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Linear cavity solvation models predict saturation of the solvation chemical potential,µp f constant, at high
solvent polarity. This qualitative prediction is tested on computer simulations of dipole solvation in dipolar
hard-sphere solvents in the liquid and solid phase states. We find that solvation saturation does exist for solid
dipolar solvents, but does not exist for liquid dipolar solvents when the linear solvent response holds. Solvation
saturation occurs due to nonlinear solvation in liquid solvents when solvent-solvent attractions exceed solute-
solvent attractions. Nonlinear solvation is caused by electrostriction resulting in dewetting of the solute surface
of a nonpolar or weakly polar dipolar solute. Solvation thermodynamics is affected by a combination of
orientational and density solvent reorganization. The relative contribution of each component is strongly
dependent on solvent polarity. In highly polar solvents, the orientational and density reorganization
approximately equally contribute to the average solvation energy and the second solvation cumulant. The
entropy of solvation is found to be positive and virtually independent of solvent polarity. This comes about
as a result of a compensation between a negative solvation entropy due to orientational reorganization of the
solvent and a positive solvation entropy due to density reorganization. The Onsager model does not provide
even a qualitative account of solvation entropies. Our simulations give strong support to the Q-model of
nonlinear solvation. Applications of the dipole solvation thermodynamics to electron-transfer reactions and
optical spectroscopy are discussed.

1. Introduction

The Onsager model for solvation of a dipolar solute in a polar
solvent1 searches for a solution of the Poisson equation for a
point dipole in a spherical cavity cut from a dielectric medium.
The solute dipole moment,m0, interacts with the dielectric
reaction field of the solvent,R, resulting in the following
solvation chemical potential

where “0” refers to the solute. The reaction field arises as a
result of displacements in the solvent induced by the presence
of the solute dipole. For spherical cavities considered in the
Onsager model, it is fully defined by the solvent dielectric
constantε and the cavity radiusa

The Onsager approach sets up a closed, two-parameter model
that does not assume any particular recipe for the calculation
of either of its two parameters: the cavity radiusa and the
dielectric constantε. The model has been widely used to treat
solvent electrostatic effects on steady-state2,3 and time-resolved4

optical spectra, as well as other phenomena involving dynamics
of polar interactions, dielectric friction5 is an example. The

Onsager model makes some important quantitative and qualita-
tive predictions that are often adopted in the literature,2-5 but
still have not been thoroughly tested. From the qualitative side,
the model gives a zero solvation chemical potential atε f 1
and predicts a saturation limit

at ε f ∞. The latter result is especially important for applica-
tions. Many liquid solvents commonly used in solution chem-
istry are polar liquids withε . 1. For such solvents, the model
suggests very little sensitivity ofµp to changes in solvent polarity
and puts a significant emphasis on the way the cavity radiusa
is calculated. Indeed, numerous efforts have been undertaken
to define the “best” effective radius for dipolar and ionic
solutes.6-12 However, the existence of the saturation limit itself
has not been tested either on molecular solvation theories or
computer simulations of solvation.

The qualitative test of the existence of the saturation limit in
the linear response approximation (LRA), predicted by the
Onsager model, is the aim of this study. We show that fast
saturation of the solvation chemical potential with increasing
solvent polarity, predicted by eqs 1 and 2, does not happen for
model liquid solvents. Moreover, the LRA solvation chemical
potential has a linear asymptote with increasing polarity of the
solvent and we show how this linear trend can be exactly
obtained in the linear solvation models (section 3). For liquid
solvents, the outcome of solvation saturation turns out to be
linked with nonlinear solvation. Computer simulations per-
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formed here show that dewetting of solute’s surface in highly
polar solvents is responsible for nonlinear solvation effects.
Finally, in section 4, we discuss applications of solvation
energetics considered here to electron-transfer reactions and
optical spectroscopy.

2. Model

Testing the Onsager model is not straightforward as the
macroscopic property, the dielectric constant, is employed to
define the microscopic property, the solvation chemical poten-
tial. Molecular solvation models are commonly formulated in
terms of microscopic solvent properties and do not always
provideε. That is why model condensed systems for which both
the dielectric macroscopic properties and the microscopic
solvation potential can be simultaneously calculated should be
employed to establish the qualitative picture of the dependence
of the solvation chemical potential on solvent polarity. Despite
significant progress achieved in recent decades in understanding
and describing molecular polar fluids, there are very few model
systems for which sufficient molecular and macroscopic infor-
mation is accumulated to provide a stringent test of dielectric
models. One of such model system, that has played a significant
role in developing our understanding of polar liquid thermo-
dynamics13,14and physics of dielectric materials,15 is the dipolar
solvent, in the fluid13-15 or solid16 state. We consider here a
dipolar hard sphere (HS) solvent composed of HSs of diameter
σ bearing point dipolesm. The thermodynamic properties of
the pure solvent are fully characterized by two dimensionless
parameters: the reduced number densityF* ) Fσ3 and the
reduced dipolar densityy ) (4π/9)âFm2. Here,F is the solvent
number density andâ ) 1/kBT; kB is Boltzmann’s constant and
T is temperature.

Even for the most studied model of the HS dipolar fluid, the
connection of the microscopic parametery to the macroscopic
dielectric constant is not easy to establish. The Kirkwood
equation

contains a generally unknown dependence of the Kirkwood
factor gK on y. The Kirkwood factor can be calculated from
integral equation theories13 or perturbation expansions.17 Both
approaches, however, fail at largey.18 Therefore, an empirical
equation forε(y) reproducing computer simulation results has
been recently proposed18

Equation 5 makes use of the perturbation expansion theory for
the dielectric constant by Tani et al17 with the parameterp )
9Idd∆(F*)/16π2 - 1 defined through a three-particle perturbation
integral Idd∆(F*) depending on the reduced densityF*.17

Equation 5 was shown to agree with simulated dielectric
constants of pure HS dipolar fluids in the range 1e ε e 220.
The connection betweenε andy opens a door to the comparison
of the dielectric cavity models, operating in terms of dielectric
constants, to molecular descriptions of solvation, operating in
terms of the parametery, in a broad range of solvent polarities.

A comparison of the molecular solvation models to the
dielectric cavity description demands definition of the cavity
radiusa, which is not specified within cavity models. For our
qualitative analysis of the Onsager picture, it suffices to say
that the model consistency implies that the radiusa is
independent of the solvent dielectric constant and, consequently,

of solvent polarity. To be specific, we will consider a HS solute
of the radiusR0 and will assumea ) R0 throughout the paper.

Solvation of a HS dipolar solute in a HS dipolar solvent is
fully characterized by two solvent parameters,F* and y, and
by two solute parameters,R0 and m0. The latter two can be
combined in one dimensionless parameter characterizing the
dipolar strength of the solute

This parameter is defined analogously to the effective dipolar
strength of the pure solvent, (m*) 2 ) âm2/σ3 (y )
(4π/9)F*(m*)2).13

3. Solvation Thermodynamics

3.1. Linear Response Approximation.The Onsager model
assumes linear solvent response. This implies that the reaction
field is a linear function of the solute dipole moment (eq 2)
and the solvation chemical potential is quadratic inm0 (eq 1).
This assumption leads to several general relations which can
be directly tested on computer simulations. First, the solvation
chemical potentialµp is one-half of the average solute-solvent
interaction energy〈u0s〉

Here,u0s is the solute-solvent interaction potential (“s” stands
to the solvent) and〈...〉 refers to the statistical average over the
solvent configurations in equilibrium with the solute. Further,
the first and second cumulants of the solute-solvent interaction
potential are connected to each other as follows18

Finally, when the second cumulant is calculated in the LRA,
the distribution of the solvent molecules around the solute is
not perturbed by the solute-solvent dipole-dipole interaction.
The solute-solvent distribution used to calculate〈(δu0s)2〉 then
remains the same for all magnitudes ofm0. For a stringent test
of this requirement, one can consider the condition

where 〈...〉0 refers to the statistical average over the solvent
configurations in equilibrium with the solute with zero dipole
moment.

Molecular solvation models do not support the existence of
a saturation limitµp f constantfor the solvation chemical
potential within the LRA. The mean-spherical approximation
(MSA) for dipole solvation19 leads to a linear dependence

at largey. The MSA solution is an approximation. However,
the linear trend-µp ∝ y can be proved exactly, based on some
very general properties of dipolar fluids. For this one can use
the connection between the solvation chemical potential and
the second cumulant of the solute-solvent interaction potential
(eqs 7 and 9),-µp ) (â/2)〈(δu0s)2〉0. The latter can be written
explicitly20 to give the solvation chemical potential in the form

(ε - 1)(2ε + 1)
9ε

) gK(y)y (4)

ε(y) - 1 ) 3y + 3y2 + (2/p2)[exp(3p3y3/2) - 1] (5)

(m0
/)2 ) âm0

2/σ0
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2
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-µp
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2 ) yReff
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In eq 11,

is the effective radius of a HS solute in a HS solvent.18 It
includes local packing effects of the repulsive hard cores of the
solvent molecules around the solute and, therefore, depends on
the solvent reduced densityF* and the solute/solvent size ratio
r0s ) R0s/σ, R0s ) R0 + σ/2 through the solute-solvent HS
distribution functiong0s

(0)(r,F*,r0s). The latter describes packing
of HS molecules around a HS solute and is not affected by any
long-range interactions; for brevity, we will suppress the
dependence onF* and r0s in g0s

(0)(r,F*,r0s) in the remainder.
The first summand in eq 11 is the one-particle solvent

response which is simply proportional to the density of dipoles
in the liquid. The second term arises from many-particle
solvent-solvent interactions which screen the distortions in-
duced by the solute. The first summand is positive and the
second summand is negative, thus reducing the direct one-
particle response. The polarity dependence of the many-particle
solvent response entering the functions

is determined by, correspondingly, the longitudinal,SL(k), and
transverse,ST(k), structure factors of the solvent polarization.
The structure factorsSL,T(k) are defined through the correspond-
ing correlators of the longitudinal and transverse polarization
fluctuations of the polar liquid21

whereδPL(k) and δPT(k) stand for the Fourier transforms of
the longitudinal and transverse polarization fluctuations of the
pure solvent;N is the number of solvent molecules. In eq 13,

wherej2(x) is the second-order spherical Bessel function.22

In the limit of large y, the longitudinal structure factor
vanishes in the range ofk values contributing significantly to
the integral in eq 13. The transverse structure factor, on the
contrary, peaks strongly atk ) 0 (Figure 1). At largey, the
transverse structure factor is very well reproduced by thek f
0 expansion of the corresponding direct correlation function
cT(k) truncated at the second ink expansion term. This leads to
the Ornstein-Zernike approximation23 for the transverse struc-
ture factor

where atk ) 024

The correlation lengthΛT determines the exponential long-
distance decay of the transverse polarization fluctuations

These two general properties of the longitudinal and trans-
verse structure factors in the limit of largey values lead directly
to the exact asymptote at yf ∞ in eq 11

The result is an obviously linear dependence ofµp on y with
the slope depending on the solvent reduced densityF*, the
solute-solvent size ratioR0/σ, and the parameter

In the MSA,25 ST(0) f ∞ and ΛT f ∞ at y f ∞, but the
parameterκT tends to a constant limit,κT ) 3. The exact value
of this parameter for dipolar solvents is unknown.

The derivation presented here strongly suggests that the
existence of the Onsager saturation limit and the LRA cannot
be reconciled with each other. In contrast to the Onsager model
giving µp f constant, molecular solvation theories predictsµp

∝ y at largey as long as the LRA holds. Going beyond the
LRA within analytical solvation models inevitably involves
approximations26 and we thus need to turn to computer
simulations to obtain the “exact” dependence of thermodynamic
solvation parameters ony for solvation in the model solvent of
HS dipoles.

3.2. Computer Simulations.Computer Monte Carlo (MC)
simulations of a HS dipole solute in a HS dipolar solvent were
carried out as described elsewhere.18 All simulations were
performed forr0s ) 1.4 andF* ) 0.8. A cubic cell with a single
solute and 500 solvent molecules was employed to simulate
the first and second cumulants of the solute-solvent interaction
energy (Table 1). The simulation cell with 864 solvent molecules
was used to obtain the longitudinal and transverse structure
factors of the pure dipolar solvent (Figure 1). The simulations
were set up to provide a comprehensive test of both the LRA
and the existence of the polarity saturation limit within the LRA

Figure 1. Transverse (a) and longitudinal (b) structure factors of HS
dipolar solvents at (m*) 2 ) 1.0 (dash-dotted line), (m*) 2 ) 4.0 (solid
line), and (m*) 2 ) 7.0 (dotted line). Plotted are simulation results with
864 solvent molecules in a cubic simulation box; the simulation length
is 6.5× 105 cycles.
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predicted by the Onsager model (eq 3). Three configurations
for the solute were considered. In the first set of simulation
runs, the solute-solvent dipole moment ratio was kept constant
(m0/m) 4.0) and the solvent reduced dipole moment (m*)2 was
varied in the range 0.5-8.5. In the second set of data, the solute
dipole moment was fixed at (m0

/)2 ) 2.74 and (m*)2 was
varied. Finally, the third set of simulations was obtained by
varying (m*)2 at m0 ) 0. The first and second cumulants of the
solute-solvent interaction (〈u0s〉0 ) 0) are listed in Table 1.

Figure 2 shows that the LRA actually breaks down for polar
solvents withy > 5. Equation 8 approximately holds for the
simulations with constant solute/solvent dipole ratiom0/m )
4.0. However, eq 9 becomes inaccurate up to 35%. The polarity
dependence of the second cumulant〈(δu0s)2〉0 is especially
indicative of nonlinear solvation. Instead of a linear trend∝y

predicted by linear response molecular models, the second
cumulant goes through a broad maximum starting to decay with
increasingy. When the solute dipole is kept constant while
increasing the solvent polarity, the solvation energy does show
a saturation limit, but the second cumulant〈(δu0s)2〉 increases
approximately linearly withy (Figure 2b).27 The saturation limit
is thus a result of purely nonlinear solvation effects (see below).

The deviation between the first,-〈u0s〉, and the second,
â〈(δu0s)2〉 andâ〈(δu0s)2〉0, cumulants seen for solvation in HS
liquid solvents is not observed if a lattice of point dipoles is
used as a solvent. Figure 3 shows the dependence of the first
and two second cumulants of the solute-solvent interaction
potential ony at constantm0. Despite considerable deviations
between〈u0s〉, 〈(δu0s)2〉0, and〈(δu0s)2〉 at medium polarities, they
all tend to the same saturation limit at largey values. Interest-
ingly, the LRA holds for dipolar solvation in highly polar dipolar
lattices. The qualitative distinction between the polarity depen-
dence of the second cumulants obtained for dipolar liquids and
dipolar solids suggests that it may be caused by local density
changes that are allowed in a liquid solvent, but are suppressed
in a lattice solvent.

3.3. Dielectric Saturation and Electrostriction. Nonlinear
solvation in polar solvents is commonly related to a combined
effect of dielectric saturation and electrostriction. Dielectric
saturation refers to orientational ordering of the solvent mol-
ecules in an external electric field.15 If the solvent dipoles are
oriented so that no further orientation is possible, the dielectric
solvent response is lower than that expected from the LRA.
Dielectric saturation is accounted for by allowing the dielectric
constant to change with distance from the solute6-8 or by
adopting the Langevin formula for dipoles’ orientations.16

Electrostriction stands for local density changes in solute’s
vicinity produced by its electric field.15 The latter effect is often
described in terms of thesolutecavity radius depending on the
strength of the electric field9 or an effectivesolVent radius for
the first solvation shell molecules.10 Electrostriction is commonly
expected to bring solvent molecules into closer contact with
the solute, hence increasing the solvation power of the solvent.28

The mutual compensation of dielectric saturation and electros-
triction is believed to be responsible for the remarkable accuracy
of the LRA in dense liquid solvents, despite strong electric fields
existing on molecular lengthscales.29 The simulation results
provided in this study for a range of dipolar solvents existing
in both the solid and liquid states allow us to separate the relative
contributions of dielectric saturation and electrostriction to
solvation thermodynamics.

To quantify electrostriction and dielectric saturation we will
consider two radial distributions

TABLE 1: Simulated Solvation Cumulants and Calculated
Chemical Potentials of Solvation in Liquid Dipolar HS
Solvents

m0/m ) 4.0 m0 ) 0(m0
/)2 ) 2.74 m0 ) 0

(m*)2 -〈u0s〉a 〈(δu0s)2〉b -〈u0s〉a 〈(δu0s)2〉b -2µp
c -2µp

d γ 〈(δu0s)2〉0
e

0.5 2.43 2.40 2.44 2.30 2.42 2.41 0.9988 2.42
1.0 3.43 3.40 3.44 3.26 3.41 3.39 0.9990 3.43
1.5 4.03 4.06 3.98 3.97 3.98 3.98 1.0000 3.97
2.0 4.38 4.17 4.38 4.32 4.34 4.32 1.0004 4.35
2.5 4.57 4.57 4.62 4.57 4.63 4.63 1.0002 4.53
3.0 4.78 4.53 4.75 4.78 4.76 4.77 1.0000 4.71
3.5 4.87 4.87 4.87 4.90 4.91 4.93 1.0005 4.68
4.0 5.09 5.09 4.93 5.08 5.00 5.01 1.0001 4.75
4.5 5.20 5.44 5.08 5.19 5.15 5.19 1.0014 4.74
5.0 5.35 5.49 5.10 5.34 5.17 5.21 0.9997 4.91
5.5 5.41 5.39 5.18 5.58 5.30 5.36 0.9996 4.83
6.0 5.53 5.61 5.18 5.63 5.32 5.40 1.0001 4.75
6.5 5.64 5.59 5.18 5.77 5.34 5.42 0.9977 4.82
7.0 5.66 5.58 5.10 5.90 5.26 5.32 0.9930 4.78
7.5 5.76 5.85 5.05 5.85 5.27 5.38 0.9973 4.48
8.0 5.79 6.06 5.04 6.21 5.38 5.53 0.9961 4.19
8.5 5.82 5.82 4.99 6.62 5.38 5.50 0.9828 4.41

a -â〈u0s〉/(m0
/)2. b â2〈(δu0s)2〉/(m0

/)2. c -2âµp/(m0
/)2 according to eq

34. d -2âµp/(m0
/)2 according to eq 36.e The second solvation cumu-

lant is obtained by adopting a nonzero solute dipole in the solute-
solvent interaction potential and calculating the average over the solvent
configurations in equilibrium with a nonpolar solute (m0 ) 0). The
listed data refer to the reduced cumulants,â2〈(δu0s)2〉0/(m0

/)2, that are
independent of the choice of the solute dipole.

Figure 2. -â〈u0s〉/(m0
/)2 (squares),â2〈(δu0s)2〉/(m0

/)2 (circles), and
â2〈(δu0s)2〉0/(m0

/)2 (diamonds) vsy at m0/m ) 4.0 (a) and (m0
/)2 ) 2.74

(b).

Figure 3. -â〈u0s〉/(m0
/)2 (squares),â2〈(δu0s)2〉/(m0

/)2 (circles), and
â2〈(δu0s)2〉0/(m0

/)2 (diamonds) vsy in fcc crystalline solvents; (m0
/)2 )

2.74. Dashed lines are regressions through the points.

N0(r) ) 4πFr2g0s(r) (21)
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and

The first one,N0(r), gives the radial distribution of the number
of solvent molecules around the solute;g0s(r) is the radial
distribution function. The second,N1(r), gives the radial
distribution of the average cosine of the angle between the
solvent and solute dipole moments. In eq 22,h0s

110(r) is a
rotation invariant projection13 of the orientation-dependent
solute-solvent correlation functionh0s(01)

where ŝ0 ) m0/m0 and s ) m/m; 0 and 1 stand for the
coordinates and orientations of the solute and a solvent molecule,
respectively. Nonlinear effects are largely local,9,29and we will
consider the number of solvent molecules in the first solvation
shell

and the average cosine in the first solvation shell

where cosθ ) ŝ0 ‚ ŝ.
Judged from the ratioâ〈(δu0s)2〉/〈u0s〉 in Figure 3 and the

average cosine of the solvent molecules in the first solvation
shell (eq 25, Figure 4, diamonds), the nonlinear effect due to
saturation of dipoles’ orientations in a lattice solvent passes
through a maximum at (m*)2 = 3. This magnitude of the solvent
effective dipole is in fact close to the effective solute dipole
(m0

/)2 ) 2.74. The nonlinear dielectric saturation thus maxi-
mizes at a resonance of the strengths of solute-solvent and
solvent-solvent interactions. A similar effect was observed
previously by A° qvist and Hansson for dipolar solutes in
water.30,31The maximum of nonlinear solvation was attributed
to the collapse of the H-bond network at the resonance of the
solute-solvent and solvent-solvent interactions. The fact that
we observe here exactly the same behavior for dipolar solvents
suggests that a maximum in dielectric saturation is a general
phenomenon related to the competition between solute-solvent
and solvent-solvent attraction forces. Increasing the solvent
polarity from zero tom* = m0

/ enhances the electric field
acting on solvent dipoles, thus leading to dielectric saturation.
At m* > m0

/, the solvent-solvent attractions gain importance

and orientations of the solvent molecules become closer to those
in a pure polar liquid. The dielectric saturation then decays and
the solvent response gets closer to the LRA prediction (Figure
3). No such effect is, however, observed in dipolar liquid
solvents (squares and circles in Figure 4). The average cosine
shows a behavior reminiscent of that in the Langevin model16

changing from zero to some saturation limit determined by the
magnitude of the solute dipole. This dependence is not, however,
solely an orientational response, but a combined effect of
changes in average angles and coordinates of the first-shell
solvent molecules.

A qualitative understanding of the effect of electrostriction
on solvation can be gained from looking atg0s(r) at variousy
values. The most significant effect of increasing solvent polarity
on g0s(r) is seen for the nonpolar HS solute,m0 ) 0 (Figure
5a). The contact valuesg0s(R0s) decrease considerably with
increasingy (diamonds in Figure 6a), the peak of the second
solvation shell shifts away from the solute (Figure 5a), and,
generally,g0s(r) becomes increasingly shallow in more polar
solvents. The number of solvent molecules in the first solvation
shell (Figure 6b) follows the trend ing0s(R0s) producing a
substantial dewetting of the solute surface in strongly polar
solvents. This local softening of the solvent structure, analogous
to Stillinger’s dewetting of hydrophobic surfaces,32,33 was
obtained also for dipolar liquids in contact with neutral planar
surfaces.34 For nonpolar solutes, dipolar solvent-solvent at-
tractions are not compensated by solute-solvent interactions
leading to lower local density around the solute. Similar, but
less pronounced, effect is seen when the solute has a constant
dipole moment (Figure 5b, squares in Figure 6). On the other
hand, for the set of simulations with the constant ratiom0/m )
4.0 (Figure 5c, circles in Figure 6), the reduced solute,m0

/, and
solvent,m*, dipole moments are close to each other (m0

//m* )

Figure 4. Average cosine of the angle between the solute and solvent
dipoles for the solvent molecules in the first solvation shell (eq 25)
measured for fcc-lattices (diamonds) and for dipolar liquid solvents at
(m0

/)2 ) 2.74 (squares) andm0/m ) 4.0 (circles). The dashed lines are
drawn to guide the eye.

N1(r) ) (4π/3)Fr2h0s
110(r) (22)

h0s
110(r) ) 3∫h0s(01)(ŝ0 ‚ ŝ) dΩ0 dΩ/(4π)2 (23)

NI ) ∫R0 + σ/2

R0 + σ
N0(r) dr (24)

〈cosθ〉I ) ∫R0 + σ/2

R0 + σ
N1(r) dr/NI (25)

Figure 5. Solute-solvent radial pair distribution function form0 ) 0
(a), (m0

/)2 ) 2.74 (b), andm0/m ) 4.0 (c). Solvent polarities are (m*) 2

) 2.5 (dashed lines), (m*) 2 ) 4.5 (dot-dashed lines), and (m*) 2 ) 8.5
(solid lines). The vertical dashed lines indicate the distance of the closest
approach,r/σ ) r0s, of the solute and solvent HSs.

2150 J. Phys. Chem. A, Vol. 106, No. 10, 2002 Milischuk and Matyushov



1.66) and no dramatic changes in the local density occur (Figure
6b), despite the fact that the contact valueg0s(R0s) grows with
solvent polarity (Figures 5c and 6a, circles). In this latter case,
the radial distribution function does not significantly change
outside a very narrow contact region and the growth of the
contact value does not strongly affect the population of the first
solvation shell. The increase ing0s(R0s) goes in parallel with a
concomitant increase in the solvent-solvent contact value
gss

000(σ) (crosses in Figure 6a). The structure of the solvent in
the solute vicinity is then not much different from the bulk and
the solvent molecules on the solute surface and in the bulk
respond in a similar fashion. The result is essentially a linear
solvent response,-〈u0s〉 = â〈(δu0s)2〉, to the solute electric field.

Contact values of the solvent-solvent pair distribution
function obtained here from simulations allow us to test the
RHNC approximation developed to take into account the
nonlinear aspects of solvation on the level of the hypernetted-
chain closure relation.26 For the first three angular projections
of the solvent-solvent pair distribution function appearing in
linear theories of dipolar fluids,25 {gss

000(σ), hss
110(σ), hss

112(σ)},
our simulations yield{4.92, 3.65, 4.66} and{5.27, 5.03, 5.73}
at (m*)2 ) 2.0 and 2.75, respectively. These data are to be
compared with the RHNC result:{4.57, 2.90, 4.13} and{4.92,
4.24, 5.21}. The effect of dipolar interactions on the density
and angular distribution of the solvent molecules is therefore
systematically underestimated on the RHNC level of the theory
even for relatively small solvent polarities.

The analysis of relative effects of electrostriction and
dielectric saturation allows us to draw some conclusions
regarding the origin of nonliner dipolar solvation in dipolar
liquid solvents. Dielectric saturation reaches its maximum at
intermediate polaritiesm* = m0

/ (Figures 3 and 4). In this
polarity range, dielectric saturation is fully compensated by
electrostriction of the first solvation shell. As a result, eqs 8
and 9 are fulfilled and the system shows the linear solvent
response. The nonlinear separation of the first and second
solvation cumulants occurs at higher solvent polarities. It is
chiefly caused by a substantial dewetting of the solute surface
for nonpolar solutes for which the strongest nonlinear effect is

observed (〈(δu0s)2〉0 in Figure 2). On the opposite side, a
relatively weak modulation ofNI at m0/m ) constantgives rise
to a nearly perfect equality betweenâ〈(δu0s)2〉 and-〈u0s〉 and
a linear solvent response. According to the LRA, a linear trend
∝y is then seen for the solvation chemical potential.27

3.4. Orientational and Density Reorganization.The inspec-
tion of Figures 5 and 6 shows that a vertical, optical excitation
of a solute changing its dipole moment creates a strain in the
solvent in respect to both orientations and positions of the
solvent molecules. The transition shown by the vertical lines
in Figure 6 corresponds to a dipole change 0f 15 D within a
solute of the radiusR0 ) 3.7 Å in a solvent with the dipole
moment 4.8 D if one assumesσ ) 4.141 Å characteristic of
acetonitrile.35 [Both solute and solvent dipoles may refer to their
polarizability-renormalized values (see Discussion).] This verti-
cal transition creates a nuclear strain corresponding to the change
in the average first solvation shell cosine from 0 to 0.77 (Figure
4) and the average number of solvent molecules in the first
solvation shell from 18.2 to 22.6 (Figure 6). Relaxation of the
nuclear subsystem into equilibrium with the new charge
distribution hence involves reorientation of the solvent molecules
(orientational reorganization) and a change in the local density
around the solute (density reorganization). The separation of
the solvent reorganization into orientational and density com-
ponents is important for both the dynamics and thermodynamics
of the solvent response. Solvent translations significantly alter
the solvation time correlation function.36 For the static response,
the density component of solvent reorganization is the main
contribution to the solvation entropy due to its stronger
temperature dependence (see below).37

To separate the overall solvent response into the orientational
and density components, we follow the procedure suggested
by time-resolved Stokes shift experiments.38 Full equilibration
after a sudden transition fromm0 ) 0 to m0 > 0 involves the
relaxation of both the orientational and density strains. This full
equilibration, corresponding to the total Stokes shift in a time-
resolved experiment, is shown by the arrow 0f E in Figure 7.
This equilibrium state can be achieved in two steps: first
relaxing the orientational strain along the line 0f NE to a
nonequilibrium state NE and then relaxing the density strain
along the line NEf E.

We applied this two-step procedure in our MC simulations.
Equilibrium system configurations corresponding tom0 ) 0
were taken with the intervals of (3-4) × 104 MC cycles over
all molecules in the simulation box as starting points of
simulations of the same length in whichm0/m) 4.0 was adopted
and only molecular orientations were equilibrated. The total
equilibrium configuration file atm0 ) 0 of the length (1.1-
1.4)× 106 cycles was used to average the results of each such

Figure 6. Contact value of the solute-solvent radial distribution
function g0s(R0s) (a) and the number of solvent molecules in the first
solvation shell (eq 24, b) vsy for m0 ) 0 (diamonds), (m0

/)2 ) 2.74
(squares), andm0/m ) 4.0 (circles). Crosses (a) indicate contact values
for the solvent-solvent radial distribution function,gss

000(σ). The
arrows show a vertical transition with the dipole change 0f m0 (see
the text).

Figure 7. Transition from the nonpolar,m0 ) 0, state (0) to an
equilibrium state (E) withm0/m ) 4.0 in the coordinates of the first
solvation shell population,NI, and the average angle of the solvent
dipoles relative to the solute dipole,θI. “NE” denotes the nonequilibrium
state at which the orientational stress is relaxed, but the coordinates of
the solvent molecules are in equilibrium with the nonpolar state.
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trajectory over the initial equilibrium configurations. In this way,
the orientational and density components of the first two
solvation cumulants were generated (Table 2)

The splitting in eq 26 assumes that orientational and density
relaxations are uncoupled. The two modes are uncoupled indeed
for symmetry reasons in the linear response,25,37but can couple
to each other in the nonlinear response.26 For two uncoupled
Gaussian solvent modes linearly coupled to the solute, the
second cumulant of the solute-solvent potential calculated for
one of them is independent of another one. If that were the case,
the second cumulant〈(δu0s)2〉NE

or calculated by relaxing the
orientational strain after a solute dipole switch would be
independent of the equilibrium configuration from which the
simulation has been started. In fact, there is a variation in
〈(δu0s)2〉NE

or measured on different trajectories and the variance
of 〈(δu0s)2〉NE

or given in Table 2 (σNE
or ) gives an estimate of the

orientational-density coupling. This latter does not exceed 20%
of 〈(δu0s)2〉NE

or , which is roughly equal to the nonlinear solva-
tion effect estimated from the comparison of〈(δu0s)2〉 and
〈(δu0s)2〉0 at m0/m ) 4.0 (Table 1).

To test the consistency of our results obtained by the sudden
switch of the solute dipole with the linear response observed
for m0/m ) 4.0, we carried out additional simulations in which
we suppressed translations in the final equilibrium configuration
(E) and measured only the fluctuation of the solute-solvent
potential produced by orientational fluctuations. The average
〈(δu0s)2〉or obtained on different trajectories over the initial
configurations belonging to the equilibrium state E yields the
orientational component of the second solvation cumulant,
〈(δu0s)2〉E

or. The corresponding splitting of the second cumulant
is then

As is seen in Table 2, the second cumulants〈(δu0s)2〉NE
or and

〈(δu0s)2〉E
or are really close to each other, as it should be

expected for a linear solvent response. Furthermore, there is a
fairly good agreement between the splitting of the average
energy and the splitting of the second cumulants into the
orientational and density components (Table 2).

The most interesting result of these simulations is a substantial
dependence of the fraction of density reorganization in the
solvent response on solvent polarity. The density component
in both 〈u0s〉 and 〈(δu0s)2〉 is almost vanishing aty e 3, but
rises quickly with increasingy matching the orientational
component of the response in strongly polar solvents (Figure

8). A considerable component of density reorganization in the
solvent response observed here for strongly polar solvents may
seem to disagree with the results of the instantaneous normal
mode (INM) analysis39a predicting a predominantly rotational
(orientational) nature of the solvent response.39b More recent
calculations by Ladanyi and Maroncelli (LM),40ausing Steele’s
decoupling of rotations and translations in time-correlation
functions,40b showed about 20% of the translational component
to the frequencyωs of the short-time, Gaussian part of the time-
correlation function (∝exp(-ωs

2t2/2)) of a dipolar solute. Our
results, however, cannot be compared to LM calculations and
INM models, as all of them refer to the early outcome of
solvation dynamics, whereas our calculations refer to the static
t f ∞ limit of the solvent response. This static response has
more bearing on the results of Bagchi and co-workers on the
long-time, translational diffusion effects on solvation dynam-
ics.36 A more detailed analysis of the orientational-density
splitting in the static solvent response will be presented
elsewhere.

The fact that solutes withm0/m ) 4.0 give rise to virtually
linear solvent response provide us with a simple route to the
solvation entropy. When the system volume is kept constant,
temperature enters the system parameters only throughy.
Changing temperature is thus equivalent to changingy. There-
fore, in the LRA, the solvation entropy is

Similarly to the case of solvation energy, we can consider the
orientational and density components of the solvation entropy

TABLE 2: Orientational and Density Components of the First and Second Solvation Cumulants atm0/m ) 4.0

(m*) 2 -â〈u0s〉NE
or -â〈u0s〉NE

dens â2〈(δu0s)2〉NE
or (σNE

or )a â2〈(δu0s)2〉NE
dens â2〈(δu0s)2〉E

or (σE
or)b â2〈(δu0s)2〉E

dens

1.0 9.13 0.28 8.63 0.60 0.69 8.94 0.56 0.38
2.0 22.28 1.78 20.20 1.42 2.70 22.01 1.60 0.89
3.0 37.40 1.90 33.00 2.97 4.30 33.95 2.60 3.35
4.0 48.10 7.80 42.50 4.18 13.41 45.07 4.82 10.84
5.0 55.93 17.50 47.90 5.35 27.46 52.10 6.12 23.26
6.0 63.49 27.51 55.97 6.06 36.38 54.63 5.12 37.72
7.0 68.60 40.10 60.00 8.50 47.25 59.77 5.98 47.48
8.0 72.60 54.80 64.30 12.00 68.70 65.50 7.96 67.50

a Variance of the distribution of second cumulantsâ2〈(δu0s)2〉 measured on different trajectories generated by the dipole switch 0f m0. b Variance
of the distribution of second cumulantsâ2〈(δu0s)2〉 generated by freezing molecular translations in solvent configurations in equilibrium with the
solute.

Figure 8. Orientational (open points) and density (filled points)
components of-â〈u0s〉/(m0

/)2 (triangles) andâ2〈(δu0s)2〉/(m0
/)2 (circles

and squares) vsy at m0/m ) 4.0. The second solvation cumulant is
split into the orientational and density components by simulations in
the density strained and orientationally relaxed state “NE” (squares)
and by freezing solvent translations (circles) in the equilibrium state
“E” (Figure 7).

TsV ) -T(∂µp/∂T)V ) (y/2)(∂〈u0s〉/∂y)F (28)

TsV
or ) (y/2)(∂〈u0s〉NE

or /∂y)F

TsV
dens) (y/2)(∂〈u0s〉NE

dens/∂y)F (29)

〈u0s〉 ) 〈u0s〉NE
or + 〈u0s〉NE

dens

〈(δu0s)
2〉 ) 〈(δu0s)

2〉NE
or + 〈(δu0s)

2〉NE
dens (26)

〈(δu0s)
2〉 ) 〈(δu0s)

2〉E
or + 〈(δu0s)

2〉E
dens (27)
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Figure 9 shows the dependence of the orientational and
density components of the solvation entropy ony. Except for a
small range of low polarities, the total solvation entropy is
mostly independent ofy as a result of a compensation between
its positive density and negative orientational components. The
density component is larger in the absolute magnitude than the
orientational component and the total solvation entropy is
positive. This result was obtained previously in an analytical
model of nuclear reorganization.37

The presence of nonlinear solvation makes the LRA connec-
tion between the average interaction energy and the solvation
chemical potential (eq 7) inapplicable. In the next section, we
show how the solvation chemical potential can be obtained in
the framework of the Q-model of ET reactions.41

4. Thermodynamics of Charge-Transfer Transitions

Equilibrium solvation thermodynamics discussed here has a
direct bearing on the thermodynamics of charge-transfer transi-
tions in liquid solvents commonly measured by optical spec-
troscopy and electron transfer (ET) kinetics. In the course of a
vertical Franck-Condon (FC) transition, the solvent electronic
polarization changes adiabatically with the changing solute’s
charge distribution, whereas the nuclear solvent subsystem stays
equilibrated with the initial solute’s charge distribution. For a
charge-separation transition from a nonpolar to polar state, 0
f m0, the absorption shift is due to electronic solvation only

whereµel is the solvation chemical potential corresponding to
the solvent electronic subsystem. The emission shift includes
both the electronic component and the average interaction energy
of a dipole with the solvent’s nuclear degrees of freedom

where 1 and 2 stand for absorption and emission transitions,
respectively.

The two-parameter Marcus-Hush (MH) model of ET42

employs eqs 7 and 8 to split the vertical average transition
energy into two equilibrium free energies: the equilibrium
energy gap and the solvent reorganization energy. For emission
transition, one has

where ∆µs ) ∆µel + µp is the solvent component of the
equilibrium energy gap and the first termλs ) (â/2)〈(δu0s)2〉 is

the solvent reorganization energy. Analogously, for the absorp-
tion transition, one has

The above splitting (eqs 32 and 33) does not apply when the
LRA breaks down indicating that the equilibrium free energy
gap, the solvent reorganization energy, and the average vertical
transition energy are three independent thermodynamic param-
eters. One faces then the necessity to replace the two-parameter
MH model with a three-parameter alternative.

The three-parameter Q-model was designed to handle prob-
lems with nonlinear solvation and those where more flexibility
in the parameter space is needed.41 The theory employs three
observables, the Stokes shift and two spectral widths,h2〈(δν)2〉2

) 〈(δu0s
2 )2〉 and h2〈(δν)2〉1 ) 〈(δu0s

2 )2〉0, to generate the free
energy surfaces of ET and FC factors of optical transitions. For
our current discussion of the dipole solvation energetics, the
model provides a route to derive the solvation chemical potential
from these energy cumulants. For the 0f m0 transition, the
Stokes shift is identical to-〈u0s〉 and one can directly derive
the expression for the solvation chemical potential

where∆〈(δu0s)2〉 ) 〈(δu0s)2〉 - 〈(δu0s)2〉0.
The Q-model can be applied if the conditionγ ) 1 is fulfilled

for the parameter

The parameterγ calculated from the first and second cumulants
over the solute-solvent interaction potential are listed in Table
1. The conditionγ ) 1 is fulfilled very well indeed. Conse-
quently, eq 34 can be used to determine the solvation chemical
potential. The values ofµp calculated from eq 35 turn out to be
very close to the empirical relation

(see Figure 10 and Table 1).
Figure 10 shows that the function-µp(y) levels off atm* .

m0
/, in qualitative agreement with the prediction of the Onsager

model. It may seem that the origin of saturation is irrelevant as
long as this limit is actually reached. Note, however, that the
fact that the saturation limit is the result of nonlinear solvation
simply implies that its outcome depends on the relative
magnitudes of the solute,m0

/, and solvent,m*, reduced dipoles
(from Figure 2, nonlinear solvation starts from about (m0

//m*)2

= 2). The possibility of an experimental verification of solvation
saturation thus strongly depends on the magnitudes of solvent
and solute dipoles involved in dipolar solvation. Additionally,
nonlinear solvation affects the average energy and second
solvation cumulant in different ways. This issue is relevant to
the problem of calculating the solvent-induced optical band
shapes in condensed phases.

Figure 9. The total constant-volume solvation entropy and its splitting
into orientational (or.) and density (dens.) components vsy at m0/m )
4.0.

h∆ν1 ) ∆µel (30)

h∆ν2 ) 〈u0s〉 + ∆µel (31)
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2
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2〉/2
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2
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The observation thatγ ) 1 holds very accurately for dipole
solvation allows one to use the Q-model to build the ET free
energy surfaces for charge-separation (CS),F1(X), and charge-
recombination (CR),F2(X), transitions. The Q-model gives a
very simple relation for the ET free energies vs the energy gap
reaction coordinateX41 (for the 0 f m0 transition,X ) u0s).
The free energy∆Fi(X) ) Fi(X) - F0i relative to the equilibrium
free energy at the surface minimum,F0i, has the following form

where〈X〉1 ) 0, 〈X〉2 ) 〈u0s〉,

and ∆λ ) λ2 - λ1. Here, two reorganization energiesλi are
defined through the second cumulants for the neutral and charge-
separated states

Figure 11 shows the CS and CR free energy curves calculated
according to eq 37 for (m*)2 ) 8.5. As is easy to see, nonlinear
solvation effects bring about nonparabolic asymmetry to both
the CS and CR curves.

5. Discussion

In the present study, we address the question of whether the
saturation limit, predicted by the Onsager model (eq 3), can be
observed in model systems. The motivation of the study comes
from the contradiction between the Onsager model and molec-
ular, liquid-state solvation theories which do not predict

saturation and, instead, yield a linear trend with the dipolar
density∝y at y . 1, provided the LRA holds. The results of
this study can be summarized as follows: (1) A saturation limit
for dipole solvation does exist for solid dipolar solvents and
does not exist for liquid dipolar solvents within the LRA. (2)
Saturation of the liquid solvent response arises from nonlinear
solvation when the reduced solute dipole momentm0

/ becomes
lower than the reduced solvent dipolem*. The strongest
nonlinear solvation effects are seen for solutes with zero dipole
moment. (3) Nonlinear solvation observed at large solvent
polarities in liquid solvents is completely due to electrostriction.
Nonlinearity is a result of dewetting of solute’s surface atm0

/

< m*. (4) The average solvation energy and solvation second
cumulant are almost equally affected by orientational and density
reorganization in highly polar solvents. (5) The LRA is not
applicable in strongly polar solvents and the Q-model of
solvation provides a convenient analytical tool allowing to
account for nonlinear solvation effects in solvation, optical
spectroscopy, and ET reactions.

It is of course reasonable to ask whether the range ofy values
explored in this study is common for polar solvents employed
in solution chemistry. At first glance, the magnitudes ofy for
which nonlinear solvation takes place are too high. For instance,
with the gas-phase dipole momentsm ) 1.83 D andm ) 3.9
D, one obtains for water and acetonitrile (at normal conditions)
y ) 3.8 andy ) 5.8, respectively. This estimate neglects,
however, the effect of polarizability of the solvent molecular
dipoles. Self-consistent models of the thermodynamics of polar-
polarizable liquids13,43 show that the results obtained for
nonpolarizable liquids can be applied to polarizable liquids upon
the renormalization of the dipolar densityy f y′ with

where R is the solvent dipolar polarizability andm′ is the
condensed-phase dipole moment of the solvent molecules
renormalized from its vacuum valuemby a self-consistent field
of the electronic polarization of the solvent. For water,m′ is
known to be equal to 2.4 D,9b which leads toy ) 6.5. For
acetonitrile, the application of the Wertheim self-consistent
approach43 results iny ) 10.7.44 Therefore, it is the necessity
to calculate chemical potentialsµp(y′) that drives our desire to
expand the theory toy′ e 10.

The analysis of nonlinear solvation necessitates understanding
of the relative importance of dielectric saturation and electros-
triction in the solvent response. We found that the effect of
dielectric saturation reaches its maximum at intermediate solvent
polarities when it is fully compensated by electrostriction of
the first solvation shell. The solvent response is linear in that
polarity range. Nonlinear effects gain importance at higher
polarities and they are fully caused by electrostriction. Contrary
to common expectations, the strongest nonlinear solvation effects
are seen not for solutes with large dipole moments, but for a
solute with zero dipole moment. The major origin of nonlinear
solvation is the dewetting of the surface of a nonpolar solute in
highly polar solvents when solvent-solvent attractions are not
compensated by the solute-solvent forces. Since solvent-
solvent interactions present a collective effect, polar states
common for optical chromophores can hardly create solute-
solvent forces strong enough to compete with solvent-solvent
interactions in highly polar solvents. Solvation of nondipolar
or weakly dipolar chromophore states may therefore be the main
origin of nonlinear solvation effects in optical experiments.

The Onsager model for dipole solvation is widely used in
optical spectroscopy to correlate solvent-induced spectral shifts

Figure 10. Chemical potential of solvation-âµp in the Onsager model
(eqs 1 and 2, “O”), in the mean-spherical approximation (MSA),19 and
in the Q-model41 (eq 34, diamonds; eq 36, squares) at (m0

/)2 ) 2.74.
The circles indicateâ2〈(δu0s)2〉/2, down triangles indicateâ2〈(δu0s)2〉0/
2.

Figure 11. ET free energy surfaces for charge separation (CS, 0f
m0) and charge recombination (CR,m0 f 0) transitions vs the energy
gap reaction coordinateX. To facilitate the comparison, the vertexes
of two parabolas are shifted to the coordinate origin.

∆Fi(X) ) (x|Ri||X + Riλi - 〈X〉i| - |Ri|xλi)
2 (37)

R1 ) -∆λ-1(λ2 - 〈u0s〉), R2 ) R1 + 1 (38)

λ1 ) â〈(δu0s)
2〉0/2 and λ2 ) â〈(δu0s)

2〉/2 (39)

y′ ) (4π/9)âF(m′)2 + (4π/3)RF (40)
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with solvent dielectric properties.2,3 In particular, the solvent
dependence of the Stokes shift is often described with the
parameter

whereε∞ is the high-frequency dielectric constant;ε∞ ) 1 in
our model. The existence of a linear trend of the Stokes shift
(equal to-〈u0s〉 in our model) withf calculated in different
solvents often serves to validate the continuum model and/or
the LRA. Figure 12 shows the same dependence, known as
Lippert-Mataga plot,3 with our simulation data andf calculated
according to eqs 5 and 41 for (m*)2 g 1.0. Except for the most
polar solvents, which can be easily missed in a limited range
of solvents experimentally available, there is a linear trend of
-â〈u0s〉 vs f. [In real solvents, molecular quadrupoles make the
dependenceε(y) less sharp13 resulting in an even better linear
trend on the Lippert-Mataga plot]. This analysis indicates that
the existence of the Lippert-Mataga dependence validates
neither continuum model nor the LRA. The solvent polarity
parameterf (ε) is merely a good probe function going from zero
at low polarities to a saturation limit at high polarities. For liquid
solvents, however, this saturation occurs only due to local
density changes of the solvent around the solute not included
in continuum models. Furthermore, these local density changes
give rise to nonlinear solvation that is responsible for saturation.
No saturation exists within the LRA.

The entropy of solvation at constant volume was calculated
from the polarity dependence of the average solvation energy
when the LRA holds (m0/m ) constant). The entropy was also
separated into the contributions arising from orientational and
density solvent reorganization. The two components turned out
to have opposite signs, with the total positive solvation entropy
originating from the higher magnitude of its positive density
component. Nuclear solvent reorganization considered here is
responsible for the Stokes shift in optical experiments and for
the solvent reorganization energy in ET reactions. These
parameters are often calculated using the Onsager model2-5

which, as well as other dielectric cavity models, includes only
the orientational reorganization.37 For dipolar solvation, the
orientational solvation entropy can be estimated from the
temperature derivative of the polarity parameterf in eq 41. To
avoid the uncertainty in choosing the cavity radius, we consider
the ratio-sVT/µp, which is given in the Onsager model by the
relation

This ratio, estimated for 10 commonly used solvents,45 is shown
in Figure 13 (points, solvent parameters from refs 35 and 46)
and compared to the corresponding ratio from the present
simulations (solid line) and from the Onsager model for dipolar
HSs (dash-dotted line, eqs 1, 2, and 5). The results of
calculations according to eq 42 fall very close to the prediction
of the Onsager model for dipolar HSs, but yield slightly negative
entropies at largey. On the contrary, the simulations yield
positive and much higher in the absolute value ratios-sVT/µp,
pointing to a more substantial entropic component in the
solvation chemical potential than that given by the Onsager
model. The latter, applied to both model and real solvents, is
unable to give even a qualitative account of solvation entropies
in highly polar solvents. Positive entropies of nuclear reorga-
nization were predicted previously in the framework of an
analytical model37 and subsequently confirmed by experiment.44b,47

There is a fairly good agreement between solvation entropies
from eq 42 and the orientational entropy from our simulations
at y e 5 (Figure 13). At largery values, the solvation entropy
from eq 42 levels off at a slightly negative magnitude, whereas
the simulated orientational entropy continues to decay. It is not
yet clear whether the Onsager model gives a correct estimate
of the orientational entropy and if one can apply the results
obtained here for HS dipolar liquid solvents to highly polar
molecular solvents. Molecular polarizability and higher multi-
poles of the solvent molecules should be included for a more
realistic analysis, which will be a subject of future research.

The present study is based on the cumulant route to the
solvation chemical potential.48-50 Only two first cumulant are
measured by computer simulations and the Q-model of nonlinear
solvation41 is used to generateµp. The Q-model is based on an
infinite-cumulant expansion to construct the free energy surfaces
of solvation as functions of the soolute-solvent interaction
potential. The model consistency in application to many-body
problems requires that the parameterγ, given by eq 35, is equal
to unity. This condition is fulfilled very accurately for our
present simulations (Table 1). This allows us to use the full
potential of the Q-model to calculate not only the solvation
chemical potential (eq 34), but also the free energies of ET
reactions and FC factors of optical transitions. As is shown in
Figure 7, solvation nonlinearities manifest themselves in a
significant difference between the CS and CR free energy
surfaces,51 as well as in the asymmetry of each individual ET
free energy surface.52

Figure 12. Lippert-Mataga plot of the Stokes shift (-â〈u0s〉) obtained
from simulations (points) vs the dielectric parameterf (eq 41). The
dashed line is a linear regression through the points.

Figure 13. The ratio of the entropy of dipole solvation to the solvation
chemical potential vsy in the Onsager model (dash-dotted line) and
from MC simulations (m0/m ) 4.0): -2sVT/〈u0s〉 (solid line),
-2sV

orT/〈u0s〉 (or), and-2sV
densT/〈u0s〉 (dens). Points refer to the ratios

given by eq 42 vsy′, wherey′ was calculated by a combined application
of the Kirkwood and Kirkwood-Fröhlich equations according to ref
44b. The numbers on the plot indicate chloroform (1), tetrahydrofuran
(2), 1,1-dichloroethane (3), acetone (4), propionitrile (5), dimethylfor-
mamide (6), nitromethane (7), acetonitrile (8), dimethyl sulfoxide (9),
and propylene carbonate (10).f ) ε - 1

2ε + 1
-

ε∞ - 1

2ε∞ + 1
(41)

-
sVT

µp
) 3T

f [ 1

(2ε + 1)2(
∂ε

∂T)V
- 1

(2ε∞ + 1)2
(∂ε∞

∂T )
V] (42)
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A truncated cumulant expansion in the solute-solvent
interaction potential is used in approximate calculations of the
solvation chemical potential from a few first cumulants available
from computer simulations.48-50 An expansion around several
states with different degree of the solute-solvent coupling
improves the interpolation accuracy,48,49aand when a sufficient
number of intermediate states is available, the thermodynamic
integration technique9a yields the solvation chemical potential.
There are other simulation protocols directly leading to free
energies (for a review see ref 53). Among those, expanded
ansemble simulations54 and hystogram reweighting55,56 are
effective alternatives to the cumulant expansion and thermo-
dynamic integration.

Given poor convergence and potential system-size depen-
dence of higher-order expansion terms, simulations are often
limited to only two first cumulants49b,c,50(four cumulants are
reported by Hummer et al.49a for the problem of water
hydration). The second-order truncated cumulant expansion
leads to the following interpolation relation for the solvation
chemical potential48

Equation 43 can be obtained also from eq 34 of the Q-model if
one assumes〈(δu0s)2〉0 ) 〈(δu0s)2〉 ) -2kBT〈u0s〉 in the last term
in eq 34 while still keeping∆〈(δu0s)2〉 * 0. The advantage of
the Q-model over truncated cumulant expansions is that it based
on an infinite series of cumulants. However, it does not specify
how well the consistency conditionγ ) 1 should be obeyed
for an accurate estimate ofµp. An insight into such a criterion
can be gained from the simulation results by Hummer and
Szabo.48b For the process of charging a water molecule in the
bulk water solvent, they report-â〈u0s〉 ) 39.62,â2〈(δu0s)2〉 )
71.66, andâ2〈(δu0s)2〉0 ) 17.99. With these parameters,γ )
0.938 and the Q-model gives-âµp ) 15.95, about 11% higher
than the value of 14.40 following from the thermodynamic
integration.9a,49aThis example allows us to suggest thatγ )
1.00( 0.05 is required for a reliable estimate of the chemical
potential of solvation from the Q-model. Direct simulations of
the solvation chemical potential are necessary for further tests
of the Q-model and a better understanding of the polarity
dependence of multipole solvation in polar solvents.
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