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Completely general canonical and microcanonical (energy-resolved) flexible transition state theory (FTST)
rate constant expressions for an arbitrary choice of reaction coordinate have recently been derived [Robertson
et al.J. Chem. Phys.2000, 113, 2648.] by the present authors. The rate expressions apply to any definition
of the separation distance between fragments in a barrierless recombination (or dissociation) that is held
fixed during hindered rotations at the transition state, and to any combination of fragment structure (atom,
linear top, nonlinear top). The minimization of the rate constant with respect to this definition can be regarded
as optimizing the reaction coordinate within a canonical or microcanonical framework. The expressions are
analytic, with the exception of a configuration integral whose evaluation generally requires numerical integration
over an integrand which depends on internal angles (from one to five depending on the fragment structures).
The primary component of the integrand is the determinant of the inverse G-matrix associated with the external
rotations and the relative internal rotation of the fragments. In this paper, we derive closed-form, analytic
expressions for the inverse G-matrix determinant for all combinations of fragment top types for an arbitrary
reaction coordinate definition entirely in terms of kinetic energy matrix elements for a centers-of-mass reaction
coordinate. For a model potential for CFH2 + H, the effect of optimizing the reaction coordinate definition
is displayed, and the optimized coordinate is compared to the traditional center-of-mass definition at the
canonical level. The associated rate constant is about a factor of 20% to 45% lower than that obtained using
a centers-of-mass reaction coordinate.

1. Introduction

Reactions whose transition states or “bottlenecks” are char-
acterized by large amplitude motion constitute a large and
important class of chemical processes. This situation most
commonly arises for recombination of molecular radicals, or
the reverse process of single-bond fission, for which there is
no (pronounced) potential barrier for the formation of a parent
molecule from a pair of constituent molecular fragments. Such
“barrierless” reactions are commonplace, particularly in com-
bustion, atmospheric, and interstellar processes. Barrierless
reactions are not confined to radical association/dissociation but
include bimolecular reactants yielding a pair, or several pairs,
of molecular products via a collision complex having a purely
attractive potential in some or all arrangement channels,
including the reactant channel. Despite ongoing advances in the
implementation of classical trajectories and quantum dynamics,
statistical theories remain the most widely used approach for
modeling reaction rate coefficients. The accurate incorporation
of large amplitude motion into statistical theories of reaction
kinetics is essential if such theories are to be relied upon for
predictions, for interpretation of measurements, and for develop-

ment of chemical intuition about “floppy” transition states. This
endeavor has been, and continues to be, the subject of substantial
theoretical attention, e.g., refs 1-5.

Here, we present further developments for accurately incor-
porating such large amplitude motion within a variational
transition state theory (VTST) framework. This paper will deal
exclusively with flexible transition state theory (FTST) with a
variable reaction coordinate (VRC). FTST-VRC is a version of
VTST designed specifically to handle large amplitude motion.
The FTST component, originally developed by Wardlaw and
Marcus,6 replaces a quantum mechanical accounting of restricted
types of large amplitude motion with a classical accounting of
any type of such motion. The VRC component, originally
developed by Klippenstein,7-9 exploits the fact that a reaction
coordinate (RC) about which large amplitude motion is executed
can itself be variationally selected under the same rate constant
minimization principle that animates all VTST theories. All
transition state theories of reaction dynamics have a dividing
surface (DS) orthogonal to the RC that separates reactants and
products. The variational principle is based on the fact that the
best DS is the one which minimizes the statistical (canonical
or microcanonical) reactive flux. Before the VRC development,
that minimization involved optimizing the placement of the DS
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along the RC. In the original Wardlaw-Marcus FTST10 the RC
was restricted to be the separation of the centers-of-mass of the
fragments,Rcm, because a centers-of-mass reaction coordinate
(CMRC) provides a natural and simple description of the kinetic
energy of the fragments. However, extensive early work by
Klippenstein7,9 showed that the rate constant could be further
lowered if the RC was the distance between noncenter-of-mass
pivot points about which the fragments executed their large
amplitude motion. The optimization of these pivot points on
each reactant constitutes a optimization of the RC and one that
can noticeably further minimize the calculated FTST reaction
rate constant.

This paper is the fourth in a series by the present authors
setting out a systematic reformulation of FTST-VRC into a
compact, computationally amenable, and physically more
transparent form. The computational advantage of our refor-
mulation of FTST becomes especially important when employ-
ing “nontraditional” reaction coordinates whose optimization
requires numerical effort absent in a sum of states calculation
using a single (nonoptimized) definition of the RC, such as a
bond coordinate or the centers-of-mass separation. The first
paper11 in the series (hereafter, denoted Paper I) simplified the
phase space integrals in FTST, leading to a more physically
intuitive form where a steric hindrance factor naturally emerges.
The second paper12 (hereafter, Paper II) began to incorporate
the VRC component into the same compact expressions
developed in Paper I forRcm as the RC. This incorporation was
only for one of five possible cases, the simplest one of an atom
reacting with a linear top. (As will be reviewed shortly, the
other four cases are atom+ nonlinear-top, linear-top+ linear-
top, linear-top+ nonlinear-top, and nonlinear-top+ nonlinear-
top.) The third paper13 (hereafter, Paper III) provided a fully
general reformulation of FTST-VRC but did not derive the
specific formulas necessary to calculate rate constants for each
of the five cases. In this paper, these specific formulas are
derived and their use is illustrated by a realistic model
application.

The structure of the paper is as follows. In Section 2, the
theory presented in paper III is briefly reviewed and then specific
formulas are systematically derived either in the section or in
supporting appendices. In section 3, the application of the current
approach to a model of the recombination reaction

is developed. This application illustrates the strengths and also
the limitations of the FTST-VRC approach as currently imple-

mented and suggests future directions of development. A
discussion and conclusions are provided in section 4.

We believe this paper provides a mathematically elegant,
computationally tractable, and physically interpretable set of
formulas for the incorporation of large amplitude motion in gas-
phase reaction kinetics. These formulas have already been
implemented in the freeware reaction kinetics program called
VariFlex14 that comes with a manual and instructions. Thus,
the approach developed here is accessible without extensive
programming.

2. Theory

2.1 Transitional Mode and Reaction Coordinates.For a
CMRC, the relative orientation of the fragments is specified
by rotating the fragments about “pivot points” located at either
end of the line connecting the centers-of-mass of the two
fragments. This orientation is conveniently specified by internal
Euler angles (Jacobi angles in scattering theory), collectively
denotedqcm,int. For the case of two nonlinear tops (so that all
possible internal angles can be indicated),qcm,int ) (θ1, φ1, θ2,
φ2, ø); these angles are identified in Figure 1. For progressively
simpler cases, e.g., one nonlinear top is replaced by a linear
top, the number of internal angles decreases. The simplest case
of an atom+ linear top requires only one angle (θ1) to specify
the relative orientation of fragments. Table 1 in Paper III lists
all 5 possible cases and the associated angles. Arbitrary pivot
points can be characterized by vectorsdi(i ) 1, 2), whose origins
are the respective CMs. The associated reaction coordinateR
is the line connecting the tips of the two displacement vectors.
This situation is also depicted in Figure 1. A point on the
reaction coordinate is now located by fixing the value ofR. A
consequence of such a generalization of the reaction coordinate
definition is thatRcm now depends on the internal angles and
the displacement vectors for a given value ofR

whereF is a geometric function representing howRcm depends
onqcm,int andd1, d2 while holding a separation distanceR fixed.

2.2 FTST Rate Constant Expressions.The generic canonical
FTST rate constant expression is

Here,Qreactis the partition function of the reactants in the center-

Figure 1. Relative orientation of principal axis coordinate systems on each reactant with respect to the center of mass coordinate system of the
collision system as a whole. Within the coordinate system of each reactant, the pivot point displacement vectordi is indicated.
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of-mass frame;ge and gσ are the ratios of transition state to
reactant electronic degeneracy factors and symmetry factors,
respectively.Qcons is the canonical partition function for the
conserved modes.Qtm is the transitional mode partition function
for the n transitional/external rotational degrees of freedom,
which are assumed separable from the conserved modes in
FTST. The ‘†’ onQcons andQtm indicates that these quantities
are evaluated at that value of the reaction coordinateR, called
R†, which minimizes their product at the given temperature, i.e.,
minimizes the numerator of the rate constant expression in eq
3. V† denotes the minimum potential energy consistent with the
fragments being separated byR† for a particular choice of RC
definition. That is, the configuration associated withV† is a
‘point’ on the minimum energy path (MEP), where a point is a
set of Cartesian coordinatesr i,MEP specifying the positions of
all atoms. Let the particular MEP point associated with a
particular RC definition and with a particular RC value (R†) be
r ′i,MEP. Then we can writeV† ) VMEP(r ′i,MEP). The factor e-âV†

indicates that reactants and transition state have a common
energy origin and that potential energy functions appearing in
Qcons

† andQtm
† are implicitly evaluated with respect toV†.

Standard expressions are available forQcons, and so it will
not be discussed further. In Paper III, we showed thatQtm for
a variable RC can be expressed as a configuration integral

Ar is the (reduced) kinetic energy matrix, commonly called the
inverse G-matrix, associated with the generalized velocities for
the n transitional/external modes when the velocity along the
RC (the (n + 1)st degree of freedom) is constrained to be zero.
It is obtained by reducing the full (n + 1) × (n + 1) A-matrix
by removing its (n + 1)st row and (n + 1)st column.

∆Vtr ) Vtr - V† is the transitional mode potential evaluated
with respect toV†.

The corresponding microcanonical expression is

where

andu is the Heaviside function. In eqs 4 and 6, the dependence
of the determinant on the variables of integration and onR is
implicit.

The determinant in eqs 4 and 6 can be expressed as

Ar
0 is the reduced kinetic energy matrix for a CMRC andδAr

accounts for the motion of the fragments about pivot points
displaced from the fragments’ centers-of-mass. The general form
of the matrix elements forAr

0 andδAr is derived in Paper III.

δAr has a particularly simple form and is conveniently expressed
in terms the functionF (eq 3)

wherem ) n - 3 is the number of transitional modes,03×3 is
the 3× 3 null matrix,03×m is the 3× m null matrix, and∇F
is the gradient (column) vector

Introducing eq 8 in eq 7 followed by the manipulations described
in detail in Paper III yields

HereAr
0(F) has exactly the same form as the reduced kinetic

energy matrix for a centers-of-mass reaction coordinate (CMRC)
but withF substituted forRcm. Gr

0 is the corresponding reduced
version of G0 obtained by removal of the last row and last
column from the latter, i.e., by removal of matrix elements
relating to motion along the CMRC.G0 is the inverse ofA0

and is defined by

where Q4 cm
T ) (ωx, ωy, ωz, q3 cm,int, Ṙcm) is the generalized

velocity vector [as defined in eq 11 of Paper III] andPcm )
A0Q4 cm. In Paper III, we established thatGr

0Ar
0 ) 1. Thus

where|(Ar
0)ij| is the ij minor determinant ofAr

0.
To evaluate the canonical or microcanonical FTST-VRC rate

constant one must evaluate the configuration integral in the
expressions forQtm

† (T) [eq 4] or N†(E) [eq 6], respectively.
Both evaluations require knowledge of the case-specific form
of |Ar| whose general form is given by eq 10. The next
subsection provides analytic results for the matrixAr

0, its
determinant, and the required elements of theGr

0 for cases 1-5
(n ) 4, 5, ..., 8). The following subsection derives an analytic
expression for the functionF [eq 2] for case 5 (n ) 8). We
note that these configuration integrals require knowledge ofVtr,
in addition to |Ar| and F. Vtr depends on the details of the
potential energy surface and thus varies from application to
application. However,|Ar| andF have invariant forms for each
of cases 1-5, i.e., for each combination of top types; the only
system-dependent aspect within a particular case is the moments
of inertia of the top(s). Because the determination of the rate
constant with an optimization of the value and definition of the
reaction coordinate requires repeated evaluations ofQtm or N(E),
our formulation offers distinct simplifications in the construction
of computer code as well as significant computational efficien-
cies over original FTST. All of the results described in the next
two subsections have been incorporated in the VariFlex software
package.14

δAr ) [03×3 03×m

0m×3
T µ[(∇F)(∇F)T]m×m

] (8)

∇F ) ∇qcm,int
F ) ( ∂F

∂qcm,int,1
, ...,

∂F
∂qcm,int,m

) (9)

|Ar|1/2 ) |Ar
0|1/2(F){1 + µ[∑

i)4

n

(∇F)i
2 (Gr

0)ii +

2 ∑
i)4

n-1

∑
j)i+1

n

(∇F)i(∇F)j (Gr
0)ij]} (10)

2T ) Pcm
T G0 Pcm ) Q̇cm

T A0 Q4 cm (11)

(Gr
0)ij ) (-1)i+j

|(Ar
0)ij|

|Ar
0|

(12)

Qtm
† (â) ) 8π2(2π

âh2)n/2∫dqcm,int |Ar|1/2 e-â∆Vtr(qcm,int, R†) (4)

k(E) ) gegσ
-1 N†(E)

hFreact(E)
(5)

N†(E) ) ∫0

E-V†

dε Fcons(ε, R†)g
8π2

Γ(n2 + 1) (2π
h2)n/2×

∫ ‚‚‚ ∫dqcm,int |Ar|1/2 (E - V† - ε - ∆Vtr(qcm,int, R†))n/2 ×

× u(E - V† - ε - ∆Vtr(qcm,int, R†)) (6)

|Ar| ) |Ar
0 + δAr| (7)
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2.3 Analytic Expressions for Kinetic Energy Matrix
Elements and Determinant.Analytic expressions forAr

0, |Ar
0|,

and the required elements ofGr
0 are listed in Appendix A in

subsections A.1- A.5 for cases 1-5, respectively. They are
functions of the internal anglesqcm,int and also depend on the
moments of inertia of fragment top(s) and on the moment of
inertia for ‘external’ rotation of the fragments’ centers-of-mass
about the overall center-of-mass. All results were obtained by
manual simplification of output generated by algebraic manipu-
lation software.22 For the simpler cases, (i.e. atom+ linear top
and linear top+ linear top) the elements ofAr

0 were obtained
by writing the Cartesian componentsr i ) (xi, yi, zi) of each the
N atoms in terms of (qcm,int, Rcm), substituting in

and regrouping terms to obtain an expression in the form of eq
11. For those cases that involve nonlinear asymmetric tops, this
simple approach proved to be intractable leading to large
equations that could not easily be reduced to terms involving
the principal moments of inertia of fragments. Instead direct
manipulation of the inertia tensors was used to generate overall
inertia components, internal rotatation energies and coriolis
terms. Further details are provided by eqs 8-16 of Paper III.
The G-matrix elements are determined via eq 12.

For nonlinear top fragments (cases 2, 4, and 5), we present
results in Appendix A for the most general situation of an
asymmetric top. Note that all azimuthal angle (φ1, φ2) depen-
dence inAr

0 is contained in trigonometric combinations of the
two momentsI ib and I ic. In the convention of this paper, these
two moments become identical as the asymmetric top goes to
a symmetric top. Careful consideration of expressions given in
appendix A shows that, in the limit that a top becomes
symmetric, all azimuthal angle dependence of the matrix
elements ofAr

0 vanishes. In the symmetric top+ symmetric
top limit, the matrix in Appendix A.5 is identical to theA matrix
in Table 1 of Paper I.

Many of the terms in the G-matrix element expressions in
Appendix A contain one of the following factors: (sinθ1)-1,
(sinθ2)-1, (sinθ1 sinθ2)-1, or the square of one of these factors.
Such G-matrix elements are singular whenθ1 or θ2 is 0 or π,
i.e., at either end of the allowed range. However, the expression
for |Ar

0| always contains a factor of sin2θ1 and/or sin2θ2,
depending on the case [see Appendix A], which cancels any
inverse sine factors in the G-matrix elements appearing in the
expression for|Ar| [eq 10]. Consequently, the integrands in the
transitional mode partition function expression [eq 4] and the
microcanonical sum of states expression [eq 6] are always
mathematically well-behaved.

2.4 Derivation of F. F is the function which relatesRcm to
the distanceR between the pivot points of the two reactants.
Let the vectordi locate the position of the pivot point of theith
reactant relative to its center of mass, as in Figure 1.R is the
distance between the tips ofd1 and d2, whereasRcm is the
distance between the origins ofd1 andd2. di is defined in terms
of the principal axis coordinate system centered on each reactant
as in Figure 1, i.e.,di is characterized by a lengthdi, and polar
and azimuthal anglesRi andâi (as seen in Figure 1). Because
the relative orientation of the internal axes are characterized by
the Euler anglesθ1, φ1, θ2, φ2, andø, F is a function of those
angles and the derivative of that dependence is needed in the

construction of|Ar| via eq 10. In general,F can be written
as

An explicit expression is derived below for case 5 (two nonlinear
tops) from which the corresponding expressions for Cases 1-4
are readily obtained by systematic simplification.

It is convenient that the angular orientation ofdi be first
expressed in terms of the polar angleγi and the azimuthal angle
δi with respect to the collision coordinate system translated to
the center of mass of theith reactant. These angles are illustrated
in Figure 2 for reactant 1.

The derivation ofF begins with the vector relation

The magnitude of R is thus given by

where the square brackets enclose an expression for the cosine
of the angle betweend1 and d2, if these two vectors where
translated along thez axis to a common origin. Solving the
quadratic inRcm gives

This expression reduces toF ) R as d1, d2 f 0. It is also
consistent with the result derived in Paper II for the simplest
case of a linear top plus atom if reactant 1 is the atom. Equation
17 indicates that, in general, there are two possible values ofF
for a givenR, a situation which is physically meaningful only
if both values ofF are positive. Conditions determining whether
there is one or two values ofF and the corresponding physical

2T ) ∑
i)1

N

mir3 i · r i + 2ω · ∑
i)1

N

mir i × r3 i + ωT · I · ω (13)
Figure 2. Definition of γ1 andδ1 in an expanded view of the coordinate
system of the first reactant in Figure 1.

F ) Rcm (θ1, φ1, θ2, φ2, ø, d1, R1, â1, d2, R2, â2; R) (14)

R ) Rcm + d2 - d1 (15)

R2 ) R · R

) (Rcm + d2 - d1) · (Rcm + d2 - d1)

) Rcm
2 + d1

2 + d2
2 + 2Rcm · (d2 - d1) - 2d2 · d1

) Rcm
2 + d1

2 + d2
2 + 2Rcm(d2 cosγ2 - d1 cosγ1)

-2d1d2[cosγ1 cosγ2 + sin γ1 sin γ2 cos(δ1 - δ2)] (16)

F ) d1 cosγ1 - d2 cosγ2 ((R2 - d1
2 - d2

2 +

d1
2 cos2 γ1 + d2

2 cos2 γ2 + 2d1d2 [cosγ1 cosγ2 +

sin γ1 sin γ2 cos (δ1 - δ2)])
1/2 (17)
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interpretation are discussed later below for the simplest case of
an atom+ linear top.

The above solution forF [eq 17] still requires an explicit
relationship between (γi, δi) and (Ri, âi, θi, φi, ø). The necessary
relationships are derived in Appendix B for the case of two
nonlinear tops. Substitution of eqs B1, B5, B6 into eq 17 yields
an explicit closed-form expression forF depending on the
variables indicated on the right-hand side of eq 14. The
derivatives of this expression with respect toθ1, φ1, θ2, φ2, and
ø provide the components of the gradient ofF appearing in eq
10.

If either reactant is a linear top or an atom, then the
expressions in Appendix B must be modified. In the case of a
linear top, the orientation of the internalx- andy-axes cannot
be fixed in the plane perpendicular to the internalz-axis because
of the rotational symmetry of the linear top about its symmetry
axis. Consequently,φ andâ for that reactant cannot be defined.
Without a â, R cannot be used to located except along the
z-axis, i.e.,R ) 0 or π. Thus for a linear top, the dependency
on φ and â in expressions eqs B.4, B.8, and B.9 vanishes
because the terms involving these two angles always have a
sin R prefactor. For an atom, there is no internal coordinate
system that can be defined independently of the other reactant.
d cannot be oriented in space in a way uniquely associated to
the atom and therefore must be 0.

The expression forF is physically meaningful only if the
argument of the square root term (third term) in eq 17

is positive or zero. It is straightforward to show that this is so
whenRgd1 + d2. For R < d1 + d2, expression 18 is positive
for restricted ranges of the angles (θ1, φ1, θ2, φ2, ø) for fixed
values of (d1, R1, â1, d2). This is easily illustrated in the simplest
case of a linear top+ atom for whichθ1 is the sole Euler angle.
With d2 ) 0, eq 17 becomes

From the discussion in the preceding paragraph about a linear
top fragment,R1 ) 0 or π in this case. Substitution of cos
R1 ) (1 in eq B1 yields cosγ1 ) (cosθ1 and thus

Clearly the argument of the square root in eq 20 is always
positive if R > d1 but if R < d1, it is positive only if
R2 > d1

2 sin2 θ1 which sets the maximum value ofθ1 at
(θ1)max ) sin-1(R/d1). Thus for a linear top+ atom withR <
d1, the range of integration overθ1 in the configuration integral
in eq 4 or 6 must be restricted to (0, (θ1)max) instead of using
the full range (0,π). For θ1 < (θ1)max, there are two positive
values ofF for a givenθ1 andR, a larger valueF+ obtained by
choosing the positive sign for the second term in eq 19 or 20
and a smaller oneF- corresponding to the negative sign. The
relative configurations of fragments associated withF+ andF-
are different and correspond to different values of the angleθ′1
betweend1 andR. As θ1 (angle betweend1 andRcm) increases
from 0 to (θ1)max), θ′1 takes on its entire range of values from 0
to π, with each value ofθ1 giving rise to two values ofθ′1.
Since a physically correct transition state dividing surface must
include all relative angular orientations of the fragments, the

rate constant, for theR < d1 case, must be defined ask(R) )
k+(R) + k-(R), wherek((R) are obtained by usingF( in eq 4
or eq 6. In practice, the values ofd1 and R in the vicinity of
typical flexible transition state values are such that choosing
the negative sign in eq 19 or 20 yields values ofRcm ) F-
which correspond to locating the approaching atom in the
vicinity of one end or the other of the linear fragment (depending
on R1 ) 0 or π). Such configurations are generally highly
repulsive and the associated large values of the interaction
potential lead to relatively small values of the configuration
integral. Thus, for a physically reasonable series ofR and d1

values such thatR< d1, thek+ rate constant will greatly exceed
its k- counterpart and one expects that thek- values will be
sufficiently small as to be irrelevant, so thatk(R) ≈ k+(R). For
the other four cases, a closed form determination of the limits
on the ranges of the euler angles is not possible. Consider for
example, the least complex of these is the nonlinear top+ atom
case (withd2 ) 0). For R < d1 one would have to determine
(θ1)max(φ) for each value ofφ by finding the root of the argument
of the square root term in eq 19 with cosγ1 ) cosR1 cosθ1 -
sin R1 sin θ1 cos(â1 + φ1) [eq B1]. This is a transcendental
equation inθ1. Rather than solving such transcendental equations
numerically and using the results to restrict the integration
ranges, we incorporate this situation directly in the numerical
evaluation of the integral in eq 4 or 6. The full range of the
Euler angles is employed in our integration schemes and the
argument of the square root term in eq 17 is expressed in terms
of Euler angles via eqs B1, B5, and B6. Each integration point
in a quadrature or Monte Carlo numerical integration specifies
a set of Euler angles. If the argument of the square root term is
negative for a particular integration point, the corresponding
value of the integrand is set to zero. If the argument is positive
andR > d1 + d2, a single value ofF is determined by selecting
the positive sign for the square root term in eq 17; if the
argument is positive andR < d1 + d2, then there are two
possible values ofF corresponding to the positive and negative
signs andk(R) ) k+(R) + k-(R). This procedure identifies, in
an automatic manner, the restrictions imposed on the angular
ranges and the two contributions to the rate constant whenR <
d1 + d2.

Given the hindering potentialVtr, the entire expression for
Qtm can be evaluated and, with that, the rate constant. Through
F, the final rate constant will have a dependence ond1, R1, â1,
d2, R2, â2, andR. Minimization of the rate constant with respect
to these parameters optimizes the definition of the reaction
coordinate. Simultaneous final minimization of the rate constant
along this optimized reaction coordinate gives the best estimate
of the rate coefficient. However, local minima in this parameter
space can lead to ambiguities as to the correct choice for, and
physical significance of, the transition state dividing surface, a
situation illustrated by the example in Section 3.

3. Application

The earliest applications of a VRC description have involved
pivot point displacements along the bond axes of linear tops.1,7,9,8

More recent applications have involved optimized pivot points
that are not along bond axes.4,15 To illustrate the comparable
flexibility of the approach given above, an application will be
presented in this section, in which there is no symmetry axis,
namely the recombination H+ CFH2. This example, while
realistic in qualitative terms, is not designed to be chemically
reliable and no comparison to experiment will be offered. (A
chemically reliable study of the H+ CFmH3-m(m ) 1, 2, 3)
employing ab initio potential energy surfaces is in progress.)

R2 - d1
2 - d2

2 + d1
2 cos2 γ1 + d2

2 cos2 γ2 +
2d1d2[cosγ1 cosγ2 + sin γ1 sin γ2 cos(δ1 - δ2)] (18)

F ) d1 cosγ1 ( (R2 - d1
2 + d1

2 cos2 γ1)
1/2 (19)

F ) (d1 cosθ1 ( (R2 - d1
2 + d1

2 cos2 θ1)
1/2 )

(d1 cosθ1 ( (R2 - d1
2 sin2 θ1)

1/2 (20)
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Rather, this example is designed to show the broad implications
of an unconstrained pivot point optimization. In this spirit, only
the canonical version of the theory is applied and temperatures
confined to the range 300-2000 K. Lower or higher temper-
atures pose no problems for the method except for the
anticipated emergence of quantum effects at very low temper-
atures. The H+ CFH2 example does have a plane of symmetry
and the implication of this symmetry element for the imple-
mentation of the formalism developed above will be explicitly
examined. This consistency check is the reason for choosing
this example rather than a case with no symmetry at all (which
is equally amenable to the theory in this paper).

The model used for H+ CFH2 has the following character-
istics. The isolated CFH2 geometry is derived from recent ab
initio calculations19 which predict a nonplanar CFH2 radical.
The CFH2 fragment is assigned the geometry of the isolated
radical throughout the region of the transitional mode potential
energy surface (PES) controlling the recombination kinetics. The
conserved vibrational degrees of freedom are presumed un-
changed in character in this region. The dependence of the PES
on separation and relative orientation of fragments is represented
by nonbonded and bonding interactions. The nonbonded interac-
tions of the attacking H with the F and H atoms on the radical
are represented by Lennard-Jones potentials with parameters
developed by Mayo et al..16 The bonding potential between the
attacking H atom and the C atom on the radical has a
dependence on both the bond lengthrCH and on the angle of
approach. The bond length dependence is represented by a
Morse oscillator (VM) with the usual three parameters: the
dissociation energyDe, the equilibrium bond lengthre, and the
beta parameterâe. TheDe value is determined from the reaction
enthalpy at 298 K that can be constructed from the JANAF
tables17 for CH3F and the NASA tables18 for CH2F. This reaction
enthalpy is corrected for the harmonic zero point energy using
the JANAF frequencies. There value comes from the JANAF
tabulation for CH3F. Theâe value comes from a fit to ab initio
calculations of the reaction path.19 It is about 15% higher than
what would be calculated fromDe, re, and the relevant harmonic
frequency of CH3F. The angular dependence of the bonding
interaction is represented by the square of the cosine of the angle
the attacking H makes with the equal splay axis of the radical.
That axis passes through the C atom in such a way that the two
C-H bonds and the C-F bond of the radical make equal angles
with respect to the axis. The ab initio studies,19 as well as
chemical intuition, would suggest that the equal splay axis is
approximately the minimum energy path (MEP) of the recom-
bination reaction.

The PES in the region kinetically important for recombination
then takes the form

where (rCH, γCH, δCH) are the spherical polar components of a
vector from C to the attacking H, built around the equal splay
axis, VLJ is sum of nonbonded interactions assuming a fixed
(asymptotic) geometry of the CFH2, and VM is the bonding
interaction described above. Note that atγCH ) 0, V becomes
the Morse potentialVM. In other words, for this model potential
the MEP lies along the equal splay axis andVMEP ) VM.
Although it is not guaranteed that the actual MEP is coincident
with the equal splay axis, tests show that this is a very good
approximation. The above form is similar in spirit to the original
Wardlaw-Marcus10 potential proposed in the original applica-

tions of FTST. However, it avoids the fitting of effective Morse
potentials required by that approach. The resulting potential is
certainly realistic but is probably not quantitative and has not
been compared to the corresponding Wardlaw-Marcus10 ver-
sion.

With this PES for H+ CFH2, the canonical rate constant
versus temperature can be determined from the formalism in
the previous sections. The reactants belong to the asymmetric
top+ atom case (n ) 5). The canonical rate constant expression
is obtained by tailoring the general expression, eq 3, so that
fragment 1 is a nonlinear top and fragment 2 is an atom

The second equality is a result of settingge ) 1/4, gσ ) 1, and
Qcons

† ) Qvib,1 (i.e., CFH2 conserved mode frequencies are
assumed not to vary along reaction coordinate in our model
potential for this system).Qtrans andQfr,1 are the translational
partition function (per unit volume) for relative motion of the
fragments and the rotational partition function of the CFH2

radical, respectively.
The general expression forQtm

† is given in eq 4 and depends,
among other things, on|Ar|1/2. The case specific expression for
|Ar|1/2 is obtained by substituting the explicit expressions for
|A0| and (Gr

0)ij for n ) 5 from Appendix A.2 in the general
expression given by eq 10

whereI1a, I1b, and I1c are the moments of inertia of CFH2. In
general, these moments vary along the reaction coordinate, being
determined by the geometry of the fragments at a position along
the MEP corresponding to the particular value of the reaction
coordinate,R. In our model potential for CFH2 + H, the
geometry of CFH2 along the reaction coordinate is fixed at that
of the isolated radical. Thus, the moments of inertia in eq 23
are constant and equal to their ‘asymptotic’ values. Introducing
eq 23 into eq 4 and settingqcm,int ) (θ1, φ1) yields

The canoncial rate constant expression (eq 22) becomes, after
introducing the above expression forQtm

† , setting Qtrans )
(2πµ/âh2)3/2, settingQfr,i ) (2π/âp2)3/2(I1aI ibI ic)1/2, and allowing
the moments of inertia in the numerator and denominator to
cancel

The case-specific expression forF is obtained by settingd2 )

V(rCH, γCH, δCH) ) VLJ(rCH, γCH, δCH) +

cos2(γCH)[VM(rCH) - VLJ(rCH, 0, 0)] (21)

k(T) ) gegσ
-1 kT

h

Qcons
† Qtm

†

QtransQvib,1Qfr,1
exp(-V†/kT) )

1
4

kT
h

Qtm
†

QtransQfr,1
exp(-V†/kT) (22)

|Ar|1/2 ) (µF2)(I1aI1bI1c)
1/2sin θ1 {1 + µ[(∇F)4

2 (Gr
0)44 +

(∇F)5
2 (Gr

0)55 + 2(∇F)4(∇F)5 (Gr
0)45]}

1/2 (23)

Qtm
†(â) ) 8π2(2π

âh2)n/2
(I1aI1bI1c)

1/2∫0

π
sin θ1 dθ1 ∫0

2π

dφ1 µF2 × {1 + µ[(∇F)4
2 (Gr

0)44 + (∇F)5
2 (Gr

0)55 +

2(∇F)4(∇F)5 (Gr
0)45]}

1/2 e-â∆Vtr(θ1,φ1;R†) (24)

k(T) ) 1
4 (8kT

µπ )1/2
exp(-V†/kT) ×

1
4π ∫0

π
sin θ1 dθ1 ∫0

2π
dφ1 F2 × {1 + µ[(∇F)4

2 (Gr
0)44 +

(∇F)5
2 (Gr

0)55 + 2(∇F)4(∇F)5 (Gr
0)45]}

1/2 e-â∆Vtr(θ1,φ1;R†)

(25)
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0 in eq 17 and inserting eq B1 in eq 17 yielding

where

The case-specific expressions for the elements of the gradient
of F are

where

The optimal rate coefficient is obtained by minimizing
Qtmexp(-V/kT) with respect to the value and definition of the
reaction coordinate. Because this particular reaction is an
example of an asymmetric top plus atom reaction, minimization
proceeds in a four parameter space ofR, d ) d1(radial distance),
R ) R1(polar angle with respect to principal axis associated
with smallest moment of inertia, i.e., the one nearly coincident
with the C-F axis of CFH2), and â ) â1 (azimuthal angle
selected so as to be measured from anx axis located in the
symmetry plane of CFH2). In doing the minimization, the
integral in the expression forQtm

† was evaluated numerically,
typically by using a Romberg integration scheme. As a check,
some numerical integrations were redone with a highly con-
verged Monte Carlo scheme. (Both methods are options in the
VariFlex program package used for all calculations.) The
comparison of results of both integration methods confirms that
the integration parameters for the Romberg method guarantee
convergence of the rate constant to better than 1%.

Although formally, the minimization in this example occurs
in a four dimensional space, the presence of a symmetry plane
in CFH2 requires that the optimal pivot point be located in that
plane. This can only occur if the optimal value ofâ is either 0
or π. As a check on the minimization procedure, in Figure 3
the computed rate constant at 600 K at a fixed value ofR and
d is displayed for optimal values ofR and discrete values ofâ.
(As will be described later, the fixed values ofR andd are in
fact optimal values at 600 K.) Clearly, the overall minimum in
the rate constant occurs whenâ ) 0, corresponding, as expected,
to the optimal pivot point residing in the symmetry plane.

In addition to properly reflecting symmetry constraints, the
results in Figure 3 show that the structure in parameter space
about a minimum is quadratic only in a limiting sense. Clearly,
the results in the figure show a much more rapid rise in the
rate constant on the smallR side of the minimum. This is also
a typical situation for minimization inR or d. The origin of
this behavior is that the hindrance potential occurs in an
exponential in the integrand [see eq 24]. Relatively small
variations in the RC value or definition cause the hindered
rotations to experience relatively small variations in the
hindrance potential which then get amplified in the exponential.
Even in close proximity to the minimum the nonquadratic

behavior of the parameter surface can make the minimum
difficult to locate, especially when the global minimum is one
of many local minima. This situation places a premium on a
computationally efficient implementation of FTST-VRC, as is
offered in the paper. It also supports the use of canonical rate
constant approaches to locating minima and then more ac-
curately exploring their vicinity in parameter space in subse-
quent, more computationally intensive microcanonical studies.

As has already been suggested, minimization in the four
parameter space of this example produces local minima. In fact,
three distinct, physically intrepretable local minima do occur,
all with pivot points in the symmetry plane. This is illustrated
in Figure 4 where the computed rate constant at 600 K,
minimized with respect toR andR, is plotted versusd for the
two possible values ofâ: “d”< 0 in the figure impliesâ ) π
while “d”> 0 implies thatâ ) 0. Three minima are clearly
seen and indicated by symbols in the figure. They are also
labeled “frontside”, “bothside”, and “backside”. The intent of
these labels is most conveniently understood in terms of a picture
of CFH2 superimposed on the principal axis system which
definesR and â. That is found in each of the four panels of
Figure 5, a complicated figure which will be fully described
shortly. Each panel shows thez axis from whichR is measured
as nearly the C-F bond axis, whereas thex axis from whichâ
is measured defines, along with thez axis, the symmetry plane
of CFH2. (Only one H atom is displayed in each panel of Figure
5 because the second H atom lies directly below the first on
the other side of the symmetry plane.) Each panel of Figure 5
displays a dotted line representing the equal splay axis which
lies in the symmetry plane.

By reference to Figure 5, a positive value ofd, corresponding
to â ) 0, lies on the+x side of the symmetry plane. Any pivot
point on this side would have a projection on the equal splay
axis that points in a direction opposite from that of the F and H
atoms. We call this the “front” side of the equal splay axis where

Figure 3. Plot of the calculated canonical rate constants at 600 K versus
a for a series ofâ values withR and d fixed. The minimum in the
lowest curve, namely that forâ ) 0°, gives the optimum rate constant
for the givenR andd.

F ) -d1Y + [R2 - d1
2(1 - Y2)]1/2 (26)

Y ) cosR1 cosθ1 - sin R1 sin θ1 cos(â1 + φ1) (27)

(∇F)θ1
) ∂F

∂Y
∂Y
∂θ1

) -(cosR1 sin θ1 +

sin R1 cosθ1 cos(â1 + φ1))
∂F
∂Y

(28)

(∇F)φ1
) ∂F

∂Y
∂Y
∂φ1

) sin R1 sin θ1 sin(â1 + φ1)
∂F
∂Y

(29)

∂F
∂Y

) -d1 + d1
2Y[R2 - d1

2(1 - Y2)]1/2 (30)
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the radical p-orbital on the carbon is the most exposed. On the
other hand, a negative value ofd corresponding toâ ) π lies
on the -x side of the symmetry plane with a pivot point
projection on the equal splay axis that points in a direction
similar to that of the F and H atoms. We call this the “back”
side of the equal splay axis where the radical p-orbital on the
carbon is most sterically hindered. In Figure 4, large positive
(negative) values ofd have pivot points located in front (back)
of the splayed CFH2. Small values ofd refer to pivot points for
which the transition state samples both the front and backside
of the radical orbital and thus are labeled as “bothside”. In Figure
4, there is an open square labeled “d ) 0”. This corresponds to
a rate constant calculation in which no pivot point optimization
occurs and the pivot is thus the center of mass of CFH2. As the
figure indicates this is not a local minimum with respect to
variation in d but is instead the end of a variation about the
“bothside” local minimum located at a relatively small value
of d.

Although Figure 4 clearly displays three minima and indicates
what half of the symmetry plane the minima lie on, it does not
indicate the optimal values ofR andR for each minima. That
is displayed in the last three panels of Figure 5, whereas the
first panel illustrates thed ) 0 case for comparison. Each circle
drawn on each panel has a radius that corresponds to the optimal
value ofR and a center that locates the optimal pivot point and
thus the optimal values ofR andd. Although Figure 4 was only
for 600 K, each panel in Figure 5 shows the optimal pivot point
location andR value for 300, 600, and 2000 K. Finally, in each
of the last three panels of Figure 5, the optimald vectors

corresponding to 300 K (longer vector) and 2000 K (shorter
vector) are drawn in as thin solid arrows. (The thirdd vector
associated with 600 K was not drawn since it is almost identical
to that associated with 2000 K, as is reflected in the near
concentricity of the 600 and 2000 K circles.) In configuration
space, the canonical transition state dividing surface for the
nonlinear top+ atom combination is a sphere of radiusR
centered on the tip of the associatedd. The projection of this
dividing surface on thex - z plane is a circle. Thus in each
panel, it is easy to imagine the spherical dividing surface 300,
600, and 2000 K from the circles in the figure. The transition
state species CFH2...H undergoes large amplitude, 2-dimensional
hindered motion on the surface of this spherical dividing surface.
The more conventional picture of the dividing surface being a
harmonic oscillator type motion in a plane perpendicular to the
reaction path still applies to the conserved degrees of freedom.
But the FTST ansatz has replaced that picture for transitional
modes with a curvelinear coordinate representation leading to
the spherical transition state dividing surfaces found in Figure
5.

Panel (a) in Figure 5 displays the resulting optimal values of
R ) Rcm in this case. Clearly, the circles for the three different
temperatures are centered on the center of mass which is at the
origin of thex - z plane. In the figure, the radius of a circle
decreases as its corresponding temperature increases. This is
just a representation of the well-known fact that for barrierless
reactions the transition state moves in along the reaction path
as the temperature increases. If one were to employ a conven-
tional planar transition state dividing surface perpendicular to
a reaction path, there would be in this example two transition
states corresponding to two different reaction pathssone for
forward attack approximately along the equal splay axis in the
x > 0 portion of thex - z plane and one for backward attack
approximately along the same axis in thex < 0 portion of the
plane. Two separate calculations would be performed and the
results summed. (This raises a series of chemical issues
regarding the role of the CFH2 umbrella motion; a limited
discussion is provided at the end of this section.) In this
anharmonic approach, the same dividing surface spans both
reaction paths. Reactant flux can enter from both the front and
the back and the formalism discussed in the previous sections
takes all of this into proper account. However, the circles in
the figure do not intersect the equal splay axis at right angles
because the equal splay axis is centered on the C atom and not
on the center of mass. This means that even if we replaced the
actual hindering potential on the sphere by a harmonic version
originating from a point where the equal splay axis intersects
the sphere, the harmonic frequencies associated with that
potential might not closely approximate the harmonic frequen-
cies perpendicular to the equal splay axis. Does this make the
constrainedd ) 0 result inaccurate?

The answer to that question can be determined by simply
letting the pivot point location vary fromd ) 0 to see if the
rate constant can be further minimized. That is exactly what
the solid line labeled “bothside” in Figure 4 represents forT )
600 K. Note that starting fromd ) 0, the minimum with respect
to R andR could have gone into theâ ) 0 or π region. As the
figure indicates, the minimum goes only to theâ ) 0 region.
In other words, for small nonzero d, any attempt to locate the
pivot point in thex < 0 portion of thex - z plane produces a
rate constant higher than values for the samed in x > 0 portion
of the plane. The resulting minimum in this optimization starting
from d ) 0 is indicated with an open diamond and the label
“bothside” in Figure 4. The corresponding transition state

Figure 4. Calculated canonical rate constant versus the lengthd of
the pivot point displacement vectord at 600 K. The rate constants from
which the curves are constructed are optimized (minimized) with respect
to 2-dimensional variations in the separation R between the H atom
and the tip ofd and variations in the spherical angleR betweend and
the principalz-axis. Negative values ofd signify that the azimuthal
angleâ for the vectord is 180°. Positive values ofd signify â ) 0°.
The symbols indicate the location of local minimum, except for the
open square which locates the lowest rate ifd ) 0 and there is no
optimization of the reaction coordinate. See text for meaning of the
labels of each local minimum.
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dividing surface for 600 K and also for 300 and 2000 K are
indicated in panel (b) of Figure 5. Unlike panel (a), oned vector
can be seen in the panel (it is for 2000 K), whereas the other
two d vectors are largely hidden by the representation of the
C-F bond in the panel. The relative positions of the circles
indicate that the optimum pivot point has moved up the C-F
bond to reside very close to the C atom as temperature increases.
As a result the transition state dividing surfaces intersect the
equal splay axis minimum energy path closer to right angles
than in panel (a) and this tendency increases with temperature.
The change of pivot point location from panel (a) to panel (b)
is consistent with the observations of Klippenstein7,9 in other
recombination reactions to which he has applied both bond
coordinate and center-of-mass coordinate reaction coordinate
descriptions and so identified so-called inner and outer transition
states, respectively. As Klippenstein has discovered in a number
of reactions, optimization of the pivot point tends to localize

the pivot on the radical atom at higher temperatures while at
lower temperatures, the larger radius of the transition state
location tends to favor a center of mass location. The optimiza-
tion in R, d, andR involved stepping through distances in 0.1
Å increments and angles in 5° increments. Thus there is some
imprecision in transition state parameters but Figure 4 indicates
that the kinetic consequence of variations in step sizes is not
important once you are near the minimum and the step sizes
are small enough. The variation of the rate constant between
the dividing surfaces of panel (a) and panel (b) is less than 10%.
The “bothside” label of the minimum just emphasizes that, for
this transition state dividing surface, significant flux enters from
both the front and back approach of the H in its attack on CFH2.

The open triangle at the minimum of the dotted curve in
Figure 4 specifies a “frontside” transition state (at 600 K) whose
dividing surface, along with that for 300 K and 2000 K, are
indicated in panel (d) of Figure 5. The analogous “backside”

Figure 5. Depiction of the transition state dividing surfaces at 300, 600, and 2000 K for the (a)d ) 0, (b) bothside, (c) backside, and (d) frontside
cases discussed in the text and presented in Figure 4. In this two-dimensional representation in thex-z plane, each dividing surface is a circle
centered on the pivot point at the tip of thed vector. The latter appears as a thin solid arrowed line emanating from the origin and varies in length
(d) and orientation (R) with temperature. The origin is at the center of mass of CFH2 which lies approximately on the C-F bond. In panel (a),d
) 0 and the circles are centered on the origin. In panels (b)-(d), only thed vectors corresponding to 300 K (longer vector) and 2000 K (shorter
vector) are shown. (The thirdd vector associated with 600 K was not drawn since it is almost identical to that associated with 2000 K, as is
reflected in the near concentricity of the 600 and 2000 K circles.) The dashed line in each panel is the equal splay axis defined in the text.
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transition state is indicated by the open circle at the minimum
of the dot-dash curve in Figure 4 and by dividing surfaces for
all three temperatures in panel (c) of Figure 5. In Figure 5, it is
clear that for both the backside or frontside cases the transition
state dividing surface sphere is centered somewhere in the
vicinity of the equal splay axis. However, rather than being
centered at the atom, it is centered somewhere on the radical
orbital (not shown) that points both in front of and in back of
the radical carbon atom. It is also clear that although the radius
of that sphere shrinks noticeably with temperature, the center
of the sphere changes much less so with temperatures, having
essentially identical values ofd at 600 and 2000 K. The radii
of the spheres are smaller than the transition state dividing
surfaces of panels (a) and (b) of Figure 5 with the consequence
that a portion of each circle is very close to the two H atoms
and the F atom on the CFH2 radical. In the vicinity of these
three atoms, the PES on these dividing surfaces is generally
highly repulsive resulting in almost no flux entering the dividing
surface in these regions. This is the motivation for the labels
“frontside” and “backside”. The frontside transition state has
almost no reactive flux entering from the backside reaction path
on thex < 0 portion of Figure 5. Correspondingly, the backside
transition state has almost no reactive flux entering from the
frontside reaction path on thex > 0 portion of Figure 5. In this
sense, the two transition states are uncoupled, just as they would
be in the usual harmonic oscillator treatment of a separate planar
dividing surface for each reaction path. As shown in Figure 4,
the kinetic consequences of this “specialization” of the transition
state to each of the two reaction paths is very significant. Much
of this significance is due to the fact that confining a rate
coefficient calculation to only one of two reaction paths
approximately halves the rate. However, as Figure 4 indicates,
the frontside and backside rates are each less than half as small
as the bothside rate.

There are three aspects of Figure 4 that require further
discussion. First, the large variation in the rate constant asd
becomes small for both the frontside and backside cases in
Figure 4 are in contrast to the much more gentle variation in
the bothside case. The close approach of the frontside or
backside transition state dividing surface to the atoms in the
CFH2 fragment means that a large portion of that dividing
surface is in a region of rapidly varying potentials, both the
largely repulsive nonbonding interactions and the deeply at-
tractive or steeply repulsive Morse oscillator attractive potential
(see eq 21). Because potentials appear in an exponential
argument in CFTST, it is not surprising that relatively minor
variations in d can cause large variations in the rate constant.
In contrast, the bothside cases, as shown in panels (a) and (b)
of Figure 5, do not involve such close approaches and largely
sample regions where the potential varies much more gradually.
This gives rise to a more gradual variation in the rate constant
in R - R space. Large variations in the computed rate constant
were previously discussed for Figure 3 and were explained in
a similar manner. The results in that figure represent variations
about the minimum in the frontside approach at 600 K found
in Figure 4 and Figure 5.

The second aspect of Figure 4 concerns the bothside case.
As d tends toward larger values, the curvature about the local
minima inR- R space flattens out until, at large enough values
of d, there is no longer a minimum. Thus the variation in Figure
4 has distinct end points- terminating atd ) 0 becauseâ )
0 is always perfered and terminating at some relatively small
positive value ofd when there is no longer a minimum. The
loss of a minimum is also true for the frontside and backside

local cases asd approaches zero, although when this occurs
the rate is so large that it is off scale in the figure. This kind of
behavior is typical in systematic and detailed optimization of
the RC definition and places a premium on efficient evaluation
of FTST-VRC reaction rate constants in order to rapidly survey
large regions of parameter space.

The third and last aspect of Figure 4 concerns both frontside
and backside cases. In these two cases, the difference between
the optimal value ofR and the given value ofd decreases as
the absolute value ofd increases. In fact, for the extreme ends
of Figure 4,|d| exceeds the optimal value ofR. As discussed
in the previous section, this corresponds to a case where not all
of the full angular range of the internal angles (θ1, φ1) is required
to specify all possible relative orientations of H with respect to
CFH2. The smooth behavior of all the curves in Figure 4
indicates that the onset of this limitation produces no irregularity
in the minimization procedure. As it happens, at all temperatures
investigated for this reaction, the optimal dividing surface
corresponds|d| < R.

In Figure 6, the computed canonical rate constants are
displayed as a function of temperature for the three different
dividing surfaces as labeled as in Figures 4 and 5. The diamond,
triangle, and circle minima displayed in Figure 4 are the 600 K
values in Figure 6 of the rate constants labeled bothside,
frontside, and backside, respectively. For comparison the rate
constant whend is constrained to be 0 is also displayed in Figure
6 and its 600 K value is the open square in Figure 4. The rate
constant curve labeled “frontside+ backside” is, as the name
implies, the sum of the frontside and backside rate constants.
This is the kinetic consequence of the previous interpretation
of the frontside and backside dividing surfaces each heavily
favoring one of two reaction reaction paths available for the H
+ CFH2 reaction.

Figure 6. Calculated canonical rate constant versus inverse temperature
for d ) 0 (solid line), bothside (dash-dot), frontside+ backside (dot),
frontside (long dash), and backside (short dashes) cases. The frontside
+ backside curve is simply the sum of the backside curve and the
frontside curve. See text for details.
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The results in Figure 6 show that exploring reaction coordi-
nates that are only mildly different from a CMRC (by searching
parameter space with small values ofd beginning atd ) 0)
lowers the rate constant by approximately 10% except at the
highest temperatures where the reduction approaches 25%. This
changes a uniformly increasing rate with temperature into a
mildly decreasing rate at high temperatures. The sum of the
frontside and backside rates involves a further reduction from
the bothside value of between about 10% at low temperatures
to 25% at high temperatures. This further changes the temper-
ature dependence to one that is uniformly decreasing.

Since the typical kinetics measurement of the reaction rate
for H + CFH2 would not distinguish whether addition occurred
via a front or back approach, neither the frontside or the backside
computed rate constant in Figure 6 is appropriate for comparison
to experiment. Because the variational principle of kinetics is
based on the fact that statistical theories always approach the
true rate constant from above, the computed rate constant
constrained byd ) 0 in Figure 6 cannot be the best theoretical
estimate because it is higher than other statistical calculations.
This leaves two remaining computed rate constants in Figure 6
labeled “bothside” or “frontside+ backside”. Of these two, the
best theoretical estimate can be selected by application of the
variational principle in the following manner.

From Figure 5c and 5d, the frontside and backside dividing
surfaces intersect to form a combined exterior surface that is
something like a snowman lying on its side. Its projection on
the symmetry plane is shown as the heavy outline in Figure 7
for the combination of the optimal frontside and backside
dividing surfaces at 600 K. For convenience, we will call this
dividing surface the “snowman” dividing surface. In principle
FTST-VRC theory based on such a dividing surface could be
formulated in the same manner as has been done in this paper
for a spherical dividing surface. However, the kinetic energy
operator as embodied inAr would have to be known for
snowman surfaces about each reactant, whereas, in fact, the
operator has been explicitly developed only for spherical
surfaces (regular spherical surface for a nonlinear top+ atom).
Nonetheless, suppose a snowman FTST-VRC theory had been
formulated. Its application to the specific dividing surface in
Figure 7 would produce a rate constant that is independent of

the nature of the potential energy in the interior of the surface
because statistical theories for recombination are only sensitive
to the potential energy on the dividing surface itself (see eq
25). In particular, the snowman FTST-VRC would be insensitive
to a potential energy surface that was infinitely repulsive in the
interior shade region of Figure 7. However, for such a potential
energy surface, the sum of the separately calculated frontside
and backside FTST-VRC rate constants would be rigorously
identical to the snowman FTST-VRC rate constant. This is due
to the fact that the portion of either the frontside or backside
dividing surface with an infinitely repulsive potential would
rigorously receive zero reactive flux. As a consequence, the
reactive flux that did enter either the frontside or the backside
dividing surface would be exactly identical to that entering the
snowman dividing surface.

In fact, any realistic potential energy surface will not be
infinitely repulsive in the shaded region of Figure 7. Therefore
the sum of the frontside and backside FTST-VRC rate constant
are not equal to the snowman FTST-VRC rate constant.
However, a realistic representation of the potential energy
surface in the shaded region can only make both the frontside
and backside FTST-VRC rate constants larger than they would
have been with an infinitely repulsive potential. Consequently,
the sum of the frontside and backside FTST-VRC rate constants
is always a rigorous upper bound to the snowman FTST-VRC
rate constant. This is a completely generic statement about any
combination of rate constants for separately calculated spherical
dividing surfaces. Of the three distinct dividing surfaces
mentioned in this application, namely frontside, backside, and
bothside, the sum of any pair of separately optimized rate
constants or the triple sum of all three separately optimized rate
constants is an upper bound to an FTST-VRC rate constant for
a dividing surface of the corresponding, more complex non-
spherical exterior shape. That combination or that individual
rate constant that gives the lowest FTST-VRC rate constant
while simultaneously sampling all the relevant reaction pathways
is by the variational principle the best estimate of the rate
constant. From Figure 6, the best estimate of the rate constant
is therefore the curve labeled “frontside+ backside”.

As is indicated in Figure 5, either the frontside or backside
dividing surfaces have pivot points unconnected to atom or bond
locations. In fact the pivot points are located somewhere in the
center of the lobes of the radical p-orbital. This kind of behavior
is not unusual. Klippenstein and Harding have suggested4 that
such pivot points allow the dividing surface to more perfectly
follow the contours of the radical orbitals on isolated reactants.
This particular application is consistent with such a view.

Although the above analysis correctly selects, for this model
of the H+ CFH2 reaction, a combination of frontside and
backside dividing surfaces, the prominence of these two surfaces
raises chemical issues about the umbrella motion of the CFH2

radical. This motion could flip the radical back and forth
between a “front” and “back” posture with respect to the
attacking H atom. These chemical issues are important but not
directly relevant to this paper which is using H+ CFH2 only
as an example of the features and implications of the formalism
developed. However, CFH2 is splayed in its equilibrium
conformation and the inversion barrier from ab initio calcula-
tions19 is substantial at about 9 kcal/mol. The more fluorine is
substituted for hydrogen in CFH2, the larger this inversion
barrier becomes. After the transition state dividing surface is
crossed, a H-C bond is formed and for some CFxHy radicals,
CFH2 being one, the kinetic energy released by the formation
of that bond is more than enough to surmount any inversion

Figure 7. Transition state dividing surface at 600 K formed from the
combination of the backside dividing surface of Figure 5c and the
frontside dividing surface of Figure 5d. Shaded region is the overlap
of frontside and backside dividing surface. Other features of the plot
are as in Figure 5.
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barrier. Thus although the front and backside reaction paths are
different, the product molecule CH3F is the same. Thus it is
certainly fair to say that splayed molecules with a forward and
backward reaction path do exist and the example given in this
paper is not unrealistic. However, the details of the PES are
important in the chemical accuracy of each application and the
results presented here do not attempt to attain that accuracy.

4. Discussion and Summary

In this paper, an explicit general rate constant expression of
flexible transition state theory with variable reaction coordinate
has been developed. This expression implements theory derived
elsewhere by constructing explicit formulas for the kinetic
energy of external rotational and transitional hindered rotational
degrees of freedom executing motion about the collision center
of mass (external rotations) or fixed reactant-based pivot points
(hindered rotations). With these formulas, the flexible transition
state theory expression for either the canonical or microcanonical
rate constant can be written as an explicit function of pivot point
location on each reactant and the separation between the pivot
point on each reactant. The minimization of the rate constant
with respect to pivot point location is equivalent to optimizing
the reaction coordinate definition, whereas minimization with
respect to the separation locates the most constrictive reaction
bottleneck along the optimal reaction coordinate. The expres-
sions developed apply to all five combinations of reactant top
types in bimolecular collisions: linear-top+ atom, nonlinear-
top + atom, linear-top+ linear-top, nonlinear-top+ linear-
top, and nonlinear-top+ nonlinear-top. The expression are
analytic except for a hindering function which involves a
numerical integration over the internal angles (from one to five
depending on the case). The integrands in the integration are
all analytic, though tedious for the most complicated cases. The
formulas developed here have already been coded and imple-
mented in the freeware package VariFlex,14 which was used
for all the calculations contained in this paper.

The applications of the expressions are illustrated at only the
canonical level for a model potential qualitatively related to
CFH2 + H. The effect of optimizing the reaction coordinate on
the canonical rate constant is a reduction by a factor of between
20% to 45% depending on the temperature. A reduction is the
expected result in the context of a variational theory. The
reduction factor exceeds the anticipated error inherent in using
a canonical treatment instead of the (correct) microcanonical
treatment. This error is estimated to be 10-20% based on
detailed studies of the benchmark CH3 + H and CH3 + CH3

recombination reactions.20,21Application of our microcanonical
treatment for variable reaction coordinate to several prototype
reactions and comparison to the corresponding canonical rate
coefficients has yet to be undertaken but will form part of a
future paublication. For the CFH2 fragment, which is an
asymmetric top, these reaction coordinate optimizations result
in pivot points which do not lie at the center-of-mass of CFH2

nor at the ‘radical’ atom (carbon), nor along the C-F or C-H
bonds, but within the radical p-orbital extending in front of and
behind the carbon atom. Furthermore, the lowest and therefore
best rate constant is achieved by the sum of separate rate
constant calculations for optimal reaction coordinates specialized
to H atom attack on either the front or the back of the radical
p-orbital on carbon. Optimized reaction coordinates that equally
sample front and back attack are only a local, not global,
minimum in the computed rate constant. The presence of
multiple minima in the rate constant minimization process
emphasizes the value of compact, computationally efficient
expressions which this paper is attempting to provide.

The formal development presented goes to the limit of what
can be done to optimize the transition state dividing surface
within the ansatz of a single pivot point on each reactant about
which to execute hindered rotations. Such an ansatz produces
spherical dividing surfaces for which only the radius can be
optimized. The explicit expressions here do that and the
application to the CFH2 + H reaction clearly illustrates the
spherical nature of the optimal dividing surfaces. However,
hindered rotations in chemical reactions can execute coordinated
motion about multiple pivot points, giving rise to more flexible
dividing surfaces much more complicated than spheres. For the
nonlinear or linear top cases, the simplest example of this is an
elliptical dividing surface whose two foci are, in effect, two
pivot points on the nonatom reactant. The more flexible the
dividing surface the larger the parameter space within which
the reaction coordinate can be optimized. That optimization
lowers the rate constant and, by the variational principle for
statistical theories, the lower the computed rate constant the more
accurately it estimates the actual rate constant. Further develop-
ments in flexible transition state theory can proceed in this
direction.

However, as the application illustrated, the formalism devel-
oped here can be used in principle to estimate the rate constant
for an arbitrary dividing surface. Any dividing surface can be
approximated by impregnating the surface with a uniform
coating of small spheres intersecting so that there are no “holes”
in the dividing surface. If the radii of the spheres are reduced
but the number of spheres are increased to maintain a uniform
coating of intersecting spheres, the coating approximates to finer
and finer detail every feature of the dividing surface. The
formalism developed here allows the treatment of each indi-
vidual sphere. However, as in the application, flux entering the
face of each sphere pointing into, rather than out from, the
dividing surface must be negated. As in the application, that
can be conceptually achieved by positing an infinitely repulsive
potential in the overlap region of the sphere and the dividing
surface it is impregnating. In actuality, the negation would be
achieved by limiting the range of the integration variables in
the multidimensional integral required by the theory (see eq
24). Each resulting rate constant calculated separately for each
sphere can then be summed to get an estimate for the desired
rate constant that becomes more and more exact as the radius
of the touching spheres in the coating is decreased.

The developments of this paper streamline the treatment of
any bimolecular reaction within the context of canonical or
microcanonical flexible transition state theory with variable
reaction coordinates. The only limitation to an application is
that of reliable interaction potentials in the kinetically interesting
region. Because of advances in electronic structure theory and
the associated computer codes, and the existence of faster
computers with larger memory, these potentials are become
increasingly available. Application of this theory toa Variety
of recombination reactions will be included in subsequent papers.
A detailed comparison of our approach with other transition-
state or collision-theory based treatments of rates (e.g., work
of S. J. Kleippenstein, S. Smith, R. Levine, R. A. Marcus) will
be the subject of a separate publication.
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Appendix

A. Kinetic Energy Tensors for Center-of-Mass Reaction
Coordinate.Analytic expressions forAr

0, |Ar
0|, and the required

elements ofGr
0 are listed below in subsections A.1-A.5 for

the five combinations of top types. (Atom+ atom combination
is excluded; the matrix elements (Gr

0)ij, i, j ) 1, 2, 3 are not
required.) These expressions are functions of the internal angles
qcm,int, of the moments of inertia of the fragment tops, and of
the ‘external’ moment of inertiaIex ) µRcm

2 for the mutual
rotation of the centers-of-mass of fragments 1 and 2 about the
overall center-of-mass. The abbreviationsCθ ) cos θ,
Sθ ) sin θ, Cφ ) cosφ, etc. are used throughout.

The dimension of the reduced matrixesAr
0 andGr

0 is n × n;
both matrixes are symmetric. The full (n + 1) × (n +
1)-dimensional matrixesA0 andG0 differ from Ar

0 andGr
0 by

the addition of a (n + 1)st row and (n + 1)st column. Each
additional matrix element is 0 except for (A0)n+1,n+1 ) µ and
(G0)n+1,n+1 ) µ-1. In terms ofAr

0, the ‘reduced’ kinetic energy
which results from subjecting the ‘full’ kinetic energy expression
to the constraintṘcm ) 0 (see Section III of Paper III) is

whereQ4 cm,r
T ) (ωx, ωy, ωz, q3 cm,int) is the reduced generalized

velocity vector corresponding toQ4 cm
T which is defined im-

mediately below eq 11).
A.1 Linear Top-Atom (n ) 4). Moment of inertia -

Fragment 1:I ) I1

Inverse elements

A.2 Nonlinear Top-Atom (n ) 5). Moments of inertia-
Fragment 1:Ia ) I1a, Ib ) I1b, Ic ) I1c

where

Inverse elements

A.3 Linear Top-Linear Top ( n ) 6). Moments of inertia-
Fragment 1:I1 Fragment 2:I2

where

Ar
0 ) [Ixx ∆C Ixz -IaSθ ∆C

∆C Iyy ∆S 0 IcSf2 + IbCφ
2

Ixz ∆S Izz IaCθ ∆S

-IaSθ 0 IaCθ Ia 0
∆C IcSf2 + IbCφ

2 ∆S 0 IcSf2 + IbCφ
2]

Ixx ) I2Sø
2 + I2Cø

2Cθ2
2 + I1Cθ1

2 + Iex

Ixy ) -I2SøCøSθ2
2

Ixz ) I1Sθ1Cθ1 + I2Sθ2Cθ2Cø

Iyy ) I1 + I2Cø
2Sθ2

2 + I2Cθ2
2 + Iex

Iyz ) I2SøSθ2Cθ2

Izz) I1Sθ1
2 + I2Sθ2

2

2T0* ) Q4 cm,r
T ‚ Ar

0 ‚ Q4 cm,r

Q4 cm,r
T ) (ωx, ωy, ωz, θ̇ ) θ̇1)

Ar
0 ) [I cos2 θ + Iex 0 I cosθ sin θ 0

0 I + Iex 0 -I
I cosθ sin θ 0 I sin2 θ 0
0 -I 0 I

]
|Ar

0| ) sin2 θ Iex
2 I2

(Gr
0)44 )

I + Iex

I Iex

Q4 cm,r
T ) (ωx, ωy, ωz, θ̇ ) θ̇1, φ̇ ) φ̇1)

∆C ) (Ic - Ib)CθCφSφ

∆S ) (Ic - Ib)SθCφSφ

Ixx ) (IcCφ
2 + IbSφ

2)Cθ
2 + IaSθ

2 + Iex

Ixz ) (IcCφ
2 + IbSφ

2 - Ia)SθCθ

Iyy ) IcSφ
2 + IbCφ

2 + Iex

Izz) (IcCφ
2 + IbSφ

2)Sθ
2 + IaCθ

2

(Gr
0)44 ) 1

IexSθ
2

+ 1
Ia

+
Cθ

2

Sθ
2 (Sφ

2

Ib
+

Cφ
2

Ic
)

(Gr
0)45 )

∆C

IbIcSθ

(Gr
0)55 ) 1

Iex
+

Cφ
2

Ib
+

Sφ
2

Ic

Q4 cm,r
T ) (ωx, ωy, ωz, θ̇1, θ̇2, ø̆)

Ar
0 )

[Ixx Ixy Ixz 0 I2Sø I2Sθ2Cθ2Cø
Ixy Iyy Iyz -I1 -I2Cø I2Sθ2Cθ2Sø

Ixz Iyz Izz 0 0 I2Sθ2
2

0 -I1 0 I1 0 0
I2Sø -I2Cø 0 0 I2 0
I2Sθ2Cθ2Cø I2Sθ2Cθ2Sø I2Sθ2

2 0 0 I2Sθ2
2

]
|Ar

0| ) Sθ1
2 Sθ2

2 Iex
2 I1

2 I2
2
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Inverse elements

A.4 Nonlinear Top-Linear Top (n ) 7). Moments of inertia
- Fragment 1:I1a, I1b, I1c Fragment 2:I2

where

Inverse elements

A.5 Nonlinear Top-Nonlinear Top (n ) 8). Moments of
inertia- Fragment 1:I1a, I1b, I1c Fragment 2:I2a, I2b, I2c (see
Chart 1 forAr

0)

where

(Gr
0)44 ) 1

IexSθ1
2

+ 1
I1a

+
Cθ1

2

Sθ1
2 (S2

φ1

I1b
+

C2
φ1

I1c
)

(Gr
0)45 )

∆C1

I1bI1cSθ1

(Gr
0)44 )

I1+Iex

IexI1

(Gr
0)45 )

Cø

Iex

(Gr
0)46 )

-Cθ2Sø

IexSθ2

(Gr
0)55 )

I2 + Iex

IexI2

(Gr
0)56 )

-Cθ1Sø

IexSθ1

(Gr
0)66 ) 1

I1Sθ1
2

+ 1

I2Sθ2
2

+

1 - cos 2θ1cos 2θ2 + sin 2θ1sin 2θ2Cø

2IexSθ1
2Sθ2

2

Q4 cm,r
T ) (ωx, ωy, ωz, θ̇1, φ̇1, θ̇2, ø̆)

Ar
0 )

[Ixx Ixy Ixz -I1aSθ1 ∆C1 -I2bSø I2Cθ2Sθ2Cø

Ixy Iyy Iyz 0 Σ I2Cø I2Cθ2Sθ2Sø

Ixz Iyz Izz I1aCθ1 ∆S1 0 I2Sθ2
2

-I1aSθ1 0 I1aCθ1 I1a 0 0 0
∆C1 Σ ∆S1 0 Σ 0 0
-I2Sø I2Cø 0 0 0 I2 0
I2Cθ2Sθ2Cø I2bCθ2Sθ2Sø I2Sθ2

2 0 0 0 I2Σθ2
2

]
|Ar

0| ) Sθ1
2 Sθ2

2 Iex
2 I1a I1b I1c I2

2

Σ ) I1bCφ1
2 + I1cSφ1

2

∆Ci ) (Iic - Iib)CθiCφiSφi

∆Si ) (Iic - Iib)SθiCφiSφi

Ixx ) (I1b + I1c - Σ)C2
θ1 + I1aSθ1

2 + I2Cø
2Cθ2

2 + I2Sø
2 + Iex

Ixy ) ∆C1 - I2CøSøCθ2
2

Ixz ) (I1b + I1c - Σ - I1a)Cθ1 Sθ1 + I2Sθ2Cθ2Cø

Iyy ) Σ + I2Cø
2Sθ2

2 + I2Cθ2
2 + Iex

Iyz ) ∆S1 + I2Cθ2Sθ2Sø

Izz) (I1b + I1c - Σ)S2
θ1 + I1aCθ1

2 - I2Sθ2
2

(Gr
0)46 )

Sø

IexSθ1

(Gr
0)47 )

Cθ1

IexSθ1
2

+
Cθ1

Sθ1
2 (Sφ1

2

I1b
+

Cφ1
2

I1c
) -

Cθ2Cø

IexSθ1Sθ2

(Gr
0)55 )

Sφ1
2I1b + Cφ1

2I1c

I1bI1c
+ 1

Iex

(Gr
0)56 )

Cø

Iex

(Gr
0)57 )

Cθ2Sø

IexSθ2
+ ( 1

I1b
- 1

I1c
) Cφ1Sφ1

Sθ1

(Gr
0)66 )

I2 + Iex

I2Iex

(Gr
0)67 )

Cθ1Sø

IexSθ1

(Gr
0)77 ) 1

Sθ1
2 (Sφ1

2

I1b
+

Cφ1
2

I1c
) + 1

I2Sθ2
2

+

1 - cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2Cø

2IexSθ1
2Sθ2

2

Q4 cm,r
T (ωx, ωy, ωz, θ̇1, φ̇1, θ̇2, φ̇2, ø̆)

|Ar
0| ) Sθ1

2 Sθ2
2 Iex

2 I1a I1bI1cI2aI2bI2c

Σi
+ ) IibCφi

2 + IicSφi
2

Σi
- ) IibSφi

2 + IicCφi
2

∆Ci ) (Iic - Iib)CθiCφiSφi

∆Si ) (Iic - Iib)SθiCφiSφi

Π ) (Σ2
- - I2a)Cθ2Sθ2

Ixx ) I1aSθ1
2 + Σ1

-Cθ1
2 + (I2aSθ2

2 + Σ2
-Cθ2

2)Cø
2 -

2∆C2CøSø + Σ2
+Sø

2 + Iex

Ixy ) ∆C1 + ∆C2(2Cø
2 - 1) + (Σ2

-Cθ2
2 - Σ2

+ +

I2aSθ2
2)SøCø

Ixz ) (Σ1
- - I1a)Cθ1Sθ1 - ∆S2Sø + (Σ2

- - I2a)Cθ2Sθ2Cø

Iyy ) Σ1
+ + Σ2

+Cø
2 + I2aSθ2

2Sø
2 + Σ2

-Cθ2
2Sø

2 +
2∆C2CøSø + Iex

Iyz ) ∆S1 + ∆S2Cø + (Σ2
- - I2a)Cθ2Sθ2Sø

Izz) Σ1
-Sθ1

2 + I1aCθ1
2 + Σ2

-Sθ2
2 + I2aCθ2

2
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Inverse elements B. Derivation of Final Expression for F. The necessary
relationships among the sines and cosines of the sets of angles
(γi, δi) and (Ri, âi, θi, φi, ø), (i ) 1, 2) are explicitly derived for
two nonlinear tops. This is worked out first for reactant 1 with
reference to Figure 2; the analogous derivation for reactant 2
follows.

In the internal coordinate system of fragment 1,d1 by
definition is characterized by (R1,â1). With some consideration
of Figure 2, it becomes clear that thez axis of the collision
system can be characterized in the internal coordinate sys-
tem by (θ1, π - φ1). The addition of spherical angles then
gives

In the collision coordinate system translated to the center of
mass of reactant 1, the spherical polar angles for the inter-
nalz-axis are (θ1, 0). Equation B1 determines the spherical angle
γ1 for d1 leaving the polar angleδ1. The angle between the
internal z axis andd1 is R1. The addition of spherical angles
gives

In this equation, substitution of eq B1 for cosγ1 gives

Furthermore, via eqs B1 and B3, one obtains

For reactant 2, upon some consideration of Figure 1, it becomes
clear that the angleγ2 between the collision-systemz-axis and
d2 is independent ofø and thereforeø can be set to zero.
Therefore

In the collision coordinate system translated to the center of
mass of reactant 2, the angles for the internalz-axis of fragment
2 are known, i.e., (θ2, ø). Equations B3 and B4 then apply ifδ1

is changed toδ2 - ø. However, eqs B3 and B4 and their
analogues for reactant 2 are not directly needed inF but rather
the product sinγ1 sin γ2 cos(δ1 - δ2). After the necessary

CHART 1

(Gr
0)44 ) 1

IexSθ1
2

+ 1
I1a

+
Cθ1

2

Sθ1
2 (Sφ1

2

I1b
+

Cφ1
2

I1c
)

(Gr
0)45 )

∆C1

I1bI1cSθ1

(Gr
0)46 )

Cø

IexSθ1Sθ2

(Gr
0)47 )

Sø

IexSθ1

(Gr
0)48 )

Cθ1

IexSθ1
2

+
Cθ1

Sθ1
2 (Sφ1

2

I1b
+

Cφ1
2

I1c
) -

Cθ2Cø

IexSθ1Sθ2

(Gr
0)55 )

Sφ1
2I1b+Cφ1

2I1c

I1bI1c
+ 1

Iex

(Gr
0)56)

Sø

IexSθ2

(Gr
0)57 )

Cø

Iex

(Gr
0)58 )

Cθ2Sø

IexSθ2
+ ( 1

I1b
- 1

I1c
) Cφ1Sφ1

Sθ1

(Gr
0)66 ) 1

IexSθ2
2

+ 1
I2a

+
Cθ2

2

Sθ2
2 (Sφ2

2

I2b
+

Cφ2
2

I2c
)

(Gr
0)67 )

∆2c

I2bI2cSθ2

(Gr
0)68 )

Cθ2

IexSθ2
2

+
Cθ2

Sθ2
2 (Sφ2

2

I2b
+

Cφ2
2

I2c
) -

Cθ1Cø

IexSθ1Sθ2

(Gr
0)77 )

Sφ2
2I2b+Cφ2

2I2c

I2bI2c
+ 1

Iex

(Gr
0)78 )

Cθ1Sø

IexSθ1
+ ( 1

I2b
- 1

I2c
) Cφ2Sφ2

Sθ2

(Gr
0)88 ) 1

Sθ1
2 (Sφ1

2

I1b
+

Cφ1
2

I1c
) + 1

Sθ2
2 (Sφ2

2

I2b
+

Cφ2
2

I2c
) +

1 - cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2Cø

2IexSθ1
2Sθ2

2

cosγ1 ) cosR1 cosθ1 - sin R1 sin θ1 cos(â1 + φ1) (B1)

cosδ1 ) (cosR1 - cosγ1 cosθ1)/sin γ1 sin θ1 (B2)

cosδ1 ) (cosR1sin θ1 + sin R1 cosθ1 cos(â1 + φ1))/sin γ1

(B3)

sinδ1 ) [1 - cos2 δ1]
1/2 ) sin R1 sin(â1 + φ1)/sin γ1 (B4)

cosγ2 ) cosR2 cosθ2 - sin R2 sin θ2 cos(â2 + φ2) (B5)
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substitutions, that product assumes the form

Substitution of eqs B1, B5, and B6 into eq 17 results in an
F expression explicit in its dependence on all ofθ1, φ1, θ2, φ2,
ø, d1, R1, â1, d2, R2, â2, andR.
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sinγ1 sin γ2 cos(δ1 - δ2) ) [{cosR1 sin θ1 +
sin R1 cosθ1 cos(â1 + φ1)} {cosR2 sin θ2 +

sin R2 cosθ2 cos(â2 + φ2)} - sinR1 sin(â1 +
φ1)sin R2 sin(â2 + φ2)]cosø + [sinR1 sin(â1 +

φ1){cosR2 sin θ2 + sin R2 cosθ2 cos(â2 + φ2)} +
sinR2 sin(â2 + φ2){cosR1 sin θ1 + sin R1 cosθ1 cos(â1 +

φ1)}]sin ø (B6)
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