in Table 1, column 2. Only half as many bands are observed in the CH bending region as in the case of CH<sub>3</sub>OCH<sub>2</sub>OH, indicating that the 1454 and 1467 cm<sup>-1</sup> peaks are due to modes of the CH<sub>3</sub> group. The three absorptions in the CD stretching region at 2094, 2198, and 2245  $cm^{-1}$  are attributed to the CD<sub>2</sub> group (or Fermi resonance with overtone), and the 2833, 2911, 2938, and  $3002 \text{ cm}^{-1}$  bands are attributed to stretching modes and Fermi resonances involving overtones of the CH<sub>3</sub> group of CH<sub>3</sub>OCD<sub>2</sub>OH. These assignments, and identification of the product as methoxymethanol, are further corroborated by the spectrum observed upon coloading of CD<sub>3</sub>OD and CH<sub>2</sub>=O given in column 3 of Table 1. Upon adsorption of the alcohol (before loading of  $CH_2=O$ ), the spectrum of CD<sub>3</sub>OD shows bands at 2076, 2137, 2244, 2500 (broad), and 2664 cm<sup>-1</sup>. The latter two absorptions are assigned to  $\nu(OD)$  of methanol hydrogen bonded to the micropore wall and to free  $\nu(OD)$  of OD groups, respectively. Weaker  $\nu(OH)$ absorptions at 3250 and 3610 cm<sup>-1</sup> indicate formation of CD<sub>3</sub>-OH by partial exchange of the OD groups with residual H<sub>2</sub>O in the sieve or with lattice OH groups. Upon adsorption of CH<sub>2</sub>=O, bands appear in the CH bending region at 1415 and 1481 cm<sup>-1</sup> and at 2786, 2901, and 2966 cm<sup>-1</sup> in the  $\nu$ (CH) region. Because these are observed in the CH<sub>3</sub>OCH<sub>2</sub>OH spectrum, but not in the CH<sub>3</sub>OCD<sub>2</sub>OH spectrum, they are attributed to the CH<sub>2</sub> group. Similarly, the 2069 and 2220 cm<sup>-1</sup> peaks in the CD stretching region are missing in the CH<sub>3</sub>OH +  $CD_2=O$  product and, hence, are assigned to the  $CD_3$  group. We conclude that, in a FAPO-5 sieve, formaldehyde adds to methanol to yield methoxymethanol, the hemiacetal being formed in a matter of minutes or faster at 250 K.

Warm up of the sieve to room temperature upon formation of methoxymethanol at 250 K resulted mostly in desorption of the product. Above 0 °C, growth of absorptions in the C=O stretching region indicated very slow generation of methyl formate: 1717 cm<sup>-1</sup> (HCO<sub>2</sub>CH<sub>3</sub>) in the case of CH<sub>3</sub>OCH<sub>2</sub>OH; 1708 cm<sup>-1</sup> (HCO<sub>2</sub>CD<sub>3</sub>) for CD<sub>3</sub>OCH<sub>2</sub>OH; and 1685 cm<sup>-1</sup> (DCO<sub>2</sub>CH<sub>3</sub>) in the case of CH<sub>3</sub>OCD<sub>2</sub>OH. This process is attributed to dissociation of methoxymethanol to methanol and formaldehyde, followed by Tishchenko dimerization of the aldehyde or Cannizzaro reaction with residual H<sub>2</sub>O (as indicated by very slow formation of HCO<sub>2</sub><sup>-</sup>) followed by ester condensation with methanol to yield methylformate<sup>1</sup>.

Loading of Formaldehyde in the Presence of Water. Recording of an infrared spectrum immediately following adsorption of 2 Torr of CH2=O at 250 K into a dehydrated pellet gave the familiar spectrum of formaldehyde in FAPO-5 with peaks at 1503, 1732, 2824, 2898, and 2990  $\text{cm}^{-1}$  reported earlier,<sup>1</sup> as well as residual gas-phase absorptions with Q branches at 1503 and 1745 cm<sup>-1</sup>.<sup>7</sup> The spectrum is displayed in Figure 2, trace a. As can be seen from trace b, peaks appear within minutes at 1400, 1422, 1472, and 1484  $cm^{-1}$  and also at 2795, 2913, 2978, and 3200 cm<sup>-1</sup>, with little further growth at later times. Concurrently, all CH<sub>2</sub>=O peaks decrease, and a small bleach is observed at 1650 cm<sup>-1</sup> coincident with the bending mode of residual H<sub>2</sub>O (upon heating of the pellet at 200 °C overnight, the residual absorbance of  $H_2O$  at 1650 cm<sup>-1</sup> is typically 0.15). In addition, the OH stretch absorption of lattice P-OH groups<sup>1</sup> at 3674 cm<sup>-1</sup> shows loss of intensity as well (Figure 2). This suggests that both P-OH groups and residual H<sub>2</sub>O react with adsorbed formaldehyde. To distinguish the product spectra, a FAPO-5 pellet with a higher concentration of water was prepared by loading 2 Torr of H<sub>2</sub>O gas into the sieve after dehydration at 200 °C. The additional increase of the H<sub>2</sub>O bending mode intensity was 0.1 absorbance units. A



**Figure 2.** Infrared difference spectra recorded upon adsorption of 2 Torr of  $CH_2=O$  on a FAPO-5 sieve at 250 K (a) immediately after loading and (b) 3 min later. Trace c shows the infrared difference spectrum recorded upon adsorption of 1.3 Torr  $CH_2=O$  onto a FAPO-5 sieve loaded with 2 Torr  $H_2O$  after dehydration of the pellet.

TABLE 2: Absorption Frequencies of Adducts of Formaldehyde with  $H_2O$  and Lattice P-OH Groups in a FAPO-5 Sieve (in cm<sup>-1</sup>)

| reaction product   |                    |                                                                      |
|--------------------|--------------------|----------------------------------------------------------------------|
| CH <sub>2</sub> =O | CD <sub>2</sub> =O |                                                                      |
| loading            | loading            | assignment                                                           |
| 1400               |                    | $\gamma_{\rm w}({\rm CH}_2)$ , POCH <sub>2</sub> OH                  |
| 1425               |                    | $\gamma_{\rm w}(\rm CH_2), \rm CH_2(\rm OH)_2$                       |
| 1470               |                    | $\delta(CH_2)$ , POCH <sub>2</sub> OH                                |
| 1483               |                    | $\delta$ (CH <sub>2</sub> ), POCH <sub>2</sub> OH                    |
|                    | 2105               | $\nu_{\rm s}({\rm CD}_2)$ , POCD <sub>2</sub> OH                     |
|                    | 2138               | $\nu_{\rm s}({\rm CD}_2),{\rm CD}_2({\rm OH})_2$                     |
|                    | 2225 (sh)          | $\nu_{\rm a}({\rm CD}_2)$ , POCD <sub>2</sub> OH                     |
|                    | 2254               | $\nu_{\rm a}({\rm CD}_2),{\rm CD}_2({\rm OH})_2$                     |
| 2796               |                    | $\nu_{\rm s}({\rm CH_2})$ , POCH <sub>2</sub> OH                     |
| 2912               |                    | $\nu_{\rm a}({\rm CH}_2)$ , POCH <sub>2</sub> OH                     |
| 2980               |                    | $\nu_{\rm a}({\rm CH}_2),{\rm CH}_2({\rm OH})_2$                     |
| 3200 (broad)       | 3200 (broad)       | $\nu$ (OH), CH <sub>2</sub> (OH) <sub>2</sub> , POCH <sub>2</sub> OH |
|                    |                    | $CD_2(OH)_2$ , POCD <sub>2</sub> OH                                  |

difference spectrum taken immediately after addition of 1 Torr CH<sub>2</sub>=O into this matrix, shown in Figure 2c, exhibits the same product bands as those observed in trace b. Depletion of H<sub>2</sub>O around 1650 cm<sup>-1</sup> and of  $\nu$ (OH) of P–OH groups at 3674 cm<sup>-1</sup> again indicates that both H<sub>2</sub>O and lattice hydroxyl groups interact with formaldehyde. Product bands at 1425 and 2980 cm<sup>-1</sup> are more intense in the spectrum in Figure 2 part c than those in part b, however. Hence, they are assigned to CH<sub>2</sub>(OH)<sub>2</sub>, the expected reaction product of H<sub>2</sub>O and CH<sub>2</sub>=O:

$$CH_2 = O + H_2O \rightarrow CH_2(OH)_2 \tag{1}$$

Indeed, the two bands agree well with the infrared spectrum of methanediol isolated in solid Ar.<sup>8</sup> All other product absorptions (except 1676 cm<sup>-1</sup>, see below) are attributed to the addition product of CH<sub>2</sub>=O and lattice OH groups

$$(O-)_{3}P-OH+CH_{2}=O \rightarrow (O-)_{3}P-OCH_{2}OH$$
 (2)

Bands assigned to P–OCH<sub>2</sub>OH agree well with literature values for CH<sub>2</sub> stretching and bending modes of P–O–CH<sub>2</sub> moieties.<sup>9</sup> Frequencies and assignments of the reaction products of CH<sub>2</sub>= O with H<sub>2</sub>O and P–OH are summarized in column 1 of Table 2. It is important to note that the infrared spectra assigned here to CH<sub>2</sub>(OH) <sub>2</sub> and POCH<sub>2</sub>OH are similar to those of surface bound dioxymethylene and polyoxymethylene compounds observed when adsorbing gaseous CH<sub>2</sub>=O onto various porous oxides.<sup>10,11</sup> This is not surprising because all these species feature the same OCH<sub>2</sub>O moiety.<sup>12</sup> However, the formaldehyde products



**Figure 3.** Thermal behavior of adducts formed upon coadsorption of  $CH_2$ =O and  $H_2O$  in FAPO-5. Infrared difference spectra show reaction after the warming of the system displayed in Figure 2c to 296 K: (a) immediately after reaching 296 K and (b) 70 min at 296 K.

observed on oxide surfaces can be distinguished from those found in the FAPO-5 sieve based on their thermal stability; the oxymethylene species formed on porous oxide surfaces are stable at room temperature, whereas  $CH_2(OH)_2$  and  $POCH_2$ -OH quantitatively dissociate above 0 °C (see below).

Analogous loading experiments with CD<sub>2</sub>=O confirmed the result with the parent reactions just described. In "dehydrated" FAPO-5 (no extra water added after evacuation at 200 °C) or in FAPO-5 loaded with an additional small amount of H<sub>2</sub>O, both gas phase (1701 cm<sup>-1</sup>) and adsorbed CD<sub>2</sub>=O (1685, 2091, 2213, 2256 cm<sup>-1</sup>) decreased rapidly under depletion of H<sub>2</sub>O and lattice OH groups. Product absorptions were at 2105, 2138, 2225 (shoulder), and 2254 cm<sup>-1</sup>. Comparison of the product intensities at the two H<sub>2</sub>O concentrations indicates that the 2138 and 2254 cm<sup>-1</sup> peaks originate from CD<sub>2</sub>(OH)<sub>2</sub>, in good agreement with a Raman study of CD<sub>2</sub>(OD)<sub>2</sub>,<sup>13</sup> whereas 2105 and 2225 cm<sup>-1</sup> absorptions are assigned to C–D stretching modes of P–OCD<sub>2</sub>OH groups (Table 2, column 2). The OH stretching modes of both products give rise to a broad absorption around 3200 cm<sup>-1</sup>.

Warm up to 296 K of the FAPO-5 sieve containing CH<sub>2</sub>-(OH<sub>2</sub>) and P–OCH<sub>2</sub>OH led to depletion of the two adducts under release of CH<sub>2</sub>==O (1504, 1732 cm<sup>-1</sup>). Figure 3a shows the infrared difference spectrum taken after and before raising the pellet temperature from 250 to 296 K for FAPO-5 preloaded with an additional amount of H<sub>2</sub>O. After 70 min at 296 K, nearly quantitative conversion of CH<sub>2</sub>(OH)<sub>2</sub> to methyl formate, HCO<sub>2</sub>-CH<sub>3</sub> (1717, 1456, and 1436 cm<sup>-1</sup>) and HCO<sub>2</sub>H (1679 and 1381 cm<sup>-1</sup>), has occurred (Figure 3b). Assignments of these products are readily made on the basis of FT-IR measurements reported earlier for room-temperature loading of CH<sub>2</sub>O.<sup>1</sup> The emergence of formaldehyde suggests that the initial step upon warm is the reverse of reactions 1 and 2 followed by Cannizzaro disproportionation:<sup>1,14</sup>

$$2CH_2 = O + H_2O \rightarrow HCO_2H + CH_3OH$$
(3)

We have noted previously that formic acid and methanol condense slowly to methylformate in a FAPO-5 sieve at room temperature.<sup>1</sup> Because the growth of HCO<sub>2</sub>CH<sub>3</sub> in Figure 3 does not exhibit a clear induction period, the ester may in addition emerge from Tishchenko dimerization of formaldehyde<sup>15,16</sup>

$$CH_2 = O + CH_2 = O \rightarrow HCO_2CH_3$$
(4)

Note that a very small amount of  $HCO_2H$  is already formed upon  $CH_2$ =O loading at 250 K (Figure 2c). However, the growth of these bands at 250 K shows a distinct induction



**Figure 4.** Thermal behavior of adducts formed upon adsorption of  $CH_2=O$  into dehydrated FAPO-5. Infrared difference spectra show reaction following the warming of the system displayed in Figure 2b to 296 K: (a) immediately after reaching 296 K and (b) 110 min at 296 K.

period, in contrast to the CH<sub>2</sub>(OH)<sub>2</sub> and P–OCH<sub>2</sub>OH absorptions. This confirms that formic acid originates from initially produced formaldehyde adducts, although at a much slower rate than at room temperature. Analogous observations were made in warm experiments of a FAPO-5 sieve containing CD<sub>2</sub>(OH)<sub>2</sub> and P–OCD<sub>2</sub>OH, leading to DCO<sub>2</sub>H (1660 cm<sup>-1</sup>) and DCO<sub>2</sub>-CD<sub>3</sub> (1685, 2075, and 2192 cm<sup>-1</sup>).

A corresponding series of warm-up experiments with formaldehyde adducts in the FAPO-5 sieve with minimal H<sub>2</sub>O content, shown in Figure 4, confirmed the observations made above. Spectra a of Figures 4 and 3 afford a comparison of the fate of CH<sub>2</sub>(OH)<sub>2</sub> and P-OCH<sub>2</sub>OH in sieves with different H<sub>2</sub>O concentration. As expected, the matrix with lower water concentration exhibits a higher POCH<sub>2</sub>OH/CH<sub>2</sub>(OH)<sub>2</sub> depletion ratio. This is most clearly seen when comparing the intensities of the bands at 2913 cm<sup>-1</sup> (POCH<sub>2</sub>OH) and 2978 cm<sup>-1</sup> (CH<sub>2</sub>-(OH)<sub>2</sub>). Furthermore, the HCO<sub>2</sub>CH<sub>3</sub>/HCO<sub>2</sub>H product ratio (1717/ 1679 cm<sup>-1</sup>) is higher in the matrix with less H<sub>2</sub>O (Figure 4a), indicating that Tishchenko reaction 4 of CH<sub>2</sub>=O is enhanced, whereas Cannizzaro reaction 3 is diminished. The same observations are made in runs with CD<sub>2</sub>=O adducts. Table 3 summarizes infrared spectra of all species observed in CH<sub>2</sub>=O and CD<sub>2</sub>=O loading experiments in FAPO-5.

From this series of CH<sub>2</sub>=O and CD<sub>2</sub>=O loading experiments in a FAPO-5 sieve containing small amounts of water, we conclude that formaldehyde reacts with lattice P–OH groups and residual H<sub>2</sub>O to yield P–OCH<sub>2</sub>OH and methanediol, respectively. The addition occurs at 250 K within a few minutes or faster. Raising the temperature to 296 K results in release of formaldehyde followed by Cannizzaro and Tishchenko reactions to yield formic acid and methylformate. The rise time of these final products at room temperature is around 2 h. Irradiation of FAPO-5 containing CH<sub>2</sub>(OH)<sub>2</sub> and P–OCH<sub>2</sub>OH at 250 K with 355 nm light did not accelerate the conversion to formaldehyde or carboxyl products.

**Formaldehyde** +  $H_2O_2$ . Exposing a room-temperature FAPO-5 pellet loaded with  $H_2O_2/H_2O$  solution according to the method described in section II to 1 Torr of CH<sub>2</sub>=O gas resulted in instantaneous product absorptions at 1456, 2884, and 2948 cm<sup>-1</sup>, as shown in Figure 5a. The bands agree with those of a gas-phase FT-IR spectrum of HO<sub>2</sub>CH<sub>2</sub>OH reported by the groups of Niki and Calvert.<sup>17,18</sup> Therefore, we assign the product to hydroxymethylhydroperoxide formed by addition of formaldehyde to hydrogen peroxide:



**Figure 5.** Infrared spectra recorded upon adsorption of 1 Torr  $CH_2=O$  into a FAPO-5 sieve loaded with  $H_2O_2/H_2O$  solution at 296 K. (a) Difference of spectra taken after 2 min exposure to  $CH_2=O$  and before adding formaldehyde. Intense absorption of reactant and product OH groups in the 3000-3600 cm<sup>-1</sup> region prevents identification of peaks of HO<sub>2</sub>CH<sub>2</sub>OH. The shoulder at 1390 cm<sup>-1</sup> is a baseline effect not associated with a guest absorption. (b) Difference spectra recorded upon irradiation at 355 min (500 mW cm<sup>-2</sup>) for 5 min and before CH<sub>2</sub>=O loading.

TABLE 3: Infrared Product Frequencies upon Adsorption of Formaldehyde onto a FAPO-5 Sieve at 250 K and Warm Up to 296 K (in  $cm^{-1}$ )

| frequency          |          |                                                           |
|--------------------|----------|-----------------------------------------------------------|
| CH <sub>2</sub> =O | $CD_2=O$ | species                                                   |
| 1381               |          | HCO <sub>2</sub> H                                        |
| 1400               |          | POCH <sub>2</sub> OH                                      |
| 1422               |          | $CH_2(OH)_2$                                              |
| 1436               |          | HCO <sub>2</sub> CH <sub>3</sub>                          |
| 1456               |          | HCO <sub>2</sub> CH <sub>3</sub>                          |
| 1472               |          | POCH <sub>2</sub> OH                                      |
| 1484               |          | POCH <sub>2</sub> OH                                      |
| 1503               |          | $CH_2=O$                                                  |
|                    | 1620     | DCO <sub>2</sub> -···Fe                                   |
| 1628               |          | HCO <sub>2</sub> <sup>-</sup> ···Fe                       |
|                    | 1660     | DCO <sub>2</sub> H                                        |
| 1679               |          | HCO <sub>2</sub> H                                        |
|                    | 1685     | $CD_2=O, DCO_2CD_3$                                       |
| 1717               |          | HCO <sub>2</sub> CH <sub>3</sub>                          |
| 1720               |          | $CH_2=O$                                                  |
| 1732               |          | $CH_2=O$                                                  |
|                    | 2075     | $DCO_2CD_3$                                               |
|                    | 2091     | $CD_2=O$                                                  |
|                    | 2106     | POCD <sub>2</sub> OH                                      |
|                    | 2137     | $CD_2(OH)_2$                                              |
|                    | 2192     | $DCO_2CD_3$ , $DCO_2^-\cdots$ Fe                          |
|                    | 2213     | $CD_2=O$                                                  |
|                    | 2225     | POCD <sub>2</sub> OH                                      |
|                    | 2256     | $CD_2=O, CD_2(OH)_2$                                      |
| 2795               |          | POCH <sub>2</sub> OH                                      |
| 2824               |          | $CH_2=O$                                                  |
| 2852               |          | HCO <sub>2</sub> CH <sub>3</sub>                          |
| 2898               |          | $CH_2=O$                                                  |
| 2913               |          | POCH <sub>2</sub> OH, HCO <sub>2</sub> <sup>-</sup> ···Fe |
| 2978               |          | $CH_2(OH)_2$                                              |
| 2990               |          | $CH_2=O$                                                  |
| 3200 (broad)       |          | CH <sub>2</sub> (OH) <sub>2</sub> , POCH <sub>2</sub> OH  |
|                    |          | CD <sub>2</sub> (OH) <sub>2</sub> , POCD <sub>2</sub> OH  |

The same spectrum was observed upon synthesis of an authentic sample of HO<sub>2</sub>CH<sub>2</sub>OH by bubbling CH<sub>2</sub>=O gas through a 30% H<sub>2</sub>O<sub>2</sub> solution at 60 °C for 3 h, as described in the literature,<sup>19</sup> followed by loading of the solution into the FAPO-5 pellet. An additional shoulder of 1677 cm<sup>-1</sup> and a band at 1618 cm<sup>-1</sup> indicate the spontaneous formation of small amounts of HCO<sub>2</sub>H and HCO<sub>2</sub><sup>-•••</sup>Fe, respectively (Figure 5a). No trace of gas phase or adsorbed CH<sub>2</sub>=O was detected, and no further growth of HO<sub>2</sub>CH<sub>2</sub>OH occurred after the initial spectrum was recorded. This implies that formaldehyde reacts substantially faster with

H<sub>2</sub>O<sub>2</sub> than with H<sub>2</sub>O or lattice OH groups, consistent with the finding that HO<sub>2</sub>CH<sub>2</sub>OH is formed at the exclusion of CH<sub>2</sub>(OH)<sub>2</sub> and POCH<sub>2</sub>OH (Figure 5a). In contrast to the behavior of CH<sub>2</sub>(OH)<sub>2</sub> or POCH<sub>2</sub>OH, brief irradiation at 355 nm of FAPO-5 containing HO<sub>2</sub>CH<sub>2</sub>OH (5 min at 500 mW cm<sup>-2</sup>) led to quantitative conversion of the hydroperoxide to HCO<sub>2</sub>H (1677 cm<sup>-1</sup>) and HCO<sub>2</sub><sup>-+++</sup>Fe (1618 and 2912 cm<sup>-1</sup>), as can be seen from Figure 5, trace b. The 1618 cm<sup>-1</sup> absorption is presumably an overlap of formate and H<sub>2</sub>O product bands:

$$HO_2CH_2OH \xrightarrow{h\nu}_{355 \text{ nm}} H_2O + HCO_2H$$
(6)

The simultaneous depletion at 1456, 2884, and 2948  $cm^{-1}$ confirms the assignment of these bands to HO<sub>2</sub>CH<sub>2</sub>OH. In a more detailed study, we found that irradiation at 500 mW  $cm^{-2}$ for a mere 20 s led to complete depletion of HO<sub>2</sub>CH<sub>2</sub>OH. No bleach of CH<sub>2</sub>(OH)<sub>2</sub>, POCH<sub>2</sub>OH, or CH<sub>3</sub>OCH<sub>2</sub>OH was detected under these photolysis conditions. Reaction 6 is the established UV photodissociation channel of hydroxymethylhydroperoxide.<sup>20</sup> Similar loading experiments with CD<sub>2</sub>=O revealed HO<sub>2</sub>- $CD_2OH$  product absorptions at 2104 and 2256 cm<sup>-1</sup>. As in the case of the parent isotope, reaction with H2O2 was complete on the time scale of an FT-IR run, and subsequent photolysis resulted in efficient conversion to DCO<sub>2</sub>H (1658 cm<sup>-1</sup>) and  $DCO_2^{-}$ ···Fe (1613 and 2188 cm<sup>-1</sup>). We conclude that formaldehyde reacts with H<sub>2</sub>O<sub>2</sub> in a FAPO-5 sieve within less than 2 min to yield hydroxymethylhydroperoxide. The adduct rearranges thermally at room temperature to formic acid (formate) and H<sub>2</sub>O with a decay time of about 20 min. Efficient dissociation to the same products takes place upon 355 nm irradiation.

Implications for a Mechanism of CH<sub>3</sub>OH + O<sub>2</sub> Photo**oxidation.** The lack of any build-up of the postulated CH<sub>2</sub>=O intermediate upon 355 nm induced reaction of CH<sub>3</sub>OH with O<sub>2</sub> in a FAPO-5 sieve<sup>1</sup> might be due to rapid formation of adducts with CH<sub>3</sub>OH, H<sub>2</sub>O, lattice OH groups, or H<sub>2</sub>O<sub>2</sub>. The considerable stability of CH<sub>3</sub>OCH<sub>2</sub>OH (10 h), CH<sub>2</sub>(OH)<sub>2</sub> (2 h), and POCH<sub>2</sub>OH (2 h) with respect to thermal release of formaldehyde (and subsequent Cannizzaro or Tishchenko reaction) in the room-temperature sieve rules out any significant role of these intermediates. On the other hand, HO<sub>2</sub>CH<sub>2</sub>OH exhibits a much shorter lifetime at room temperature (complete dissociation in 20 min) and is extremely photolabile with respect to fragmentation to HCO<sub>2</sub>H and H<sub>2</sub>O. Clearly, the adduct of formaldehyde and H<sub>2</sub>O<sub>2</sub> might play a role as an intermediate of the CH<sub>3</sub>OH + O<sub>2</sub> photoreaction in FAPO-5 sieve. Time-resolved FT-IR spectroscopy is required to investigate this possibility.<sup>21</sup>

#### **IV. Conclusions**

In this paper, we have studied the reactivity of gaseous formaldehyde in the pores of an Fe aluminophosphate sieve (AFI

structure) with H<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub>, CH<sub>3</sub>OH, or lattice OH groups. These molecules are present in the reaction mixture of LMCT-induced  $CH_3OH + O_2$  photooxidation in a FAPO-5 sieve and could therefore act as chemical traps of formaldehyde, a proposed intermediate. Infrared spectra of all four addition products, namely, CH<sub>2</sub>(OH)<sub>2</sub>, HO<sub>2</sub>CH<sub>2</sub>OH, CH<sub>3</sub>OCH<sub>2</sub>OH, and POCH<sub>2</sub>-OH, as well as partially deuterated modifications have been established. Knowledge of infrared absorptions of these species is crucial for analyzing mechanistic experiments based on timeresolved FT-IR spectroscopy of  $CH_3OH + O_2$  photooxidation in this framework substituted transition metal sieve. Among the formaldehyde reaction products, hydroxymethylhydroperoxide, the adduct of CH<sub>2</sub>=O and H<sub>2</sub>O<sub>2</sub>, exhibits thermal and photodissociation behavior consistent with a role in the LMCTinduced photoreaction of CH<sub>3</sub>OH and O<sub>2</sub> in an Fe aluminophosphate sieve.

Acknowledgment. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-ACO3-76SF00098. Y.H.Y. thanks the Korea Science and Engineering Foundation (KOSEF) for fellowship support.

#### **References and Notes**

- (1) Ulagappan, N.; Frei, H. J. Phys. Chem. A. 2000, 104, 490.
- (2) Meier, W. M.; Olson, D. H.; Baerlocher, C. Zeolites 1996, 17, 26.
- (3) Spence, R.; Wild, W. J. Chem. Soc. (London) 1935, 338.
- (4) Langer, S.; Ljungstrom, E.; Ellermann, T.; Nielson, O. J.; Sehested, J. Chem. Phys. Lett. **1995**, 240, 53.
  - (5) Johnson, R. A.; Stanley, A. E. Appl. Spectrosc. 1991, 45, 218.
- (6) Wrobel, R.; Sander, W.; Kraka, E.; Cremer, D. J. Phys. Chem. A 1999, 103, 3693.
- (7) Herzberg, G. Infrared and Raman Spectra; Van Nostrand: New York, 1945; p 300.
- (8) Luger, C.; Schriver, A.; Levant, R.; Schriver-Mazzuoli, L. Chem. Phys. 1994, 181, 129.
- (9) Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press: New York, 1990; p 327, 366.
- (10) Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V. J. Am. Chem. Soc. 1987, 109, 5197.
- (11) Millar, G. J.; Rochester, C. H.; Waugh, K. C. J. Catal. 1995, 155, 52.
- (12) Zamboni, V.; Zerbi, G. J. Polym. Sci. 1963, C7, 153.
- (13) Matsuura, H.; Yamamoto, M.; Murata, H. Spectrochim. Acta 1980, 36A, 321.
- (14) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; p 1233
- (15) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; p 1235.
  - (16) Yeom, Y. H.; Frei, H. J. Phys. Chem. A 2001, 105, 5334.
- (17) Su, F.; Calvert, J. G.; Shaw, J. H.; Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. D. Chem. Phys. Lett. **1979**, 65, 221.
- (18) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. D. Chem. Phys. Lett. 1980, 75, 533.
  - (19) Bauerle, S.; Moortgat, G. K. Chem. Phys. Lett. 1999, 309, 43.
  - (20) Su, F.; Calvert, J. G.; Shaw, J. H. J. Phys. Chem. 1979, 83, 3185.
  - (21) Yeom, Y. H.; Frei, H. J. Phys. Chem. A 2002, 106, 3350.