988 J. Phys. Chem. R002,106,988-996
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In this paper we report on a numerical study of wave propagation and its failure in a one-dimensional array
of coupled chemical cells and irreversible thermodynamics of the array. The Oregonator model for the
Belousov-Zhabotinsky reaction is used to model the chemical reactions. In particular, we investigate the
dependence of wave front propagation failure on the mass exchange rate for*theo@g@onent between

cells and on the amplitude of a perturbation employed to trigger a propagation of transition from an initially
homogeneous state to final stationary patterns reached by the system. In the case of the Oregonator, there
appear two critical mass transfer rates at which propagation failure occurs, in contrast to the cases of the
cubic model or the sine-Gordon model reported in the literature. By following the evolution of the calortropy
production accompanying wave propagation, we construct phase diagrams that provide valuable insights into
the propagation failure phenomenon. The global calortropy production is shown to exhibit discontinuous
changes with respect to the transfer rate when propagation failure occurs. When a complete propagation
failure occurs, the global calortropy flux through the array vanishes, whereas it is nonvanishing when there
is a partial or complete propagation of the wave front. When the calortropy flux vanishes, the wave front
speed and the net mass flux between the cells also vanish.

I. Introduction Biological and physiological systems may be regarded, from
In a recent papémve have applied the method of irreversible the viewpoint of irreversible thermodynamics, as consisting of
thermodynamics of finite systefto study a chemical neural  an assembly of the aforementioned discrete subsystems (cells),
network—® consisting of finite discrete bistable subsystems and many examples of wave propagation therein have been

(continually stirred tank reactor, CSTR) in which oscillating observed experimentally. Calcium waves in living céfls,
chemical reactions occur while the subsystems (CSTR) interactpropagation of action potentials in the héditand propagation

by exchanging matter between them at a prescribed rate. In refof pulses in myelinated fibelsare typical examples. It has also

1, by suitably fixing the intersubsystem exchange rate of matter been observed that wave propagations fail under certain
according to Hebb’s rules of learniridt was possible to make  circumstances, giving rise to a breakdown of the systems
a neural network perform logic operations; we also examined accompanied by fatal consequenéessxamples would be

the mode of energy-matter dissipation, namely, calortropy demyelinating disease (multiple sclerosis), ventricular fibrilla-
productions accompanying various logic operations by applying tion, and possible cardiac failure. Direct quantitative experi-
the theory of irreversible thermodynamics formulated for neural mental observations of the propagation failure in living systems
networks. We believe that the systems and processes thereinis difficult to make. It consequently has motivated some authors
either biological or physical, consisting of discrete subsystems to use model systems to study the phenomenon; examples are
must be subject to the laws of thermodynamics, just as local linear or circular arrays of coupled CSTRsS®8and linear arrays
irreversible process&g? are, according to the currently accepted of Chua electrical circuit®® These experiments and simulations
natural philosophy. In ref 1 we have found that there are have shown that wave propagation failure occurs if the coupling
characteristiccalortropy productions associated with the logic (e.g., exchange rate of mass or electric charge transfer) between
operations performed by the neural network mentioned. cells (subsystems) is lower than a threshold value.

The aforementioned formulation of the theory was in fact  on the other hand, through a mathematical study of dynamics
the first step in our study of irreversible thermodynamics of ;, arrays of coupled cells Keerlérhas shown that local
processes inan assembly of discrete subsystems of a finite sizeggntinuous models, which employ continuum mechanics equa-
which interact with each other by some means; for example, tjons, such as local reactiemliffusion equations, cannot account
by exchanging energy or matter or both. In this work we fqor the propagation failure phenomenon occurring below the
continue the study and apply the theory formulated in another {hreshold value of the coupling constant and has determined a
direction: namely, wave propagation in an assembly of discrete yg|ation between the wave front velocity and the minimum value
chemical reactors (cells) and irreversible thermodynamics ac- o the coupling constant below which the wave propagation fails.
companying the wave propagation and, in particular, the gjnce then, dynamical models in arrays of discrete cells have
_calor_tropy production, associated with wave propagation and peen theoretically studied by using the Cubic mddé?,2the
its failure. Lorenz oscillator mode® the sine-Gordon potential modl,
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speed of the wave front, and its relation with the coupling dynamics. This differential form for calortropy, when put into
between cells. It also has been demonstraticit propagation local form, also gives rise to a local balance equation for the
failure can occur if the propagation medium is inhomogeneous. local density of calortropy? where the local density ofZfdt
In the experimental and theoretical works done until now the appears as a positive semidefinite source term, which vanishes
appearance of a propagating front has been limited to a fixed as the system reaches equilibrium. Thus we conclude that the
boundary condition (forced propagation). source term in the calortropy balance equation must be positive
In this work, the thermodynamic theory of irreversible semidefinite if the irreversible processes in question are to be
processes that has been formulated for an assembly of discreteonsistent with the second law of thermodynamics. This source
subsystems (neural networks) in a previous Wéiik applied term is called the calortropy production. It will be denoted as
to wave propagation phenomena in an assembly of continually (d=/dt)aray in the present paper. Not only the balance equation
stirred tank reactors (CSTR), which interact at a coupling thus obtained in turn can be put into a differential one-form in
strength. The chemical reactions in the CSTR are modeled byan extended thermodynamic space of local macroscopic vari-
the Oregonat@f for the Belousowv-Zhabotinsky reactiod’ We ables that includes nonconserved variables, but also the dif-
briefly discuss the underlying thermodynamic theory of ir- ferential one-form thus obtained has a mathematical structure
reversible processes below in order to present some importantsimilar to the equilibrium Gibbs relation for the entrofyhat
notions therein, which are necessary for applying the theory. is used in equilibrium thermodynamics: for exampl& <
In the thermodynamic theory of linear irreversible processes T-1(dE + pdV) in the case of a pressurg@olume work. The
developed by de Dondéf,Meixner?® Prigoginei® de Groot  differential form (2) and its local equivalent, the calortropy
and Mazur* and many others under the assumption of local balance equation, are the starting point of the thermodynamic
equilibrium, the local equilibrium Gibbs relation is assumed for theory of irreversible processes developed in ref 10, for example.
the entropy of Fhe system, v_vhlch is posf[ulated to obgy alocal  The aforementioned theory of irreversible thermodynamics
balance equation. The basic hypothesis therefore is that thegnaples us to investigate the thermodynamic consequences of
entropy, originally defined by Clausitidor reversible processes propagation failure or, depending on the viewpoint, its thermo-
or systems at equilibrium, stll_l remains valid and is applicable dynamic cause, by numerically calculating the calortropy
even if the processes are irreversible and the systems aréyroduction accompanying wave propagation or its failure.
removed from equilibrium. The local balance equation for such . .
o - We construct a one-dimensional array of 101 coupled cells
an entropy has a source term which is postulated to be positive . . .
A . where chemical reactions occur according to the Oregonator
semidefinite in order for the second law of thermodynamics to 26 S
L . - . model?® When the cells are initially in a steady state and the
be satisfied. Since the entropy was originally defined only for . . . . ; .
. e coupling constant for the intercellular interactions is appropriate,
reversible processes or for systems at equilibrium, the local a local perturbation of a cell sets a wave in motion and the
equilibrium Gibbs relation for the entropy of a system away wave front, which represents transition of the state of the cell

from equilibrium is logically inappropriate to use for irreversible
processes, and careful analysié o the second law of A SCE AR E AR HOREECRS BO O e
thermodynamics has shown that the notion of entropy used for ’ 9 Y

reversible processes can be generalized so that the second Ia\I\;Om the '”.'“a' _ste_ady state. In fact, we find that if the coupling
constant is within an interval of values, the wave front

of thermodynamics can be properly expressed in a mathematica . P
form even if the processes are irreversible. Such generalized'oro'Oaga.u.as throughout the entire array, k.)L.’t if it is below the
lower critical value or above the upper critical value then the

quantity has been given the name calortropy, which is the propagation fails in contrast to the previous studies using the
equilibrium (i.e., Clausius) entropy extended to irreversible ) :
q ( ) Py cubic and sine-Gordon modé&d7.2%-23 where only one, namely,

rocesses in nonequilibrium systems. We explain it a little more o » .
P d Y P a minimum critical constant, has been observed. We also find

specifically in the following: The second law of thermodynam- . . S R
ics was originally phrased in terms of cycles or engines of a that the propagation fal_lure has characte_rlstlc discontinuities in
gross cale. It has been shoWwi3 that the second law of the cak_)rtropy produc_:tlo_n. The calculation o_f the _calortropy
thermodynamics can be expressed in the integral form production seems to indicate that a propagation failure occurs
when the system reaches a state that is unable to dissipate
i = — (consume) energy and matter for some dynamical reason. Our
fdW =4T(dQ +d=) =0 @ results show that both localized perturbation and the coupling
where the integration is over the cycle suitably described in constant (exchange rate of mass between cells) are the key
the space of macroscopic variables including conserved angParameters to consider in order to avoid the propagation failure

nonconserved variablesQdnd &E denote the compensated heat ©f & wave front.

and the uncompensated heat (originally, Clausius’s ndtins This paper is organized as follows. In Section Il the theory
respectively, andV is the calortropy? It is important to note of irreversible processes in the coupled discrete subsystems is
that despite the process being irreversible the cyclic integral is briefly reviewed, mainly for the sake of introducing the
equal to zero. The uncompensated heat rdust obey the definitions and notation. In section Il the Oregonator model is
inequality & > 0 as a mathematical expression for the second also briefly described together with the kinetic equations for
law of thermodynamics for an infinitesimal differential process. the model and the accompanying rate constants. In this section
Therefore, for a differential process making up the cyclic process the evolution equations for concentrations are presented for the
the second law of thermodynamics is mathematically representedinear array of coupled CSTRs. In section IV the evolution

by the differential form equations are solved numerically and wave propagation phe-
nomena are studied together with some aspects of their
d¥ =T X(dQ + d=) (2) irreversible thermodynamics. Specifically, we calculate the

calortropy production associated with the wave propagation and
where & = 0, the equality holding only for reversible processes show it to be discontinuous with respect to the coupling constant.
or equilibrium. This differential form gives rise to the extended When propagation of the wave front fails, the calortropy
Gibbs relation, when combined with the first law of thermo- production in fact diminishes discontinuously, thereby exhibiting
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characteristic levels of value as wave propagation progressesdenote byx,s the excess concentrations of specebeyond
in the interval of the exchange rate. Section V is for discussion those in the cells which are in the same thermodynamic state

and concluding remarks. so that there is no material exchange between the cells, and if
_ _ the chemical potentials are assumed to be those of ideal solutions
II. Irreversible Thermodynamics of Coupled Cells as is generally assumed in the literature, the chemical potentials

The formalism of irreversible thermodynamics developed of speciesa can be expressed as
previously-? is applied to a system consisting of finite sub-

systems (e.g., cells) interacting (i.e., connected) with each other ﬁf) = /th‘S’ + kg T Inx, ¢ (5)
in the sense that they exchange matter and energy through their
boundaries.

; _ _ o wherei2® is the chemical potential for the homogeneous state
Since the calortropy differential (eq 2) can be given interms (; o ' the standard state) with regard to speei#iwoughout the

of the rates of change in macroscopic variables obeying their 5.5y 1y other words, the cells are in equilibrium with respect

evolution _equations in the aforemepnoned thermodynamic 4, speciesa in such a condition. Note that in such a state

theory of irreversible processes, the integral of the calortropy

differential in the space of macroscopic variables is a surface ~0(-1) _ ~0() _ ~0(s+1)

in which the macroscopic state of the system evolves. In the e

case of the present system irreversible processes in the array of

cells therefore evolve on the calortropy surface spanned byfor all s. Then the aforementioned calortropy production for

species concentrations, temperature, and pressure. In the sendbe array of cells may be written in the form

that the calortropy surface is a mathematical realization of the

thermodynamic laws, such processes described by the theory vom

mentioned above are consistent with the thermodynamic laws, (dE/dt) 5yray = V%Z[Z(A|+ = AD) In(AIAD)]  (6)

which particularly demand that the calortropy productibe s=11=

positive and vanish at equilibrium only. Since the irreversible ]

processes evolve in the calortropy surface, it will be interesting Where 92 denotes the gas constant. To derive this equation we

to understand what the consequences will be for the calortropy have made use of the relation between the chemical equilibrium

production for the global system, which also indicates a measureconstant, which is equal to the ratio of the forward and reverse

of energy and matter dissipation, that is, in this particular case, rate constants of the reaction. On summing the cell contributions

matter transforming from a useful to a less useful form in given in the square brackets over the array of cells, the total calortropy

circumstances, when waves propagate or fail to propagate. weproduction arising from the chemical reactions in the entire

calculate the calortropy production under the assumption that System is obtained.

the solutions of reacting species in the solvent are ideal. In the case of an array of cells in which cells are coupled by
The calortropy production @&dt)array within the cells in the exchanging matter between thgm, there are also contrlbutlons

array of cells with no other irreversible processes than chemical t0 the global calortropy production of the array that arise from

reactions is given by the formia the material exchange (the compensated heat) between the cells.
This global contribution is given By
Yy m
(/) gy = —vrlzzﬂés) R ) dQ, Voo dMO
= =Ty 3 ()
dt /array H £ dt

where V is the volume,T is the temperatureA® are the

affinities of the reactions, arld® are the reaction rates. In this  \yhere MY is the mass of speciesin cell s and the symbol
expression for the calortropy production the contribution of cell gydt denotes the transfer time derivative for the rate of change
sis summed over all cells in the'array. The subscrigtands in, for exampIerf), that arises from exchange of mattMﬁj)

for reactions and there are reactions in each cell. between celk and its surroundings. It should be noted that

If che_mical reactions are the only irreve_rsible Processes n thjs expression does not imply heat, buQ(Hit)array denotes
present in the system, the calortropy production happens t0 béihe rate of calortropy change arising from material exchanges

identical in form with the entropy production appearing in the  peqyeen the cells. Since it can be shown that by the mass
theory of irreversible process€§! based on the local equilib-  .ohservation law within the array

rium hypothesis, but the calortropy production in the generalized
thermodynamic theory of irreversible processes is, rigorously ©
speaking, not the same as the entropy production in the linear - AO(S)deMa
theory of irreversible processes mentioned earlier, but a more Z Z“a ot =0
general notion valid for irreversible processes at any degree of sha=
removal from equilibrium of the system. For this reason we
keep the terminology of calortropy and calortropy production
in this work.

The chemical reactions in cells are the same throughout the
array. The rateRfs) of reactionl in the cells can be expressed in (

(8)

the rate of calortropy change associated with the material
exchange between the cells through their boundaries is given
by the formula

dQ r

C v
] = Xaso1 T Xasrs — e IN X, Js (9
dt )array Fz[a— ﬁ( a,s—1 a,st1 a,s) a,Js ( )

terms of forward rate\,” and reverse raté, :

RY=A" -4 @)
Finally, the total rate of global change in calortro@yin the
in accordance with the mass action law. Furthermore, if we array of cells is given by the formula
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d‘I’ ) v r
— = _WZ[ ﬁ(xa,sfl + Xast1 — Zxas)ln Xa,Js
array . A+
+ VR A=A In[—]| o)
?; ; | I Af

S

The terms on the right-hand side of this equation will be
abbreviated by the symbols

Pret= _{/’)Z[ Z‘ﬁ(xa,sfl + Xastl — 2Xas) In Xas]s (11)

A+

A

Opet= vwi iw —A)n (12)

S

It should be noted that,etis the sum of calortropy productions
within cells, whereagne: is the sum over the entire array of

calortropy changes arising from the exchange of matter between
the cells. The latter should not be regarded as the calortropy

production if there is only one cell that exchanges matter with

its surroundings, but in the case of an array of cells exchanging
matter, the accompanying calortropy change should be included

in the calortropy production in the entire array of cells.
Thereforeonet is the volume integral of the cellular calortropy
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Figure 1. Bifurcation diagram for the Oregonator model. The points
in seta denote the branch of steady states of high concentrations in
the z (C&*") component (oxidated state); the points inlselenote the
states in the region of oscillatory behavior (0.4769 < 2.1166), the
lines indicating the amplitude of the oscillation; and the points in set
c denote the branch of steady states of low concentrations (@)
component (reduced state).

TABLE 1: Rate Constants for the Oregonator Model

reaction forward rate constant reverse rate constant
o1 k1:21 k,]_: 3.3
02 ko=2x 1C° k,=5x 10"°
03 ks = 2200 k-3=33
04 ks=3 x 1C° ks=1x 108
05 k5:l k75:l>< 10_5

control parametef. Typically, this parameter ranges in our
dimensionless version from 0.4769 to 2.1166; see Figure 1. If

productions over the entire array, wherea®(dk)aray is the

volume integral of the calortropy over the entire array of cells.
If the concentrations oscillate with a periag then it is useful

to define the mean value of\ by the time average

the value off is smaller than 0.4769, the steady state is
characterized by high concentrations irfCien (oxidated state),
while if the value off is larger than 2.1166 the steady state is
characterized by low concentrations in*Cén (reduced state).

At a value betweeh= 0.4769 and = 2.1166, the system makes
the transition from one steady state to another because the
system is bistable (i.e., because of the presence of the hysteresis
. . . loop).

We remark that in the case of a single cell enclosed by its  The reactions for the Oregonator model obtained from the
surroundings, the calortropy production is givenday; only if FKN mechanism are as follows:

there are only chemical reactions progressing in the system and

_1
P =

osc™ otpdr Onel(r) (13)

¢net IS just the calortropy flux into or out of the cell or its BrO.” + Br~ + 2H" = HBrO. + HOBr (14)

surroundings. However, if there are coupled cells as is for the 3 2

present case, then the intercellular interactions and material flow HBrO. -+ Br- + H' = 2HOBr (15)
2

between them must be included in the calortropy production
for the whole global systemthe global calortropy production.
This is one of the major differences between irreversible
thermodynamics of a single cell and that of an assembly of cells
which is regarded as a single system. Another feature to
remember is that the variables involved are uniform over the
cellular volume, that is, they are volume averages of local 2cgt + CH,(COOH), + H =2cé"+Br +---+
hydrodynamic variables, which are integrated over the cellular
volume for the volume averages. For the details of this aspect
see ref 2.

BrO,” + HBrO, + 2C€ " + H" = 2HBrO, + 2C€" (16)

2HBrO,~ BrO, + HOBr+ H"* 17)

other products (18)
These chemical reactions have been abbreviated by the Orego-

) ) nator model as follows:
Ill. The Oregonator Model for Chemical Reactions

The system of chemical reactions considered in this work is AtY=X+P (19)
the Oregonator modé$,which is based on the FieteKéros— X+Y=2P (20)
Noyes (FKN) mechanisf proposed to explain the oscillatory -
behavior observed in the Belouse¥habotinsky reaction. The AtX=2X+2z (1)
values of the kinetic constants are taken from the paper by 2X=A+P (22)
Gyorgyi et al** The Oregonator model (see reactions €R1 7 =fY (23)

CR6 and Table 1) describes the ceric ion oxidation by bromate

ions in a sulfuric acid medium and the oxidative bromination where X= HBrO,, Y = HOBr, Z = 2Ce&'*, A= BrO;, and P

of malonic acid. The system of reactions, when allowed to occur = HOBr. To cast the evolution equations for the chemical

in a CSTR, exhibits a hysteresis between two steady states andgpecies of the Oregonator model in a general form, it is
thus bistability and oscillations in an interval of values for the convenient to use a unified system of notation. Let us denote
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the concentrations by and order them in the following manner: Since it is convenient to work with reduced equations, the
following reduced variables and dimensionless parameters are
X=X X =Y, Xg=2Z,%=A X =P defined:
The rate constaritfor this system of reactions are summarized X10= KiXg/Ko, Xo0 = Ks/Kyg, X30 = KaXy/Ky.
in Table 1, wherek andk-; denote the rate constants for the
forward and reverse reaction of reactigmespectively. X = Xy/Xq0, Y = XofXo0, Z= XgfXgg
Then the mass action laws for the forward and reverse
reactions, respectively denotefl” and A;, are given as 7=ty ty = (kikexG) 2
below:

0= (K2 + 2K_XyXe)/ Xy, 0 = Ky(ke¥y — K_1Xe)/k,

A=k A; =k
1T KXgXo, A = K XXg o, = g = kikg/k,

+ = N =
Az =k Az =k 0y = K_gkahkd X115, 0 = 2Kk, /K5, s = Ko/,

B = Kigk/ X4k3«/@,

Bo= kfz)élxm B1= K_ikiXe/Ky, B = Kike/Ky + Thek_s/kyx,

+_ -
Ay =KgXpXq, Ay = k—3X§X3

A=k Ay =K XX

As =T As = fk g%, B3 = kiks/Ky, B4 = TkaKe/ky, Bs = Ke/KyXy,
i’:]r éh;si J]eor:akt)i)(l)n the reaction rates for various species in the model vo= koo, 1 = k,3k3kf Xi /k§, S
Ri=AT — A — A + A, + AL — A5 — 2A] + 2A; V3= kek oKXy, 74 = Kelke,
Ry=—A1 +A; —A; +A; +Ag — A5 = kl(k1k3)1/2X4/ Ky Ty = ks(k1k3)1/2/ Ky T, = ks(k1k3)l/2)(4/ ko
Ry=A3 — A; — Af + A (24) Note thatxio, X20, andxazo are the initial values fox, xp, and

X3, respectively. In this reduction scheme the evolution equations
The evolution of species in an isolated cell is then described of chemical species of the Oregonator in e given by the

by the differential equations dimensionless differential equations
dx , axs
azRi i=1,2,3) (25) Txa=gx(xs,ys,zs)forlsssN
wherexs = 0.06 andxs = 1 are constants; recall that species 4 A
and 5 are maintained at a fixed concentration in the model T ~ WX Yez)forl=s=N
considered. If the cell is exchanging matter at the katsith
its surroundings which are maintained at a fixed composition dz,
(¢: i = 1), then the rate equations should be written as TZE =0,(%, Y1 2) + Byl —z) fors=1  (28)
X koe-x+R (=129 (26) dz _
dt T Tza = 0% Vs Z) T Bya(Zs—1 + 2 — 22)
If the cells are coupled and in exchange of matter with each for2=s=(N—-1)

other at the ratdg, as is assumed for the present model, it is z,
necessary to distinguish the cells. For this purpose we affix a T— = 0,&p Yno Z0) + Bra(Zy_1 — 2) fOrs=N
superscript$) on various quantities. Furthermore, the material dr
exchange tqrm shpuld be modified so that mgterlal exchangeswhere the reduced reaction rates are given by the nonlinear
between neighboring cells are properly described by replacmg]c . :

0. . ; : . unctions of variablex, y, andz
X with the concentrations of the neighboring cells. Thus we

obtain the evolution equations for cell 0% Y,2) = 0p+ 0 X+ ay — 0Xy — @ XZ — (15X2 — 0X

dd_iS) = k(X" = x9) + k(0 = x9) + RY 9%, Y, 2) = o+ BrxX — By — Pxy + Baz — by (29)

(i=1,2,3s=1,2;:-,N) (27) O/X, Y, 2) = yoX — Y. XZ = y2+ ygy

for which we have assumed a uniform material exchange rate these evolution equations are solved for the concentration

at the cell boundaries, namel; are independent of the cell  gyojution until the whole array reaches a uniform steady state
boundaries. It is possible to make the material exchange rategger timeto. The following initial conditions are taken:

dependent on the cell boundaries at the expense of simplicity

in evolution equations. In the present work, it is assumed that %{(0)=0,y4(0)=0,2z(0)=0,s=1,2;--,N (30)
only for species 3 is the exchange rate nonvanishing, that is,

kiz = O for xz only. Then at that instant of = 79 a cell s, (the cell at the center in
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Figure 2. Phase diagram in the plane of the perturbation amplitude
(e0 x 107%) and the coupling constanf)in the case of the wave front
propagation when the initial state for the array of cells corresponds to
a steady statef & 0.4) in the set of the Figure 1. Regiom is for
wave propagation failure, regidmis for partial wave propagation, and
regionc is for complete wave propagation. In the inset denated
blowup of the lower left corner in the figure is shown, where wave
propagation failure occurs § < 6 x 1075,

the present work) is perturbed with regardzt¢ceric ion) by a
step function with an amplitudey. The concentrations af
then can be summarized as follows:

X{To) = X0, Yo(To) = Yi0Z(To) = Zo + €00(T — 7)0550 (31)

The perturbation applied to ced) initiates a wave which may
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Figure 3. Curvea is the global calortropy productiow{ x 1079)

and curveb is the global calortropy flux#*) as a function of, when

a positive perturbation amplitude (addition@fwith valuee, = 1400

is applied to the array of cells. The phase diagram for this figure is
given in Figure 2. The* and ®* are given in units of%? according

to the definitionsy* = onef 2 and¢* = ¢nef 7. The inset (C) is a blowup

of the figure neap = 0.

constructed with the minimal value for the perturbation ampli-
tude that is able to trigger a wave front propagation for a given
value of the coupling constafit Since it was discovered that
the calortropy production changes discontinuously as a wave
front appears and disappears f@sis varied, we found it
convenient to follow the rate of calortropy change for each cell
and construct the phase diagram with the information provided
by the calortropy production. It is thus an example of practical
use of the calortropy production in the study of the propagation

propagate through the array. We numerically investigate the ¢j e problem. Figure 2 shows three different regions in the

mode of wave propagation and the associated calortropylohase diagram.

production in this work.

IV. Numerical Results

The systems of ordinary differential equations (eq 28)
corresponding to the array of 101 coupled cells are solved
numerically with the LSODE®> subroutine based on Gear’s
method® for stiff ordinary differential equations. We have used

{arhe region where the wave front entirely
fails to propagate from the perturbed central cell; we may call
this phenomenon complete wave propagation failurg. f 6

x 1075, such wave front propagation failure occurs regardless
of the value ofeo. In this case, there is no change in the states
of the cells in the entire arrayb) The region where the wave
front propagates until a certain cell is reach@te sometimes
will call it partial propagation failure. (c) The region where the

a numerically estimated Jacobian matrix and a tolerance betweerwave front propagation occurs throughout the array. It must be

108 and 1012 to eliminate spurious numerical data. The array
of coupled Oregonators has been studied of its dynamic
evolution for the following three distinctive cases of initial

noted that wave propagation is unidirectional and irreversible.
The phase diagram constructed is useful because it shows the
relation between the coupling constant and the minima pertur-

steady states of the system. See Figure 1 for the significance ofbational amplitude that is able to trigger a wave front. We have

the bifurcation parametdrused in the following subsections.
A. Initial Steady State Given byf = 0.4 (Oxidated State).
The one-dimensional array of coupled Oregonatond &f 101

explored other values for the bifurcation parameter in this branch
of oxidated states (see Figure 1) and have found similar
behaviors can be observedfik 0.4, but when the value fdr

evolves according to the system of evolution equations (eq 28) is near the bifurcation poirit= 0.4769, a complex relationship
from the initial state corresponding to a bistable steady state asbetweent, and3 emerges and a series of wave front propagation

given by eq 30. The value of the bifurcation paramétefrthe
model is takerf = 0.4. When the reduced time reachgs=

failure seems to occur. We will call this a cascade of wave front
propagation failure. This phenomenon needs a more thorough

1000, the array has attained a global steady state characterizethvestigation. It will be deferred to a later work.

by a high concentration of the €eion (oxidated state). At
this time the array is perturbed at positisr 51, namely, cell

In Figure 3 we show the global calortropy producti@nef
arising from the inherent chemical reactions in the cells and

51 is perturbed by an instantaneous pulse according to thethe global calortropy flux ¢ne) arising from the material
conditions (eq 31), and the concentrations of species thenceforthexchange between the cells in the array. These quantities change

evolve in time ¢ > 1000) according to the evolution equations
(eq 28). The perturbation then may induce a transition of the

as a function of for a given value of perturbation amplitude
€0 = 1400. Note that there is an order of magnitude difference

perturbed cell to the other stable steady state, and the effect ofbetween onet and ¢ne. Consequently, the total calortropy

transition may propagate throughout the array owing to the

production for the entire array looks similar to curaén the

intricate interactions between nonlinear chemical reactions andfigure. In the region of3 < 6 x 105 where the wave front
material exchange between the cells. For this initial global steadydoes not appear, the calortropy production has the same

state of the array we have found that only a positive amplitude
perturbation €, > 0) is able to trigger a wave front propagation,
and the magnitude of the perturbation amplitude varies with
the magnitude of the coupling constghtbetween cells (i.e.,

nonvanishing value as that in the region#33 where the
propagation also fails. As the wave front appears and propagates
through the system g8 passes the lower critical value, the
calortropy production rises until it suddenly drops as the wave

exchange rate of mass). Figure 2 shows the phase diagranfront again fails to propagate at the upper critical valug of
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Figure 4. Trajectory of the wave front propagation at different coupling
constants: 30@), 22.5 @), 15 @), 10 (#). The initial homogeneous
steady state is given bff= 0.4 in the seta of Figure 1, and the
perturbation amplitude by, = 1400.

Figure 5. Phase diagram in the plane @fande, for the wave front
propagation, when the initial state for the array of cells corresponds to
an oscillatory behaviorf(= 1.1) in the seb of Figure 1. Regiora is

for wave propagation failure and regidm is for complete wave

the neighborhood o = 33. Thus the array in the initial propagation. The positive perturbation (additiorepis applied on the
lowest point of the oscillation to generate a wave. The dividing line in

thermodynamic state prgscribed by the initial conditions a§ in the phase diagram means the minimal value in the positive perturbation
eq 30 has a characteristic level of global calortropy production 4 ohtain wave propagation for a given valuefbf

in the intervalfBmin < f < fmax Wherefimin = 6 x 107> and

Pmax = 33. Unlike one;, at the upper critical poinpne: vanishes
as it does below the lower critical value 6f The presence of
an upper critical valug3max Of f has not been previously 400
observed in the studies of propagation failure by other au- 16

500 F
A 18

thorg213:20.17.23n the literature. It is certainly present in the 300 -

case of the Oregonator used in this work. The phase diagrams c* { 2¢*
and the discontinuous calortropy production make the presence 200 -

of such a critical point rather evident. It is noteworthy that the o0 15

total global calortropy productionuge: + ¢ne is lower atf
approaching@maxthan in the neighborhood @f= Smi,, meaning
that less energymatter dissipation is required for a wave to 0
be triggered and propagate n¢ga= Smaxthan neapp = Smin in

the present case examined.

In Figure 4 we show the trajectory of wave front as a function
of time in the case of four different values of the coupling
constant andi= 0.4. The shape of the trajectories is qualitatively
similar to the experimentally observed shape for the chlerite
iodide system by Laplante and ErnetiXNotice the initial rise
of the trajectories and the presence of an inflection point at an by destroying the oscillatory motion in each cell, and an amazing
intermediate time for each curve. We observe there is a kink in variety (a complex stationary pattern) of stable steady states,
each curve, but its origin is not understood at present and it which are unsymmetrical, emerges. Figure 5 shows the phase
does not seem to arise from the finite size of the array or diagram constructed with the minimal value for the perturbation
numerical errors. It may be a manifestation of the region amplitude that is able to trigger a wave propagation for a given
containing the inflection point seen in the data by Laplante and value of the coupling constafit The phase diagram shows that
Erneux, because the scales used in the present investigation arg this case a partial wave propagation is not present, but the
by necessity coarse-grained. It is possible to calculate the wavewave completely propagates throughout the array, if there is a
front speed from these curves as a function of the coupling wave triggered. Therefore, we have either a complete wave
constant. propagation (region b in the phase diagram) or a complete wave

B. Initial Steady State Given by f = 1.1 (Oscillatory propagation failure (region a in the phase diagram). The phase

1 1 L O
13 17 21

B

Figure 6. Curvea is for the global calortropy productiorsf) and
curvep is for the global calortropy fluxg*) as a function ofb when

a positive perturbation (addition @f with valuee, = 0.15 is applied

to the array of cells. The phase diagram for this figure is given in Figure
5. The meanings of the symbols are the same as Figure 3.

Behavior). We now explore the propagation of a wave triggered
by a localized perturbation, when the initial global state of the
array is oscillatory. The procedure is similar to the one followed
in the previous subsection. The global oscillatory state for the

diagram was constructed by following the calortropy production
in a manner similar to the previous subsection. Figure 6 shows
the global calortropy productiomye) arising from the chemical
reactions in the whole system and the global calortropy flux

array is given by the bifurcation parameter 1.1. In this case, (¢nep arising from the material exchange between the cells in
we have found that only for a positive perturbation amplitude the system as a function gffor ¢, = 0.15. In Figure 5 for the

(e0 > 0) is a particular point (i.e., state) of the limit cycle that phase diagram, the propagation failure occuy$ 4at6.8 ands
describes the oscillatory behavior able to give rise to a wave = 20 if ¢ = 0.15. In this case, the global calortropy production
propagation. More specifically, a small positive amplitude for (one) and the global calortropy fluxgge) vary in a complex
the perturbation applied at the lowest point (concentration) of and discontinuous manner in the interval &75 < 19.9,

the oscillation is able to trigger a wave propagation, whereas at exhibiting many discontinuities that are associated with complex
other points on the limit cycle it is practically impossible to patterns emerging in the cells in the wake of the wave front.
trigger a wave propagation with a perturbation with a finite size. This means that the complex patterns have characteristic
When the perturbation is applied to the ce# 51 at the lowest calortropy productions, and this is consistent with a similar
concentration point of the limit cycle, a wave starts to propagate observatiof’ -3 made in connection with pattern formations in
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Figure 7. Phase diagram in the plane @fande, for the wave front B

propagation, when the initial state for the array of cells corresponds to
a steady statdf & 2.2) in the set in Figure 1. Regiora is for partial
wave propagation, regiob is for complete wave propagation, and
regionc is for wave propagation failure.

Figure 8. Curvea is for the global calortropy productiorst) and
curvef is for the global calortropy fluxg*) as a function of b when

a negative perturbation (elimination af e.g., precipitation or com-
plexation) with valueso = —0.28 is applied to the array of cells. The
phase diagram for this figure is given in Figure 7. The meanings of
a single cell made up of the Selkov model of chemical reactions. the symbols are the same as in Figure 3.

Notice thatonetis again about 2 orders of magnitude larger than
¢ner and it means that the total global calortropy production V. Discussion and Concluding Remarks
for the entire array looks similar tane: Again in this case, the

total global calortropy production is lower in the regior/tfax trigger a wave, the wave propagation, and its failure in a linear

than |n't.he region Ofmin. ) assembly of 101 interacting cells in which chemical reactions
C. Initial Steady State Given byf = 2.2 (Reduced State).  occur according to the Oregonator model. We have also
Finally, we explore the wave front propagation triggered as a cajculated the calortropy production accompanying the phe-
result of localized perturbation when the initial global steady nomena by applying the theory of irreversible processes
state of the array is that specified by the bifurcation parameter formulated for networked reactor cells reported previously. The
f = 2.2. This state is characterized by a low concentration of thermodynamic theory of irreversible processes in an assembly
the Cé* ion (reduced state). The procedure of calculation is of discrete interacting subsystems provides a useful tool for
similar to the one followed in the previous subsections. getting insights into this kind of phenomena, for example, by
Surprisingly, we have found that for this global steady state it facilitating the construction of phase diagrams. The calortropy
is impossible to trigger a wave front propagation with a positive production also provides a way to interpret propagation failure
perturbation amplitude for any value of the coupling constant in terms of energymatter dissipation by the system and,
B. This means that the initial state is stable to the perturbation perhaps, to optimize wave propagation or, more generally, the
and the system would not make the transition from it to the irreversible process of interest, with regard to enengatter
other stable steady state. However, we have found that a negativélissipation. From the standpoint of irreversible thermodynamics
perturbation amplitude is able to trigger a wave propagation. it is possible to view the propagation failure to occur, when the
Figure 7 shows the phase diagram constructed with the minimal System gets into a state where it is not able to dissipate energy
value (taken absolute) for the perturbation amplitude that is able @nd matter required for the process to evolve into a wave. In
to trigger a wave propagation for a given value of the coupling @Y event, since all physical and biological phenomena must
constantd. The phase diagram was constructed by following be framed within the bounds of the the_rmodynamlc_ laws, itis
the calortropy production in the same manner as for the previous€cessary to develop a thermodynamic theory of irreversible
subsections. In this case, the phase diagram is simpler and showB'0¢€Sses therein, and the present work is an effort toward that
three different regions: (a) partial wave propagation; (b) end. The propagation failure hgs attrac_ted t_he attention .Of many
complete wave propagation; and (c) complete wave propagation“?se"’“.Ch workers because of its POSS'ble. implications in some
failure. In Figure 7 for the phase diagram we see that the biological systems. The theory of irreversible thermodyn_amlcs
propagation failure occurs & < 5.3 and8 = 38.9. For presented for an assembly of cells appears to provide an

8 < 5.3, complete wave propagation failure occurs re ardlessinsightful means to investigate various irreversible processes
= 9.9, comp propaga - - 9 in such systems in a thermodynamically consistent manner, and
of the magnitude of the perturbation amplitude. Figure 8 shows

. - ; the wave propagation or its failure examined in this work is an
the global calortropy productiomye) arising from the chemical example of application of the theory of irreversible thermody-
reactions in the cells and the global calortropy flgxcf arising

i ; namics. For example, the sharp changes in calortropy production
from .the material exchange between the cellsj in the array as 8accompanying propagation failure allow us to find precisely the
function of 3 for €o = — 0.28. In the case considered here, the (yitical values of control parameters for the wave propagation
global calortropy productionvge) and the global calortropy flux o jts failure. Moreover, since the calortropy surface is an
(¢ne) increase monotonically from a small but nonvanishing information storage for processes in the system, investigating
value for onet and from a vanishingpner until a propagation  its mathematical structure might be able provide some useful
failure occurs at the upper critical value gfwhere bothonet insights into how the system would behave and wave propaga-
and ¢net change discontinuously, the former to a small non- tion might arise from the thermodynamic viewpoint. However,
vanishing value and the latter to zero. In contrast to the initial a more complete construction of such a calortropy surface would
conditions considered in the previous two subsections, the totalrequire much more elaborate investigations into the question
global calortropy production in the present case is lowes at than what is presented in this paper. It should be left to future
= Bmin than atf = fmax work.

In this work we have numerically explored the conditions to
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