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Completely general canonical and microcanonical (energy-resolved) flexible transition state theory (FTST)
rate constant expressions for an arbitrary choice of reaction coordinate have recently been derived [Robertson
et al.J. Chem. Phys200Q 113 2648.] by the present authors. The rate expressions apply to any definition
of the separation distance between fragments in a barrierless recombination (or dissociation) that is held
fixed during hindered rotations at the transition state, and to any combination of fragment structure (atom,
linear top, nonlinear top). The minimization of the rate constant with respect to this definition can be regarded
as optimizing the reaction coordinate within a canonical or microcanonical framework. The expressions are
analytic, with the exception of a configuration integral whose evaluation generally requires numerical integration
over an integrand which depends on internal angles (from one to five depending on the fragment structures).
The primary component of the integrand is the determinant of the inverse G-matrix associated with the external
rotations and the relative internal rotation of the fragments. In this paper, we derive closed-form, analytic
expressions for the inverse G-matrix determinant for all combinations of fragment top types for an arbitrary
reaction coordinate definition entirely in terms of kinetic energy matrix elements for a centers-of-mass reaction
coordinate. For a model potential for CFH H, the effect of optimizing the reaction coordinate definition

is displayed, and the optimized coordinate is compared to the traditional center-of-mass definition at the
canonical level. The associated rate constant is about a factor of 20% to 45% lower than that obtained using
a centers-of-mass reaction coordinate.

1. Introduction ment of chemical intuition about “floppy” transition states. This
Reactions whose transition states or “bottlenecks” are char- endeavor has been, and continues to be, the subject of substantial

acterized by large amplitude motion constitute a large and theoretical attention, e.g., refs-5.
important class of chemical processes. This situation most Here, we present further developments for accurately incor-
commonly arises for recombination of molecular radicals, or porating such large amplitude motion within a variational
the reverse process of single-bond fission, for which there is transition state theory (VTST) framework. This paper will deal
no (pronounced) potential barrier for the formation of a parent exclusively with flexible transition state theory (FTST) with a
molecule from a pair of constituent molecular fragments. Such variable reaction coordinate (VRC). FTST-VRC is a version of
“pbarrierless” reactions are commonplace, particularly in com- VTST designed specifically to handle large amplitude motion.
bustion, atmospheric, and interstellar processes. BarrierlessThe FTST component, originally developed by Wardlaw and
reactions are not confined to radical association/dissociation butMarcus® replaces a quantum mechanical accounting of restricted
include bimolecular reactants yielding a pair, or several pairs, types of large amplitude motion with a classical accounting of
of molgcular proquct§ via a collision Complex haVing a purely any type of such motion. The VRC Component, origina”y
attractive potential in some or all arrangement channels, developed by Klippensteifr;? exploits the fact that a reaction
including the reactant channel. Despite ongoing advances in thecgordinate (RC) about which large amplitude motion is executed
implementation of classical trajectories and quantum dynamics, cap, jtself be variationally selected under the same rate constant
statistical theories remain the most widely used approach for inimization principle that animates all VTST theories. All
modeling reaction rate coefficients. The accurate incorporation o jtion state theories of reaction dynamics have a dividing
O.f 'afge _amphtud(_a motion into stgtlstlcal theones_of reaction g, tace (DS) orthogonal to the RC that separates reactants and
kme’ch IS essentlal i suph theories are to be relied upon for products. The variational principle is based on the fact that the
predictions, for interpretation of measurements, and for develop- : . L L .
best DS is the one which minimizes the statistical (canonical
* To whom correspondence should be addressed. Fax: 613 533-6669.0 Microcanonical) reactive flux. Before the VRC development,
E-mail: david@chem.queensu.ca. that minimization involved optimizing the placement of the DS
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Figure 1. Relative orientation of principal axis coordinate systems on each reactant with respect to the center of mass coordinate system of the
collision system as a whole. Within the coordinate system of each reactant, the pivot point displacemert; \&atdicated.

along the RC. In the original WardlanwMarcus FTST°the RC mented and suggests future directions of development. A
was restricted to be the separation of the centers-of-mass of thediscussion and conclusions are provided in section 4.
fragmentsR.m, because a centers-of-mass reaction coordinate We believe this paper provides a mathematically elegant,
(CMRC) provides a natural and simple description of the kinetic computationally tractable, and physically interpretable set of
energy of the fragments. However, extensive early work by formulas for the incorporation of large amplitude motion in gas-
Klippensteirf® showed that the rate constant could be further phase reaction kinetics. These formulas have already been
lowered if the RC was the distance between noncenter-of-massimplemented in the freeware reaction kinetics program called
pivot points about which the fragments executed their large VariFlex!* that comes with a manual and instructions. Thus,
amplitude motion. The optimization of these pivot points on the approach developed here is accessible without extensive
each reactant constitutes a optimization of the RC and one thatprogramming.

can noticeably further minimize the calculated FTST reaction

rate constant. 2. Theory

This paper is the fourth in a series by the present authors 5 3 rapgitional Mode and Reaction CoordinatesFor a
setting out a systematic reformulation of FTST-VRC into a c\Rrc, the relative orientation of the fragments is specified
compact, computationally amenable, and physically more by rotating the fragments about “pivot points” located at either
transparent form. The computational advantage of our refor- gny of the line connecting the centers-of-mass of the two
mulation of FTST becomes especially important when employ- ¢ ments. This orientation is conveniently specified by internal
ing _nontrad|t|o_nal reaction coor_dlnates whose optimization g jar angles (Jacobi angles in scattering theory), collectively
requires numerical effort absent in a sum of states calculation denoteddenin. For the case of two nonlinear tops (so that all
using a smgle (nonoptimized) definition of the RQ, such as a possible infernal angles can be indicatag)sin = (61, ¢1, 62,
bond f_oordlnate_ or the centers-of-mass separation. _The f|rst¢2, »); these angles are identified in Figure 1. For progressively
papett in the series (hereafter, denoted Paper |) simplified the gip o cases, e.g., one nonlinear top is replaced by a linear
.pha.s.e space integrals in FT,ST’ leading to a more physically top, the number of internal angles decreases. The simplest case
intuitive form where a steric hindrance factor naturally emerges. ;¢ 21 atom+ linear top requires only one anglés to specify
The second pap€t (hereafter, Paper Il) began to incorporate e reative orientation of fragments. Table 1 in Paper Il lists
the VRC component into the same compact expressionsy 5 possible cases and the associated angles. Arbitrary pivot
developed in nger I fd%Fm as the RC. Thls incorporation was points can be characterized by vectdis = 1, 2), whose origins
only for one of five possible cases, the simplest one of an atom 56 he respective CMs. The associated reaction coordiate
reacting with a finear top. (AS. will be re_\/lewed shprtly, the  is the line connecting the tips of the two displacement vectors.
other.four cases are atotn nonllnear-top, linear-tog- Ilnear- This situation is also depicted in Figure 1. A point on the
top, linear-top+ nonlinear-top, and nonlinear-topnonlinear-  oaction coordinate is now located by fixing the valueRofA

top.) The third papéf (hereafter, Paper Ill) provided a fully  ;qhqequence of such a generalization of the reaction coordinate
general reformulation of FTST-VRC but did not derive the  qefinition is thatReym now depends on the internal angles and
specific formulas necessary to calculate rate constants for eachy,o displacement vectors for a given valueRof

of the five cases. In this paper, these specific formulas are
derived and their use is illustrated by a realistic model F = R.(Aemine d1r do; R) 2)
application. '

The structure of the paper is as follows. In Section 2, the whereF is a geometric function representing h&, depends
theory presented in paper Il is briefly reviewed and then specific o g, ;,xandds, d, while holding a separation distanBeixed.

formulas are systematically derived either in the section orin 2 2 FTST Rate Constant ExpressionsThe generic canonical
supporting appendices. In section 3, the application of the currentETST rate constant expression is

approach to a model of the recombination reaction
+ T
CFH, + H — CFH, 1) KT = g9, KT QeondNQun(T) e @)

i i ) X ) h Qreac(T)
is developed. This application illustrates the strengths and also
the limitations of the FTST-VRC approach as currently imple- Here,QreactiS the partition function of the reactants in the center-
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of-mass framepge and g, are the ratios of transition state to  JA, has a particularly simple form and is conveniently expressed

reactant electronic degeneracy factors and symmetry factors,in terms the functiori (eq 3)

respectively.Qcons IS the canonical partition function for the

conserved mode&Qm is the transitional mode partition function O35  Osm

for the n transitional/external rotational degrees of freedom, OA, = o' 5 ul(VF)(VF)T]

which are assumed separable from the conserved modes in m e

FTST. The ‘1’ onQconsand Quy, indicates that these quantities wherem = n — 3 is the number of transitional mode,. s is

are evaluated at that value of the reaction coordifatealled the 3 x 3 null matrix, 0, , is the 3x m null matrix, andvF

R', which minimizes their product at the given temperature, i.e., s the gradient (column) vector

minimizes the numerator of the rate constant expression in eq

3. V' denotes the minimum potential energy consistent with the oF oOF

fragments being separated BY for a particular choice of RC VF = Qomnt (Bq T 00 N)

definition. That is, the configuration associated with is a om.int, 1 omnt,

‘point’ on the minimum energy path (MEP), where a point is a

set of Cartesian coordinategsyep specifying the positions of

all atoms. Let the particular MEP point associated with a

particular RC definition and with a particular RC vali@) be n

rivep Then we can writd/" = Vyep(r| \ep). The factor efV! A= 1A AR+ u[ S (VF)2 (GO, +

indicates that reactants and transition state have a common =

energy origin and that potential energy functions appearing in n-1 n

onns and Q;rm are implicitly evaluated with respect . 2 Z Z (VF)i(VF), (Gro)ij]} (20)
Standard expressions are available @gns and so it will iI=23 j=1F1

not be discussed further. In Paper Ill, we showed @gatfor

a variable RC can be expressed as a configuration integral  Here A(F) has exactly the same form as the reduced kinetic
energy matrix for a centers-of-mass reaction coordinate (CMRC)

i i . GV is the corresponding reduced
b 20 \n2 12— BV (Gemi R but with F substituted foRem. G”is t p g
QumlB) = 8ﬂ2(ﬁ_hz) L N ) version of G° obtained by removal of the last row and last
column from the latter, i.e., by removal of matrix elements
relating to motion along the CMRG3C is the inverse ofA°
and is defined by

(8)

9)

Introducing eq 8 in eq 7 followed by the manipulations described
in detail in Paper Il yields

A is the (reduced) kinetic energy matrix, commonly called the
inverse G-matrix, associated with the generalized velocities for

the n transitional/external modes when the velocity along the T ~0 _ AT A0S
RC (the 0 + 1)%tdegree of freedom) is constrained to be zero. 2T =Pem G Pon = Qem A” Qe (11)
It is obtained by reducing the fulh(+ 1) x (n + 1) A-matrix .7 . . )
by removing its § + 1)strow and @ + 1)t column. where Q¢, = (wx @y, @z Gemine Rem) is the generalized
AVy = Vi — VT is the transitional mode potential evaluated VelOCity vector [as defined in eq 11 of Paper IIl] aRd, =
with respect tov". A%Qcm. In Paper llI, we established th&%A,° = 1. Thus
The corresponding microcanonical expression is " O)ij|
A,
N =T .
kE)=99, & (5) '
hpreac(E) S _
where (A9} is theij minor determinant ofA°.
where To evaluate the canonical or microcanonical FTST-VRC rate
constant one must evaluate the configuration integral in the
f et ; 872  [27\n2 expressions .foQtTm(T) .[eq 4] or N'(E) [eq 6], respectiygly.
N'(E) = 0 de peond€, R )gn— (—2) X Both evaluations require knowledge of the case-specific form
F(—+ 1) h of |A{ whose general form is given by eq 10. The next
2 subsection provides analytic results for the mathi¥, its
determinant, and the required elements of@f&for cases +5
f qucm,im AIPE-V —e- AV (Aem ing R)™2 x (n=4,5,..., 8). The following subsection derives an analytic
expression for the functiof [eq 2] for case 51{ = 8). We
x U(E — VU AV, (G ing RT)) (6) note that these configuration integrals require knowledgé,pf

in addition to|A;| and F. Vi depends on the details of the
potential energy surface and thus varies from application to
application. HoweverA;| andF have invariant forms for each

of cases 5, i.e., for each combination of top types; the only
system-dependent aspect within a particular case is the moments
of inertia of the top(s). Because the determination of the rate
constant with an optimization of the value and definition of the

andu is the Heaviside function. In egs 4 and 6, the dependence
of the determinant on the variables of integration andras
implicit.

The determinant in eqs 4 and 6 can be expressed as

N . ; : ;
IAL=1A;+ 0A/ (7) reaction coordinate requires repeated evaluatioGgpbr N(E),
our formulation offers distinct simplifications in the construction
A/ is the reduced kinetic energy matrix for a CMRC ah, of computer code as well as significant computational efficien-

accounts for the motion of the fragments about pivot points cies over original FTST. All of the results described in the next
displaced from the fragments’ centers-of-mass. The general formtwo subsections have been incorporated in the VariFlex software
of the matrix elements foA° anddA, is derived in Paper IIl. packagé?
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2.3 Analytic Expressions for Kinetic Energy Matrix
Elements and Determinant.Analytic expressions fof°, |A/9],
and the required elements Gi° are listed in Appendix A in
subsections A.1- A.5 for cases %5, respectively. They are
functions of the internal anglegm,int and also depend on the
moments of inertia of fragment top(s) and on the moment of
inertia for ‘external’ rotation of the fragments’ centers-of-mass
about the overall center-of-mass. All results were obtained by
manual simplification of output generated by algebraic manipu-
lation software?? For the simpler cases, (i.e. atoflinear top
and linear topt+ linear top) the elements &,° were obtained
by writing the Cartesian components= (X, Vi, z) of each the
N atoms in terms ofdcm,ins Rem), Substituting in

N N

2T=Y mt,-r,+20-yY mr,xti+ o' 10 (13)

i= i= Figure 2. Definition of y; andd, in an expanded view of the coordinate
system of the first reactant in Figure 1.

and regrouping terms to obtain an expression in the form of eq
11. For those cases that involve nonlinear asymmetric tops, this
simple approach proved to be intractable leading to large
equations that could not easily be reduced to terms involving = R__(6,, ¢, 05, ¢, 1, Ay, 0p, By, O, 0, B ) (14)
the principal moments of inertia of fragments. Instead direct
manipulation of the inertia tensors was used to generate overallan explicit expression is derived below for case 5 (two nonlinear
inertia components, internal rotatation energies and coriolis tops) from which the corresponding expressions for Cases 1
terms. Further details are provided by egsl® of Paper III. are readily obtained by systematic simplification.
The G-matrix elements are determined via eq 12. It is convenient that the angular orientation ayfbe first

For nonlinear top fragments (cases 2, 4, and 5), we presentexpressed in terms of the polar anglend the azimuthal angle
results in Appendix A for the most general situation of an o; with respect to the collision coordinate system translated to
asymmetric top. Note that all azimuthal angis,(¢2) depen- the center of mass of thith reactant. These angles are illustrated
dence inA/.% is contained in trigonometric combinations of the in Figure 2 for reactant 1.
two moments, andlic. In the convention of this paper, these ~ The derivation ofF begins with the vector relation
two moments become identical as the asymmetric top goes to R=R_ +d —d (15)
a symmetric top. Careful consideration of expressions given in cm 2 1
appendix A shows that, in the limit that a top becomes
symmetric, all azimuthal angle dependence of the matrix

construction of|A;| via eq 10. In generall can be written

The magnitude of R is thus given by

elements ofA,° vanishes. In the symmetric top symmetric R=R-R
top limit, the matrix in Appendix A.5 is identical to th matrix
in Table 1 of Paper I. =(R,,+d, —d)) - (R, +d,—d,)
Many of the terms in the G-matrix element expressions in
Appendix A contain one of the following factors: (sth)™1, =R, 24 d12 + d22 + 2R, (d, — d)) — 2d,-d,
m cm

(sin62)71, (sinHy sin B2) 1, or the square of one of these factors.
Such G-matrix elements are singular wh&nor 6 is 0 orx,

i.e., at either end of the allowed range. However, the expression
for |A/9 always contains a factor of Sify and/or sif0,,
depending on the case [see Appendix A], which cancels any
inverse sine factors in the G-matrix elements appearing in the
expression fofA,| [eq 10]. Consequently, the integrands in the
transitional mode partition function expression [eq 4] and the
microcanonical sum of states expression [eq 6] are always
mathematically well-behaved.

2.4. Derivation of F. F is thg funct!on which relateB.m, to F = d, cosy, — d, cosy, j:(Rz _ d12 _ d22 +
the distanceR between the pivot points of the two reactants. 5 5 )
Let the vector; locate the position of the pivot point of tlith d,” cog y, + d,” cod y* + 2dyd, [cosy, cosy, +
reactant relative to its center of mass, as in FigurR is the siny, siny, cos ¢, — 52)])1/2 (17)
distance between the tips dfi and d,, whereasR., is the
distance between the origins @f andd,. d; is defined in terms This expression reduces = R asd;, d, — 0. It is also
of the principal axis coordinate system centered on each reactantonsistent with the result derived in Paper Il for the simplest
as in Figure 1, i.ed; is characterized by a length, and polar case of a linear top plus atom if reactant 1 is the atom. Equation
and azimuthal angles; andf; (as seen in Figure 1). Because 17 indicates that, in general, there are two possible valu€s of
the relative orientation of the internal axes are characterized byfor a givenR, a situation which is physically meaningful only
the Euler angle®;, ¢1, 62, ¢2, andy, F is a function of those if both values ofF are positive. Conditions determining whether
angles and the derivative of that dependence is needed in thehere is one or two values & and the corresponding physical

=Ry’ +d” + d,” + 2R, (d, cosy, — d; cosy,)
—2d,d,[cosy, cosy, + siny, siny, cosp, — J,)] (16)

where the square brackets enclose an expression for the cosine
of the angle betweed; and d,, if these two vectors where
translated along the axis to a common origin. Solving the
quadratic inR¢, gives
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interpretation are discussed later below for the simplest case ofrate constant, for th® < d; case, must be defined &R) =

an atom+ linear top.

The above solution foF [eq 17] still requires an explicit
relationship betweeny(, 6;) and @, S, 6i, ¢i, x). The necessary
relationships are derived in Appendix B for the case of two
nonlinear tops. Substitution of eqs B1, B5, B6 into eq 17 yields
an explicit closed-form expression féf depending on the
variables indicated on the right-hand side of eq 14. The
derivatives of this expression with respecttQ ¢1, 02, ¢2, and
x provide the components of the gradientroéppearing in eq
10.

If either reactant is a linear top or an atom, then the

ki (R) + k-(R), wherek.(R) are obtained by using. in eq 4

or eq 6. In practice, the values df andR in the vicinity of
typical flexible transition state values are such that choosing
the negative sign in eq 19 or 20 yields valuesRaf, = F-
which correspond to locating the approaching atom in the
vicinity of one end or the other of the linear fragment (depending
on oz = 0 or ). Such configurations are generally highly
repulsive and the associated large values of the interaction
potential lead to relatively small values of the configuration
integral. Thus, for a physically reasonable seriefkaind d;
values such thaR < dy, thek; rate constant will greatly exceed

expressions in Appendix B must be modified. In the case of a its k- counterpart and one expects that thevalues will be

linear top, the orientation of the internal andy-axes cannot
be fixed in the plane perpendicular to the intermakis because

of the rotational symmetry of the linear top about its symmetry
axis. Consequentlyy andg for that reactant cannot be defined.
Without a3, a cannot be used to locatd except along the
z-axis, i.e.,a = 0 orz. Thus for a linear top, the dependency
on ¢ and 8 in expressions eqs B.4, B.8, and B.9 vanishes

sufficiently small as to be irrelevant, so tHdR) ~ k(R). For

the other four cases, a closed form determination of the limits
on the ranges of the euler angles is not possible. Consider for
example, the least complex of these is the nonlineartepom
case (withd, = 0). ForR < d; one would have to determine
(01)max@) for each value o by finding the root of the argument

of the square root term in eq 19 with cps= cosa, cosf; —

because the terms involving these two angles always have asin a4 sin 01 cos3; + ¢1) [eq B1]. This is a transcendental

sin a. prefactor. For an atom, there is no internal coordinate equation inf;. Rather than solving such transcendental equations
system that can be defined independently of the other reactantnumerically and using the results to restrict the integration
d cannot be oriented in space in a way uniguely associated toranges, we incorporate this situation directly in the numerical

the atom and therefore must be 0.
The expression foF is physically meaningful only if the
argument of the square root term (third term) in eq 17

R —d,>—d,>+ d,*cod y, + d,?cos y, +
2d,d,[cosy, cosy, + siny, siny, cos®, — d,)] (18)

is positive or zero. It is straightforward to show that this is so
whenR>d; + d,. ForR < d; + d, expression 18 is positive
for restricted ranges of the angle®,(¢1, 62, ¢2, x) for fixed
values of (I, a, 51, dp). This is easily illustrated in the simplest
case of a linear tog- atom for whiché, is the sole Euler angle.
With d, = 0, eq 17 becomes

F=d,cosy, £ (RR—d?+d?cosy)? (19)

From the discussion in the preceding paragraph about a linear

top fragment,ay, = 0 or & in this case. Substitution of cos
o1 = £1 in eq B1 yields cog; = +cos6; and thus

+d, cosf, + (RZ — d,? sir? 0,)"? (20)

evaluation of the integral in eq 4 or 6. The full range of the
Euler angles is employed in our integration schemes and the
argument of the square root term in eq 17 is expressed in terms
of Euler angles via eqs B1, B5, and B6. Each integration point
in a quadrature or Monte Carlo numerical integration specifies
a set of Euler angles. If the argument of the square root term is
negative for a particular integration point, the corresponding
value of the integrand is set to zero. If the argument is positive
andR > d; + d, a single value oF is determined by selecting
the positive sign for the square root term in eq 17; if the
argument is positive an®® < d; + d, then there are two
possible values df corresponding to the positive and negative
signs ank(R) = k(R) + k_(R). This procedure identifies, in

an automatic manner, the restrictions imposed on the angular
ranges and the two contributions to the rate constant when

d; + da.

Given the hindering potentidl, the entire expression for
Qun can be evaluated and, with that, the rate constant. Through
F, the final rate constant will have a dependencealgn, 31,

d, ap, B2, andR. Minimization of the rate constant with respect
to these parameters optimizes the definition of the reaction
coordinate. Simultaneous final minimization of the rate constant
along this optimized reaction coordinate gives the best estimate
of the rate coefficient. However, local minima in this parameter

Clearly the argument of the square root in eq 20 is always gpace can lead to ambiguities as to the correct choice for, and

positive if R > d; but if R < dy, it is positive only if
R? > dy? sir® 0; which sets the maximum value df; at
(01)max = sin"}(R/d,). Thus for a linear top+ atom withR <
d,, the range of integration ovéy in the configuration integral
in eq 4 or 6 must be restricted to (#1fmay instead of using
the full range (0,7). For 61 < (01)max there are two positive
values ofF for a givenf; andR, a larger valud-, obtained by

physical significance of, the transition state dividing surface, a
situation illustrated by the example in Section 3.

3. Application

The earliest applications of a VRC description have involved
pivot point displacements along the bond axes of linearté88.

choosing the positive sign for the second term in eq 19 or 20 More recent applications have involved optimized pivot points

and a smaller on&_ corresponding to the negative sign. The
relative configurations of fragments associated WithandF—
are different and correspond to different values of the afigle
betweerd; andR. As 6; (angle betweed; andR¢n) increases
from 0 to @1)may, 67 takes on its entire range of values from 0
to &, with each value o®: giving rise to two values ob).

that are not along bond ax&% To illustrate the comparable
flexibility of the approach given above, an application will be
presented in this section, in which there is no symmetry axis,
namely the recombination H CFH,. This example, while
realistic in qualitative terms, is not designed to be chemically
reliable and no comparison to experiment will be offered. (A

Since a physically correct transition state dividing surface must chemically reliable study of the H CFHs-(m = 1, 2, 3)

include all relative angular orientations of the fragments, the

employing ab initio potential energy surfaces is in progress.)
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Rather, this example is designed to show the broad implicationstions of FTST. However, it avoids the fitting of effective Morse
of an unconstrained pivot point optimization. In this spirit, only potentials required by that approach. The resulting potential is
the canonical version of the theory is applied and temperaturescertainly realistic but is probably not quantitative and has not
confined to the range 362000 K. Lower or higher temper-  been compared to the corresponding Wardttarcug® ver-
atures pose no problems for the method except for the sion.
anticipated emergence of quantum effects at very low temper-  With this PES for H- CFH,, the canonical rate constant
atures. The H- CFH, example does have a plane of symmetry versus temperature can be determined from the formalism in
and the implication of this symmetry element for the imple- the previous sections. The reactants belong to the asymmetric
mentation of the formalism developed above will be explicitly top+ atom caser(= 5). The canonical rate constant expression
examined. This consistency check is the reason for choosingis obtained by tailoring the general expression, eq 3, so that
this example rather than a case with no symmetry at all (which fragment 1 is a nonlinear top and fragment 2 is an atom
is equally amenable to the theory in this paper).

The model used for H- CFH;, has the following character- 1 kT QZonsQ:m +
istics. The isolated CFHgeometry is derived from recent ab  K(T) = 9, h QuanQup 1Qr 1 exp(-V/KT) =
initio calculationd® which predict a nonplanar CRHadical. trans"<vib, 1 <fr,1 .
The CFH fragment is assigned the geometry of the isolated 1kT Qm
radical throughout the region of the transitional mode potential 4h QuanQi 1
energy surface (PES) controlling the recombination kinetics. The '
conserved vibrational degrees of freedom are presumed un-The second equality is a result of settiqpg= 1/4,9, = 1, and
changed in character in this region. The dependence of the PE&‘QZOns = Quib1 (i.e., CFH conserved mode frequencies are
on separation and relative orientation of fragments is representedassumed not to vary along reaction coordinate in our model
by nonbonded and bonding interactions. The nonbonded interaC-poten'[ia| for this system)Qyans and Q1 are the translational
tions of the attacking H with the F and H atoms on the radical partition function (per unit volume) for relative motion of the
are represented by Lennard-Jones potentials with parametergragments and the rotational partition function of the GFH
developed by Mayo et at°. The bonding potential between the  radical, respectively.
attacking H atom and the C atom on the radical has a The general expression f@! is given in eq 4 and depends,
dependence on both the bond lengg and on the angle of  among other things, of\|12. The case specific expression for
approach. The bond length dependence is represented by ga |12 is obtained by substituting the explicit expressions for

Morse oscillator Yu) with the usual three parameters: the |a( and GO for n = 5 from Appendix A.2 in the general
dissociation energide, the equilibrium bond length., and the expression given by eq 10

beta parametei.. TheDe value is determined from the reaction
enthalpy at 298 K that can be constructed from the JANAF 2 _ 2 12 2

tabled’ for CHgF and the NASA tablé8 for CH,F. This reaction A W)l 12b| 190 sin6; {1+ ul(VF), gGrO)T};r
enthalpy is corrected for the harmonic zero point energy using (VF)s™ (G )ss + 2(VF)4(VF)s (G, )asl} ™ (23)
the JANAF frequencies. The value comes from the JANAF
tabulation for CHF. Thef. value comes from a fit to ab initio
calculations of the reaction pathlt is about 15% higher than
what would be calculated frole, re, and the relevant harmonic

exp(=V'KT) (22)

wherelqa, l1b, andlc are the moments of inertia of CEHIn
general, these moments vary along the reaction coordinate, being
determined by the geometry of the fragments at a position along

frequency of CHF. The angular dependence of the bonding the M.EP corresponding to the partipular value of the reaction
interaction is represented by the square of the cosine of the angléfo0rdinate,R. In our model potential for CFi+ H, the
the attacking H makes with the equal splay axis of the radical. 980metry of CFHalong the reaction coordinate is fixed at that
That axis passes through the C atom in such a way that the twoO the isolated radical. Thus, the moments of inertia in eq 23
C—H bonds and the €F bond of the radical make equal angles 2"® constant and equal to their ‘asymptotic yalues. Introducing
with respect to the axis. The ab initio studiésas well as €9 23 into eq 4 and settingem,int = (01, ¢1) yields
chemical intuition, would suggest that the equal splay axis is 27 \n2 _ o
approximately the minimum energy path (MEP) of the recom- thT(ﬁ) = 8n2(ﬁ—2) (PP 1c)1/2f0 sin6, do, j;
bination reaction. h

The PES in the region kinetically important for recombination dqblqu x {1+ u[(VF)42 (Gro)44 + (VF)52 (Gro)55 +

then takes the form 2(VF)(VF)s (Gr°)4 5]}1/2 e—ﬁAv‘,(el,m;RT) (24)

Ve Yer Ocn) = Viofew Yom Oc) + The canoncial rate constant expression (eq 22) becomes, after
cosz(yCH)[VM(rCH) =V (rew 0, 0)] (22) introducing the above expression f@?m, setting Qians =

(2ulpn?)32, settingQs.i = (27/8p?)%%(11aliblic) 3, and allowing

where ¢ch, ycn, Ocr) are the spherical polar components of a theé moments of inertia in the numerator and denominator to

vector from C to the attacking H, built around the equal splay Cancel

axis, Vi is sum of nonbonded interactions assuming a fixed 1 (8KT\12

(asymptotic) geometry of the CRHand Vy is the bonding k(T) ZZ(_-I) exp(=V'KT) x

interaction described above. Note thatygty = 0, V becomes i

the Morse potentiaViy. In other words, for this model potential % [ sing, do, [ dey F? x {1+ ul(VF),2 (G O)us +

the MEP lies along the equal splay axis a¥iglep = Vum. .

Although it is not guaranteed that the actual MEP is coincident  (VF)s? (G,%)ss + 2(VF),(VF)s (G0} V2 & #AVrl0r01R)

with the equal splay axis, tests show that this is a very good (25)

approximation. The above form is similar in spirit to the original

Wardlaw—Marcus® potential proposed in the original applica- The case-specific expression féris obtained by setting, =
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0 in eq 17 and inserting eq B1 in eq 17 yielding 109 diaat s
F=—dY+[R—d*1— Y)"? (26)
where
Y = cosa, cosf, — sina, sinf, cos@, + ¢;) (27)
The case-specific expressions for the elements of the gradient
of F are B
?
Q
_oFaY _ : <
(VF)y, = oY 0, (cosa, sin6; + E
oF §
sina, cos#, cos@,; + ¢,)) v (28) ~
_F Y _ o sing. si oF
(VF), = oY 6, sina, sin6, sin(3; + ¢,) Y (29) T
T B=10
where T=600K —B=20
R=27A —-—-B=30
oF / d=15A [ B=40
B_Y:_dl"”dle[Rz_dlz(]-_Yz)]l2 (30) 100 Sy T e

40 45 50 55 60 65 70 75 80
The optimal rate coefficient is obtained by minimizing a

the)_(p(—V/kT) d\.Nlth reSBpeCt to theh_v alue a.mdl deflnltIO!’] of t he Figure 3. Plot of the calculated canonical rate constants at 600 K versus
reaction coordinate. Because this particular reaction IS an , yor 5 series off values withR andd fixed. The minimum in the

example of an asymmetric top plus atom reaction, minimization |owest curve, namely that fg# = 0°, gives the optimum rate constant
proceeds in a four parameter spac®ofl = d,(radial distance), for the givenR andd.
o = ay(polar angle with respect to principal axis associated
with smallest moment of inertia, i.e., the one nearly coincident behavior of the parameter surface can make the minimum
with the C-F axis of CFH), and = p; (azimuthal angle difficult to locate, especially when the global minimum is one
selected so as to be measured fromxaaxis located in the  of many local minima. This situation places a premium on a
symmetry plane of CFp). In doing the minimization, the  computationally efficient implementation of FTST-VRC, as is
integral in the expression fd@fm was evaluated numerically, offered in the paper. It also supports the use of canonical rate
typically by using a Romberg integration scheme. As a check, constant approaches to locating minima and then more ac-
some numerical integrations were redone with a highly con- curately exploring their vicinity in parameter space in subse-
verged Monte Carlo scheme. (Both methods are options in thequent, more computationally intensive microcanonical studies.
VariFlex program package used for all calculations.) The As has already been suggested, minimization in the four
comparison of results of both integration methods confirms that parameter space of this example produces local minima. In fact,
the integration parameters for the Romberg method guaranteethree distinct, physically intrepretable local minima do occur,
convergence of the rate constant to better than 1%. all with pivot points in the symmetry plane. This is illustrated
Although formally, the minimization in this example occurs in Figure 4 where the computed rate constant at 600 K,
in a four dimensional space, the presence of a symmetry planeminimized with respect t&® anda, is plotted versusl for the
in CFH, requires that the optimal pivot point be located in that two possible values g8: “d” < 0 in the figure implies3 = &
plane. This can only occur if the optimal value/fs either O while “d”> 0 implies thatg = 0. Three minima are clearly
or . As a check on the minimization procedure, in Figure 3 seen and indicated by symbols in the figure. They are also

the computed rate constant at 600 K at a fixed valuR ahd labeled “frontside”, “bothside”, and “backside”. The intent of
d is displayed for optimal values @f and discrete values ¢ these labels is most conveniently understood in terms of a picture
(As will be described later, the fixed values Rfandd are in of CFH, superimposed on the principal axis system which

fact optimal values at 600 K.) Clearly, the overall minimum in definesa and 8. That is found in each of the four panels of
the rate constant occurs whgr= 0, corresponding, as expected, Figure 5, a complicated figure which will be fully described
to the optimal pivot point residing in the symmetry plane. shortly. Each panel shows tkexis from whicha is measured

In addition to properly reflecting symmetry constraints, the as nearly the €F bond axis, whereas theaxis from whichg
results in Figure 3 show that the structure in parameter spaceis measured defines, along with thexis, the symmetry plane
about a minimum is quadratic only in a limiting sense. Clearly, of CFH,. (Only one H atom is displayed in each panel of Figure
the results in the figure show a much more rapid rise in the 5 because the second H atom lies directly below the first on
rate constant on the smaillside of the minimum. This is also  the other side of the symmetry plane.) Each panel of Figure 5
a typical situation for minimization iR or d. The origin of displays a dotted line representing the equal splay axis which
this behavior is that the hindrance potential occurs in an lies in the symmetry plane.
exponential in the integrand [see eq 24]. Relatively small By reference to Figure 5, a positive valuedhtorresponding
variations in the RC value or definition cause the hindered to s = 0, lies on thetx side of the symmetry plane. Any pivot
rotations to experience relatively small variations in the point on this side would have a projection on the equal splay
hindrance potential which then get amplified in the exponential. axis that points in a direction opposite from that of the F and H
Even in close proximity to the minimum the nonquadratic atoms. We call this the “front” side of the equal splay axis where



Flexible Transition State Theory J. Phys. Chem. A, Vol. 106, No. 11, 2002605

corresponding to 300 K (longer vector) and 2000 K (shorter
vector) are drawn in as thin solid arrows. (The thitdrector
associated with 600 K was not drawn since it is almost identical
to that associated with 2000 K, as is reflected in the near
bothside 0 concentricity of the 600 and 2000 K circles.) In configuration
space, the canonical transition state dividing surface for the
nonlinear top+ atom combination is a sphere of radi&s
centered on the tip of the associakdThe projection of this
dividing surface on thex — z plane is a circle. Thus in each
panel, it is easy to imagine the spherical dividing surface 300,
600, and 2000 K from the circles in the figure. The transition
state species CFH.H undergoes large amplitude, 2-dimensional
hindered motion on the surface of this spherical dividing surface.
The more conventional picture of the dividing surface being a
harmonic oscillator type motion in a plane perpendicular to the
| I reaction path still applies to the conserved degrees of freedom.
\., / / But the FTST ansatz has replaced that picture for transitional
'\.,. o,-' frontside modes with a curvelinear coordinate representation leading to

the spherical transition state dividing surfaces found in Figure
backside 5.

1°~9 FEFIFITE A ETErE A ,l;...lu..l.... NI A A B

k (cm 3/molec-sec)

Panel (a) in Figure 5 displays the resulting optimal values of
R = Remin this case. Clearly, the circles for the three different
temperatures are centered on the center of mass which is at the
origin of thex — z plane. In the figure, the radius of a circle

d (A) decreases as its corresponding temperature increases. This is

Figure 4. Calculated canonical rate constant versus the ledgth just a representatiqn of the WeII-known fact that for barrierless
the pivot point displacement vectdrat 600 K. The rate constants from ~ reactions the transition state moves in along the reaction path
which the curves are constructed are optimized (minimized) with respect as the temperature increases. If one were to employ a conven-
to 2-dimensional variations in the separation R between the H atom tional planar transition state dividing surface perpendicular to
?h”ed t?i%éiip;)lfzdairi]s Vl\?(;iagt(i)\?es U‘altS:SS&?iriicrﬂ;':giaftb&“é\’zezfnﬁ?hdal a reaction path, there would be in this example two transition
anglzﬂ fo?the_ veptord igs 180. Eositive va?ues_, Qﬂ signify g = 0°. fstates dcorresli)ondlng .to tho dllfferenr: reac'u?n |:|E ¢ iz_fo_r h
The symbols indicate the location of local minimum, except for the orwar at_tac approximately along the equal splay axis in the
open square which locates the lowest ratel # 0 and there is no X > 0 portion of thex — z plane and one for backward attack
optimization of the reaction coordinate. See text for meaning of the approximately along the same axis in thec O portion of the
labels of each local minimum. plane. Two separate calculations would be performed and the
results summed. (This raises a series of chemical issues
regarding the role of the CFHumbrella motion; a limited
discussion is provided at the end of this section.) In this
anharmonic approach, the same dividing surface spans both
reaction paths. Reactant flux can enter from both the front and
the back and the formalism discussed in the previous sections
takes all of this into proper account. However, the circles in
the figure do not intersect the equal splay axis at right angles

of the splayed CFbl Small values ofl refer to pivot points for because the equal splay axis is centered on the C atom and not

which the transition state samples both the front and backside©" the center of mass. This means that even if we replaced the
of the radical orbital and thus are labeled as “bothside”. In Figure &ctual hindering potential on the sphere by a harmonic version
4, there is an open square labeled= 0. This corresponds to originating from a point where the eq_ual splay axis intersects
a rate constant calculation in which no pivot point optimization the sphere, the harmonic frequencies associated with that
occurs and the pivot is thus the center of mass of CRd the p_otentlal mlght not closely approximate t_he harmon!c frequen-
figure indicates this is not a local minimum with respect to Ci€s perpendicular to the equal splay axis. Does this make the
variation ind but is instead the end of a variation about the Constrainedd = 0 result inaccurate?
“pothside” local minimum located at a relatively small value ~ The answer to that question can be determined by simply
of d. letting the pivot point location vary fromd = 0 to see if the
Although Figure 4 clearly displays three minima and indicates rate constant can be further minimized. That is exactly what
what half of the symmetry plane the minima lie on, it does not the solid line labeled “bothside” in Figure 4 representsTer
indicate the optimal values d&® ando for each minima. That ~ 600 K. Note that starting frord = 0, the minimum with respect
is displayed in the last three panels of Figure 5, whereas theto Rando could have gone into the = 0 or z region. As the
first panel illustrates thd = 0 case for comparison. Each circle figure indicates, the minimum goes only to the= O region.
drawn on each panel has a radius that corresponds to the optimaln other words, for small nonzero d, any attempt to locate the
value ofR and a center that locates the optimal pivot point and pivot point in thex < 0 portion of thex — z plane produces a
thus the optimal values @f andd. Although Figure 4 was only  rate constant higher than values for the sahex > 0 portion
for 600 K, each panel in Figure 5 shows the optimal pivot point of the plane. The resulting minimum in this optimization starting
location andR value for 300, 600, and 2000 K. Finally, in each from d = 0 is indicated with an open diamond and the label
of the last three panels of Figure 5, the optintalvectors “bothside” in Figure 4. The corresponding transition state

-2.0 -1.0 0.0 1.0 2.0

the radical p-orbital on the carbon is the most exposed. On the
other hand, a negative value @fcorresponding t@ = x lies

on the x side of the symmetry plane with a pivot point
projection on the equal splay axis that points in a direction
similar to that of the F and H atoms. We call this the “back”
side of the equal splay axis where the radical p-orbital on the
carbon is most sterically hindered. In Figure 4, large positive
(negative) values afl have pivot points located in front (back)
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Figure 5. Depiction of the transition state dividing surfaces at 300, 600, and 2000 K for tlle<{d), (b) bothside, (c) backside, and (d) frontside
cases discussed in the text and presented in Figure 4. In this two-dimensional representation-intla@e, each dividing surface is a circle
centered on the pivot point at the tip of tevector. The latter appears as a thin solid arrowed line emanating from the origin and varies in length
(d) and orientationd) with temperature. The origin is at the center of mass of £WHich lies approximately on the-€F bond. In panel (a)l

= 0 and the circles are centered on the origin. In panels (@) only thed vectors corresponding to 300 K (longer vector) and 2000 K (shorter
vector) are shown. (The third vector associated with 600 K was not drawn since it is almost identical to that associated with 2000 K, as is
reflected in the near concentricity of the 600 and 2000 K circles.) The dashed line in each panel is the equal splay axis defined in the text.

dividing surface for 600 K and also for 300 and 2000 K are the pivot on the radical atom at higher temperatures while at
indicated in panel (b) of Figure 5. Unlike panel (a), aheector lower temperatures, the larger radius of the transition state
can be seen in the panel (it is for 2000 K), whereas the other location tends to favor a center of mass location. The optimiza-
two d vectors are largely hidden by the representation of the tion in R, d, anda involved stepping through distances in 0.1
C—F bond in the panel. The relative positions of the circles A increments and angles irf ncrements. Thus there is some
indicate that the optimum pivot point has moved up theFC imprecision in transition state parameters but Figure 4 indicates
bond to reside very close to the C atom as temperature increaseghat the kinetic consequence of variations in step sizes is not
As a result the transition state dividing surfaces intersect the important once you are near the minimum and the step sizes
equal splay axis minimum energy path closer to right angles are small enough. The variation of the rate constant between
than in panel (a) and this tendency increases with temperature the dividing surfaces of panel (a) and panel (b) is less than 10%.
The change of pivot point location from panel (a) to panel (b) The “bothside” label of the minimum just emphasizes that, for
is consistent with the observations of Klippenstéiim other this transition state dividing surface, significant flux enters from
recombination reactions to which he has applied both bond both the front and back approach of the H in its attack on £FH
coordinate and center-of-mass coordinate reaction coordinate The open triangle at the minimum of the dotted curve in
descriptions and so identified so-called inner and outer transition Figure 4 specifies a “frontside” transition state (at 600 K) whose
states, respectively. As Klippenstein has discovered in a numberdividing surface, along with that for 300 K and 2000 K, are
of reactions, optimization of the pivot point tends to localize indicated in panel (d) of Figure 5. The analogous “backside”
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transition state is indicated by the open circle at the minimum 100 e
of the dot-dash curve in Figure 4 and by dividing surfaces for
all three temperatures in panel (c) of Figure 5. In Figure 5, it is
clear that for both the backside or frontside cases the transition
state dividing surface sphere is centered somewhere in the
vicinity of the equal splay axis. However, rather than being
centered at the atom, it is centered somewhere on the radical
orbital (not shown) that points both in front of and in back of | bothside
the radical carbon atom. It is also clear that although the radius -
of that sphere shrinks noticeably with temperature, the center
of the sphere changes much less so with temperatures, having
essentially identical values af at 600 and 2000 K. The radii

1d=0

k (ecm */molec-sec)

{ frontside
of the spheres are smaller than the transition state dividing + backside
surfaces of panels (a) and (b) of Figure 5 with the consequence
that a portion of each circle is very close to the two H atoms frontside
and the F atom on the CRHadical. In the vicinity of these {1 e ———— . _ __
three atoms, the PES on these dividing surfaces is generally
highly repulsive resulting in almost no flux entering the dividing | et
surface in these regions. This is the motivation for the labels |, ..~ .=

“frontside” and “backside”. The frontside transition state has
almost no reactive flux entering from the backside reaction path
on thex < 0 portion of Figure 5. Correspondingly, the backside
transition state has almost no reactive flux entering from the
frontside reaction path on the> 0 portion of Figure 5. In this
sense, the two transition states are uncoupled, just as they would 1000/T(K)

be in the usual harmonic oscillator treatment of a separate planargigyre 6. Calculated canonical rate constant versus inverse temperature
dividing surface for each reaction path. As shown in Figure 4, for d = 0 (solid line), bothside (dastdot), frontside+ backside (dot),

the kinetic consequences of this “specialization” of the transition frontside (long dash), and backside (short dashes) cases. The frontside
state to each of the two reaction paths is very significant. Much + backside curve is simply the sum of the backside curve and the
of this significance is due to the fact that confining a rate frontside curve. See text for details.

coefficient calculation to only one of two reaction paths
approximately halves the rate. However, as Figure 4 indicates,
the frontside and backside rates are each less than half as smalﬂe rate is so large that it is off scale in the figure. This kind of

as the bothside rate. . . behavior is typical in systematic and detailed optimization of
“There are three aspects of Figure 4 that require further the RC definition and places a premium on efficient evaluation
discussion. First, the large variation in the rate constard as  of FTST-VRC reaction rate constants in order to rapidly survey
becomes small for both the frontside and backside cases injarge regions of parameter space.
Figure 4 are in contrast to the much more gentle variation in  The third and last aspect of Figure 4 concerns both frontside
the bothside case. The close approach of the frontside orang packside cases. In these two cases, the difference between
backside transition state dividing surface to the atoms in the pe optimal value oR and the given value off decreases as
CFH, fragment means that a large portion of that dividing the absolute value af increases. In fact, for the extreme ends
surface is in a region of rapidly varying potentials, both the of Figure 4,|d| exceeds the optimal value & As discussed
largely repulsive nonbonding interactions and the deeply at- jn the previous section, this corresponds to a case where not all
tractive or steeply repulsive Morse oscillator attractive potential qf the fyll angular range of the internal ang|és, (1) is required
(see eq 21). Because potentials appear in an exponentiako specify all possible relative orientations of H with respect to
argument in CFTST, it is not surprising that relatively minor cgH,. The smooth behavior of all the curves in Figure 4
variations in d can cause large variations in the rate constant.indicates that the onset of this limitation produces no irregularity
In contrast, the bothside cases, as shown in panels (a) and (bjn the minimization procedure. As it happens, at all temperatures

of Figure S, do not involve such_close_approaches and largely investigated for this reaction, the optimal dividing surface
sample regions where the potential varies much more gradually.correspondgd| < R.

This gives rise to a more gradual variation in the rate constant |, Figure 6, the computed canonical rate constants are

in R — o space. Large variations in the computed rate constant gispjayed as a function of temperature for the three different
were previously discussed for Figure 3 and were explained in gjyiding surfaces as labeled as in Figures 4 and 5. The diamond,
a similar manner. The results in that figure represent variations triangle, and circle minima displayed in Figure 4 are the 600 K
about the minimum in the frontside approach at 600 K found yajyes in Figure 6 of the rate constants labeled bothside,
in Figure 4 and Figure 5. frontside, and backside, respectively. For comparison the rate
The second aspect of Figure 4 concerns the bothside caseconstant wheul is constrained to be 0 is also displayed in Figure
As d tends toward larger values, the curvature about the local 6 and its 600 K value is the open square in Figure 4. The rate
minima inR — a space flattens out until, at large enough values constant curve labeled “frontside backside” is, as the name
of d, there is no longer a minimum. Thus the variation in Figure implies, the sum of the frontside and backside rate constants.
4 has distinct end points terminating atd = 0 becaus@ = This is the kinetic consequence of the previous interpretation
0 is always perfered and terminating at some relatively small of the frontside and backside dividing surfaces each heavily
positive value ofd when there is no longer a minimum. The favoring one of two reaction reaction paths available for the H
loss of a minimum is also true for the frontside and backside + CFH, reaction.

0 0.5 1 15 2 2.5 3 3.5

cal cases asl approaches zero, although when this occurs
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the nature of the potential energy in the interior of the surface
because statistical theories for recombination are only sensitive
to the potential energy on the dividing surface itself (see eq
25). In particular, the snowman FTST-VRC would be insensitive
to a potential energy surface that was infinitely repulsive in the
interior shade region of Figure 7. However, for such a potential
energy surface, the sum of the separately calculated frontside
and backside FTST-VRC rate constants would be rigorously
identical to the snowman FTST-VRC rate constant. This is due
to the fact that the portion of either the frontside or backside
dividing surface with an infinitely repulsive potential would
rigorously receive zero reactive flux. As a consequence, the
reactive flux that did enter either the frontside or the backside
dividing surface would be exactly identical to that entering the
snowman dividing surface.

In fact, any realistic potential energy surface will not be
infinitely repulsive in the shaded region of Figure 7. Therefore
the sum of the frontside and backside FTST-VRC rate constant

x (&) are not equal to the snowman FTST-VRC rate constant.
Figure 7. Transition state dividing surface at 600 K formed from the However, a realistic representation of the potential energy
combination of the backside dividing surface of Figure 5c and the grface in the shaded region can only make both the frontside
frontside dividing surface of Figure 5d. Shaded region is the overlap 4 packside FTST-VRC rate constants larger than they would
of front_S|de_ and backside dividing surface. Other features of the plot have been with an infinitely repulsive potential. Consequently,
areasin anure_ > . . . . the sum of the frontside and backside FTST-VRC rate constants

The results in Flgu_re 6 S‘.hOW that exploring reaction C°°_fd" is always a rigorous upper bound to the snowman FTST-VRC
nates that are only ”.“'d'y different from a C.MR.C (by se_archlng rate constant. This is a completely generic statement about any
parameter space with small values.cbbegmnlng atd = 0) combination of rate constants for separately calculated spherical
lowers the rate constant by approximately 10% except at the dividing surfaces. Of the three distinct dividing surfaces
highest temperatures where the reduction approaches 25%. Thi entioned in this épplication namely frontside, backside, and
changes a uniformly increasing rate with temperature into a bothside, the sum of any p’air of separately ,optimized, rate

mildly decreasing rate at high temperatures. The sum of the constants or the triple sum of all three separately optimized rate

IL%“LSC')?&%TVZ?S:SA?%é?vtveesé%n;gl(\)lsts 1%2:} rg,:elg\jve?eumcnZ?afta?sconstants is an upper bound to an FTST-VRC rate constant for
0 P a dividing surface of the corresponding, more complex non-

0, i i -
to 25% at high temperatures. This further changes the temper spherical exterior shape. That combination or that individual

ature dependence to one that is uniformly decreasing. rate constant that gives the lowest FTST-VRC rate constant

Since the typical kinetics measurement of the reaction rate while simultaneously sampling all the relevant reaction pathways
for H + CFH, would not distinguish whether addition occurred . €ously sampling ; P Y
is by the variational principle the best estimate of the rate

via a front or back approach, neither the frontside or the backside . :

- ; : -__~constant. From Figure 6, the best estimate of the rate constant
computed rate constant in Figure 6 is appropriate for comparison. "< re the curve labeled “frontside backside”
to experiment. Because the variational principle of kinetics is T o ) T )
based on the fact that statistical theories always approach the AS is indicated in Figure 5, either the frontside or backside
true rate constant from above, the computed rate Constamdlwdl_ng surfaces have_plvot points unconnected to atom or bond
constrained byl = 0 in Figure 6 cannot be the best theoretical locations. In fact the pivot points are I_ocated_ so_mewhere in _the
estimate because it is higher than other statistical calculations.center of the lobes of the radical p-orbital. This kind of behavior
This leaves two remaining computed rate constants in Figure 61S Not unusual. Klippenstein and Harding have suggéstet
labeled “bothside” or “frontside- backside”. Of these two, the ~ SUch pivot points allow the dividing surface to more perfectly
best theoretical estimate can be selected by application of thefolllow the_ contours pf the rgdlcal o.rbltals on isolated reactants.
variational principle in the following manner. This particular application is consistent with such a view.

From Figure 5¢ and 5d, the frontside and backside dividing  Although the above analysis correctly selects, for this model
surfaces intersect to form a combined exterior surface that is of the H+ CFH; reaction, a combination of frontside and
something like a snowman lying on its side. Its projection on backside dividing surfaces, the prominence of these two surfaces
the symmetry plane is shown as the heavy outline in Figure 7 raises chemical issues about the umbrella motion of the,CFH
for the combination of the optimal frontside and backside radical. This motion could flip the radical back and forth
dividing surfaces at 600 K. For convenience, we will call this between a “front” and “back” posture with respect to the
dividing surface the “snowman” dividing surface. In principle attacking H atom. These chemical issues are important but not
FTST-VRC theory based on such a dividing surface could be directly relevant to this paper which is using-H CFH, only
formulated in the same manner as has been done in this papeas an example of the features and implications of the formalism
for a spherical dividing surface. However, the kinetic energy developed. However, CEHis splayed in its equilibrium
operator as embodied iA, would have to be known for  conformation and the inversion barrier from ab initio calcula-
snowman surfaces about each reactant, whereas, in fact, thdéions'® is substantial at about 9 kcal/mol. The more fluorine is
operator has been explicitly developed only for spherical substituted for hydrogen in CRHthe larger this inversion
surfaces (regular spherical surface for a nonlinearttgiom). barrier becomes. After the transition state dividing surface is
Nonetheless, suppose a snowman FTST-VRC theory had beercrossed, a HC bond is formed and for some CFxHy radicals,
formulated. Its application to the specific dividing surface in CFH, being one, the kinetic energy released by the formation
Figure 7 would produce a rate constant that is independent ofof that bond is more than enough to surmount any inversion

z(A)
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barrier. Thus although the front and backside reaction paths are The formal development presented goes to the limit of what
different, the product molecule GH is the same. Thus itis  can be done to optimize the transition state dividing surface
certainly fair to say that splayed molecules with a forward and within the ansatz of a single pivot point on each reactant about
backward reaction path do exist and the example given in this which to execute hindered rotations. Such an ansatz produces
paper is not unrealistic. However, the details of the PES are spherical dividing surfaces for which only the radius can be
important in the chemical accuracy of each application and the optimized. The explicit expressions here do that and the
results presented here do not attempt to attain that accuracy. application to the CFk+ H reaction clearly illustrates the
spherical nature of the optimal dividing surfaces. However,

] o ) hindered rotations in chemical reactions can execute coordinated
In this paper, an explicit general rate constant expression of 4tion about multiple pivot points, giving rise to more flexible

Eexible transiticlnn state ;‘heory with yar[abltle reactionhcoordingte qciividing surfaces much more complicated than spheres. For the
as been developed. This expression implements theory deriveq, ;. inear or linear top cases, the simplest example of this is an

elsewhere by constructing explicit formulas for the Kinetic o yintical dividing surface whose two foci are, in effect, two
energy of external rotatlona_l and trgnsmonal hlndere_d_rotatlonal pivot points on the nonatom reactant. The more flexible the
of mass (extornal rotations) o fxed réaciant based pivot pornes 01dNG Srface the larger the parameter space within which
(hindered rotations). With these formulas, the flexible transition ¢ 'eaction coordinate can be optimized. That optimization
. ’ lowers the rate constant and, by the variational principle for

state theory expression for either the canonical or mlcrocanon'Calstatistical theories, the lower the computed rate constant the more

rate constant can be written as an explicit function of pivot point ccurately it estimates the actual rate constant. Further develop-
location on each reactant and the separation between the pivof;ﬁjl elyite " ) . op
ments in flexible transition state theory can proceed in this

point on each reactant. The minimization of the rate constant .~ ™
with respect to pivot point location is equivalent to optimizing direction. o )
the reaction coordinate definition, whereas minimization with ~ However, as the application illustrated, the formalism devel-
respect to the separation locates the most constrictive reactioroPed here can be used in principle to estimate the rate constant
bottleneck along the optimal reaction coordinate. The expres- for an arbitrary dividing surface. Any dividing surface can be
sions developed apply to all five combinations of reactant top approximated by impregnating the surface with a uniform
types in bimolecular collisions: linear-top atom, nonlinear- coating of small spheres intersecting so that there are no “holes”
top + atom, |inear-top+ |inear-top, non|inear-t0p{— linear- in the dividing surface. If the radii of the spheres are reduced
top, and nonlinear-topt nonlinear-top. The expression are but the number of spheres are increased to maintain a uniform
analytic except for a hindering function which involves a coating of intersecting spheres, the coating approximates to finer
numerical integration over the internal angles (from one to five and finer detail every feature of the dividing surface. The
depending on the case). The integrands in the integration areformalism developed here allows the treatment of each indi-
all analytic, though tedious for the most complicated cases. Thevidual sphere. However, as in the application, flux entering the
formulas developed here have already been coded and impleface of each sphere pointing into, rather than out from, the
mented in the freeware package VariFléxyhich was used dividing surface must be negated. As in the application, that
for all the calculations contained in this paper. can be conceptually achieved by positing an infinitely repulsive
The applications of the expressions are illustrated at only the potential in the overlap region of the sphere and the dividing
canonical level for a model potential qualitatively related to surface it is impregnating. In actuality, the negation would be
CFH, + H. The effect of optimizing the reaction coordinate on achieved by limiting the range of the integration variables in
the canonical rate constant is a reduction by a factor of betweenthe multidimensional integral required by the theory (see eq
20% to 45% depending on the temperature. A reduction is the 24). Each resulting rate constant calculated separately for each
expected result in the context of a variational theory. The sphere can then be summed to get an estimate for the desired

reduction factor exceeds the anticipated error inherent in using rate constant that becomes more and more exact as the radius
a canonical treatment instead of the (correct) microcanonical of the touching spheres in the coating is decreased.

treatment. This error is estimated to be-1®% based on
detailed studies of the benchmark € H and CH + CH;
recombination reactiorf8:2* Application of our microcanonical

4. Discussion and Summary

The developments of this paper streamline the treatment of
any bimolecular reaction within the context of canonical or

. . . microcanonical flexible transition state theory with variable
treatment for variable reaction coordinate to several prototype

. X : . reaction coordinates. The only limitation to an application is
reactions and comparison to the corresponding canonical rate . : . o o ; .

e - that of reliable interaction potentials in the kinetically interesting
coefficients has yet to be undertaken but will form part of a

future paublication. For the CRHfragment, which is an region. Because of advances in electronic structure theory and

asymmetric top, these reaction coordinate optimizations resultthe astsouatgtc:] (l:omputer codes,thand thei e?;lsltence gf faster
in pivot points which do not lie at the center-of-mass of GFH computers with largér memory, these potentials are become

nor at the ‘radical’ atom (carbon), nor along the-E or C—H increasingly available. Application of this theory &owvariety

bonds, but within the radical p-orbital extending in front of and of recombination reactions will be included in subsequent papers.

behind the carbon atom. Furthermore, the lowest and therefore™ detailed comparison of our approach with other transition-

best rate constant is achieved by the sum of separate ratet@te or collision-theory based treatments of rates (e.g., work
constant calculations for optimal reaction coordinates specialized©f S- J- Kleippenstein, S. Smith, R. Levine, R. A. Marcus) will
to H atom attack on either the front or the back of the radical P€ the subject of a separate publication.

p-orbital on carbon. Optimized reaction coordinates that equally

sample front and back attack are only a local, not global, Acknowledgment. A. F. W. was supported by the U.S.
minimum in the computed rate constant. The presence of Department of Energy, Office of Basic Energy Science, Division
multiple minima in the rate constant minimization process of Chemical Sciences, under contract No. W-31-109-ENG-38.
emphasizes the value of compact, computationally efficient D.M.W.was supported by a research grant from the Natural
expressions which this paper is attempting to provide. Sciences and Engineering Research Council of Canada.
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Appendix where

A. Kinetic Energy Tensors for Center-of-Mass Reaction
Coordinate. Analytic expressions fol°, |A%, and the required
elements ofG,° are listed below in subsections A-A.5 for
the five combinations of top types. (Atoth atom combination
is excluded; the matrix eIement@,(’)ij, i,j=1, 2, 3 are not
required.) These expressions are functions of the internal angles
Jem,ine Of the moments of inertia of the fragment tops, and of
the ‘external’ moment of inertidex = uRen? for the mutual
rotation of the centers-of-mass of fragments 1 and 2 about the
overall center-of-mass. The abbreviatiol® = cos 6,

S = sin 0, Cy, = cosg, etc. are used throughout.

The dimension of the reduced matrixg@8 andG.%is n x n;
both matrixes are symmetric. The fulh(+ 1) x (n +
1)-dimensional matrixeA® and GO differ from A;° andG,° by
the addition of arf + 1) row and @ + 1)t column. Each
additional matrix element is O except fohQn+1n+1 = w and
(GYn+1n+1 = L Interms ofA ., the ‘reduced’ kinetic energy

Robertson et al.

Ac=(Is— 1)C,C,S,

As= (I = 1G4S,

o= (1C2+1,8))C* + 1,87 + 1,

o= (1C2+ 1,872 —1)SC,

— 2 2
lyy =157+ 1,C,2 + oy

z— (ICC¢2 + IbS¢2)SGZ + IaC92

which results from subjecting the ‘full’ kinetic energy expression Inverse elements

to the constrainR.m = 0 (see Section IIl of Paper Ill) is
_AT 0, -~
2T0* - Qcm,r * Ar * Qcm,r

whereQCmr (wx, wy, Wz Gem,ind iS the reduced generalized
velocity vector corresponding t@cm which is defined im-
mediately below eq 11).

A.l Linear Top-Atom (n = 4). Moment of inertia —
Fragment 1:1 = |4

1 Co(s? ¢
T R
(Gr0)45_m
c s

1
(GO)55_|_ |_¢+
b

C

QIm,F (wy, Wy W 6= 91) A.3 Linear Top-Linear Top (n = 6). Moments of inertia—
Fragment 1:1; Fragment 2:1,
| cog 6 + I, ?+ | I cosfsing 0 O, = (0, 0y 0 O O )
Al= 0 ex O -1
" |Icosfsing 0 | sir? 0 0 o
0 - 0 | A
lx Ly e 0 1S 1,5,CC,
IXy Iyy Iyz -l _|2Cx |2392C92§c
ALl =sirf 61,217 ey Iy, l, 0 0 1,S,,>
0 - o L o 0
Inverse elements 1S, —1,C, 0 , 0o I, 0 ,
Ilzsezcezcx 155:Cp2S, 1,5, 0 0 1,S), )
I + 1oy
(G)as = AT =8 S Lo 11717
ex
where

A.2 Nonlinear Top-Atom (n = 5). Moments of inertia—
Fragment 1:15 = lia, Ip = l1p, lc = l1c

Ql—m,rz (@ Wy W, 6= 91! ¢ = ¢1)

lex AC Ixz _IaSG AC I

Ac lyy As 0 1,SF + 1,C,°
ArO: Ixz AS Izz IaC0 AS

-1,8 0 1,CO 1, 0

IAC 1,SP+1,C,° As 0 1.SF + IbC¢2|

Xx |2§¢2 + |2C12C022 + |1C012 e

Ixy =-l Z%CXSGZZ

e = 1151 Co1 1 1,5,C4,C,

— 2 2 2
w =l 1G5, + 1,C,," + 1y

yz |2§§92C02
_ 2 2
2z~ Ilsﬂl + IZSOZ
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Inverse elements

P o P
(Gr0)44: 1.
ex'1

C
(Gr0)45 = |_%
ex
_COZS)/
(GOas= :
e IexSGZ
I + 1oy
(G )55 =
ex 2
—CuS,
(G 0) 01
%6 ex801
1
(G g6 =
1501 25922
1 - cos d,cos D, + sin 2;sin ,C,
206,81°Sy”

A.4 Nonlinear Top-Linear Top (n = 7). Moments of inertia
— Fragment 1:14,, I1p, I1c Fragment 2:1,

T .
Qcm,r - (wxv wyv Wy 911 d)l’ 02= X)
-
I I Xy Iy 1.8 Agp I ZbS/ I ZCI-)ZSBZCX
Ly lyy ly, 0 5 1,6 1C5S8,S,
Iz ly, Iz 1:Con Ag O 1,85
112591 0 1:Co1 l1a 0 0 0
Acy = Ag 0 > 0 0
—15S, 1,C, 0 0 0o I 0
15C0252C; 126C0252S, 1,S,,° 0 0 O 1,22
0, 2 2
|Ar| - Szbl $2 Iex Ila I1b Ilc I2
where

3= 13,Cpi’ + I1CS¢12
A= ( ic ~ lin)CaiCy
Agi= (li — li)SiCy
o= (lp T+ 1y — Z)C nt |1a591 + |2CXZC022 + |2§¢2 ey
Ly =Acy — |2C%%Cazz
xze = (lip T 11 = Z = 119)Cyy Sp1 + 155,Cp:C,
ly ==+ 1,C,2,,° + 1,Cy,° + I,
yz Ag + |2C92392§¢
2z= (lp + 13 — 2)S‘Zel + IlaC612 - |23922

Inverse elements

1, G

2 Szd)1 C2¢1
(G 0)44 | 2 — t—-—
ex891 la 591

Ilb I1c

Acy
(G4 =
o 1b lch‘l
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S

(G)ss=
6 exSHl
2 2
69, =S &(SL% GG,
o 10S” S\l 1 lex91Sh2
+C
G 0)55 ¢1 L5 ¢1 lc+i
Ilbllc I
(Gro)ss = .
ex
GO, = 02% ( ) C¢1S¢1
2 1b 1c 1
r /57 | ng | 80
l,+1
(Ges =17
2'ex
Cel%
G
o e><391
S.° C,°
697 = ((’1 e Rt
1b 1c 1,5,
1 - cos @, cos D, + sin B, sin ,C,
20,81°S7"

A.5 Nonlinear Top-Nonlinear Top (n = 8). Moments of
inertia— Fragment 1:114, l1p, l1c Fragment 2:124, l2p, 12c (Se€
Chart 1 forA?)

QZm,r (wx’ wy' WOp 91' ‘i’l! 62* (bZ! X)

2, 2
|A | - Sel 502 I Ila lbllc|2a|2b|20
where

5= 1,Cp” + 16Sy°

5= 1pS,° + 1.Cyi’
ACi = ( ic |b)C0|
ASi ( ic |b)SH|

=G, - |2a)092892
XX |1a5912 + z:1_0912 + (lzasazz + Zz_cezz)cxz -
2AcCS, + 3,87 + 1,
1)+ (2127C£)22 o 22+ +
12:52)S,C,
= (2 —1)CxnSH — AgS, + & - |2a)C92$92C1
ly =" +35,"C 2 +1,8,°S* + 3,7 Cy’S 2 +
2Ac,C,S, ey
Iyz =Ag + ASZC% + (&, — |2a)C02892§¢
|, = 2"1_5012 + IlaC012 + 22_5922 + |2aC922

w=Ac1 T Acz(ZC;C2 -
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CHART 1

[ Iee Iy Ies
Iay Tyy Iyx
Izs Ty: Izz

-11aSe1 0 11aCo1

A =

Ach cf Asy

~124592Cx -1245925x 134Cg2
Ac2Cy -~ E£FS,  AcaSy +EfCy Aga

| Cy - As2Sy NS, +A52Cy  £5 52, +12aC3,

Inverse elements

C,.2[S,> C,°

(GO)0a = +l+i(ﬂ+£
| 2| |

&,XSQ1 1a Sy 1b 1c

(G 0)45 1b 1CS(7‘1

(G = Wisez

(Gr0)47 = %

61 Cel S 2 C¢12
G 0)48 - 2
exsﬂl SH

2
¢1 | lb+C¢l e

CoC,
I exsﬂlsez

Ilb Ilc

+

(695 = i

l lbI 1c

(GO)s6= %

Gsr=1"

ex

92% ( 1) C¢1S¢1
exSGZ I1b 591

2

1 Cez Sz’ 2 Cy2

(G 0)66 |_ +— 2+
exSBZ 2a 892

I2b |2c
(Ger=

(GO)ss=

llc

|2b|20802
(GO = 2 1 2 (Sﬁ Cr|
68—
ex802 SH ?

2
¢2 |2b+C¢2 le 1

P e S + =
I2b|20 Iex

91% ( 1) Cs2552
ex801 I2b l 802

C,.> S.2 C.2
2 | 92

g 2
L Ll) i iz
l1p 1 S \ b 5
1—cos 2, cos B, + sin B, sin ,C,
2c 2
2 eSSz

CoiC,
I exsﬂlsez

I2b I2c
GOy =

(Ge=

2,

(Ges = +

—haSe1 At —12a862Cx  B02Cx — B Sx MOy — AgeSy i
0 £} —12aS625x  Ac2Sk +EFCy ISy + 8520
NLaCe1 As1 12aCe2 Ase £ 5%, + 12aCp,
Iie 0 0 0 0
0 ot 0 0 0
0 0 I24 0 12,Cy2
0 0 0 t Asz
0 ] 12aCo2 As2 L5 55, + 122G, |

Robertson et al.

B. Derivation of Final Expression for F. The necessary
relationships among the sines and cosines of the sets of angles
(yi, 0) and @, B, 6, ¢i, x), (i = 1, 2) are explicitly derived for
two nonlinear tops. This is worked out first for reactant 1 with
reference to Figure 2; the analogous derivation for reactant 2
follows.

In the internal coordinate system of fragment di, by
definition is characterized by,/31). With some consideration
of Figure 2, it becomes clear that tleaxis of the collision
system can be characterized in the internal coordinate sys-
tem by @1, @ — ¢1). The addition of spherical angles then
gives

C0sy, = cosa, C0s#, — sina, sind, cos@; + ¢,) (Bl)

In the collision coordinate system translated to the center of
mass of reactant 1, the spherical polar angles for the inter-
nalz-axis are ¢, 0). Equation B1 determines the spherical angle
y1 for d; leaving the polar anglé;. The angle between the
internal z axis andd; is a;. The addition of spherical angles
gives

cos), = (cosa, — cosy, cosé,)/siny, sinf, (B2)

In this equation, substitution of eq B1 for gasgives

cos); = (coso,sin @, + sina, cosb, cos@; + ¢,))/siny,
(B3)

Furthermore, via eqs B1 and B3, one obtains
sind; = [1 — cog 0,]Y2= sina, sin(3, + ¢,)/siny, (B4)

For reactant 2, upon some consideration of Figure 1, it becomes
clear that the anglg, between the collision-systemaxis and

dz is independent ofy and thereforey can be set to zero.
Therefore

C0sy, = C0sa, Cosé, — sina, sin, cos, + ¢,) (B5)

In the collision coordinate system translated to the center of
mass of reactant 2, the angles for the intemrakis of fragment
2 are known, i.e.,f>, x). Equations B3 and B4 then applydf
is changed tod, — x. However, eqs B3 and B4 and their
analogues for reactant 2 are not directly needefd fnut rather
the product siny; sin y, cos@i — 02). After the necessary
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substitutions, that product assumes the form

siny, siny, cosg, — d,) = [{cosa, Sin6, +
sino, cos6, cos@, + ¢,)} {cox, sinb, +
sina, cosé, cosfB, + ¢,)} — sina, sin(3; +
¢,)sina, sin(B, + ¢,)lcosy + [sina, sin(G, +
¢{cosa, sin 6, + sina, cosh, cos@, + ¢,)} +
sina, sin(3, + ¢,){ cosa, sin 6, + sino, cosH, cosB; +
¢)}siny (B6)

Substitution of eqs B1, B5, and B6 into eq 17 results in an
F expression explicit in its dependence on albgf ¢1, 02, ¢2,
%G1, o, B, da, a2, B2, andR.
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