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The ground-state energies of polyacenes and polyphenanthrenes are obtained with the density-matrix
renormalization group method from finite up to infinite lengths under the classical valence bond theory. In
comparison with the exact valence bond results, numerical errors of retaining various numbers of states are
all less than 10-5 J. Meanwhile, the linear equations in terms of the chain length are deduced for the ground-
state energies of these two homologous series. And the energy gaps between the lowest singlet and triplet
states (S-T gap) are also evaluated. On the other hand, the relative local hexagon energy converges as the
chain length increases, and leading to an effective conjugated length ofn ) 12 for polyacene and
polyphenanthrene.

1. Introduction

The modern valence bond (VB) theory has been developed
to explore the electronic structures, reactivity, aromaticity, and
many other properties of small benzenoids in recent years.1-6

With the increase in the sizes of these conjugated systems, the
VB theory, a basic many-electron approach, will encounter a
fundamental problem of rapid increase in the dimension of the
covalent space. How to overcome this obstacle has been a main
subject for the scientists.5-7 So far, conjugated systems with
no more than 30π-electrons can be solved exactly on typical
workstations.4c Meanwhile, approximate schemes limited to the
subspace spanned by the Kekule´ structures or taking into account
the single and double excitations are now applied to systems
as large as fullerenes,9 where the dimension of the energy
matrixes in this approximation are kept under 106.

The density-matrix renormalization group (DMRG) method
introduced by White has been extremely successful in solving
the many-electron models for one-dimensional systems,10

especially the Heisenberg model10-14 and the Hubbard model.15-17

However, although in extension to quasi-one-dimensional or
two-dimensional systems, the exponential decrease of the
numerical precision with the increase of the system width makes
this method rapidly impractical. This “exponential disaster”
makes the method inaccessible to most systems of chemical
interests.18-20 Some efforts have been devoted to solve this
problem. Use of the frontier molecular orbitals instead of all
atomic orbitals in each block space is a good scheme to
implement the DMRG calculation for the quasi-one-dimensional
and two-dimensional systems.6,8 But the numerical precision of
this technique is unsatisfactory in most cases. To get more
precise results, another way has been suggested to deal with
the two-dimensional system by choosing the blocks care-
fully.21,22The “careful choosing” including the selection of the
starting blocks and the blocks added thereafter plays the
important role in implementing DMRG calculations. In this
article, we introduce a scheme of choosing the suitable blocks
for cata-condensed aromatic systems, which stimulates us to
look for satisfactory numerical results in DMRG computations.
We perform DMRG calculations on VB energies of the ground
and the first triplet states for two series of polycyclic aromatic
hydrocarbons (PAHs): polyacene (Pac) and polyphenanthrene

(Pph) of arbitrary lengths defined by the number of constituent
hexagons,n, or carbon atomsN ) 4n + 2.

This article is organized as follows. The methodology is
presented in the first part. After an outline of VB model is
presented, the infinite DMRG method and the strategy of block
selection are introduced. Then the index of the relative local
hexagon energy (RLHE) currently used for specifying the
benzene character of hexagons in benzenoid hydrocarbons is
pursued.5 In the second part, our numerical calculations give
the ground-state energies, singlet-triplet energy gaps, and
RLHE values of Pac and Pph to analyze the regularities in
relationship to the chain length of PAHs up to infinity. Finally,
a short discussion about the perspective for the application of
DMRG in chemistry is emphasized.

2. Methodology

2.1. VB Model. The classical VB model used in conjugated
systems is currently formulated in the Heisenberg form,

wherei ∼ j specifies the nearest-neighbor or bonded atom pairs
for theπ-electron skeleton of the molecule,Si, the spin operator
of the ith site andJ is an (positive) exchange parameter. The
wave function can be written as a linear combination of Slater
determinants of atomic states limited to the subspace of
conservedz-component of total spin, namely,

The energy matrix entries between two Slater determinants are
easily evaluated, where the diagonals are specified by

and off-diagonals take values below

H ) J∑
i∼j

(2SiSj -
1

2) (1)

ψ ) ∑
i

ciæi (2)

〈æk|H|æk〉 )
-(number of spin-alternation for bonded pairs inæk) (3)

〈æk|H|æl〉 ) 1 or 0 (4)
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in which 1 results only if the two Slater determinants differ by
just one spin exchange on a specified bonded pair, otherwise,
0 results. Thus, the main task of the VB model is the
diagonalization of the energy matrix. For the small benzenoids,
such as benzene, naphthalene, the classical VB theory, which
accounts for the nearest-neighboring interaction approximation,
were improved by Malrieu and co-workers with the fourth- and
sixth-order corrections.23a,23b Meanwhile, as the size of the
system increases, the effect of these higher-order corrections
will remarkably decrease.23c,39 Thus, for large or extended
benzenoids, the classical VB model will be generally applicable.
Because we are interested in the systematic study of the finite
up to infinite size systems, the higher-order corrections will not
be considered in this article.

2.2. DMRG Method. A system of a given size, referred to
as the superblock, is divided into two pieces, the system block
and the environment block. We diagonalize the superblock and
focus on a particular eigenstate of the system. Then we project
this eigenstate from the space of superblock into the system
space and define the reduced probability density matrix (Fii ′) )
F. If ψ is such a state of the superblock,

where |ι〉 labels the states of the system block, and|j〉 labels
the states of the environment block, we have the matrix entries
of F,

The diagonalization ofF leads to a set of eigenvaluesωR and
eigenvectorsuR. According to the definition of the density
matrix, the states corresponding to larger eigenvalues of density
matrix F are the more probable configurations of the system
block. Therefore, we discard those but them largest eigenvalues
and associated eigenvectors. Accordingly, the matrix representa-
tion of operators (such asH) is transformed intoH′ ) OHO+

of dimensionm, producing a new system block.O is rectangular,
specified by them highest eigenvectors ofF as columns,O+ is
the transfer ofO.

After the transformation, one adds a block to the starting block
to form a superblock of larger size, which is again diagonalized
to obtain the particular states. Repeating this treatment recur-
sively, we can obtain the targeted eigenvalues and eigenvectors
for PAHs of various sizes. Because the width of the system
significantly influences the numerical accuracy, we must keep
the number of adding states as small as possible in comparison
with the retaining states at each step in calculation.

Let’s discuss Pac for illustration. We begin with anthracene.
In the first step, we calculate the ground state of anthracene by
using the standard method. Then we divide the anthracene into
two parts, L (left) and R (right) shown in Chart 1, and form the
density matrix of the left block which is diagonalized for
choosingm eigenvectors with the largest eigenvalues to induce
a new system block,H′L ) OHLO+. In the next step, we form
a larger superblock withH′L, an extra ethylene (added block),
andH′R, the reflection of the left block as shown in Chart 2.

We diagonalize the combined blocks above and get the
ground state of naphthacene. Repeating similar steps described
above, we will obtain results for the ground states of higher
members of polyacenes one by one. In a similar way, one can
deal with other PAHs, for example, Pph.

Before applying this method to the larger systems, we still
need to validate the numerical results of this method in reference
to the exact values available to the quasi-one-dimensional
systems investigated. It is also interesting to evaluate the
effective conjugated length where molecular properties saturate
and become independent of the propagation of chain length.
By extrapolation, the asymptotic behavior of the long-chain PAH
can also be reliably estimated.

2.3. Relative Local Hexagon Energy.Similar to Herndon-
Ellzey’s definition of local aromaticity,24 the index RLHE used
by our group for specifying the local aromaticity per hexagon,5

is defined as follows:

where the ground-state energy of local hexagonEr satisfies the
following equality in the VB scheme,

and Pij represents the probability of atom pairi and j in the
ground states,25 i∼j means the summation runs over the six
bonds in the hexagon.Pij takes

whereaij
+ andai represent the creation operator for down-spin

and annihilation operator for up-spin on atomi, respectively.

3. Results and Discussion

3.1. Numerical Precision.In Tables 1 and 2, we list the
lowest singlet and triplet energy of Pac and Pph fromn ) 3 to
n ) 6 calculated by the DMRG method and the exact-
diagonalization method, respectively.3,5 Tables 3 and 4 not only
cover the lowest singlet and triplet energy of Pac and Pph from
n ) 3 to n ) 10 with the DMRG method and exact-
diagonalization method, but the results with direct diagonal-
ization of the Kekule´ subspaces in the fifth column, the ground
energy increments of the neighboring members of the homo-
logue series in the sixth column, the average ground-state
energies per electron in the seventh column, and the singlet-
triplet energy gaps in the eighth column. First, let us discuss
the relationship between the number of retaining states and the
numerical precision. The DMRG calculations were implemented
under the truncation withm ) 128, 256, and 512 states in each
iteration for comparison of numerical convergence. It is obvious
that the more states that are retained in the truncation, the better
is the numerical precision. For the leastmof 128 states adopted
in Table 1, the numerical errors between DMRG and exact
values are less than 10-5 J for the ground state and 10-3 J for

CHART 1

|ψ〉 ) ∑
ij

ψij|i〉|j〉 (5)

Fii ′ ) ∑
j

ψijψi′j (6)

CHART 2

RLHE ) (the ground-state energy of local hexagon)/
(the ground-state energy of benzene) (7)

Er ) -2J∑
i∼j

Pij (8)

Pij ) 〈ψ|1
2
(ai

+ ajh
+ - aih

+ aj
+)(ajh ai - ajaih )|ψ〉 (9)
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the first excited state, respectively. When the retained states
are increased to 256 or 512, the numerical deviations decrease
to 10-5 J for the ground states and 10-4 J for first-triplet states,
respectively, which is better than those obtained from other
approximate schemes, for example, the ground-state energy of
anthracene and naphthalene cited in the fifth column of Table
3 with errors of 1-2 J.8 In most chemical problems, the energy
calculation with an error of 10-3 to 10-5 J will be satisfactory.
Therefore, considering the efficiency and quality, 256 states are
used for giving the results discussed below.

3.2. Energy of Ground State.Figure 1 displays the plots
for the average energy per electron of the ground state of Pac
and Pph against the number of hexagons in the benzenoids on
the basis of the results of the seventh column in Tables 3 and
4. Both converge as the chain length increases. The energy curve
of Pph being always beneath that of Pac is consistent with the
well-known fact of the higher thermal stability of Pph relative
to Pac.26

To find how the ground-state energy varies with the chain
length of PAHs, we define∆Es ) Es(n) - Es(n - 1) (wheren
represents the number of hexagons in the benzenoids), the

increment of ground-state energy between two neighboring
members for the homologous series, which are listed in the sixth
column of Tables 3 and 4. Plots of∆Es against the chain length
are shown in Figure 2. Although∆Es of Pac are less negative
than Pph, they all decrease negligibly in proportion to the chain
length, in particular, whenn exceeds 8. On the basis of
numerical data of Tables 3 and 4 and Figure 2, we derive the
simple formulas for evaluating the ground-state energy (in units
of J) of these two series, respectively.

From the formulas above, one could deduce the ground-state
energy per electron of Pac and Pph at infinite chain length,
equaling-1.6025J and-1.6189J, respectively. In addition,
our calculation on polyene leads to theEs(n ) ∞) ) -1.3862
J, reproducing other reports.10,11,27 These numerical data can
provide valuable information for the transition from molecules
to solids.

TABLE 1: The Comparison of the Ground-State and First Excited State Energies (in Units ofJ) of Pac between the DMRG
Method of Different States Retained and the Exact-Diagonalization Method

m ) 128 m ) 256 m ) 512 exact

n singlet triplet singlet triplet singlet triplet singlet triplet

3 -21.45050 -20.67185 -21.45050 -20.67185 -21.45050 -20.67185 -21.45050 -20.67185
4 -27.85818 -27.22081 -27.85819 -27.22240 -27.85819 -27.22240 -27.85819 -27.22240
5 -34.26649 -33.72248 -34.26652 -33.72355 -34.26652 -33.72356 -34.26652 -33.72357
6 -40.67563 -40.19478 -40.67566 -40.19574 -40.67566 -40.19576 -40.67566 -40.19577

TABLE 2: The Comparison of the Ground-State and First Excited State Energies (in Units ofJ) of Pph between the DMRG
Method of Different States Retained and the Exact-Diagonalization Method

m ) 128 m ) 256 m ) 512 exact

n singlet triplet singlet triplet singlet triplet singlet triplet

3 -21.52250 -20.64475 -21.52250 -20.64475 -21.52250 -20.64475 -21.52250 -20.64475
4 -27.99497 -27.21202 -27.99497 -27.21658 -27.99497 -27.21658 -27.99497 -27.21658
5 -34.47082 -33.74987 -34.47083 -33.75244 -34.47083 -33.75249 -34.47083 -33.75256
6 -40.94598 -40.27017 -40.94598 -40.27229 -40.94598 -40.27237 -40.94598 -40.27243

TABLE 3: Ground-State and First Excited State Energies (in Units ofJ) of Pac as a Comparison of the DMRG Method (m )
256) with Other Methods

na ES(DMRG) ET(DMRG) Es(exact)b ET(exact)b E0(K)c ∆Es Es/Nd ∆ESfT

3 -21.45050 -20.67185 -21.45050 -20.67185 -20.15000 -1.53218 0.77865
4 -27.85819 -27.22240 -27.85819 -27.22240 -25.82999 -6.40769 -1.54768 0.63579
5 -34.26652 -33.72355 -34.26652 -33.72357 -6.40833 -1.55757 0.54297
6 -40.67566 -40.19574 -40.67565 -40.19577 -6.40914 -1.56445 0.47992
7 -47.08534 -46.65015 -6.40968 -1.56951 0.43519
8 -53.49530 -53.09317 -6.40996 -1.57339 0.40213
9 -59.90542 -59.52852 -6.41012 -1.57646 0.37690

10 -66.31561 -65.95847 -6.41019 -1.57894 0.35714

a n represents the number of rings.bData from ref 5.cDirect diagonalization of the Kekule´ subspace, data from ref 9.dN ) 4n + 2 represents the
number of C atoms.

TABLE 4: Ground-State and First Excited State Energies (in Units ofJ) of Pph as a Comparison of the DMRG Method (m )
256) with Other Methods

na ES(DMRG) ET(DMRG) Es(exact)b ET(exact)b E0(K)c ∆Es Es/Nd ∆ESfT

3 -21.52250 -20.64475 -21.52250 -20.64475 -20.52479 -1.53732 0.87775
4 -27.99497 -27.21658 -27.99497 -27.21658 -6.47247 -1.55528 0.77839
5 -34.47083 -33.75244 -34.47083 -33.75256 -6.47586 -1.56686 0.71839
6 -40.94598 -40.27229 -40.94598 -40.27243 -6.47515 -1.57485 0.67369
7 -47.42142 -46.78028 -6.47544 -1.58071 0.64114
8 -53.89681 -53.28083 -6.47539 -1.58520 0.61598
9 -60.37223 -59.77591 -6.47542 -1.58874 0.59632

10 -66.84771 -66.26700 -6.47548 -1.59161 0.58071

a n represents the number of rings.bData from ref 5.cDirect diagonalization of the Kekule´ subspace, data from ref 9.dN ) 4 n+ 2 represents the
number of C atoms.

Es ) -2.2137-6.4102n (Pac) (10)

Es ) -2.0936-6.4754n (Pph) (11)
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3.3.The Singlet-Triplet Energy Gap (S-T Gap). The
energy gap between the ground state and the first triplet state
measures the kinetic stability of the compound, and it is also
an important index to be able to correlate with the reactivity of
the system. In past years, considerable interest existed in
polyacene as a potential one-dimensional organic conductor with
a zero-band gap predicted from the single-electronic theory.28-35

Meanwhile, because long-chain polyacenes are too active to be
isolated in experiments, more calculations and extrapolations

based on many-body theoretical models are necessary to explore
the electronic structures of the homologous systems.36 Just like
Malrieu and co-workers had done in the study of polyene,23b

we also use the linear and binomial equations to correlate the
S-T gap with 1/n for both species, as shown in Figures 4 and
5, respectively. Obviously, the linear correlations are inaccurate
and inadequate. The binomial equation gives better correlations
for both species. We also find that the function A+ B(1/n)x

gives even better prediction of the S-T gaps for larger oligomers

Figure 1. The average ground energy per electron vs chain length.

Figure 2. The increment of ground-state energy per unit length vs the chain length.

Figure 3. The energy gap of the ground state and the first excited state versus 1/n (n represents the number of the six-membered rings).
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such asn reaches100. We would prefer to use this function,
and the optimized values ofx are determined to be 1.360 for
Pac and 1.517 for Pph, respectively. According to these
equations listed in Figures 4 and 5, the S-T gaps are 0.224J
for infinite Pac and 0.485J for Pph.

By means of the measured S-T energy gaps of 1.26 eV and
2.49 eV for naphthacene37 and picene38 which are the largest
species for Pac and Pph characterized until now, the values of
J are determined as 1.99 eV and 3.47 eV, respectively. These
values are in agreement with those published previously.39 On
adopting the numerical value ofJ above into the results of the
Pac and Pph series, the values of S-T gaps at the infinite chain
length can be derived to be 0.446 eV and 1.683 eV for Pac and
Pph, respectively. It is also in accordance with the evidence
that the Pac is significantly more reactive than Pph.35

3.4. Relative Hexagon Energy.Clar’s sextet concepts have
been well investigated by various quantum chemical calcu-
lations.5,23,40-45 The RLHE calculated from the VB model can
be used to interpret the individual benzene character for the
hexagons of PAHs.5,46-54 Here, we show 1000‚RLHE of the
cata-condensed benzenoids in Figure 6. In very recent articles,
RLHE decreases toward the central ring of the short condensed
chain.5,47 Does the RLHE approach to a limit as Pac and Pph
propagate? This is really the case as shown in Figure 6 where

RLHE converges to a constant value when the chain length of
Pac and Pph exceeds 12. The effective conjugated length is
predicted to be 12 for the monodisperse Pac and Pph according
to our DMRG calculations toward additions.

4. Conclusion

Long-chain PAHs are difficult to characterize experimentally,
because they hardly melt and dissolve. Therefore, the electronic
structures and properties were mainly studied by extrapolation
of the results of oligmeric molecules. As demonstrated above,
through careful selection of the starting and propagating blocks,
the DMRG method will give very precise results for the ground
and first excited states. In fact, DMRG can be used to compute
any state by forming the density matrix according to that state.

Figure 4. S-T gap vs 1/n (n represents the number of the ring member) with different correlations for Pac.

Figure 5. S-T gap vs 1/n (n represents the number of the ring member) with different correlations for Pph.

Figure 6. Convergence of 1000‚RLHE values in long-chain Pac and
Pph.

2596 J. Phys. Chem. A, Vol. 106, No. 11, 2002 Gao et al.



At the same time, we could obtain the RLHEs by iterative
DMRG scheme as accurately as those obtained from the exact
solutions of the VB Hamiltonian. This implies that the eigen-
functions of DMRG are also well behaved and are usable to
derive physical properties via enumeration of the approximate
matrix elements.

The DMRG method is efficient and powerful for implement-
ing the many-electron models for long-chain polymers, which
will enrich our knowledge of the transition area from molecules
to solids.
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Müllen, K. Angew. Chem., Int. Ed. Engl.1996,35, 886.
(49) Iyer, V.; Wehmeier, M.; Brand, J.; Keegstra, M.; Mu¨llen, K. Angew.

Chem., Int. Ed. Engl.1997,36, 1604.
(50) John, J. A.; Tour, J. M.J. Am. Chem. Soc. 1994,116, 5011.
(51) John, J. A.; Tour, J. M.Tetrahedron1997,53, 15515.
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