2146 J. Phys. Chem. R002,106,2146-2157

Dipole Solvation: Nonlinear Effects, Density Reorganization, and the Breakdown of the
Onsager Saturation Limit"

Anatoli Milischuk and Dmitry V. Matyushov*

Department of Chemistry and Biochemistry, Arizona Statesétsity, P.O. Box 871604,
Tempe, Arizona 85287-1604

Receied: July 3, 2001; In Final Form: October 31, 2001

Linear cavity solvation models predict saturation of the solvation chemical potentat,constant at high

solvent polarity. This qualitative prediction is tested on computer simulations of dipole solvation in dipolar
hard-sphere solvents in the liquid and solid phase states. We find that solvation saturation does exist for solid
dipolar solvents, but does not exist for liquid dipolar solvents when the linear solvent response holds. Solvation
saturation occurs due to nonlinear solvation in liquid solvents when setgehtent attractions exceed solute
solvent attractions. Nonlinear solvation is caused by electrostriction resulting in dewetting of the solute surface
of a nonpolar or weakly polar dipolar solute. Solvation thermodynamics is affected by a combination of
orientational and density solvent reorganization. The relative contribution of each component is strongly
dependent on solvent polarity. In highly polar solvents, the orientational and density reorganization
approximately equally contribute to the average solvation energy and the second solvation cumulant. The
entropy of solvation is found to be positive and virtually independent of solvent polarity. This comes about
as a result of a compensation between a negative solvation entropy due to orientational reorganization of the
solvent and a positive solvation entropy due to density reorganization. The Onsager model does not provide
even a qualitative account of solvation entropies. Our simulations give strong support to the Q-model of
nonlinear solvation. Applications of the dipole solvation thermodynamics to electron-transfer reactions and
optical spectroscopy are discussed.

1. Introduction Onsager model makes some important quantitative and qualita-
tive predictions that are often adopted in the literafufebut

still have not been thoroughly tested. From the qualitative side,
the model gives a zero solvation chemical potentiat at 1

and predicts a saturation limit

The Onsager model for solvation of a dipolar solute in a polar
solvent searches for a solution of the Poisson equation for a
point dipole in a spherical cavity cut from a dielectric medium.
The solute dipole momentng, interacts with the dielectric
reaction field of the solventR, resulting in the following

solvation chemical potential My

“Hp T -3 (3)
1 2a

HUp = — Emo ‘R (1) ) ) ) )
ate — . The latter result is especially important for applica-
tions. Many liquid solvents commonly used in solution chem-
istry are polar liquids witke > 1. For such solvents, the model
suggests very little sensitivity of, to changes in solvent polarity
and puts a significant emphasis on the way the cavity raalius

is calculated. Indeed, numerous efforts have been undertaken
to define the “best” effective radius for dipolar and ionic

where “0” refers to the solute. The reaction field arises as a
result of displacements in the solvent induced by the presence
of the solute dipole. For spherical cavities considered in the
Onsager model, it is fully defined by the solvent dielectric
constant and the cavity radius

_ solutes’~*? However, the existence of the saturation limit itself
2(6 1) my
R (2) has not been tested either on molecular solvation theories or
etl a computer simulations of solvation.

The O h set losed. tw " d The qualitative test of the existence of the saturation limit in
€ Lnsager approach Sets up a closed, two-parameter mo e[lne linear response approximation (LRA), predicted by the

that does not assume any particular recipe for the calculation Onsager model, is the aim of this study. We show that fast
of either of its two parameters: the cavity radiasand the saturation of the solvation chemical potential with increasing

d'?ledt”cl cotnst?nf_. T?fe rpodel ?as dbeggé]vgjﬁly used :oe%eat solvent polarity, predicted by eqs 1 and 2, does not happen for
solvent electrostalic efiects on steady- Ime-resolv model liquid solvents. Moreover, the LRA solvation chemical

optical spectra, as well as other phenomena involving dynamics e il has a linear asymptote with increasing polarity of the

of polar interactions, dielectric frictiénis an example. The solvent and we show how this linear trend can be exactly
T Part of the special issue “Noboru Mataaa Festschrift” obtained in the linear solvation models (section 3). For liquid
*To whom co?respondence should be agddressed. E-mail: dmirym@ Solvents, the outcome of solvation saturation turns out to be

asu.edu. Fax: (480) 965-2747. linked with nonlinear solvation. Computer simulations per-
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formed here show that dewetting of solute’s surface in highly of solvent polarity. To be specific, we will consider a HS solute
polar solvents is responsible for nonlinear solvation effects. of the radiusRy and will assume = R, throughout the paper.
Finally, in section 4, we discuss applications of solvation  Solvation of a HS dipolar solute in a HS dipolar solvent is
energetics considered here to electron-transfer reactions andully characterized by two solvent parametes$,and y, and
optical spectroscopy. by two solute parameter®, and my. The latter two can be

combined in one dimensionless parameter characterizing the
2. Model dipolar strength of the solute

Testing the Onsager model is not straightforward as the 2 2 3
macroscopic property, the dielectric constant, is employed to (Mp)” = pmylog”, 0= 2R, (6)
define the microscopic property, the solvation chemical poten- ) ) ) )
tial. Molecular solvation models are commonly formulated in This parameter is defined analogously to the effective dipolar
terms of microscopic solvent properties and do not always Strength of the pure solventmf)> = pn#o® (y =
providee. That is why model condensed systems for which both (47/9)p*(n¥)?).13
the dielectric macroscopic properties and the microscopic
solvation potential can be simultaneously calculated should be
employed to establish the qualitative picture of the dependence 3.1. Linear Response Approximation.The Onsager model
of the solvation chemical potential on solvent polarity. Despite assumes linear solvent response. This implies that the reaction
significant progress achieved in recent decades in understandingdield is a linear function of the solute dipole moment (eq 2)
and describing molecular polar fluids, there are very few model and the solvation chemical potential is quadratierin(eq 1).
systems for which sufficient molecular and macroscopic infor- This assumption leads to several general relations which can
mation is accumulated to provide a stringent test of dielectric e directly tested on computer simulations. First, the solvation
models. One of such model system, that has played a significantchemical potentiadk, is one-half of the average solutsolvent
role in developing our understanding of polar liquid thermo- interaction energyiipd]
dynamicd®14and physics of dielectric materidizis the dipolar
solvent, in the fluid31> or solid'® state. We consider here a _1
dipolar hard sphere (HS) solvent composed of HSs of diameter =73
o bearing point dipolesn. The thermodynamic properties of
the pure solvent are fully characterized by two dimensionless Here,uos is the solute-solvent interaction potential (“s” stands
parameters: the reduced number dengity= po® and the to the solvent) andl..Crefers to the statistical average over the
reduced dipolar density= (47/9)8pom?. Here,p is the solvent solvent configurations in equilibrium with the solute. Further,
number density and = 1/ksT; kg is Boltzmann’s constant and  the first and second cumulants of the soltgelvent interaction

3. Solvation Thermodynamics

(5 ()

T is temperature. potential are connected to each other as foll§ws
Even for the most studied model of the HS dipolar fluid, the
connection of the microscopic parameyeio the macroscopic — W= BIOUG)°T (8)
dielectric constant is not easy to establish. The Kirkwood
equation Finally, when the second cumulant is calculated in the LRA,
the distribution of the solvent molecules around the solute is
(e—1)(2+1) 4 not perturbed by the solutesolvent dipole-dipole interaction.
9 = oy ) The solute-solvent distribution used to calculai@ups)?then

. . remains the same for all magnitudesnaf For a stringent test
contains a generally unknown dependence of the Kirkwood gof this requirement, one can consider the condition

factor gk ony. The Kirkwood factor can be calculated from
integral equation theori&sor perturbation expansiof$Both OUp)° 0= [OU)?Tg 9)
approaches, however, fail at largé® Therefore, an empirical 0 0
equation fore(y) reproducing computer simulation results has

where [1..[J refers to the statistical average over the solvent
been recently propos&d

configurations in equilibrium with the solute with zero dipole
_ 2 3 moment.

e(y) = 1=3y+3y"+ 2p")lexp(PY72) — 1] (5) Molecular solvation models do not support the existence of
a saturation limitu, — constantfor the solvation chemical
potential within the LRA. The mean-spherical approximation
(MSA) for dipole solvatiof® leads to a linear dependence

Equation 5 makes use of the perturbation expansion theory for
the dielectric constant by Tani et'awith the parametep =
9qar(p*)/1672 — 1 defined through a three-particle perturbation
integral lgaa(0*) depending on the reduced densipyt.1” MSA
Equation 5 was shown to agree with simulated dielectric —up Oy (10)
constants of pure HS dipolar fluids in the rangeck < 220. o S
The connection betweenandy opens a door to the comparison  at largey. The MSA solution is an approximation. However,
of the dielectric cavity models, operating in terms of dielectric the linear trend-x, U y can be proved exactly, based on some
constants, to molecular descriptions of solvation, operating in VEry general properties of dipolar fluids. For this one can use
terms of the parameter in a broad range of solvent polarities. the connection between the solvation c_:hemlca}l potentla_l and
A comparison of the molecular solvation models to the the second cumulant of the solutsolvent interaction pote_ntlal
dielectric cavity description demands definition of the cavity (€ds 7 and 9)—up = (B/2){ouod*d. The latter can be written
radiusa, which is not specified within cavity models. For our explicitly?° to give the solvation chemical potential in the form
qualitative analysis of the Onsager picture, it suffices to say ) =
that the model consistency implies that the radaisis —Bu/My” = YR (0*, o9 T Y[20 (0%, TosY) T Ar(0*,TosY)]
independent of the solvent dielectric constant and, consequently, (12)
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In eq 11,

Rei(p*To) = 3 [, (dr/r)af(r 0%, 109 (12)

is the effective radius of a HS solute in a HS solvEntt
includes local packing effects of the repulsive hard cores of the

solvent molecules around the solute and, therefore, depends on

the solvent reduced densipy and the solute/solvent size ratio
ros = Rodo, Ros = Ry + 0/2 through the solutesolvent HS

distribution functiong(r,0*,rog. The latter describes packing

of HS molecules around a HS solute and is not affected by any

long-range interactions; for brevity, we will suppress the
dependence op* and rosin g(r,p*,ro in the remainder.

The first summand in eq 11 is the one-particle solvent
response which is simply proportional to the density of dipoles
in the liquid. The second term arises from many-particle
solvent-solvent interactions which screen the distortions in-
duced by the solute. The first summand is positive and the

second summand is negative, thus reducing the direct one-
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particle response. The polarity dependence of the many-particleFigure 1. Transverse (a) and longitudinal (b) structure factors of HS

solvent response entering the functions

0ur(0* Tos) = = [ (F PRVIS (0 — W ok (13)

is determined by, correspondingly, the longitudirglk), and
transversesr(k), structure factors of the solvent polarization.
The structure factorS_t(k) are defined through the correspond-
ing correlators of the longitudinal and transverse polarization
fluctuations of the polar liquit

MOP_(KI°D= (NnT/3)S.(K)

DOP(K) 0= (2NnT/3)S;(K) (14)
where P (k) and 0P(k) stand for the Fourier transforms of
the longitudinal and transverse polarization fluctuations of the
pure solventN is the number of solvent molecules. In eq 13,
o dr ,
1A = f7 T gk (15)
wherej,(x) is the second-order spherical Bessel funcéon.

In the limit of largey, the longitudinal structure factor
vanishes in the range &fvalues contributing significantly to

dipolar solvents atn(*)2 = 1.0 (dash-dotted line), (*)2 = 4.0 (solid
line), and ()2 = 7.0 (dotted line). Plotted are simulation results with
864 solvent molecules in a cubic simulation box; the simulation length
is 6.5 x 10° cycles.

These two general properties of the longitudinal and trans-
verse structure factors in the limit of largevalues lead directly
to the exact asymptote at-y o in eq 11

—Bulymy? = Ry — 2 f7(dry/r a2 DIgir,) —
(KT/502)j(;r1r29(()()s)(r2) dr,] (19)

The result is an obviously linear dependence«pbn y with
the slope depending on the solvent reduced densitythe
solute-solvent size ratidRy/o, and the parameter

%
k= lim

Yoo AT2

(20)

In the MSAZ5 Sr(0) — « and At — « aty — o, but the
parametekt tends to a constant limiky = 3. The exact value
of this parameter for dipolar solvents is unknown.

The derivation presented here strongly suggests that the

the integral in eq 13. The transverse structure factor, on the existence of the Onsager saturation limit and the LRA cannot

contrary, peaks strongly & = 0 (Figure 1). At largey, the
transverse structure factor is very well reproduced bykthe

0 expansion of the corresponding direct correlation function
cr(K) truncated at the second lkexpansion term. This leads to
the Ornsteir-Zernike approximatiof? for the transverse struc-
ture factor

0) + A2
Si(K) = SﬁT (16)
where atk = 024
SH(0) = (e — L)/ (17)

The correlation lengthAr determines the exponential long-
distance decay of the transverse polarization fluctuations
[BP(r)oP(0)0 r e "

at r—o (18)

be reconciled with each other. In contrast to the Onsager model
giving u, — constant molecular solvation theories predigts

Oy at largey as long as the LRA holds. Going beyond the
LRA within analytical solvation models inevitably involves
approximation® and we thus need to turn to computer
simulations to obtain the “exact” dependence of thermodynamic
solvation parameters onfor solvation in the model solvent of
HS dipoles.

3.2. Computer Simulations.Computer Monte Carlo (MC)
simulations of a HS dipole solute in a HS dipolar solvent were
carried out as described elsewh#&teAll simulations were
performed forgs= 1.4 ando* = 0.8. A cubic cell with a single
solute and 500 solvent molecules was employed to simulate
the first and second cumulants of the sotuelvent interaction
energy (Table 1). The simulation cell with 864 solvent molecules
was used to obtain the longitudinal and transverse structure
factors of the pure dipolar solvent (Figure 1). The simulations
were set up to provide a comprehensive test of both the LRA
and the existence of the polarity saturation limit within the LRA
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TABLE 1: Simulated Solvation Cumulants and Calculated
Chemical Potentials of Solvation in Liquid Dipolar HS

Solvents
my/m=4.0 mp = 0(m;)? = 2.74 my=0

(M*)2 —Mio3 [OUe?M —Midd [MOUo?M@ —2up® —2upd vy [ougg?de
05 243 2.40 244 230 242 241 0.9988 242
1.0 343 340 344 326 341 339 0.9990 3.43
15 403  4.06 3.98 397 398 398 1.0000 3.97
20 438 417 438 432 434 432 10004 435
25 457 457 462 457 463 4.63 10002 4.53
3.0 478 453 475 478 476 477 1.0000 4.71
35 487 487 487 490 491 493 1.0005 4.68
40 509 509 493 508 500 501 1.0001 4.75
45 520 544 508 519 515 519 1.0014 4.74
50 535 549 510 534 517 521 0.9997 4091
55 541 539 518 558 530 536 0.9996 4.83
6.0 553 5.61 518 563 532 540 1.0001 4.75
65 564 559 518 577 534 542 0.9977 4.82
70 566 558 510 590 526 532 0.9930 4.78
75 576 585 505 585 527 538 0.9973 4.48
8.0 5.79 6.06 504 621 538 553 0.9961 4.19
85 5.82 582 499 6.62 538 550 09828 4.41

@ —Blliod ()2, © 210Uy 2IIT)>. © —2Buyl(M)? according to eq
34.9—2Buy/(mg)? according to eq 36 The second solvation cumu-

lant is obtained by adopting a nonzero solute dipole in the selute
solvent interaction potential and calculating the average over the solvent
configurations in equilibrium with a nonpolar solutexy(= 0). The

listed data refer to the reduced cumularffd{ouo)?(d/(n%)? that are
independent of the choice of the solute dipole.
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Figure 2. —pidmp)? (squares),F2{ouo)?I(m)? (circles), and

BPOUeg?d(mMp)? (diamonds) vy at my/m = 4.0 (a) and if§)? = 2.74
(b).

predicted by the Onsager model (eq 3). Three configurations
for the solute were considered. In the first set of simulation
runs, the solutesolvent dipole moment ratio was kept constant
(mo/m= 4.0) and the solvent reduced dipole momerif)¢ was
varied in the range 0:58.5. In the second set of data, the solute
dipole moment was fixed atn)? = 2.74 and (*)? was
varied. Finally, the third set of simulations was obtained by
varying (m*)2 atmp = 0. The first and second cumulants of the
solute-solvent interaction({lodld = 0) are listed in Table 1.
Figure 2 shows that the LRA actually breaks down for polar
solvents withy > 5. Equation 8 approximately holds for the
simulations with constant solute/solvent dipole ratigm =
4.0. However, eq 9 becomes inaccurate up to 35%. The polarity
dependence of the second cumulafitugg)?ld is especially
indicative of nonlinear solvation. Instead of a linear treényg
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Figure 3. —pid(m)? (squares),S2{duog?(nE)? (circles), and
BP0Uog)?d/(mg)? (diamonds) vy in fce crystalline solvents;ngy)? =
2.74. Dashed lines are regressions through the points.

predicted by linear response molecular models, the second
cumulant goes through a broad maximum starting to decay with
increasingy. When the solute dipole is kept constant while
increasing the solvent polarity, the solvation energy does show
a saturation limit, but the second cumulafiupg)?Cincreases
approximately linearly witly (Figure 2b)?” The saturation limit

is thus a result of purely nonlinear solvation effects (see below).

The deviation between the first-[pd] and the second,
Bdugg)?Tand B{ougy?d, cumulants seen for solvation in HS
liquid solvents is not observed if a lattice of point dipoles is
used as a solvent. Figure 3 shows the dependence of the first
and two second cumulants of the solumlvent interaction
potential ony at constantm,. Despite considerable deviations
betweerlipd,) [{0Usg?[d, and{dugg)?Cat medium polarities, they
all tend to the same saturation limit at largealues. Interest-
ingly, the LRA holds for dipolar solvation in highly polar dipolar
lattices. The qualitative distinction between the polarity depen-
dence of the second cumulants obtained for dipolar liquids and
dipolar solids suggests that it may be caused by local density
changes that are allowed in a liquid solvent, but are suppressed
in a lattice solvent.

3.3. Dielectric Saturation and Electrostriction. Nonlinear
solvation in polar solvents is commonly related to a combined
effect of dielectric saturation and electrostriction. Dielectric
saturation refers to orientational ordering of the solvent mol-
ecules in an external electric fieldIf the solvent dipoles are
oriented so that no further orientation is possible, the dielectric
solvent response is lower than that expected from the LRA.
Dielectric saturation is accounted for by allowing the dielectric
constant to change with distance from the sditteor by
adopting the Langevin formula for dipoles’ orientatidfis.
Electrostriction stands for local density changes in solute’s
vicinity produced by its electric fielé? The latter effect is often
described in terms of theolutecavity radius depending on the
strength of the electric fiefdor an effectivesolvent radius for
the first solvation shell moleculé8Electrostriction is commonly
expected to bring solvent molecules into closer contact with
the solute, hence increasing the solvation power of the sot¥ent.
The mutual compensation of dielectric saturation and electros-
triction is believed to be responsible for the remarkable accuracy
of the LRA in dense liquid solvents, despite strong electric fields
existing on molecular lengthscal&The simulation results
provided in this study for a range of dipolar solvents existing
in both the solid and liquid states allow us to separate the relative
contributions of dielectric saturation and electrostriction to
solvation thermodynamics.

To quantify electrostriction and dielectric saturation we will
consider two radial distributions

No(r) = 4rrprgodr) (21)
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Figure 4. Average cosine of the angle between the solute and solvent
dipoles for the solvent molecules in the first solvation shell (eq 25)
measured for fcc-lattices (diamonds) and for dipolar liquid solvents at
(mp)? = 2.74 (squares) angl/m = 4.0 (circles). The dashed lines are
drawn to guide the eye.

and

Ny(r) = (4/3)orhgs%r) (22)
The first oneNo(r), gives the radial distribution of the number
of solvent molecules around the solutgr) is the radial
distribution function. The second\,(r), gives the radial
distribution of the average cosine of the angle between the
solvent and solute dipole moments. In eq 28.%r) is a
rotation invariant projectiof of the orientation-dependent
solute-solvent correlation functioigg01)

hgsXr) = 3 [ho{01)Gy - §) dQ,dQ(4n)*  (23)

where § = mg/mp and s = m/m; 0 and 1 stand for the
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Figure 5. Solute-solvent radial pair distribution function fop = 0
(@), (m)? = 2.74 (b), andny/m = 4.0 (c). Solvent polarities arenf)?
= 2.5 (dashed lines)n¢*)? = 4.5 (dot-dashed lines), anarf)2 = 8.5
(solid lines). The vertical dashed lines indicate the distance of the closest
approachy/o = ros, Of the solute and solvent HSs.

coordinates and orientations of the solute and a solvent molecule and orientations of the solvent molecules become closer to those

respectively. Nonlinear effects are largely lod&,and we will
consider the number of solvent molecules in the first solvation
shell

Ry+ o
N, = fRO+U/2NO(r) dr (24)
and the average cosine in the first solvation shell
Ro+ o
[GosHL]= wa/le(r) dr/N, (25)

where co¥ = & - &.

Judged from the rati@{oups)?Iipdin Figure 3 and the
average cosine of the solvent molecules in the first solvation
shell (eq 25, Figure 4, diamonds), the nonlinear effect due to
saturation of dipoles’ orientations in a lattice solvent passes
through a maximum ang*) 2 = 3. This magnitude of the solvent
effective dipole is in fact close to the effective solute dipole
(mg)? = 2.74. The nonlinear dielectric saturation thus maxi-
mizes at a resonance of the strengths of setst@vent and
solvent-solvent interactions. A similar effect was observed
previously by Ayvist and Hansson for dipolar solutes in
water30-31 The maximum of nonlinear solvation was attributed

in a pure polar liquid. The dielectric saturation then decays and
the solvent response gets closer to the LRA prediction (Figure
3). No such effect is, however, observed in dipolar liquid
solvents (squares and circles in Figure 4). The average cosine
shows a behavior reminiscent of that in the Langevin m§del
changing from zero to some saturation limit determined by the
magnitude of the solute dipole. This dependence is not, however,
solely an orientational response, but a combined effect of
changes in average angles and coordinates of the first-shell
solvent molecules.

A qualitative understanding of the effect of electrostriction
on solvation can be gained from lookinggt(r) at variousy
values. The most significant effect of increasing solvent polarity
on gor) is seen for the nonpolar HS solutey = 0 (Figure
5a). The contact valuegofRoy decrease considerably with
increasingy (diamonds in Figure 6a), the peak of the second
solvation shell shifts away from the solute (Figure 5a), and,
generally,gor) becomes increasingly shallow in more polar
solvents. The number of solvent molecules in the first solvation
shell (Figure 6b) follows the trend igo{Rog producing a
substantial dewetting of the solute surface in strongly polar
solvents. This local softening of the solvent structure, analogous
to Stillinger's dewetting of hydrophobic surfac&s® was

to the collapse of the H-bond network at the resonance of the obtained also for dipolar liquids in contact with neutral planar

solute-solvent and solvenrtsolvent interactions. The fact that

surfaces* For nonpolar solutes, dipolar solvergolvent at-

we observe here exactly the same behavior for dipolar solventstractions are not compensated by sotugelvent interactions
suggests that a maximum in dielectric saturation is a generalleading to lower local density around the solute. Similar, but

phenomenon related to the competition between sekésent
and solventsolvent attraction forces. Increasing the solvent
polarity from zero tom* = ny, enhances the electric field
acting on solvent dipoles, thus leading to dielectric saturation.
At m* > m, the solventsolvent attractions gain importance

less pronounced, effect is seen when the solute has a constant
dipole moment (Figure 5b, squares in Figure 6). On the other
hand, for the set of simulations with the constant ratigm =

4.0 (Figure 5c, circles in Figure 6), the reduced solofg,and
solvent,m*, dipole moments are close to each othef/(n* =
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183 2 4 6 3 10 observed [0up9?d in Figure 2). On the opposite side, a
y relatively weak modulation df|; at my/m = constantives rise

i 2 —
Figure 6. Contact value of the solutesolvent radial distribution to a nearly perfect equality betweﬁﬂéuog Hand IILIQSEIand
function goRo9) (a) and the number of solvent molecules in the first 2 linear solvent response. According to the LRA, a linear trend

solvation shell (eq 24, b) vg for my = 0 (diamonds), if)? = 2.74 Oy is then seen for the solvation chemical potertial.

(squares), andy/m = 4.0 (circles). Crosses (a) indicate contact values  3.4. Orientational and Density Reorganization.The inspec-

for the solventsolvent radial distribution functionge%(o). The tion of Figures 5 and 6 shows that a vertical, optical excitation
arrows show a vertical transition with the dipole change-@n (see of a solute changing its dipole moment creates a strain in the
the text). solvent in respect to both orientations and positions of the

solvent molecules. The transition shown by the vertical lines
1.66) and no dramatic changes in the local density occur (Figurejp Figure 6 corresponds to a dipole change-@5 D within a
6b), despite the fact that the contact valisgRog) grows with solute of the radiu®y, = 3.7 A in a solvent with the dipole
solvent polarity (Figures 5¢ and 6a, circles). In this latter case, moment 4.8 D if one assumes= 4.141 A characteristic of
the radial distribution function does not significantly change acetonitrile3s [Both solute and solvent dipoles may refer to their
outside a very narrow contact region and the growth of t_he polarizability-renormalized values (see Discussion).] This verti-
contact value does not strongly affect the population of the first ¢ transition creates a nuclear strain corresponding to the change
solvation shell. The increase @{Ro¢) goes in parallel with a i the average first solvation shell cosine from 0 to 0.77 (Figure
concomitant increase in the solversolvent contact value 4) and the average number of solvent molecules in the first

gee{0) (crosses in Figure 6a). The structure of the solvent in solvation shell from 18.2 to 22.6 (Figure 6). Relaxation of the

the solute vicinity is then not much different from the bulk and nuyclear subsystem into equilibrium with the new charge

the solvent molecules on the solute surface and in the bulk distribution hence involves reorientation of the solvent molecules
respond in a similar fashion. The result is essentially a linear (orientational reorganization) and a change in the local density
solvent responses [liod = B{0Uog)*LJ to the solute electric field.  around the solute (density reorganization). The separation of

Contact values of the solvensolvent pair distribution  the solvent reorganization into orientational and density com-
function obtained here from simulations allow us to test the ponents is important for both the dynamics and thermodynamics
RHNC approximation developed to take into account the of the solvent response. Solvent translations significantly alter
nonlinear aspects of solvation on the level of the hypernetted- the solvation time correlation functiéfi For the static response,
chain closure relatioff. For the first three angular projections  the density component of solvent reorganization is the main
of the solvent-solvent pair distribution function appearing in  contribution to the solvation entropy due to its stronger
linear theories of dipolar fluid® {g2%0), ht%o), hit{0)}, temperature dependence (see bel¥w).
our simulations yield 4.92, 3.65, 4.6pand{5.27, 5.03, 5.7 To separate the overall solvent response into the orientational
at (m*)2 = 2.0 and 2.75, respectively. These data are to be and density components, we follow the procedure suggested
compared with the RHNC resul{:4.57, 2.90, 4.18and{4.92, by time-resolved Stokes shift experime#tszull equilibration
4.24, 5.2}. The effect of dipolar interactions on the density after a sudden transition fromy = 0 to mp > 0 involves the
and angular distribution of the solvent molecules is therefore relaxation of both the orientational and density strains. This full
systematically underestimated on the RHNC level of the theory equilibration, corresponding to the total Stokes shift in a time-
even for relatively small solvent polarities. resolved experiment, is shown by the arrow-(E in Figure 7.

The analysis of relative effects of electrostriction and This equilibrium state can be achieved in two steps: first
dielectric saturation allows us to draw some conclusions relaxing the orientational strain along the line—® NE to a
regarding the origin of nonliner dipolar solvation in dipolar nonequilibrium state NE and then relaxing the density strain
liquid solvents. Dielectric saturation reaches its maximum at along the line NE— E.
intermediate polaritiesn* = ny, (Figures 3 and 4). In this We applied this two-step procedure in our MC simulations.
polarity range, dielectric saturation is fully compensated by Equilibrium system configurations correspondingng = 0
electrostriction of the first solvation shell. As a result, eqs 8 were taken with the intervals of {34) x 10* MC cycles over
and 9 are fulfilled and the system shows the linear solvent all molecules in the simulation box as starting points of
response. The nonlinear separation of the first and secondsimulations of the same length in whiofs/m= 4.0 was adopted
solvation cumulants occurs at higher solvent polarities. It is and only molecular orientations were equilibrated. The total
chiefly caused by a substantial dewetting of the solute surface equilibrium configuration file atmp = 0 of the length (1.%
for nonpolar solutes for which the strongest nonlinear effect is 1.4) x 10° cycles was used to average the results of each such



2152 J. Phys. Chem. A, Vol. 106, No. 10, 2002 Milischuk and Matyushov

TABLE 2: Orientational and Density Components of the First and Second Solvation Cumulants amgm = 4.0
(m*)? —Blod e —Blode B?Ouos) (e (o%p)? BPOuos) e - BPOuos) ¥ (o) BPIoUe?E™

1.0 9.13 0.28 8.63 0.60 0.69 8.94 0.56 0.38
2.0 22.28 1.78 20.20 1.42 2.70 22.01 1.60 0.89
3.0 37.40 1.90 33.00 2.97 4.30 33.95 2.60 3.35
4.0 48.10 7.80 42.50 4.18 13.41 45.07 4.82 10.84
5.0 55.93 17.50 47.90 5.35 27.46 52.10 6.12 23.26
6.0 63.49 27.51 55.97 6.06 36.38 54.63 5.12 37.72
7.0 68.60 40.10 60.00 8.50 47.25 59.77 5.98 47.48
8.0 72.60 54.80 64.30 12.00 68.70 65.50 7.96 67.50

aVariance of the distribution of second cumulagtgdu,g?Cmeasured on different trajectories generated by the dipole switelrg. © Variance
of the distribution of second cumulan®8{dus9)?generated by freezing molecular translations in solvent configurations in equilibrium with the
solute.

trajectory over the initial equilibrium configurations. In this way, S—r—T—T—T— T T
the orientational and density components of the first two 4 | —'é' —§~ -~ ]
solvation cumulants were generated (Table 2) : ’g g A A i
3= /g 8 o “ =
r ens - -
(W = IIIJOsl:ﬁlE + Wl e > ] } el |
X & !
[[0Ue) T [OUe) TR + [OUp) e (26) i _!/ ~

The splitting in eq 26 assumes that orientational and density R D B S ,
relaxations are uncoupled. The two modes are uncoupled indeed 0 2 4 6 10

for symmetry reasons in the linear respos€,but can couple y

to each other in the nonlinear respoA%&or two uncoupled  Figure 8. Orientational (open points) and density (filled points)
Gaussian solvent modes linearly coupled to the solute, the components of-Bllied (M) (triangles) angB?{duos)’l(mg)* (circles
second cumulant of the solutsolvent potential calculated for ~ and squares) vg at m/m = 4.0. The second solvation cumulant is

- split into the orientational and density components by simulations in
one of them is independent of another one. If that were the case,y density strained and orientationally relaxed state “NE” (squares)

th_e Sec_ond Cumt_"anmCSUOS)Z[a{E Calcul_ated by _relaxing the  and by freezing solvent translations (circles) in the equilibrium state
orientational strain after a solute dipole switch would be “E” (Figure 7).

independent of the equilibrium configuration from which the ) . o

simulation has been started. In fact, there is a variation in 8)- A considerable component of density reorganization in the

[{0ue)?L. measured on different trajectories and the variance solvent response observed here for strongly polar solvents may
. ; . : seem to disagree with the results of the instantaneous normal

of_[ﬂéuo_s)ztﬁ,rE given 1n Tabl_e 2 ‘(fﬁ‘rE-) gives an estimate of the mode (INM) :Sllnalysi%Qa predicting a predominantly rotational

orientational-density coupling. This latter does not exceed 20% , . .

of [duey?r3., which is roughly equal to the nonlinear solva- (orientational) nature of the solvent respof¥eMore recent

tion effect estimated from the comparison @BupJ20land calculations by Ladanyi and Maroncelli (LM§2using Steele’s
- 0 decoupling of rotations and translations in time-correlation

[{0Uo9?d at my/m = 4.0 (Table 1) ping

Tg test the consisténc of our r-esults obtained by the Suddenfunctions‘,“)bshowed about 20% of the translational component

. ncy of 0 : y to the frequencys of the short-time, Gaussian part of the time-
switch of the solute dipole with the linear response observed . . 22 .
for my/m = 4.0, we carried out additional simulations in which correlation function lexp(~wt*/2)) of a dipolar solute._ Our
we suppressed translations in the final equilibrium configuration lrlfﬁ\xlts’ ZO\;VGVGI’, clfimnfo:hbe corr;parted ttho LM (I:alcultauons arf1d
(E) and measured only the fluctuation of the sotgelvent models, as all of them reter to the early oulcome ot
potential produced by orientational fluctuations. The average solvat|o_n (_jynam|cs, whereas our caIcuIa}Uons _refer to the static
[(0up)?@" obtained on different trajectories over the initial t= °°b|'m't. of thetﬁolvent I;espfogse. ;—.h's jtanc resl,(ponse htﬁs
configurations belonging to the equilibrium state E yields the more bearing on the Tresults of Bagchi and co-workers on the
orientational component of the second solvation cumulant, !ong-tlme, translational diffusion effects on solvation dynam-

orer . . ics3% A more detailed analysis of the orientational-density
[@ouod?l{. The corresponding splitting of the second cumulant splitting in the static solvent response will be presented

Is then elsewhere.
2 2qqr 2r¢ens The fact that solutes withny/m = 4.0 give rise to virtually
(10U "T= [oU) T + HOUpy @7 linear solvent response provide us with a simple route to the
As is seen in Table 2, the second cumulaiftiio)? . and solvation entropy. When the system volume is kept constant,

temperature enters the system parameters only thrgugh
Changing temperature is thus equivalent to changinthere-
Fore, in the LRA, the solvation entropy is

[Oupg?ly are really close to each other, as it should be
expected for a linear solvent response. Furthermore, there is
fairly good agreement between the splitting of the average
energy and the splitting of the second cumulants into the Ts, = —T(3u/oT), = (y/2)(@pd10y), (28)
orientational and density components (Table 2).

The most interesting result of these simulations is a substantial Similarly to the case of solvation energy, we can consider the
dependence of the fraction of density reorganization in the orientational and density components of the solvation entropy
solvent response on solvent polarity. The density component
in both ik Jand [{duegy?Dis almost vanishing ay < 3, but TS = (¥/2)(0Wod fe/3Y),
rises quickly with increasingy matching the orientational ens on
component of the response in strongly polar solvents (Figure T = (y/2)(3lpd 573)/),; (29)
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1 —T1 * T - 1 - 1" the solvent reorganization energy. Analogously, for the absorp-
_ i tion transition, one has

« dens.

05 ~ 1 2

g } hAv,= Aug + E'Iuog"' Bllou,) 12

2480 -

} L oA E = j’s + Aﬂs (33)

05 ] The above splitting (eqs 32 and 33) does not apply when the

0' ! ; ! "1 . é : :g —0 LRA breaks down indicating that the equilibrium free energy

gap, the solvent reorganization energy, and the average vertical

. . . ... transition energy are three independent thermodynamic param-
Figure 9. The total constant-volume solvation entropy and its splitting

into orientational (or.) and density (dens.) componentg = eters. One fapes then the necessity to replqce the two-parameter
40. MH model with a three-parameter alternative.

The three-parameter Q-model was designed to handle prob-

Figure 9 shows the dependence of the orientational andlems with nonlinear solvation and those where more flexibility
density components of the solvation entropyyoixcept for a in the parameter space is needédhe theory employs three
small range of low polarities, the total solvation entropy is observables, the Stokes shift and two spectral widthé)v)2[3
mostly independent of as a result of a compensation between = [du3)20and h2[(ov)?d = [{OU3)24, to generate the free
its positive density and negative orientational components. The energy surfaces of ET and FC factors of optical transitions. For
density component is larger in the absolute magnitude than theour current discussion of the dipole solvation energetics, the
orientational component and the total solvation entropy is model provides a route to derive the solvation chemical potential
positive. This result was obtained previously in an analytical from these energy cumulants. For the-0my transition, the
model of nuclear reorganizatidn. Stokes shift is identical te-[UpdJand one can directly derive

The presence of nonlinear solvation makes the LRA connec- the expression for the solvation chemical potential
tion between the average interaction energy and the solvation

chemical potential (eq 7) inapplicable. In the next section, we W] AlOU) TATOUY T [OUG) T 2kg Ty
show how the solvation chemical potential can be obtained in #p = 2 >
the framework of the Q-model of ET reactiofis. 2 4 [[Oueg g — 2kBTm‘oEg4)

4. Thermodynamics of Charge-Transfer Transitions
where Al{dugg)?20= [dUge)200— [{OUps)?L4.

Equilibrium solvation thermodynamics discussed here has a  The Q-model can be applied if the conditipr= 1 is fulfilled
direct bearing on the thermodynamics of charge-transfer transi-for the parameter
tions in liquid solvents commonly measured by optical spec-

troscopy and electron transfer (ET) kinetics. In the course of a mauogzgl [0Ue)* T 2k T,
vertical Franck-Condon (FC) transition, the solvent electronic = > > (35)
polarization changes adiabatically with the changing solute’s {ouyy E\Eﬂéu(,s) [§ — 2K Tlipd

charge distribution, whereas the nuclear solvent subsystem stays i
equilibrated with the initial solute’s charge distribution. For a  The parametey calculated from the first and second cumulants

charge-separation transition from a nonpolar to polar state, 00Ver the solute-solvent interaction potential are listed in Table

— my, the absorption shift is due to electronic solvation only 1. The conditiony = 1 is fulfilled very well indeed. Conse-
guently, eq 34 can be used to determine the solvation chemical

hAv, = Aug, (30) potential. The values qf, calculated from eq 35 turn out to be
very close to the empirical relation
whereue is the solvation chemical potential corresponding to

the solvent electronic subsystem. The emission shift includes /méu )20
both the electronic component and the average interaction energy Up = W3 0 (36)
of a dipole with the solvent’s nuclear degrees of freedom \/méu%)zm-l- \/[ﬂauof@

hAv, = o H Aug (31) (see Figure 10 and Table 1).

) o N Figure 10 shows that the functioru,(y) levels off atm* >
where 1 and 2 stand for absorption and emission tran5|t|0ns,nﬁ’ in qualitative agreement with the prediction of the Onsager

respectively. model. It may seem that the origin of saturation is irrelevant as

The two-parameter Marcusdush (MH) model of E¥? 5,0 o this limit is actually reached. Note, however, that the
employs eqgs 7 and 8 to split the vertical average ransition ¢5.¢ that the saturation limit is the result of nonlinear solvation
energyinto two equilibrium free energies the equilibrium simply implies that its outcome depends on the relative

energy gap and the solvent reorganization energy. For emissio

Mmagnitudes of the soluteg;, and solventr, reduced dipoles
transition, one has g &% n, p

(from Figure 2, nonlinear solvation starts from abau§/(n*)2
= 2). The possibility of an experimental verification of solvation

1 2
hAV,= Aty + Sligd I~ fLOUG) (12 saturation thus strongly depends on the magnitudes of solvent
and solute dipoles involved in dipolar solvation. Additionally,
==+ Aug (32) nonlinear solvation affects the average energy and second

solvation cumulant in different ways. This issue is relevant to
where Aus = Auel + up is the solvent component of the the problem of calculating the solvent-induced optical band
equilibrium energy gap and the first tertp= (3/2)[{duog)?Llis shapes in condensed phases.



2154 J. Phys. Chem. A, Vol. 106, No. 10, 2002

12
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Figure 10. Chemical potential of solvatioftSu, in the Onsager model
(egs 1 and 2, “O"), in the mean-spherical approximation (MS/and
in the Q-modet (eq 34, diamonds; eq 36, squares) @)t = 2.74.
The circles indicatgg?[{0uog)?[12, down triangles indicatg2{ouos)(d/
2.

PFX)

Figure 11. ET free energy surfaces for charge separation (CS; 0
mp) and charge recombination (CRy — 0) transitions vs the energy
gap reaction coordinatg. To facilitate the comparison, the vertexes
of two parabolas are shifted to the coordinate origin.

The observation that = 1 holds very accurately for dipole
solvation allows one to use the Q-model to build the ET free
energy surfaces for charge-separation (E3)X), and charge-
recombination (CR)F2(X), transitions. The Q-model gives a

Milischuk and Matyushov

saturation and, instead, yield a linear trend with the dipolar
density[y aty > 1, provided the LRA holds. The results of
this study can be summarized as follows: (1) A saturation limit
for dipole solvation does exist for solid dipolar solvents and
does not exist for liquid dipolar solvents within the LRA. (2)
Saturation of the liquid solvent response arises from nonlinear
solvation when the reduced solute dipole momehbecomes
lower than the reduced solvent dipole*. The strongest
nonlinear solvation effects are seen for solutes with zero dipole
moment. (3) Nonlinear solvation observed at large solvent
polarities in liquid solvents is completely due to electrostriction.
Nonlinearity is a result of dewetting of solute’s surfacengt

< m*. (4) The average solvation energy and solvation second
cumulant are almost equally affected by orientational and density
reorganization in highly polar solvents. (5) The LRA is not
applicable in strongly polar solvents and the Q-model of
solvation provides a convenient analytical tool allowing to
account for nonlinear solvation effects in solvation, optical
spectroscopy, and ET reactions.

It is of course reasonable to ask whether the rangevafues
explored in this study is common for polar solvents employed
in solution chemistry. At first glance, the magnitudesydbr
which nonlinear solvation takes place are too high. For instance,
with the gas-phase dipole momemts= 1.83 D andm = 3.9
D, one obtains for water and acetonitrile (at normal conditions)
y = 3.8 andy = 5.8, respectively. This estimate neglects,
however, the effect of polarizability of the solvent molecular
dipoles. Self-consistent models of the thermodynamics of polar
polarizable liquids®4® show that the results obtained for
nonpolarizable liquids can be applied to polarizable liquids upon
the renormalization of the dipolar densigy— y' with

Y = (47/9)Bp(m)? + (4n/3)op (40)

where a is the solvent dipolar polarizability andt is the
condensed-phase dipole moment of the solvent molecules
renormalized from its vacuum valueby a self-consistent field

very simple relation for the ET free energies vs the energy gap of the electronic polarization of the solvent. For watet,is

reaction coordinate*! (for the 0— my transition,X = upy).
The free energ\Fi(X) = Fi(X) — Fqi relative to the equilibrium
free energy at the surface minimuFg;, has the following form

AF(X) = (ol IX + ey — XG] = [ogly/2)*  (37)
whereXd = 0, XH = Wipd)
o = —AL T, — M), op=a,+1 (38)

and A1 = 1, — Ai1. Here, two reorganization energigsare

defined through the second cumulants for the neutral and charge

separated states

M =p0u’ g2 and 2, =pou)’ 2 (39)

Figure 11 shows the CS and CR free energy curves calculated

according to eq 37 fom*)2 = 8.5. As is easy to see, nonlinear

solvation effects bring about nonparabolic asymmetry to both

the CS and CR curves.

5. Discussion

known to be equal to 2.4 B, which leads toy = 6.5. For
acetonitrile, the application of the Wertheim self-consistent
approact? results iny = 10.74 Therefore, it is the necessity
to calculate chemical potentialg(y') that drives our desire to
expand the theory tg' < 10.

The analysis of nonlinear solvation necessitates understanding
of the relative importance of dielectric saturation and electros-
triction in the solvent response. We found that the effect of
dielectric saturation reaches its maximum at intermediate solvent
polarities when it is fully compensated by electrostriction of
the first solvation shell. The solvent response is linear in that

polarity range. Nonlinear effects gain importance at higher

polarities and they are fully caused by electrostriction. Contrary
to common expectations, the strongest nonlinear solvation effects
are seen not for solutes with large dipole moments, but for a
solute with zero dipole moment. The major origin of nonlinear
solvation is the dewetting of the surface of a nonpolar solute in
highly polar solvents when solvensolvent attractions are not
compensated by the soluteolvent forces. Since solvent
solvent interactions present a collective effect, polar states
common for optical chromophores can hardly create selute
solvent forces strong enough to compete with solvaeivent

In the present study, we address the question of whether theinteractions in highly polar solvents. Solvation of nondipolar
saturation limit, predicted by the Onsager model (eq 3), can be or weakly dipolar chromophore states may therefore be the main
observed in model systems. The motivation of the study comesorigin of nonlinear solvation effects in optical experiments.

from the contradiction between the Onsager model and molec-

ular, liquid-state solvation theories which do not predict

The Onsager model for dipole solvation is widely used in
optical spectroscopy to correlate solvent-induced spectral shifts
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Figure 12. Lippert-Mataga plot of the Stokes shift{3lod) obtained Figure 13. The ratio of the entropy of dipole solvation to the solvation
from simulations (points) vs the dielectric parameftdeq 41). The chemical potential vy in the Onsager model (daskiotted line) and
dashed line is a linear regression through the points. from MC simulations f/m = 4.0): —2s,T/Oidd (solid line),

— 289 T/Medd(0r), and —2s2"T/med](dens). Points refer to the ratios
with solvent dielectric propertie=® In particular, the solvent  given by eq 42 vy, wherey was calculated by a combined application
dependence of the Stokes shift is often described with the of the Kirkwood and KirkwooetFrohlich equations according to ref
parameter 44b. The numbers on the plot indicate chloroform (1), tetrahydrofuran

(2), 1,1-dichloroethane (3), acetone (4), propionitrile (5), dimethylfor-

mamide (6), nitromethane (7), acetonitrile (8), dimethyl sulfoxide (9),

f= e—1 €, — 1 (41) and propylene carbonate (10).
2¢+1 2¢,+1

This ratio, estimated for 10 commonly used solvehts,shown

wheree, is the high-frequency dielectric constang = 1 in in Figure 13 (points, solvent parameters from refs 35 and 46)
our model. The existence of a linear trend of the Stokes shift @d compared to the corresponding ratio from the present
(equal to—idJin our model) withf calculated in different simulations (solid Ilng) and from the Onsager model for dipolar
solvents often serves to validate the continuum model and/or HSS (daskrdotted line, egs 1, 2, and 5). The results of
the LRA. Figure 12 shows the same dependence, known ascalculations according to eq 42 fall very clqse to_the pred|ct!on
Lippert—Mataga plo€ with our simulation data anficalculated ~ ©Of the Onsager model for dipolar HSs, but yield slightly negative
according to egs 5 and 41 famf)2 = 1.0. Except for the most ~ entropies at largey. On the contrary, the S|mulat!ons yield
polar solvents, which can be easily missed in a limited range POSitive and much higher in the absolute value ratiagT/up,
of solvents experimentally available, there is a linear trend of Pointing to a more substantial entropic component in the
—Blliod Vs t. [In real solvents, molecular quadrupoles make the Solvation chemical potential than that given by the Onsager
dependence(y) less sharf? resulting in an even better linear model. Thg latter, applled.to 'both model and rea! solvents,. is
trend on the LippertMataga plot]. This analysis indicates that pnaple to give even a quahtat_l\_/e account of solvation entropies
the existence of the LipperMataga dependence validates N hlghly polar solvents. Posmve entropies of nuclear reorga-
neither continuum model nor the LRA. The solvent polarity Nization were predicted previously in the framework of an
parametef (¢) is merely a good probe function going from zero analytical modéf and subsequently confirmed by experinfént?
at low polarities to a saturation limit at high polarities. For liquid ~ There is a fairly good agreement between solvation entropies
solvents, however, this saturation occurs only due to local from eq 42 and the orientational entropy from our simulations
density changes of the solvent around the solute not includedaty = 5 (Figure 13). At largey values, the solvation entropy
in continuum models. Furthermore, these local density changesfrom eq 42 levels off at a slightly negative magnitude, whereas
give rise to nonlinear solvation that is responsible for saturation. the simulated orientational entropy continues to decay. Itis not
No saturation exists within the LRA. yet clear whether the Onsager model gives a correct estimate

The entropy of solvation at constant volume was calculated Of the orientational entropy and if one can apply the results
from the polarity dependence of the average solvation energyobtained here for HS dipolar liquid solvents to highly polar
when the LRA ho|dsr('b/m = Constan)_ The entropy was also molecular solvents. Molecular polarlzablllty and hlgher multi-
separated into the contributions arising from orientational and Poles of the solvent molecules should be included for a more
density solvent reorganization. The two components turned outrealistic analysis, which will be a subject of future research.
to have opposite signs, with the total positive solvation entropy =~ The present study is based on the cumulant route to the
originating from the higher magnitude of its positive density Solvation chemical potentiaf~>° Only two first cumulant are
component. Nuclear solvent reorganization considered here ismeasured by computer simulations and the Q-model of nonlinear
responsible for the Stokes shift in optical experiments and for Solvatiort* is used to generatg, The Q-model is based on an
the solvent reorganization energy in ET reactions. These infinite-cumulant expansion to construct the free energy surfaces
parameters are often calculated using the Onsager fédel Of solvation as functions of the soolute-solvent interaction
which, as well as other dielectric cavity models, includes only Potential. The model consistency in application to many-body
the orientational reorganizatidA.For dipolar solvation, the ~ Problems requires that the parametegiven by eq 35, is equal
orientational solvation entropy can be estimated from the to unity. This condition is fulfilled very accurately for our
temperature derivative of the polarity parametar eq 41. To present simulations (Table 1). This allows us to use the full
avoid the uncertainty in choosing the cavity radius, we consider potential of the Q-model to calculate not only the solvation

the ratio—s,T/up, which is given in the Onsager model by the chemical potential (eq 34), but also the free energies of ET
relation reactions and FC factors of optical transitions. As is shown in

Figure 7, solvation nonlinearities manifest themselves in a

sT 3T 1 de 1 . significant difference between the CS and CR free energy
=7 —2(8_T) — —z(ﬁ) (42) surface$! as well as in the asymmetry of each individual ET
Hp (2e + )NV (2¢,, + 1) v free energy surface®.
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