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We have developed a protocol for computing the acidity constant (pKa) of organic compounds via ab initio
quantum chemistry and continuum solvation methods. Density functional (DFT) calculations employing large
basis sets are used to determine the gas-phase deprotonation energies. Solvation effects are treated via a
self-consistent reaction field (SCRF) formalism involving accurate numerical solution of the Poisson-
Boltzmann equation. Dielectric radii are parametrized for each functional group of interest to optimize solvation
free energy calculations for neutral and charged species. While the intrinsic accuracy of these approaches is
quite impressive (errors on the order of a few kcal/mol), it is not quite good enough to achieve the target
accuracy that we have set for pKa prediction of 0.5 pKa units. Consequently, two further empirical parameters,
scaling and additive factors, are determined for every functional group of interest by linear fitting directly to
pKa data for a training set. With this additional parametrization, an average accuracy on the order of 0.5 pKa

units is achieved. A wide range of coverage of ionizable groups is presented with special focus on chemistry
of importance in pharmaceutically active compounds. In addition to obtaining data for large and diverse
training sets, we have also selected a subset of known drugs for which pKa's have been measured and made
predictions for these compounds without further adjustment of parameters. The results are similar in quality
to that of the training set despite the considerable size and complexity of many of these molecules, demonstrating
the ability of the method to accurately handle substituent effects without explicit parametrization thereof.
The method has been optimized from a computational viewpoint so that it is tractable even for relatively
large pharmaceutical compounds in the 50-100 atom range.

I. Introduction

The determination of the protontation states of novel com-
pounds in aqueous solution is a challenging and important
objective of computational chemistry. At present, standard
methods for pKa prediction involve fitting of linear free energy
relationships to a large empirical database. This approach can
achieve high accuracy when the target functional group is well
represented in the empirical database and has the advantage of
requiring a minimal amount of computation time. However, it
also has a number of fundamental limitations; the description
of novel functional motifs, multiple functional group interac-
tions, and electrostatic effects of the environment (e.g., for a
ligand docked into a protein cavity) are likely to limit the
accuracy of such empirically based calculations.

An alternative, which in principle can provide a better
description of these effects, is microscopic calculations based
on the underlying physical chemistry of the process. This
requires quantum chemical calculation of the deprotonation
event, followed by some method for evaluation of the solvation
free energies of the various species. The difficulty with this
approach is that the gas-phase deprotonation energy and
solvation free energy difference of the protonated and depro-
tonated species are both large numbers which add together in
the pKa calculation with opposite signs; thus, errors of only a

few percent in either number can lead to errors of a few pKa

units, which is inadequate for many of the most interesting
practical applications. Finally, the computational cost of such
first principles modeling is nontrivial, particularly if the level
of accuracy discussed above is to be achieved.

Despite these difficulties, a number of initial efforts to
compute pKa's using high-level quantum chemical methods have
been made during the past 6 years.1,2 First, it has been
established that density functional (DFT)3 methods, in particular
the hybrid B3LYP method,4-6 is capable of achieving average
errors of 1-2 kcal/mol in deprotonation energies for small
molecule test cases. Second, self-consistent reaction field
(SCRF)7-9 methods have been employed in conjunction with
DFT to calculate solvation energies in water. SCRF methods
require parametrization of the shape of the dielectric cavity of
the molecule if high accuracy is to be achieved. Results reported
to date in the literature do not involve extensive parametrization
and hence it is not surprising that average errors are significantly
larger than 0.5 pKa units, which is the level of accuracy one
would like to achieve for problems such as structure-based drug
design.

In the present paper we develop an SCRF based approach to
the calculation of pKa's which, when properly parametrized to
experimental data, is capable of achieving the target accuracy
specified above. We present results for a wide range of func-
tional groups that commonly arise in pharmaceutical compounds.
Parameters are fitted to small molecule data (a “training” set)
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and then tested by application to molecules obtained from the
CMC database10 of known pharmaceutical compounds. These
CMC compounds are as large as 30-50 heavy atoms and
consequently are large problems by quantum chemical standards.
By efficient optimization of the computational protocol, com-
bined with parallelization of the quantum chemical calculations,
we are able to reduce the time to solution to an acceptable level.

The paper is organized as follows. In section II, we describe
the theoretical methods used to calculate the pKa's as well as
the method and parameter optimization methodology. Section
III presents the results of fitting to the molecules in the training
set. The model developed in the training set is then used to
predict pKa's for a selected set of CMC compounds. Section
IV, the conclusion, discusses future directions.

II. Theoretical Methodology

A. Overview. The acidity constant is a measure of a
molecule’s propensity to become deprotonated in aqueous
solution. It is directly related to the free energy of the
deprotonation reaction:

The deprotonation of a compound in aqueous solution can be
represented as part of a thermodynamic cycle:11

One part of this cycle,∆Gg, is the calculation of the gas-phase
deprotonation energy of the molecule. Three other parts,
∆Gsol

AH, ∆Gsol
A-

, and ∆Gsol
H+

, are the free energy of solvation of
the protonated and deprotonated form of the molecule and the
proton, respectively. The fifth part of the cycle,∆Ga, is the
desired free energy of deprotonation in solution. As the sum of
free energies around the cycle must add to zero, the fifth term,
∆Ga, can be calculated from the other three as

Our approach is to develop efficient methods for evaluating each
part of the cycle, in some cases involving adjustable parameters.

In considering the approach to evaluating the various
components of eq 2, there is one difficulty in considering each
part of the cycle separately. To evaluate the energy differences
required for each process, it is necessary to carry out geometry
optimization of the protonated and deprotonated compounds.
From a rigorous point of view, the thermodynamic cycle above
is only valid if all calculations are carried out at the equilibrium
geometry in solution. In many cases, replacement of the solution
phase geometries with those optimized in the gas phase is a
good approximation, and one that becomes better when supple-
mented by empirical parametrization as we describe here.
However, as the molecule becomes larger and more flexible,
the geometry can become a serious issue. There are several
options for addressing this issue, including conformational
search in solution phase using a molecular mechanics program
and solution phase geometry optimization at the SCRF level.
While the majority of the results below are focused on cases
where this is not a serious difficulty, we do consider some
examples in which, particularly for ionic as opposed to neutral

species, the conformation in solution as opposed to the gas phase
is a major issue. In future work this problem will be addressed
more systematically.

All quantum chemical calculations described herein are
carried out with the Jaguar v4.0 suite of ab initio electronic
structure programs. The performance of the density functional
(DFT) module in Jaguar has been presented in detail else-
where,12,13and significant computational advatages were dem-
onstrated as compared to conventional electronic structure codes.
The acceleration of calculations in the present case is important
to reduce the very substantial computational demands of the
task at hand. The SCRF module of Jaguar has similarly been
discussed in a series of papers over the past few years.7-9 To
achieve the goals of the present work, we have reoptimized
parameters for the SCRF model in Jaguar for neutral solutes,
fitting the results to the experimental values for free energy of
transfer from the gas phase to water compiled in the literature.14-17

For ions, however, the direct experimental data are both sparse
and inaccurate. Therefore, we, in effect, parametrize ionic
solvation directly to the experimental pKa data, as is described
below.

B. Gas-Phase Deprotonation Energy.The free energy of
deprotonation in the gas phase is represented as

Here EAH and EA- values are gas-phase ab initio energies of
the protonated and deprotonated form of the molecule, and
Evib

AH andEvib
A-

are their respective zero-point energies.T∆SH+ is
the entropic terms for H+ and5/2RT is the ideal gas approxima-
tion of the enthalpic contribution for H+, assuming cancellation
of equivalent terms for HA and A-. We also assume that the
entropic term for HA and A- will cancel out.

Work from a number of laboratories18,19 has suggested that
gas-phase deprotonation energies can be calculated via hybrid
density functional theory with good accuracy as long as basis
sets of sufficient quality are used. We use the B3LYP functional,
which has given the best performance in tests reported in the
literature, for all aspects of the calculation. Geometry optimiza-
tion is carried out with the 6-31G* basis set. After the geometry
optimization is converged, we use the B3LYP functional and
the cc-pVTZ basis set of Dunning20 to compute a single point
energy. Diffuse functions are added at the reactive center to
allow improved modeling of negative ions, with a minimal
increase in CPU time. Calculations along these lines are carried
out for both the neutral and ionic species, and the difference
between them yields the gas-phase deprotonation energy.

To this quantity should be added the difference in zero point
energies. However, our tests have shown that the difference in
zero point energies between the neutral and ionic species is fairly
constant as long as the functional group under study remains
the same. Thus, we simply incorporate the zero point energy
difference into the parametrization of each functional group,
without any significant loss of accuracy. As is described below
in the Results, this approach, which saves considerable CPU
time, is an excellent approximation for all of the cases we have
studied to date.

The DFT methods and basis sets described here are capable
of yielding an average error of 1.3 kcal/mol for gas phase
deprotonation energies when compared with experimental data
for a series of small molecules. Here the zero point energy
difference is included, since calculations do not include any

pKa )
∆Ga

2.303RT
(1)

[AH(g) 98
∆Gg

A(g)- + H(g)+

V ∆Gsol
AH

V ∆Gsol
A-

V ∆Gsol
H+

AH(aq) 98
∆Ga

A(aq)- + H(aq)+ ]

∆Ga ) ∆Gg - ∆Gsol
AH + ∆Gsol

A-
+ ∆Gsol

H+
(2)

∆Gg ) ∆Hg - T∆S) EA-
+ Evib

A-
+ 5

2
RT- EAH -

Evib
AH - T∆SH+

(3)
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parameters but are taken at their face value. Detailed results
are presented in Table 1. These results are comparable to those
reported by Merrill and Kass18 for similar computational
methods. While this is an impressive performance in terms of
percent error given that the calculations are entirely first
principles, it is not quite good enough to provide results for
pKa's at the level of precision one would like, which is around
0.5 pKa units.

C. Solvation Free Energy of Neutral Species.We have
previously described our approach for determining the solvation
free energy in pure water of neutral species, which is based on
the use of self-consistent reaction field (SCRF) methods
involving numerical solution of the PB equation.21,22 In early
work,23 we employed a generalized valence bond (GVB)
description of the solute electronic structure. However, DFT
methods provide an equally good representation of charge
density at a lower computational cost. Consequently, we have
reparametrized our solvation model for neutral molecules to use
DFT as the electronic structure methodology. This also fits in
with the use of DFT for the entire pKa methodology.

As in ref 23, we have developed dielectric radii for various
functional groups so as to fit the experimental solvation free
energies for 77 small neutral solutes. We have additionally
parametrized hydrogen bonding corrections, which are necessary
to modify the purely electrostatic description of hydrogen
bonding inherent in a dielectric continuum model, along the
lines specified in ref 23. Table 2 presents predicted solvation
free energies for each solute with our new model. The results
are comparable in quality to those obtained with GVB methods

in ref 23, and the parameters are, in fact, not very different in
detail. This is an adequate level of accuracy to meet the
objectives of the present study.

D. Solvation Free Energy of Ionic Species.Molecules with
a net chargeswhether positive or negativesnaturally have a
larger solvation free energy than neutral molecules. This fact
follows directly from a simple Born model of solvation. Typical
small polar molecules have a solvation free energy in the 5-10
kcal/mol range; in contrast, small ions are in the 50-100 kcal/
mol range. This means that to achieve a 1 kcal/mol level of
accuracy in prediction solvation free energies of ions, an order
of magnitude greater precision in the result is required.
Furthermore, because the gas phase to water free energy of
transfer is so large for ions, it is extremely difficult to obtain
accurate experimental numbers; error bars are typically in the
5-10 kcal/mol range and there are not a large number of values
that have been obtained even at that level of precision. In
contrast, pKa's themselves can be measured quite accurately and
are available for a large number of molecules.

All of this suggests that the best way to determine solvation
free energies of ions is to use the thermodynamic cycle of eq 2
in conjunction with the experimental pKa to solve for the
solvation free energy of the ion. Using the methods to compute
the other two legs of the cycle (gas-phase deprotonation and
solvation energy of neutral molecules), we can obtain ionic
solvation free energies to a reasonable level of precision.

An equivalent strategy from the standpoint of pKa prediction
is to adjust the dielectric radii of the ionic species, and the
empirical correction factors, to fit experimental pKa's. This is
the approach we take here. The empirical corrections can be
taken to include first shell hydrogen bonding corrections for
the ionic group. These are expected to be larger for ionic
molecules than for neutral ones because the gas phase hydrogen
bonding energy of a molecular pair involving a charged group
is typically 3-5 times larger than that for a neutral species. In
the present work, these corrections, developed for each func-
tional group, are concatenated with corrections for other
transferable errors in the thermodynamic cycle.

E. Empirical Corrections. Our strategy is to develop a set
of empirical parameters for a wide range of functional groups.
For each functional group, a set of molecules with experimen-
tally known pKa's are assembled to be the “training set”. The
training set is designed to include a range of substituent types
so that the experimental pKa varies over a considerable range.
The methods described in the previous sections are then applied
for varying values of the radius of the ionic species (all other
radii being obtained from the standard list of neutral solvation
parameters) and the resulting “raw” pKa that is obtained is
corrected via a simple linear fit; the final pKa is given by the
formula:

There are thus three parameters for each functional group: the
radius of the ion and the constants A and B. The best values of
A and B for each radius are obtained from a linear least-squares
fit to the experimental training set data; then, the value of the
radius that minimizes the least squares residual is chosen. van
der Waals atomic radii for solvation are incorporated into the
ab initio program Jaguar and are available from the authors upon
request. Linear fitting parameters are listed in the Table 4.

A central difference between this approach and fully empirical
pKa prediction methods is that there are no parameters associated
with substituents. It is assumed that the quantum chemical
calculations are sufficiently robust to describe substituent effects

TABLE 1: Gas-Phase Deprotonation Energies in kcal/mol

molecule ∆Hg calc ∆Hg exp dev

acetaldehyde 366.45 365.8 0.7
acetone 368.31 369.1 -0.8
benzene 402.78 401.7 1.1
diazomethane 373.85 373.0 0.8
4-hydroxybenzaldehyde 330.95 332.8 -1.8
4-chlorophenol 340.00 336.1 3.9
cyclopentadiene 355.25 353.9 1.4
diazirane 399.37 401.0 -1.6
ethene 409.16 409.4 -0.2
ethyne 378.50 378.0 0.5
4-fluorophenol 344.28 346.6 -2.3
hydrogen 400.98 400.4 0.6
water 389.52 390.7 -1.2
hydrogen peroxide 374.26 375.9 -1.6
hydrogen sulfide 351.19 351.1 0.1
hydrogen chloride 332.48 333.4 -0.9
hydrogen cyanide 351.03 351.4 -0.4
formic acid 343.62 345.0 -1.4
hydrogen fluoride 369.03 371.5 -2.5
dimethyl sulfide 395.79 393.2 2.6
chloromethane 396.61 396.1 0.5
acetonitrile 373.39 372.9 0.5
methyl propionate 374.20 371.9 2.3
fluoromethane 409.44 409.0 0.4
methanol 381.77 381.6 0.2
p-cresol 351.07 350.2 0.8
methanethiol 357.17 356.9 0.3
methane 419.12 416.7 2.4
4-aminophenol 354.28 352.4 1.9
ammonia 403.64 404.0 -0.4
nitromethane 355.67 356.4 -0.7
4-nitrophenol 325.42 328.7 -3.3
p-xylol 350.76 350.2 0.5
phenol 346.42 349.0 -2.6
propene 388.72 390.8 -2.1
silane 373.37 372.2 1.2
toluene 382.86 382.3 0.6
mean abs dev 1.3

pKa ) A(pKa
raw) + B (4)
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without additional parametrization. This greatly reduces the
amount of parametrization required and allows extension of the

calculations to novel molecular structures, perhaps containing
a pattern of substituents not seen in the training set. The method
also allows for environmental electrostatic effects to influence
the pKa in a natural way. Of course, more empirical information
and parametrization could be input and this would undoubtedly
lead to improved accuracy, at least within the training set, but
would also curtail the generality of the method application. We
have not explored such a strategy in this initial implemenation
of the methodology.

The empirical terms are an attempt to account for both
systematic contributions not explicitly calculated in the meth-
odology described above, and for a wide range of possible errors
in the thermodynamic cycle describe in eq 2. Systematic
contributions include the difference in zero point energy between

TABLE 2: Solvation Energies of Organic Molecules in kcal/mol

molecule calc exp dev molecule calc exp dev

Alkanes
butane 2.1 2.2 -0.1 octane 3.2 2.9 0.3
ethane 1.8 1.8 0.0 pentane 2.5 2.3 0.2
heptane 2.9 2.6 0.3 propane 2.0 2.0 0.0
hexane 2.7 2.6 0.1 cyclooctane 2.1 0.9 1.2
methane 1.3 1.9 -0.6 cyclohexane 2.6 1.2 1.4
2-methylpropane 1.5 2.3 -0.8 cyclopentane 2.9 1.2 1.7
neopentane 1.7 2.5 -0.8 cyclopentene 1.6 0.6 1.0

Alkenes
cyclopropane 0.3 0.8 -0.5 ethene 1.0 1.3 -0.3
1,3-butadiene 0.1 0.6 -0.5 E-2-pentene 1.3 1.4 -0.1
cyclopentene 1.6 0.6 1.0 propene 0.8 1.3 -0.5

Alkynes
butenyne -0.2 0.0 -0.2 1-pentyne 0.4 0.0 0.4
1-butyne 0.1 -0.2 0.3 propyne -0.4 -0.3 -0.1
ethyne -0.2 0.0 -0.2

Aromatics
anthracene -1.6 -4.2 2.6 naphthalene -1.8 -2.4 0.6
benzene -0.6 -0.9 0.3 o-xylene -0.8 -0.9 0.1
ethylbenzene -0.4 -0.8 0.4 toluene -0.9 -0.8 -0.1

Alcohols
butanol -4.6 -4.7 0.1 1-propanol -4.9 -5.1 0.2
ethanol -5.1 -5.0 -0.1 2-propanol -5.0 -4.8 -0.2
hexanol -4.1 -4.4 0.3 1,2-dimoxyethane -4.1 -4.8 0.7
methanol -5.3 -5.1 -0.2 1-methoxypropane -1.4 -1.7 0.3
pentanol -4.3 -4.5 0.2 2-methoxy-2-methylpropane -1.7 -2.2 0.5
prop-2-enol -5.1 -5.0 -0.1 2-methoxyethanol -7.6 -6.8 -0.8

Ethers
dimethyl ether -1.8 -1.9 0.1 1,4-dioxane -5.2 -5.1 -0.1
diethyl ether -1.4 -1.6 0.2

Ketones and Aldehydes
ethanal -3.6 -3.5 -0.1 4-methyl-2-pentanone -3.8 -3.1 -0.7
benzaldehyde -4.1 -4.0 -0.1 acetone -4.4 -3.9 -0.5
butanal -2.9 -3.2 0.3 acetophenone -4.6 -4.6 -0.0
propanal -3.1 -3.4 0.3 butanone -3.6 -3.6 -0.0
2-pentanone -3.4 -3.5 0.1 heptanone -2.3 -2.9 0.6
3-pentanone -3.4 -3.4 0.0

Carboxylic Acids
acetic acid -7.1 -6.7 -0.4 propanoic acid -6.4 -6.5 0.1
butanoic acid -6.1 -6.4 0.3

Amines
butylamine -3.9 -4.4 0.5 dimethylamine -4.4 -4.3 -0.1
ethylamine -4.7 -4.5 -0.2 piperazine -8.3 -7.4 -0.9
methylamine -4.6 -4.5 -0.1 pyrrolidine -5.6 -5.5 -0.1
propylamine -4.2 -4.4 0.2 morpholine -7.6 -7.2 -0.4
azetidine -4.3 -5.6 1.3 N,N′-dimethylpiperazine -7.6 -7.6 -0.0
diethylamine -3.8 -4.1 0.3 trimethylamine -3.2 -3.2 0.0

Nitriles
acetonitrile -4.7 -3.9 -0.8 propanitrile -3.8 -3.9 0.1

Nitro Compounds
2-nitropropane -3.3 -3.1 -0.2 nitroethane -3.8 -3.7 -0.1
nitrobenzene -3.7 -4.1 0.4 mean abs dev 0.4

TABLE 3: Acidic and Basic Functional Groups for Which
Parameters Have Been Developed

acids bases

alcohols amines
phenols anilines
carboxylic acids arom. heterocycles
thiols diazepines
sulfonamides amidines
hydroxamic acids guanidines
imides pyrroles
barbituric acids indoles
tetrazoles
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the neutral and ionized form of the solute if this is not explicitly
calculated. Possible errors in the thermodynamic cycle are as
follows:

Errors in calculated gas-phase deprotonation energies.
Residual errors in the neutral solvation calculations.
Numerical errors in obtaining solutions to the SCRF equa-

tions.
Errors in the experimental data.
First shell hydrogen bonding contributions that are not reliably

computed from the continuum electrostatic model.
It is difficult to assess the relative quantitative importance of

each of these terms. However, what is clear from the results is
that the functional form we have used provides a good
description of the overall error in the great majority of cases
that we have examined. The constant term and linear term in
pKa correlate exceptionally well with the experimental data.
From a physical point of view, this is not surprising. As will
be shown below, some terms such as the difference in zero point
energy between the neutral and ionic forms are to a very good
approximation constant for a given functional group, which is
more or less independent of substituent effects or the remainder
of the molecule in general. In other cases, such as hydrogen
bonding corrections, the term linear in pKa is in essence
measuring the charge on the ionic center. For example, in
considering deprotonation of a neutral molecule to form the
conjugate base, a negative ion, a lower pKa is generated by
substituents that withdraw negative charge from the deprotonated
atom, thereby stabilizing the ionized form. This term is partially
compensated by the less effective solvation of the ionized
species due to delocalization of the charge. The main point,
however, is that the magnitude of the first shell hydrogen
bonding correction can be expected to depend on the size of
the charge on the ionized group, and the pKa, for reasons given
above, is proportional to this quantity. Similar arguments can
be made for positively charged conjugate acids.

III. Results

A. Training Set Results for Functional Groups. In our
initial implementation we have included the most important
acidic and basic functionalities, especially paying attention to
give priority to the groups commonly encountered among
medicinal compounds. The list of parametrized groups is shown
in Table 3.

Table 5 presents the results of the pKa calculations for
molecules in the training set as compared to the experimental
data. The results are classified by functional groups.

To show a typical fit, the correlation of calculated and
experimental values for aromatic nitrogen heterocycles is shown
in Figure 1. It can be concluded that the performance of the
model for the training set is very satisfactory.

As discussed above, we have developed a computational
method where the zero point difference is included implicitly
as a parameter for a given functional group rather than
explicitely calculated. The advantage of this approach is a
significant saving in the CPU time needed for calculations. To
demontstrate the validity of this approach, we compare its
performance in terms of accuracy with the method where zero
point differences are calculated explicitly. The total mean
average deviation for the faster method at 0.42 compares
excellently with 0.41 for the latter method. Results for each
functional group are presented in Table 6.

B. Tests of the Methodology.For testing we use two sets.
One contains 19 aromatic nitrogen heterocycles, not dissimilar
from those in the training set. The other set is more advanced
and includes molecules obtained from the CMC list of medicinal
compounds. There are 900 such compounds in the CMC
database for which experimental pKa values are reported. We
have taken a subset of these molecules and calculated the pKa

using the method described above. Many of these molecules
are quite large and complex, with multiple functional groups
that interact mutually. Furthermore, none of the molecules we
report below were included in the training set. Thus, the results
represent a genuinely objective test of the performance of the
methodology for real world problems.

Table 7 presents predicted pKa's for nitrogen heterocycles.
The average error is 0.5 pKa units. The results for the more
diverse set of molecules from the CMC database are shown in
Table 8. Structures of these molecules are shown in Figure 2.

To calculate the second acidity/basicity constant, the same
methodology can be applied. We have performed these simula-
tions successfully. As an example, we can mention cysteamine
from the CMC database (see Table 8). Here the thiol group is
deprotonated in the presence of the protonated amino group to
produce the zwitterion.

TABLE 4: Linear Fit Parameters, p Ka ) A(pKa
raw) + B

molecule A B

alcohols 0.7629 -6.391
phenols 0.4713 0.631
carboxylic acids 0.4035 0.155
thiols 1.0760 -6.894
sulfonamides 0.6768 -5.556
hydroxamic acids 0.2763 3.428
imides 0.3405 1.321
barbituric acids 0.2322 2.982
tetrazoles 0.0881 3.819
primary amines 0.3009 5.110
secondary amines 0.7705 -5.305
tertiary amines 0.7043 -5.412
anilines 0.5339 -2.863
heterocycles 0.8028 -6.166
diazepines 0.7694 -7.317
amidines 1.2977 -16.970
guanidines 0.6263 -2.188
pyrroles 0.5950 -6.316
indoles 0.8424 -7.889

Figure 1. Experimental versus calculated pKa values of nitrogen
heterocycles.
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TABLE 5: Acidity Constants of Organic Acids and Bases (Mean Abs Dev 0.41)

molecule pKa calc pKa exp dev molecule pKa calc pKa exp dev

Acids

Alcohols
methanol 16.4 15.5 0.9 2,2-dichloroethanol 12.6 12.2 0.3
ethanol 16.0 15.9 0.1 2,2,2-trichloroethanol 11.6 12.4 -0.8
propanol 16.0 16.2 -0.2 2,2,2-trifluoroethanol 15.6 15.4 0.2
2-propanol 15.9 17.1 -1.2 1,2-ethanediol 13.4 13.6 -0.1
2-butanol 16.9 17.6 -0.7 1,2-propanediol 15.4 14.9 0.5
tert-butyl alcohol 16.2 19.2 -3.0 1,3-propanediol 16.4 15.1 1.3
allyl alcohol 15.3 15.5 -0.2 1,4-butanediol 16.4 15.1 1.3
propargyl alcohol 15.0 14.3 0.7 mean abs dev 0.8
2-chloroethanol 13.8 12.9 0.9

Phenols
phenol 9.8 10.0 -0.2 4-methylphenol 10.6 10.5 0.2
4-aminophenol 9.3 9.4 -0.1 4-nitrophenol 7.3 7.2 0.2
4-chlorophnol 9.6 9.9 -0.3 p-xylol 10.4 10.3 0.0
4-fluorophenol 10.4 10.2 0.2 4-hydroxybenzaldehyde 7.6 7.6 0.0
4-methoxyphenol 10.3 10.3 0.0 mean abs dev 0.1

Carboxylic Acids
cia-1,2-cyclopropanedicarboxylic acid 4.3 3.6 0.7 acetic acid 3.7 4.8-1.1
trans-1,2-cyclopropanedicarboxylic acid 3.9 3.8 0.1 acrylic acid 3.8 4.2 -0.5
cis-2-chlorobut-2-enecarboxylic acid 3.3 2.8 0.5 benzoic acid 3.9 4.2-0.3
trans-2-chlorobut-2-enecarboxylic acid 3.0 3.2 -0.2 butanoic acid 4.2 4.8 -0.6
2-chlorobut-3-enecarboxylic acid 2.7 2.5 0.2 t cinnamic acid 4.3 4.4-0.1
2-chloropropanecarboxylic acid 3.0 2.9 0.1 formic acid 2.9 3.8 -0.8
2,2-dimethylpropanoic acid 4.3 5.0 -0.8 glycolic acid 3.4 3.8 -0.5
2-furanecarboxylic acid 3.3 3.2 0.1 glyoxylic acid 1.6 2.3 -0.7
cis-2-methylcyclopropanecarboxylic acid 4.1 5.0 -0.9 malic acid 2.7 3.5 -0.8
trans-2-methylcyclopropanecarboxylic acid 4.4 5.0 -0.6 malonic acid 3.4 2.9 -.6
2-methylpropanecarboxylic acid 4.5 4.6 -0.1 oxalic acid 2.0 1.2 0.8
cis-3-chlorobut-2-enecarboxylic acid 3.9 4.1 -0.2 pentafluoropropanoic acid 0.5 -0.4 0.9
trans-3-chlorobut-2-enecarboxylic acid 3.5 3.9 -0.5 propanoic acid 4.1 4.9 -0.8
3-chloropropanecarboxylic acid 4.3 4.1 0.2 propargylic acid 2.7 1.9 0.8
cis-3-chloropropenecarboxylic acid 3.9 3.5 0.4 succinic acid 4.1 4.2-0.2
trans-3-chloropropenecarboxylic acid 3.6 3.8 -0.2 dl-tartaric acid 3.2 3.0 0.2
3-chloropropynecarboxylic acid 2.9 1.9 1.0 meso-tartaric acid 2.4 3.2 -0.8
3-nitro-2-propanecarboxoxylic acid 4.5 2.6 1.9 tartonic acid 2.4 2.4 0.0
3-oxopropanecarboxylic acid 5.3 3.6 1.7 trifluoroacetic acid 0.4 0.2 0.2
cis-4-chlorobut-3-enecarboxylic acid 4.4 4.1 0.3 mean abs dev 0.5
trans-4-chlorobut-3-enecarboxylic acid 3.9 4.1 -0.2

Thiols
methanethiol 10.0 10.3 -0.3 1,2-ethanedithiol 9.2 9.1 0.2
ethanethiol 10.8 10.6 0.2 thiophenol 6.6 6.6 0.0
2-merkaptoethanol 9.4 9.4 -0.0 mean abs dev 0.2

Sulfonamides
N-chlorotolylsulfonamide 4.3 4.5 -0.2 sulfadiazine 7.0 6.5 0.5
dichlorphenamide 6.5 7.4 -0.9 sulfadimethoxine 7.2 6.0 1.2
mafenide 9.4 8.5 0.9 sulfamethazine 7.7 7.4 0.3
methanesulfonamide 10.1 10.5 -0.4 sulfanylamide 10.4 10.4 -0.1
nimesulide 6.3 5.9 0.4 sulfapyridine 7.8 8.4 -0.6
quinethazone 9.1 9.3 -0.2 sulfaquinoxaline 6.4 5.5 0.9
saccharin 3.0 1.6 1.4 sulthiame 9.1 10.0 -0.9
sulfamethizole 3.2 5.4 -2.3 xipamide 9.3 10.0 -0.7
sulfaperin 7.2 6.8 0.5 mean abs dev 0.7
sulfacetamide 5.6 5.4 0.2

Hydroxamic Acids
formohydroxamic acid 8.0 8.7 -0.6 3-nitrobenzohydroxamic acid 8.2 8.4 -0.2
acetohydroxamic acid 8.5 8.7 -0.2 4-aminobenzohydroxamic acid 8.8 9.4 -0.6
benzohydroxamic acid 8.5 8.8 -0.3 4-chlorobenzohydroxamic acid 8.4 8.7 -0.3
salicylhydroxamic acid 8.4 7.5 1.0 4-flurobenzohydroxamic acid 8.4 8.8-0.4
2-aminobenzohydroxamic acid 9.0 9.0 -0.0 4-nitrobenzohydroxamic acid 8.2 8.3 -0.1
2-chlorobenzohydroxamic acid 8.3 7.8 0.5 4-hydroxybenzohydroxamic acid 8.6 8.9-0.3
2-fluorobenzohydroxamic acid 8.2 8.0 0.2 mean abs dev 0.4
2-nitrobenzohydroxamic acid 8.5 7.0 1.4

Imides
fluorouracil 8.6 8.0 0.6 dimethadione 7.6 6.1 1.5
methylthiouracil 7.9 8.2 -0.3 phthalimide 8.8 9.9 -1.1
phenytoin 8.0 8.3 -0.3 succinimide 8.7 9.6 -0.9
3,3-methylphenylglutarimide 10.2 9.2 1.0 mean abs dev 0.8
3,3-dimethylsuccinimide 8.9 9.5 -0.6
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The CPU time required for the completion of the pKa

computational cycle depends on the molecule being studied.
The larger systems naturally require more time. However, a
molecule’s flexibility plays a role too. If the molecule’s

TABLE 5 (Continued)

molecule pKa calc pKa exp dev molecule pKa calc pKa exp dev

Barbituric Acids
5,5-methylphenylbarbituric acid 7.5 7.4 0.1 5,5-dimethylbarbituric acid 8.1 8.0 0.1
1,5,5-trimethylbarbituric acid 8.3 8.3 -0.0 1,5-dimethyl-5-phenylbarbituric acid 7.6 7.8 -0.2
hexobarbital 8.2 8.2 -0.0 mean abs dev 0.1

Tetrazoles
5-cyclopropyltetrazole 4.9 5.4 -0.5 5-phenyltetrazole 5.0 3.5 1.5
5-methyltetrazole 4.8 5.6 -0.8 tetrazole 4.8 4.9 -0.1
5-hydroxytetrazole 5.0 5.4 -0.4 mean abs dev 0.6
5-phenoxytetrazole 4.6 4.4 0.2

Bases

Primary Amines
methylamine 10.5 10.2 0.3 2-aminoethanol 9.8 9.2 0.6
ethylamine 11.0 10.6 0.3 1,2-ethanediamine 10.1 10.7-0.6
propylamine 10.7 10.6 0.1 1,3-propanediamine 10.4 10.9-0.5
tert-butylamine 10.5 10.7 -0.2 mean abs dev 0.4

Secondary Amines
dimethylamine 10.9 10.7 0.2 piperidine 11.1 11.1-0.0
diethylamine 11.1 11.0 0.0 morpholine 9.5 8.5 1.0
azetidine 11.3 11.3 -0.0 2,5-diazahexane 9.4 10.4 -1.0
pyrrolidine 11.1 11.3 -0.1 mean abs dev 0.3

Tertiary Amines
trimethylamine 10.1 9.8 0.3 dimethylcyclohexylamine 10.6 10.7-0.1
triethylamine 10.6 11.0 -0.4 dimethylbenzylamine 8.9 9.0 -0.1
tripropylamine 9.2 10.7 -1.4 diethylbenzylamine 9.2 9.5 -0.2
1-methylpiperidine 10.4 10.2 0.2 hexamethylenetetramine 6.5 5.3 1.3
triallylamine 7.1 8.3 -1.3 DABCO 9.6 8.2 1.4
1-allylpiperidine 9.9 9.7 0.3 mean abs dev 0.6

Anilines
aniline 4.7 4.6 0.1 4-nitroaniline 1.1 1.0 0.1
4-chloroaniline 4.0 4.0 0.1 p-toluidine 4.6 5.1 -0.5
4-methoxyaniline 5.5 5.2 0.3 mean abs dev 0.2

Heterocycles
2-aminopyridine 7.2 6.7 0.5 melamine 5.1 5.0 0.1
2-aminothiazole 5.5 5.4 0.2 pyrazine 1.0 0.7 0.4
2-methylimidazole 7.9 8.0 -0.1 pyrazole 2.5 2.5 0.1
3-aminopyridine 6.1 6.0 0.0 pyridine 5.2 5.3 -0.1
4-aminopyridine 9.6 9.7 -0.1 pyrimidine 1.1 1.3 -0.2
4-methylpyridine 6.2 6.0 0.2 quinoline 5.0 4.8 0.1
benzimidazole 5.2 5.8 -0.6 thiazole 2.4 2.8 -0.4
imidazole 6.8 7.0 -0.2 mean abs dev 0.2
isoquinoline 5.4 5.4 0.1

Amidines
hydroxyimidazo[2,3-a]isoindole 9.1 8.6 0.5 tolazoline 10.6 10.3 0.3
imidazo[2,3-b]thioxazole 8.1 8.0 0.1 mean abs dev 0.5
tetrahydrozoline 9.6 10.5 -0.9

Benzodiazepines
1,3-dihydro-1-methyl-5-phenyl-

1,4-benzodiazepin-2-one
3.8 3.3 0.5 1,3-dihydro-5-phenyl-

1,4-benzodiazepin-2-one
4.0 3.5 0.5

1,3-dihydro-3-hydroxy-5-phenyl-
1,4-benzodiazepin-2-one

1.9 1.7 0.2 2,3-dihydro-1-methyl-5-phenyl-
1,4-benzodiazepine

6.1 6.2 -0.1

1,3-dihydro-3-hydroxy-1-methyl-5-phenyl-
1,4-benzodiazepin-2-one

1.4 1.6 -0.2 3-hydro-2-methylamine-4-oxy-5-phenyl-
1,4-benzodiazepine

3.9 4.8 -0.9

Guanidines
clonidine 8.2 8.1 0.1 methylguanidine 13.4 13.4 0.0
debrisoquin 13.0 11.9 1.1 mean abs dev 0.6
guanidine 12.5 13.8 -1.3

Pyrroles (C-2 Protonation)
pyrrole -4.1 -3.8 -0.3 3-methylpyrrole -0.9 -1.0 0.1
1-methylpyrrole -2.3 -2.9 0.6 mean abs dev 0.4
2-methylpyrrole -0.7 -0.2 -0.5

Indoles (C-3 Protonation)
indole -3.7 -3.6 -0.1 3-methylindole -4.6 -4.6 -0.0
1-methylindole -2.0 -2.3 0.3 mean abs dev 0.1
2-methylindole -0.4 -0.3 -0.1
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conformation is relatively rigid, it will take fewer geometry
optimization steps to reach the minimum energy geometry. Some
representative timings are presented in Table 9. A number of
basis functions for 6-31G* and cc-pVTZ(-f)[+] basis sets are

shown to give an idea about the molecular size. The timing
study was run on the Compaq Alpha Server DS20 computer.

For calculating pKa constants of very large systems we
recommend the following procedure: given the fact that parts

Figure 2. Druglike molecules from the CMC database.

TABLE 6: Mean Absolute Deviations of pKa Constants for
Methods with ZPE Difference Parametrized and Calculated

funct group ZPE param ZPE calc

alcohols 0.75 0.78
phenols 0.18 0.18
carboxylic acids 0.44 0.43
thiols 0.14 0.10
hydroxamic acids 0.49 0.40
imides 0.61 0.59
barbituric acids 0.17 0.17
tetrazoles 0.46 0.46
primary amines 0.38 0.39
secondary amines 0.37 0.38
tertiary amine 0.59 0.66
anilines 0.08 0.10
heterocycles 0.41 0.41
amidines 0.21 0.23
benzodiazepines 0.30 0.31
pyrroles 0.17 0.12
indoles 0.16 0.14
total 0.42 0.41

TABLE 7: Acidity Constants of Aromatic Heterocycles

molecule pKa calc pKa exp dev

1,2,3-triazole 1.7 1.2 0.5
1,2,4-triazole 2.2 2.5 -0.2
1,2,5-thiadiazole -5.3 -4.9 -0.4
benz-[3,4]-isothiazole 0.4 -0.1 0.4
benz-[3,4]-isoxazole -2.1 -2.2 0.1
benz-[4,5]-isoxazole -3.9 -4.7 0.8
benzoxazole -1.5 -2.2 0.7
benzpyrazole 1.0 1.3 -0.3
benzthiazole 1.1 1.2 -0.1
isothiazole -0.3 -0.5 0.2
isoxazole -3.3 -3.0 -0.3
N-methyl-1,2,3-triazole 2.0 1.2 0.7
N-methyl-1,2,4-triazole 2.2 3.2 -1.0
N-methylbenz-[3,4]-pyrazole 2.4 2.0 0.4
N-methylbenzimidazole 5.5 5.5 0.0
N-methylbenzpyrazole 0.8 0.4 0.4
N-methylimidazole 7.3 7.3 -0.0
N-methylpyrazole 2.5 2.1 0.5
oxazole 0.2 2.5 -2.3
mean abs dev 0.5
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of a molecule that are chemically and spatially distant from the
group undergoing deprotonation or protonation exert very little
influence on the energetics of this reaction, it is a very good
approximation to construct a smaller chemical systems retaining
all the key structural features to model in the pKa calculation.
Naturally, one should be aware of the possible relay effect
between various polar groups in the molecule when building
such a model system. In any case, it is wise to employ good
chemical intuition and knowledge of the chemical system that
is being studied.

IV. Conclusion and Future Directions

We have developed a methodology for calculating acidity
constants of organic acids and bases in water based on the ab
initio simulations. This work required selecting the right ab initio
methods and basis sets that would give accurate enough results

for practical applications and still enable users to complete the
whole computational cycle in the reasonable amount of the CPU
time, even for larger organic systems. Besides deciding on the
optimal computational methods, the methodology development
also required adjustment of the solvation radii for the Poisson-
Boltzmann method based solvation calculations, as well as the
development of the empirical fitting parameters that ensure an
agreement of predicted pKa constants with the experimental data
in the absolute sense and compensate for the lack of hydrogen
bonding treatment in the solvation method. The average absolute
error in the training set of about 200 molecules is 0.4 pKa units.
Testing the method on a diverse set of medicinal compounds
gave an average error less than one pKa unit, which was our
goal. The test results show that the method can successfully be
applied in predicting the acidity constants of organic acids and
bases in water.

In the future work we would like to extend this methodology
to predict the acidity of a functional group affected by its
chemical surrounding. An example of such a system is a
titratable amino acid residue burried in a protein. Being able to
estimate pKa values of these groups would be a great success
that would open doors to understanding many mechanisms of
enzymatic reactions.

Acknowledgment. This work was supported in part by a
grant to R.A.F. from the National Institutes of Health, Institute
of General Medical Sciences (GM-40526). We also express our
gratitude to Dr. Thomas A. Halgren for many fruitful discussions
on the subject.

References and Notes

(1) Kallies, B.; Mitzner, R.J. Phys. Chem. B1997, 101, 2959.
(2) Chen, J. L.; Noodleman, L.; Case, D. A.; Bashford, D.J. Phys.

Chem.1994, 98, 11059.
(3) Andzelm, J. In Density Functional Methods in Chemistry;

Labanowski, J. K., Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991;
p 155.

(4) Becke, A. D.J. Chem. Phys.1992, 96, 2155.
(5) Becke, A. D.J. Chem. Phys.1993, 98, 5648.
(6) Becke, A. D.Int. J. Quantum Chem.: Quantum Chem. Symp.1989,

23, 599.
(7) Rashin, A. A.; Young, L.; Topol, I. A.Biophys. Chem.1994, 51,

359.
(8) Bachs, M.; Luque, F. J.; Orozco, M.Comput. Chem.1994, 15, 446.
(9) Fortuneli, A.; Tomasi, J.Chem. Phys. Lett.1994, 34, 231.

(10) CMC-3D.; version 98.1.; MDL Infomation Systems, Inc.: 14600
Catalina St., San Leandro, CA 94577.

(11) Lim, C.; Bashford, D.; Karplus, M.J. Phys. Chem.1991, 95, 5610.
(12) Friesner, R. A.; Murphy, R. B.; Beachy, M. D.; Ringnalda, M. N.;

Pollard, W. T.; Dunietz, B. D.; Cao, Y.J. Phys. Chem. A1999, 103, 1913.
(13) Murphy, R. B.; Cao, Y.; Beachy, M. D.; Ringnalda, M. N.; Friesner,

R. A. J. Chem. Phys.2000, 112, 10131.
(14) Cramer, C. J.; Truhlar, D. G.J. Comput.-Aided Mol. Des.1992, 6,

629.
(15) Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgage, C. C.

Biochemistry1981, 20, 849.
(16) Wolfenden, R.Biochemistry1978, 17, 201.
(17) Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L.Solution Chem.1981,

563, 10.
(18) Merrill, G. N.; Kass, S. R.J. Phys. Chem.1996, 100, 17465.
(19) Smith, B. J.; Radom, L.Chem. Phys. Lett.1995, 245, 123.
(20) Dunning, T. H., Jr.J. Chem. Phys.1989, 90, 1007.
(21) Cortis, C. M.; Friesner, R. A.J. Comput. Chem.1997, 18, 1570.
(22) Cortis, C. M.; Friesner, R. A.J. Comput. Chem.1997, 18, 1591.
(23) Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.;

Ringnalda, M. N.; Sitkoff, D.; Honig, B.J. Phys. Chem.1996, 100, 11775.

TABLE 8: Acidity Constants of Medicinal Molecules from
the CMC Database

molecule pKa calc pKa exp dev

alphaprodine 8.2 8.7 -0.5
benzocaine 2.3 2.5 -0.2
cysteamine 11.0 10.5 0.5
dichloroxylenol 8.5 8.3 0.2
guanethidine 11.9 11.4 0.5
hexachlorophene 6.1 5.7 0.4
histamine 10.0 9.7 0.3
mechlorethamine 6.1 6.4 -0.4
nikethamide 3.4 3.5 -0.1
papaverine 6.9 6.4 0.5
pentobarbital 8.0 8.0 0.0
phenacaine 9.1 9.3 -0.2
sparteine 10.6 12.0 -1.4
sulfaethidole 3.5 5.6 -2.1
thenyldiamine 7.1 8.9 -1.8
vanillin 7.8 7.4 0.4
mean abs dev 0.6

TABLE 9: CPU Time in Minutes on Compaq AlphaServer
DS20

molecule
6-31G*

bfn
cc-pVTZ(-f)[+]

bfn
CPU
time

methanol 38 91 3.3
formic acid 49 105 4.4
ethylamine 61 150 6.7
azetidine 76 173 15.5
acetohydroxamic acid 85 169 28.0
methylguanidine 91 196 15.9
pyrimidine 100 192 15.9
phenol 117 224 23.7
trans-2-methylcyclopropane-

carboxylic acid
121 251 37.8

5-cyclopropyltetrazole 132 247 75.6
p-toluidine 140 283 68.5
methylthiouracil 151 274 60.4
tripropylamine 194 437 140.7
tolazoline 206 402 177.9
3-nitrobenzohydroxamic acid 207 362 236.6
debrisoquin 223 434 154.1
sulfacetamide 234 425 331.2
tetrahydrozoline 259 507 265.9
sulfaperin 298 535 305.1
phenytoin 309 554 571.7
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