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The study of reaction pathways is imperative to the investigation of potential energy surfaces. The intrinsic
reaction coordinate is defined as the steepest descent path in mass weighted coordinates that connects the
transition state to reactants and products. Various methods are available for following the intrinsic reaction
coordinate. A potential energy surface may also be studied using classical trajectory calculations, and a dynamic
reaction path method can be used to connect the transition state to reactants and products. We have modified
a classical trajectory integration method such that the dynamic reaction pathway more closely resembles the
intrinsic reaction coordinate. Specifically, a damped velocity Verlet algorithm incorporating a controlled time
step is used. The efficiency of the present algorithm is on the same order as our earlier methods for relatively
small systems and shows increasing efficiency as the large molecule limit is approached.

I. Introduction

The theoretical study of a chemical reaction typically first
requires finding relevant stationary points on the potential energy
surface (PES) and then confirming that a suitable pathway
connects those points. Methods for finding equilibrium geom-
etries and transition state (TS) structures have been reviewed
extensively.1-8 After a TS has been located, one may verify
that it connects the desired reactants and products by determining
the minimum energy pathway (MEP). Typically, this task is
achieved by an intrinsic reaction coordinate (IRC) analysis. The
IRC is defined as the steepest descent path from the TS in mass
weighted Cartesian coordinates.9

The steepest descent path can be obtained by integrating the
differential equation

wherex is the path,s is the arc length along the path, andg is
the gradient of the PES. Because eq 1 corresponds to a stiff
differential equation, some care is needed in integrating it.
Numerous methods for following the IRC have been suggested
in the literature (for an overview, see ref 10).4,7,10-22 IRC
following algorithms can be divided into two categories:
implicit and explicit methods. Implicit methods require deriva-
tive information at the current point and the point at the end of
each step; explicit methods depend only upon information at
the current position. Computationally, explicit procedures are
simpler to implement. Explicit algorithms include Euler’s
method, the Ishida-Morokuma-Komornicki (stabilized Euler)
method,12,13Runge-Kutta and predictor-corrector methods,14,15

the local quadratic approximation (LQA),16,17 and the Sun-
Ruedenberg modification of LQA, etc.18 Some of these methods
require only gradient information and are limited to rather small
step sizes, while others also use the Hessian. Methods that use
second derivatives are more costly, but gain additional stability
and allow for larger step sizes.

Implicit methods for differential equations are more difficult
to implement because the gradient at the point at the end of a
step must be obtained iteratively or by approximation.23 Though
more costly, implicit algorithms are more stable than explicit
methods and allow for good performance with larger step sizes.
Implicit methods for IRC analysis include the Mu¨ller-Brown
(implicit Euler) method19 and the second-order method of
Gonzalez and Schlegel (implicit trapezoid)20,21and higher order
methods by the same authors.22

Alternatively, the PES can be explored using classical
trajectory calculations.8,24-26 The differential equations describ-
ing the classical equations of motion are much easier to solve
by numerical methods. Until recently, classical trajectory
calculations relied heavily upon accurate global knowledge of
the PES under study.8,24-26 Now it is possible to carry out this
type of calculation directly from electronic structure calculations
without first needing to fit a global PES.27

The dynamic reaction path (DRP) method28-30 uses trajectory
calculations to follow the IRC approximately. If a trajectory
were begun at the TS heading in the direction of the transition
vector and all kinetic energy were continuously removed from
the system, the DRP would be identical to the IRC. Maluendas
and Dupuis have described a DRP method that closely follows
the IRC path without requiring that the kinetic energy be zero.29

Their method is based on the dynamic reaction coordinate
(DRC) as defined by Stewart et al.30 and uses the Gear predictor-
corrector method (GPC) for integrating the differential equa-
tions.31

In their study, Maluendas and Dupuis compared their GPC
and DRC approaches to time-independent MEP calculations.
Specifically, they tested the efficiencies of GPC and DRC by
comparing the number of gradient calculations needed to map
out the reaction pathway to that of the IRC approach of Schmidt
et al.12 The present paper outlines a similar method for
approximating the IRC pathway using classical trajectories. The
velocity Verlet algorithm is used to integrate the trajectory, and
the velocity is adjusted after every step so that the magnitude
remains constant and nonzero throughout the calculation. We
employ a time variation scheme at every step along the path to
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make adjustments for future time steps based on estimated errors
in the path. Maluendas and Dupuis also employ a time variation
scheme; however, their time variation mechanism is used in
conjunction with kinetic energy resetting when oscillations in
the path or deviations from the MEP are recognized. The
continuous damping and time step adjustment used in the present
method are particularly advantageous for larger systems. To
show the utility of this method, we have calculated pathways
for a number of reactions and compared them to IRC paths
integrated with the second-order method of Gonzales and
Schlegel (GS-IRC).20,21The efficiency and stability of the GS-
IRC method has been demonstrated previously.20

II. Method

The present method adapts the direct classical trajectory code
in the Gaussian32 series of programs to provide a reaction path
following algorithm that is more suitable for large molecules
than the GS-IRC procedure. The velocity Verlet algorithm is
an efficient scheme for propagation of a trajectory and lends
itself to easy adjustment of step size. By controlling the
magnitude of the velocity vector and the time step size at every
step along the path, it is possible to make the damped velocity
Verlet (DVV) trajectory approach the IRC path within a chosen
tolerance. Each DVV step is composed of three parts:

1. Position and velocity vectors are propagated to the next
point along the DVV pathway using the velocity Verlet method;

2. The magnitude of the velocity is damped; and
3. The deviation of the DVV path from the IRC path is

estimated as a function of the time step and the time step is
then updated.

Velocity Verlet, a gradient dependent method, determines the
position,x, and velocity,v, at stepi according to

The acceleration,a, is the product of the inverse of the diagonal
matrix of atomic masses,m, and the force where the force is
defined as the negative of the energy gradient

After each DVV step, the velocity is multiplied by a damping
factor such that the magnitude of the velocity vector is set equal
to a constantV0

The initial position vector is the transition structure and the
direction of the initial velocity vector is taken as the transition
vector; the path integration is carried out in both the forward
and reverse directions.

To ensure that the damped trajectory stays close to the IRC,
we control the integration error by adjusting the time step. The
error in a velocity Verlet integration scheme scales as∆t3. If
the desired error is∆0, an appropriate time step,∆ti+1, for the
next step can be determined from the current time step,∆ti,
and the estimated error for the current step,∆i

The error tolerance∆0 is provided by the user. Equation 5 offers

the ability to increase the time step when the estimated error is
smaller than the tolerance and to decrease the time step when
the error exceeds the allowed tolerance. In the present study,
∆0 is set to 0.003 bohr, and the time step is constrained such
that 0.025 fse ∆t e 3.000 fs.

The estimated error for the current step is taken as the larger
of the magnitude or the largest component of the displacement
vector between a point,xi′, and the current point,xi. As shown
in Figure 1, the pointxi′ is obtained by propagating fromxi-2

andvi-2 with a time step equal to the sum of∆ti and∆ti-1

This provides a simple means of estimating the error and
adjusting the time step while not demanding additional gradient
calculations.

III. Applications

The present algorithm has been implemented in the develop-
ment version of Gaussian32 and has been tested on a number of
reactions chosen to provide a variety of reaction types. For
reference, results are compared to the GS-IRC implicit
method,20,21which has been found to be efficient and stable in
numerous previous applications. GS-IRC pathways were
calculated using the default step size of 0.1 amu1/2 bohr (larger
step sizes may also yield suitable paths). The GS-IRC algorithm
requires an optimization for each step taken; the number of
optimization steps needed to correct each IRC step may increase
with the number of atoms in the system being studied.

For large systems, the electronic structure calculations are
done by direct methods and the computational time is propor-
tional to the number of Fock matrix evaluations. In turn, the
number of Fock matrix evaluations needed to converge a typical
SCF calculation depends on the step size taken from the previous
point rather than the size of the system. Thus, in anticipation
of applications to larger systems, the number of Fock matrix
evaluations is used to compare the efficiency of the present
method to the GS-IRC approach (see Table 1).

A. CH4 + F f CH3 + HF. Abstraction reactions are
important processes in combustion. One example of this reaction
type is CH4 + F f CH3 + HF. Calculations were preformed at
the HF/3-21G level of theory. DVV reaction pathways were
computed withV0 set to 0.04, 0.08, and 0.20 bohr/fs. Figure 2
shows the relationship between the CsH and FsH bond lengths
from calculations using each of the given step sizes and the
pathway predicted by the GS-IRC method. This plot displays
the relative stability of the DVV algorithm even when large
velocity values are used. The data in Table 1 indicate that the
DVV method is much less efficient in this case than the GS-
IRC algorithm whenV0 is equal to 0.04 bohr/fs. However, the
difference between the GS-IRC and the DVV calculations when
0.08 bohr/fs is used forV0 is relatively small indicating that the
cost for the DVV calculation for this system is roughly the same
as for the GS-IRC approach.

Figure 1. Estimation of the error in the propagation of the DVV path
(see text).

xi′ ) xi-2 + vi-2 (∆ti-1 + ∆ti) + 1
2

ai-2 (∆ti-1 + ∆ti)
2 (6)

xi ) xi-1 + vi-1 ∆ti + 1
2

ai-1 ∆ti
2

vi ) vi-1 + 1
2
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B. CH2OH f CH3O. This reaction, a 1, 2 hydrogen shift,
serves as a good model for 1,n group shift reactions.
Calculations were preformed at the AM1 level of theory. The
relationship between the CsOsH bond angle and energy is
given as Figure 3. Again, the current algorithm proves to be
very stable for all values ofV0 considered. As seen in Table 1,
our method requires 1236 and 861 Fock matrix evaluations to
follow the complete reaction pathway whenV0 is equal to 0.04
and 0.08 bohr/fs, respectively. The GS-IRC calculation requires
1352 Fock matrix evaluations.

C. Diels-Alder Reaction. The reaction of butadiene with
ethylene is the prototypical example of the Diels-Alder reaction
and proceeds through a pericyclic TS. A reaction profile is given
as Figure 4 based on results from DVV calculations at the AM1
level of theory withV0 set to 0.04, 0.08, and 0.20 bohr/fs. As

before, the results of a GS-IRC calculation have been included
to provide comparison. The DVV reaction path mimics the GS-
IRC pathway very well whenV0 is relatively small, while
deviations begin to appear whenV0 is equal to 0.20 bohr/fs.
The present method requires 2142 and 1081 Fock matrix
evaluations to follow the complete reaction pathway whenV0

is 0.04 and 0.08 bohr/fs, respectively, while the GS-IRC
algorithm requires 1352 Fock matrix evaluations.

D. CH3CH2F f CH2CH2 + HF. This reaction is a standard
example of four-center elimination, and has been studied by
Kato and Morokuma.34 Ab initio calculations have been carried
out at the HF/3-21G level of theory. Calculations employed
values forV0 of 0.04, 0.08, and 0.20 bohr/fs. Figure 5 is a plot
of CsF bond length against reaction coordinate, and Figure 6
shows the relationship between the HsF bond length and
potential energy. Figure 5 suggests very good agreement with

TABLE 1: Comparison of the Number of Fock Evaluations for DVV and IRC Calculations

reaction

Fock
evaluations
for DVV

(V0 ) 0.04 au/fs)

Fock
evaluations
for DVV

(V0 ) 0.08 au/fs)

Fock
evaluations

for IRCa

CH4 + F f CH3 + HF 1276 817 716
CH2OH f CH3O 1236 861 1352
Diels - Alder 2142 1081 1352
CH3CH2F f CH2CH2 + HF 1439 1453 4281
Ene 2134 2518 7406
[Ir(CO)2I3(CH3)]- f Ir(CO)I3(COCH3)]- 1078 9579

a GS-IRC calculations were run with a step size equal to 0.1 amu1/2 bohr.

Figure 2. Reaction path following for CH4 + F f CH3 + HF [DVV
paths withV0 equal to 0.04 (]), 0.08 (4), and 0.20 (×) bohr/fs, and
GS-IRC path (solid line)- every third point shown; overlapping points
have been removed for clarity].

Figure 3. Reaction path following for CH2OH f CH3O [DVV paths
with V0 equal to 0.04 (]), 0.08 (4), and 0.20 (×) bohr/fs, and GS-
IRC path (solid line)].

Figure 4. Reaction path following for the Diels-Alder reaction [DVV
paths withV0 equal to 0.04 (]), 0.08 (4), and 0.20 (×) bohr/fs, and
GS-IRC path (solid line)].

Figure 5. Reaction path following for CH3CH2F f CH2CH2 + HF
[DVV paths withV0 equal to 0.04 (]), 0.08 (4), and 0.20 (×) bohr/fs,
and GS-IRC path (solid line)].
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the GS-IRC pathway for all threeV0 values shown. Figure 6
shows very good agreement between the DVV and IRC paths
whenV0 is equal to 0.04 and 0.08 bohr/fs. However, whenV0

) 0.20 bohr/fs the DVV path deviates greatly from the IRC
path resulting from vibration of the HsF bond. As noted in
Table 1, the GS-IRC method requires 4281 Fock matrix
evaluations to explore the MEP; the number of gradient
evaluations required by the GS-IRC method is also about 3
times greater than for the DVV approach. The reaction path is
mapped out using the DVV algorithm in 1439 Fock evaluations
for V0 ) 0.04 bohr/fs and in 1453 Fock evaluations forV0 )
0.08 bohr/fs. As seen in Figure 6, the pathway forV0 ) 0.08
bohr/fs shows very subtle oscillations when the HsF bond
distance is short. This deviation in the path is corrected by the
time step variation algorithm resulting in a slower progression
along the reaction path. The average time step value whenV0 is
0.04 bohr/fs is 1.098 fs, whereas∆t is 0.543 fs on average when
V0 ) 0.08 bohr/fs. This in turn leads to a slight increase in the
number of Fock matrix evaluations for theV0 ) 0.08 bohr/fs
case. Nevertheless, both DVV calculations are much more
efficient than the GS-IRC approach.

E. Ene reaction: CH2dCH-CH2-CH2-CH3 f CH3-
CHdCH2 + CH2dCH2. The ene reaction proceeds through a
six-member ring TS where two bonds are broken and two others
are formed. Previous studies have used this system because of
the difficulty associated with finding its transition state.35 This
example displays the strength of the DVV method: increasing
efficiency with increasing system size and complexity. Calcula-
tions have been carried out at the HF/3-21G level of theory,
and the reaction path profile is shown as Figure 7. The present
method duplicates the GS-IRC pathway very well whenV0 is
0.04 and 0.08 bohr/fs, but whenV0 is equal to 0.20 bohr/fs, the
DVV path displays significant oscillations in both the reactant
and product channels. ForV0 ) 0.04 and 0.08 bohr/fs, the DVV
calculations are much more efficient than the GS-IRC method,
with the latter requiring approximately 3 times as many Fock
matrix evaluations and gradient evaluations. Figure 7 shows that
theV0 ) 0.08 bohr/fs pathway lies slightly off of the GS-IRC
andV0 ) 0.04 bohr/fs paths. Again, the time variation algorithm
correctly detects this error and compensates by decreasing the
time step and effectively slowing down the progress from the
TS to the minima. Consequently, the number of Fock matrix
evaluations actually increases from 2134 to 2518 whenV0 is
increased from 0.04 to 0.08 bohr/fs.

F. [Ir(CO) 2I3(CH3)]- f [Ir(CO)I 3(COCH3)]-. This reaction
represents an important step in methanol carbonylation using

an iridium based catalyst that has been the subject of a number
of studies reported in the literature.36-41 Recently, Cheong,
Schmid, and Ziegler provided theoretical insight to the reaction
pathway.42 This system has been included to highlight the
present method’s efficiency for larger chemical systems.
Calculations have been carried out at the HF/LanL2DZ level
of theory with V0 set to 0.04 bohr/fs. Figure 8 shows the
relationship between the CsC bond and potential energy. The
DVV pathway agrees with the GS-IRC path very well. The
DVV calculation requires 1078 Fock matrix evaluations,
whereas the GS-IRC algorithm requires 9579 Fock matrix
evaluations to map out the reaction path. The number of gradient
evaluations also differs by a similar factor. The DVV method
gains its efficiency over the GS-IRC model from two factors
in this case. First, the DVV path is propagated much faster than
the GS-IRC path. In fact, DVV takes an average step along
the path of 0.154 au, whereas the GS-IRC takes an average
step of 0.084 au. Second, DVV is an explicit method and does
not require an optimization involving additional electronic
structure calculations to correct each step. For this system, the
GS-IRC algorithm requires an average of 3.253 gradient
calculations per step, compared to 1 gradient calculation per
step for DVV.

IV. Conclusions

We have developed a damped classical trajectory algorithm
for following reaction paths that closely approximate the IRC

Figure 6. Reaction path following for CH3CH2F f CH2CH2 + HF
[DVV paths with V0 equal to 0.04 0.04 (]), 0.08 (4), and 0.20 (×)
bohr/fs, and GS-IRC path (solid line)].

Figure 7. Reaction path following for the ene reaction [DVV paths
with V0 equal to 0.04 (]), 0.08 (4), and 0.20 (×) bohr/fs, and GS-
IRC path (solid line)].

Figure 8. Reaction path following for Ir(CO)2I3(CH3)- f Ir(CO)I3-
(COCH3)- [DVV path with V0 equal to 0.04 (]) bohr/fs and GS-IRC
path (solid line)].

168 J. Phys. Chem. A, Vol. 106, No. 1, 2002 Hratchian and Schlegel



paths. DVV pathways are very stable at conservative settings
for V0 (0.04 bohr/fs), and often follow the IRC path accurately
with larger V0 values. For small systems and high symmetry,
the DVV method is not as efficient as the GS-IRC algorithm.
However, for larger and more complex systems the DVV
algorithm is much more efficient than the GS-IRC procedure
with its default settings. Thus, the DVV reaction path following
approach offers an efficient and stable alternative to the GS-
IRC method that is especially attractive when studying larger
systems.
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