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Response theory calculations in the random phase approximation are applied to linear polarizabilities and
second hyperpolarizabilities of 1-, 2-, and 3-dimensional hydrogen-terminated silicon clusters. Successive
enlargement of the clusters to embody on the order of 50 silicon atoms plus bond-saturating hydrogen atoms
allows for extrapolation to bulk values of individual silicon atom contributions in the 1D and 3D cases.
Modern effective core potentials are shown to provide excellent approximations to the all-electron values in
all cases; errors for both polarizabilities and hyperpolarizabilities are on the order of 1%. The findings indicate
considerable time savings in predictions of the electric polarizability properties of elements beyond the first
row atoms.

I. Introduction

The arduous step of going from molecular to crystalline or
solid-state property simulations can be bridged by considering
clusters of various intermediate sizes. Because of the improved
possibilities for computing different properties for systems of
different sizes and characters, such cluster simulations have
become an increasingly feasible option in contemporary theo-
retical modeling. A central quantity to attain is the so-called
correlation sizeslength, area, or volumesfor which an ad-
ditional unit contributes with an additive constant to the property.
Such correlation sizes evidently depend on the local character
of the property, and for a delocalized property such as the
polarizability or hyperpolarizability, the correlation size tends
to be large and hard to obtain.

The comparison between computed and measured correlation
sizes is also aggravated by several factors. The first of these is
disorder, because, for a property that converges slowly with
size, the predicted value is prone to exceed the measured
counterpart simply because the size exceeds that for which
ordered samples can be prepared. Other relevant factors for such
comparisons refer to environmental (solvent) dependences and
contributions from nuclear motion, as well as considerations of
artificial bond termination and optimum cluster geometries
different from the bulk geometry.

Notwithstanding these complicating issues, a great deal of
success has been achieved in cluster -or oligomersmodeling
of “delocalized” properties, such as polarizabilities, for organic
materials and polymers. Most work of this kind has concerned
first-row linear oligomer sequences converging to a polymer
chain of repeat units. Recent evidence on some polarizability-
related properties indicates that the sheer dimensionality of the
organic network is an important factor for the property,
especially polarizability-related nonlinear properties such as
multiphoton absorption cross sections. It is therefore relevant
to generalize the efforts to corresponding sequences in two- or

three-dimensional networks. It is also of interest to find
applications beyond the first row elements, as enhancement of
the polarizabilitysand perhaps the property performancesis
sustained by the more loosely bound nature of the valence
electron cloud. The price is evidently the need to treat a much
larger number of core electrons which presumably are inert for
the polarization of the cluster.

In this work we present results of simulations of polariz-
abilities and (second) hyperpolarizabilities for silicon clusters
in an attempt to fulfill the scheme outlined above and to derive
bulk values and correlation sizes of these properties in the 1-,
2-, and 3-dimensional networks. We study the use of and
requirement for effective-core potentials in terms of accuracy
with respect to all-electron calculations, and in terms of
reduction of the computational effort. The actual choice of
silicon for this study also finds motivation in materials aspects,
such as the field of optically active devices1 and the optoelec-
tronics of component materials. Here, H-terminated silicon
fragments have been considered for the nanostructure of so-
called porous silicons that provide strong luminescence.2,3

Several investigations of silicon polarizabilities have already
been performed: Jackson et al. used the local density functional
approximation (LDA) with a finite-field technique for a
systematic theoretical evaluation of the polarizability of bare
SiN (N ) 1-20) clusters.4 The geometries of these clusters were
considerably deformed as a result of the presence of dangling
bonds in the respective cases. Calculations of the polarizability
of bulk silicon were performed by Ayma et al. using a Gaussian-
based crystal orbital LDA and Hartree-Fock (HF) calculations
with a sum-over-state (SOS) scheme based on ground-state
frozen orbitals.5 Using the finite-field approach at the Hartree-
Fock level, the linear and nonlinear static electronic polariz-
abilities were computed fortrans-polysilane oligomers up to
Si15H32 by Kirtman and Hasan6 and up to Si20H42 by Perpete,
Andre, and Champagne.7 Two of the present authors investigated
the linear polarizability of 3D H-terminated silicon of diamond
lattice form up to Si35H36.8 The linear response method in the
random phase approximation (RPA) using Hartree-Fock-
optimized ground-state wave functions was the choice of method
in that work. The present study extends the work in ref 8 to
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include 1D and 2D networks, as well as a larger 3D network;
it furthermore also includes the second hyperpolarizabilities
using cubic response theory in the RPA approximation.

II. Methods and Computational Details

Response theory in the RPA approximation has been suc-
cessfully applied for the calculation of the optical and magnetic
properties of various large molecular systems in recent years.9-13

With respect to the canonical orbital SOS scheme, RPA obtains
the SOS value implicitly by analytically solving linear response
equations. This means that the role of relaxation in the particle-
hole excitation energies in the SOS formula is included and
that the corresponding property is gauge-invariant in the limit
of a complete basis. These factors warrant good electric field
perturbation properties, such as the polarizability.

A. Structures. The largest 1D, 2D, and 3D clusters under
investigation contain more than 50 silicon atoms, as shown in
Figure 1. The silicon-to-silicon distances are 2.381 and 2.238
Å for the 1D and 2D structures, respectively, and between 2.368
and 2.398 Å for the 3D clusters, depending on the actual cluster
computed. The value for the 1D case was taken from the
geometry optimization of a series of oligomers by Perpe`te et
al.7 The largest 1D system has an actual molecular length of
97.2 Å, within the nanometer region. Values for the 2D clusters

were gained by geometry optimization of the largest 2D cluster
(Si50H18) using Gaussian 9814 with the effective core potentials
(ECPs) and basis sets discussed below. The geometries of the
3D clusters were optimized for each cluster individually as given
in ref 8. The effects of geometry on the polarizabilities are
largely neglected here, which can be important for an evaluation
of vibrational contributions to the optical properties.

B. Computational Details. The optical properties of all of
the studied molecules were calculated at the ab initio level in
the random phase approximation with ECP basis sets using the
Dalton15 quantum chemistry program. We employ the semi-
local effective core potential (SL-ECP) method as implemented
by the Pitzer group,16,17 which was recently interfaced to the
Dalton15 quantum chemistry program.

For silicon, we use the large-core (four valence electron) ECP
of Bergner et al.18 The choice of this ECP was based on the
long experience of the Stuttgart group in extracting effective
core potentials, as well as the possibility of obtaining ECPs for
the whole periodic system. One motivation for us to favor these
ECPs and basis sets over, e.g., the ab initio model potentials
(AIMPs) of Barandiara´n et al.19,20 is the comparably smaller
basis sets, which are more suitable for the large-scale integral-
direct methods we employ. To compare the quality of all-
electron and ECP calculations we constructed a basis set to be

Figure 1. Structures of the largest 1D, 2D, and 3D clusters under investigation: (a) Si50H102, (b) Si54H18, (c) Si54H56.
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used with the ECP that mimics the 6-31G basis set in the valence
orbitals. This was achieved by replacing the smallest exponents
in the s and p parts of the ECP basis by the common exponent
of the 6-31G basis (0.077 836 9), as well as recontracting the
inner parts, resulting in the (4s, 4p)f [2s, 2p] basis set used in
the following. Finite-field MP2 calculations were carried out
for bothRzz andγzzzz, using the Si: ECP 2s2p1d/ H: 6-31G 2s
basis set, to examine the role of correlation and length of
convergence of the correlation for these properties.

All computations were performed on 32 nodes of the T3E
computer at the National Supercomputer Center (NSC) in
Linköping, Sweden, with a parallel efficiency exceeding 98%.

The average polarizability and hyperpolarizability are defined
as

wherei and j can bex, y, andz. The main molecular axis for
the 1D clusters (oligomers) is along thez axis.

III. Results and Discussion

A. Choice of ECPs.ECPs were used about 10 years ago by
Kirtman and Hasan to calculate the polarizabilities of 1D silicon
clusters.6 In their study, the Los Alamos National Laboratory
(LANL) 21 potentials and the shape and Hamiltonian consistent
(SHC)22 potentials were used, which gave rather unsatisfactory
accuracy in comparison with the results obtained with the full
6-31G basis set. Several extra diffuse functions had to be
augmented to these ECPs to compensate for this deficiency,
thereby counteracting the utility of the ECPs.

In Table 1, the polarizabilities of three 1D clusters calculated
with ECPs and a full 6-31G basis set are compared. The
performance of the ECP basis set is indeed very good for both
the polarizability (R) and the hyperpolarizability (γ), especially
for the larger systems. One can see that, for Si20H42, the
difference between the ECP and 6-31G results is less than 1%.
As shown in Table 1, the use of ECPs drastically reduces the
number of primitive and contracted basis functions, thereby
saving significant computational time. For instance, using 32
nodes of the T3E computer, the property calculation for Si20H42

with ECP is about 5 times faster than it is with the 6-31G basis
set. An obvious additional advantage is that the use of ECPs
enables much larger systems to be calculated for a given
computational capacity. From the physical point of view, the
important result is that the optical properties are insensitive to
the description of the core orbitals.

B. Electron Correlation. With the ECPs, we are able to
examine the length dependence of the electron correlation effects
on the polarizabilities and hyperpolarizabilities of 1D clusters.
In Table 2, the MP2 results for polarizabilities and hyperpo-

larizabilities of 1D clusters are presented together with the
corresponding Hartree-Fock results. The electron correlation
effects are found to be insignificant for the polarizabilities but
quite important for the second hyperpolarizabilities. However,
the electron correlation effects have very similar length de-
pendences for the two properties and are quite close to
convergence for Si14H30, for which they constitute 13 and 45%
of the total property value for the polarizability and hyperpo-
larizability, respectively.

C. 1D Clusters. Previous Hartree-Fock results for hyper-
polarizabilities with the 6-31G basis set7 are listed in Table 2
for comparison. The major difference between these previous
results and the current Hartree-Fock results is due to the
difference in geometries. The 1D cluster, Si15H36 (polysilane),
calculated by Kirtman and Hasan6 seems to be of a size for
which the polarizability per unit length already has converged.
With the 6-31G basis set, the extrapolated longitudinal polar-
izability per unit length for the infinite chain limit is found to
be around 65.6-65.8 au, very close to the value of 62.8 au for
Si15H36. The hyperpolarizability of polysilane shows a much
slower convergence; nevertheless, an extrapolated value for the
longitudinal hyperpolarizability per unit length was reported to
be around (2.51-2.65) × 105 au, where the calculated value
for Si15H36 is 1.93× 105 au.6

We have calculated a series of 1D clusters up to Si50H102.
Although the clusters chosen here contain even numbers of
silicon atoms (which differs from the choice of Kirtman and
Hasan6), the infinite limiting values should be the same for both
sequences. Our results can thus serve as a reference for the
extrapolation procedures used in previous studies. Figure 2
presents the length dependences of the polarizability and
hyperpolarizability per unit length for polysilane. Apparently,
the polarizability shows a very nice convergence, whereas the
hyperpolarizability does not. We can extrapolate the infinite limit
values for both the polarizability and the hyperpolarizability
using an N-1 power series representation as proposed by
Kirtman.6,23 It has been demonstrated by purely mathematical
arguments that this power series can give reliable extrapolation
results for conjugated systems with adequate fitting points.24

We used three sets of data to make the extrapolation, including
the results from clusters shorter than (a) Si16H34, (b) Si30H62

and (c) Si50H102. The number of fitting points used in case a is
the same as in the case of Kirtman and Hasan.6 For the
longitudinal polarizability, the extrapolated limiting values are
66.50, 66.51, and 66.53 au for cases a-c, respectively. The three
values are thus close to each other, confirming the previous
observation by Kirtman and Hasan.6 Although the values for
the hyperpolarizabilities for those three components differ
significantly, the extrapolated values are in very good agreement,

TABLE 1: Comparison between the Electronic
Polarizability and Hyperpolarizability of Three 1D Clusters
Calculated Using ECP and 6-31G Basis Seta

functions properties

no.
primitive

no.
contracted Ravg (au) γavg (au)

molecule 6-31G ECP 6-31G ECP 6-31G ECP 6-31G ECP

Si3H8 170 80 55 40 231.5 227.3 5241 4583
Si10H22 548 248 174 124 916.5 908.9 135 039 135 889
Si20H42 1088 488 344 244 1970.9 1958.5 553 865 566 033

a Number of primitive and contracted basis functions in use are also
listed.

TABLE 2: Electron Correlation Effects on the Longitudal
Electronic Polarizabilities and Second Hyperpolarizabilites
Per Unit Length of 1D Clustersa

hyperpolarizability

polarizability γzzzz/N (103 au)

RZ/N HF

cluster HF MP2 change (%) previousb current MP2 change (%)

Si2H6 25.67 27.00 4.9 2.7630 3.1381 3.3899 7.4
Si4H10 32.64 35.20 7.2 8.7687 10.7196 13.4910 20.5
Si6H14 37.69 41.50 9.1 22.8986 25.4353 37.0833 31.4
Si8H18 41.23 46.08 10.5 41.9636 42.9424 67.9912 36.8
Si10H22 43.75 49.42 11.5 62.0245 59.8321 101.3780 40.9
Si12H26 45.61 51.90 12.1 80.6260 74.6257 131.7873 43.3
Si14H30 47.02 53.81 12.6 96.8932 87.0984 157.8383 44.8

a ECP basis set is used.b 6-31G basis set from ref 7.
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as shown in Table 2. The slight difference between the present
values and those of Kirtman and Hasan is most likely due to
the difference in geometries.

For mostπ-conjugated clusters, only the component along
the molecular axis shows a strong length dependence. As
indicated by eq 1, this component should be roughly 3 or 5
times the average polarizability or hyperpolarizability, respec-
tively, in such cases. For the 1D polysilane, we obtained factors
of 1.9 for the polarizability and 4.9 for the hyperpolarizability.
This shows that, for the polarizability, the other components
also have a considerable length dependence, which might be
due to theσ nature of the 1D polysilane, i.e., electrons are rather
localized. Therefore, one cannot use the infinite limiting value
of the component along the molecular axis to estimate the
average polarizability, something that is important to know for
calculating dielectric constants forσ-type polymers.

D. Multidimensional Clusters. The calculations of 2D and
3D clusters demand more computational power, because, in
these cases, the effect of integral screening is considerably
reduced. This fact makes the use of ECPs attractive. The 2D
clusters studied here have graphite-like structures. The size of
the 2D clusters drastically increases the number of silicon atoms
involved. With the maximum of 54 silicon atoms used, a
structure containing 19 six-membered rings can be constructed
(see Figure 1b). Table 3 shows the electronic polarizabilities
and hyperpolarizabilities of these 2D clusters. In contrast to the
1D and 3D clusters, these 2D clusters areπ-electron systems.
The presence ofπ electrons in the system should considerably

enhance the polarizability and hyperpolarizability. It can be seen
that, on going from Si24H12 to Si54H18, the average polarizability
and hyperpolarizability increase by factors of 3 and 10,
respectively, whereas for a similar increase in the number of
silicon atoms in the 1D clusters, going from Si30H62 to Si50H102,
the enhancement for both the polarizability and the hyperpo-
larizability is less than a factor of 2.

We point out that 2D clusters were included in the present
work only to bridge the 1D and 3D models. Compared to C-C,
the Si-Si bond has moreσ character and is longer. Silicon
therefore tends to form only 3D diamond-like structures (or
hexagonal structures at particular pressures), and graphite-like
silicon does not exist. The question of an infinite polarizability
because of conduction properties, as for carbonic graphite, is
therefore only a hypothetical issue.

The 3D clusters up to Si35H36 were studied previously by
two of the present authors8 using different basis sets containing
diffuse functions. For comparison with the previous results, the
standard ECP basis set18 for the silicon atom is used. As shown
in Table 4, the quality of this ECP basis set is comparable to
that of 3-21++G*. With the ECP, we can easily calculate the
hyperpolarizabilities of those 3D clusters that cannot otherwise
be treated with a full basis set, so that much larger clusters
become accessible. (See Table 5.)

To obtain the polarizability per individual Si atom, which
should be compared to the bulk value, the H contributions were
excluded from the cluster values assuming a simple additivity
rule.8 A different and more complicated extrapolation method
was recently used to obtain the bulk value of diamond.25 In
this study, we used the procedure of Mochizuki and A° gren8 to
obtain the polarizability and hyperpolarizability per individual
Si atom. For the polarizability, a nice convergence was observed

TABLE 3: Extrapolated Infinite Limiting Values for Polarizability and Hyperpolarizability Per Unit Length of 1D Clusters
Obtained from Different Maximum Chain Lengths

polarizability hyperpolarizability

Rzz/N Ravg/N γzzzz/N (103 au) γavg/N (103 au)

maximum unit maximum limiting maximum limiting maximum limiting maximum limiting

Si15H32
a 62.8a 65.6-65.8a 193.1a 251-265a

Si16H34 55.08 66.50 32.00 34.47 114.1 245.3 23.76 50.21
Si30H62 60.01 66.51 33.53 34.95 170.5 245.7 35.13 50.31
Si50H102 62.61 66.53 34.29 35.57 199.9 249.0 41.07 50.68

a 6-31G basis set from ref 6.

Figure 2. Length dependence of the electronic polarizability and
hyperpolarizability of 1D clusters.

TABLE 4: Electronic Polarizability and Hyperpolarizability
of 2D Clusters

cluster Ravg γavg (103 au)

Si6H6 177.6 11.7
Si16H10 622.6 247.6
Si24H12 960.1 766.1
Si54H18 2676.0 7674.7

TABLE 5: Electronic Polarizability and Hyperpolarizability
of 3D Clusters

polarizability hyperpolarizability

Ravg Ravg/Nb γavg γavg/Nb

cluster 3-21++G* ECP 3-21++G* ECP (103 au) (103 au)

Si6H12 157.7a 145.4 19.50a 17.73 12.88 2.26
Si10H16 259.2a 242.6 20.52a 19.06 19.34 2.02
Si14H20 366.3a 344.9 21.33a 19.99 31.22 2.31
Si18H24 475.7a 449.0 21.93a 20.61 46.35 2.65
Si22H28 589.6a 557.9 22.47a 21.22 66.62 3.10
Si35H36 914.1a 871.8 22.68a 21.56 88.48 2.59
Si54H56 1355.5 21.73 158.53 2.99

a Reference 8.b After removal of the hydrogen contributions.

398 J. Phys. Chem. A, Vol. 106, No. 2, 2002 Jansik et al.



with respect to the enlargement of the cluster size. The value
with the ECP basis set is slightly smaller than the result with
the full 3-21++G* basis set. However, the hyperpolarizability
per silicon atom does not show any linear dependence in terms
of cluster size. This seems to indicate that the hyperpolarizability
cannot be associated with the additivity feature as the polariz-
ability can. However, this problem is evidently also coupled to
the fact that the cluster size is insufficient for the hyperpolar-
izability.

IV. Conclusion

With the present calculations on polarizabilities and hyper-
polarizabilities for silicon clusters, we have shown that the
proper use of ECPs brings about significant computational
advantages in that it saves a considerable amount of computer
time at a very minor expense of accuracy. Therefore, larger
clusters can be treated via simulations. The correlation length
(1D) and volume (3D) for the polarizability per silicon atom is
obtained. Because of the presence of theπ-electrons in the 2D
clusters, the length dependences of the polarizability and
hyperpolarizability are much stronger in comparison with those
of σ-type clusters. In general, the convergence of the hyperpo-
larizability is much slower than that for the polarizability. It
thus seems that there are good prospects for the use of ECPs in
the simulation of nonlinear optical properties of larger clusters
in the future.
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