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In this paper we report on a numerical study of wave propagation and its failure in a one-dimensional array
of coupled chemical cells and irreversible thermodynamics of the array. The Oregonator model for the
Belousov-Zhabotinsky reaction is used to model the chemical reactions. In particular, we investigate the
dependence of wave front propagation failure on the mass exchange rate for the Ce4+ component between
cells and on the amplitude of a perturbation employed to trigger a propagation of transition from an initially
homogeneous state to final stationary patterns reached by the system. In the case of the Oregonator, there
appear two critical mass transfer rates at which propagation failure occurs, in contrast to the cases of the
cubic model or the sine-Gordon model reported in the literature. By following the evolution of the calortropy
production accompanying wave propagation, we construct phase diagrams that provide valuable insights into
the propagation failure phenomenon. The global calortropy production is shown to exhibit discontinuous
changes with respect to the transfer rate when propagation failure occurs. When a complete propagation
failure occurs, the global calortropy flux through the array vanishes, whereas it is nonvanishing when there
is a partial or complete propagation of the wave front. When the calortropy flux vanishes, the wave front
speed and the net mass flux between the cells also vanish.

I. Introduction
In a recent paper1 we have applied the method of irreversible

thermodynamics of finite systems2 to study a chemical neural
network3-6 consisting of finite discrete bistable subsystems
(continually stirred tank reactor, CSTR) in which oscillating
chemical reactions occur while the subsystems (CSTR) interact
by exchanging matter between them at a prescribed rate. In ref
1, by suitably fixing the intersubsystem exchange rate of matter
according to Hebb’s rules of learning,7 it was possible to make
a neural network perform logic operations; we also examined
the mode of energy-matter dissipation, namely, calortropy
productions accompanying various logic operations by applying
the theory of irreversible thermodynamics formulated for neural
networks. We believe that the systems and processes therein,
either biological or physical, consisting of discrete subsystems
must be subject to the laws of thermodynamics, just as local
irreversible processes8-10 are, according to the currently accepted
natural philosophy. In ref 1 we have found that there are
characteristiccalortropy productions associated with the logic
operations performed by the neural network mentioned.

The aforementioned formulation of the theory was in fact
the first step in our study of irreversible thermodynamics of
processes in an assembly of discrete subsystems of a finite size,
which interact with each other by some means; for example,
by exchanging energy or matter or both. In this work we
continue the study and apply the theory formulated in another
direction: namely, wave propagation in an assembly of discrete
chemical reactors (cells) and irreversible thermodynamics ac-
companying the wave propagation and, in particular, the
calortropy production, associated with wave propagation and
its failure.

Biological and physiological systems may be regarded, from
the viewpoint of irreversible thermodynamics, as consisting of
an assembly of the aforementioned discrete subsystems (cells),
and many examples of wave propagation therein have been
observed experimentally. Calcium waves in living cells,11

propagation of action potentials in the heart,12,13and propagation
of pulses in myelinated fibers14 are typical examples. It has also
been observed that wave propagations fail under certain
circumstances, giving rise to a breakdown of the systems
accompanied by fatal consequences;15 examples would be
demyelinating disease (multiple sclerosis), ventricular fibrilla-
tion, and possible cardiac failure. Direct quantitative experi-
mental observations of the propagation failure in living systems
is difficult to make. It consequently has motivated some authors
to use model systems to study the phenomenon; examples are
linear or circular arrays of coupled CSTRs16-18 and linear arrays
of Chua electrical circuits.19 These experiments and simulations
have shown that wave propagation failure occurs if the coupling
(e.g., exchange rate of mass or electric charge transfer) between
cells (subsystems) is lower than a threshold value.

On the other hand, through a mathematical study of dynamics
in arrays of coupled cells Keener12 has shown that local
continuous models, which employ continuum mechanics equa-
tions, such as local reaction-diffusion equations, cannot account
for the propagation failure phenomenon occurring below the
threshold value of the coupling constant and has determined a
relation between the wave front velocity and the minimum value
of the coupling constant below which the wave propagation fails.
Since then, dynamical models in arrays of discrete cells have
been theoretically studied by using the Cubic model,17,20,21the
Lorenz oscillator model,22 the sine-Gordon potential model,23

and a piecewise linear reaction model.24 These theoretical studies
have determined the conditions for wave front propagation, the
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speed of the wave front, and its relation with the coupling
between cells. It also has been demonstrated25 that propagation
failure can occur if the propagation medium is inhomogeneous.
In the experimental and theoretical works done until now the
appearance of a propagating front has been limited to a fixed
boundary condition (forced propagation).

In this work, the thermodynamic theory of irreversible
processes that has been formulated for an assembly of discrete
subsystems (neural networks) in a previous work1,2 is applied
to wave propagation phenomena in an assembly of continually
stirred tank reactors (CSTR), which interact at a coupling
strength. The chemical reactions in the CSTR are modeled by
the Oregonator26 for the Belousov-Zhabotinsky reaction.27 We
briefly discuss the underlying thermodynamic theory of ir-
reversible processes below in order to present some important
notions therein, which are necessary for applying the theory.

In the thermodynamic theory of linear irreversible processes
developed by de Donder,28 Meixner,29 Prigogine,30 de Groot
and Mazur,31 and many others under the assumption of local
equilibrium, the local equilibrium Gibbs relation is assumed for
the entropy of the system, which is postulated to obey a local
balance equation. The basic hypothesis therefore is that the
entropy, originally defined by Clausius32 for reversible processes
or systems at equilibrium, still remains valid and is applicable
even if the processes are irreversible and the systems are
removed from equilibrium. The local balance equation for such
an entropy has a source term which is postulated to be positive
semidefinite in order for the second law of thermodynamics to
be satisfied. Since the entropy was originally defined only for
reversible processes or for systems at equilibrium, the local
equilibrium Gibbs relation for the entropy of a system away
from equilibrium is logically inappropriate to use for irreversible
processes, and careful analysis8-10 of the second law of
thermodynamics has shown that the notion of entropy used for
reversible processes can be generalized so that the second law
of thermodynamics can be properly expressed in a mathematical
form even if the processes are irreversible. Such generalized
quantity has been given the name calortropy, which is the
equilibrium (i.e., Clausius) entropy extended to irreversible
processes in nonequilibrium systems. We explain it a little more
specifically in the following: The second law of thermodynam-
ics was originally phrased in terms of cycles or engines of a
gross cale. It has been shown8-10,33 that the second law of
thermodynamics can be expressed in the integral form

where the integration is over the cycle suitably described in
the space of macroscopic variables including conserved and
nonconserved variables, dQand d¥ denote the compensated heat
and the uncompensated heat (originally, Clausius’s notions32),
respectively, andΨ is the calortropy.10 It is important to note
that despite the process being irreversible the cyclic integral is
equal to zero. The uncompensated heat d¥ must obey the
inequality d¥ g 0 as a mathematical expression for the second
law of thermodynamics for an infinitesimal differential process.
Therefore, for a differential process making up the cyclic process
the second law of thermodynamics is mathematically represented
by the differential form

where d¥ g 0, the equality holding only for reversible processes
or equilibrium. This differential form gives rise to the extended
Gibbs relation, when combined with the first law of thermo-

dynamics. This differential form for calortropy, when put into
local form, also gives rise to a local balance equation for the
local density of calortropy,10 where the local density of d¥/dt
appears as a positive semidefinite source term, which vanishes
as the system reaches equilibrium. Thus we conclude that the
source term in the calortropy balance equation must be positive
semidefinite if the irreversible processes in question are to be
consistent with the second law of thermodynamics. This source
term is called the calortropy production. It will be denoted as
(d¥/dt)array in the present paper. Not only the balance equation
thus obtained in turn can be put into a differential one-form in
an extended thermodynamic space of local macroscopic vari-
ables that includes nonconserved variables, but also the dif-
ferential one-form thus obtained has a mathematical structure
similar to the equilibrium Gibbs relation for the entropyS that
is used in equilibrium thermodynamics: for example, dS )
T-1(dE + pdV) in the case of a pressure-volume work. The
differential form (2) and its local equivalent, the calortropy
balance equation, are the starting point of the thermodynamic
theory of irreversible processes developed in ref 10, for example.

The aforementioned theory of irreversible thermodynamics
enables us to investigate the thermodynamic consequences of
propagation failure or, depending on the viewpoint, its thermo-
dynamic cause, by numerically calculating the calortropy
production accompanying wave propagation or its failure.

We construct a one-dimensional array of 101 coupled cells
where chemical reactions occur according to the Oregonator
model.26 When the cells are initially in a steady state and the
coupling constant for the intercellular interactions is appropriate,
a local perturbation of a cell sets a wave in motion and the
wave front, which represents transition of the state of the cell
from a steady state to another, propagates through the array of
the cells, leaving behind it cells in another steady-state reached
from the initial steady state. In fact, we find that if the coupling
constant is within an interval of values, the wave front
propagates throughout the entire array, but if it is below the
lower critical value or above the upper critical value then the
propagation fails in contrast to the previous studies using the
cubic and sine-Gordon models12,17,20-23 where only one, namely,
a minimum critical constant, has been observed. We also find
that the propagation failure has characteristic discontinuities in
the calortropy production. The calculation of the calortropy
production seems to indicate that a propagation failure occurs
when the system reaches a state that is unable to dissipate
(consume) energy and matter for some dynamical reason. Our
results show that both localized perturbation and the coupling
constant (exchange rate of mass between cells) are the key
parameters to consider in order to avoid the propagation failure
of a wave front.

This paper is organized as follows. In Section II the theory
of irreversible processes in the coupled discrete subsystems is
briefly reviewed, mainly for the sake of introducing the
definitions and notation. In section III the Oregonator model is
also briefly described together with the kinetic equations for
the model and the accompanying rate constants. In this section
the evolution equations for concentrations are presented for the
linear array of coupled CSTRs. In section IV the evolution
equations are solved numerically and wave propagation phe-
nomena are studied together with some aspects of their
irreversible thermodynamics. Specifically, we calculate the
calortropy production associated with the wave propagation and
show it to be discontinuous with respect to the coupling constant.
When propagation of the wave front fails, the calortropy
production in fact diminishes discontinuously, thereby exhibiting

IdΨ ) IT-1(dQ + d¥) ) 0 (1)

dΨ ) T-1(dQ + d¥) (2)
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characteristic levels of value as wave propagation progresses
in the interval of the exchange rate. Section V is for discussion
and concluding remarks.

II. Irreversible Thermodynamics of Coupled Cells

The formalism of irreversible thermodynamics developed
previously1,2 is applied to a system consisting of finite sub-
systems (e.g., cells) interacting (i.e., connected) with each other
in the sense that they exchange matter and energy through their
boundaries.

Since the calortropy differential (eq 2) can be given in terms
of the rates of change in macroscopic variables obeying their
evolution equations in the aforementioned thermodynamic
theory of irreversible processes, the integral of the calortropy
differential in the space of macroscopic variables is a surface
in which the macroscopic state of the system evolves. In the
case of the present system irreversible processes in the array of
cells therefore evolve on the calortropy surface spanned by
species concentrations, temperature, and pressure. In the sense
that the calortropy surface is a mathematical realization of the
thermodynamic laws, such processes described by the theory
mentioned above are consistent with the thermodynamic laws,
which particularly demand that the calortropy production9 be
positive and vanish at equilibrium only. Since the irreversible
processes evolve in the calortropy surface, it will be interesting
to understand what the consequences will be for the calortropy
production for the global system, which also indicates a measure
of energy and matter dissipation, that is, in this particular case,
matter transforming from a useful to a less useful form in given
circumstances, when waves propagate or fail to propagate. We
calculate the calortropy production under the assumption that
the solutions of reacting species in the solvent are ideal.

The calortropy production (d¥/dt)array within the cells in the
array of cells with no other irreversible processes than chemical
reactions is given by the formula1,8

where V is the volume,T is the temperature,Al
(s) are the

affinities of the reactions, andRl
(s) are the reaction rates. In this

expression for the calortropy production the contribution of cell
s is summed over all cells in the array. The subscriptl stands
for reactions and there arem reactions in each cell.

If chemical reactions are the only irreversible processes
present in the system, the calortropy production happens to be
identical in form with the entropy production appearing in the
theory of irreversible processes30,31 based on the local equilib-
rium hypothesis, but the calortropy production in the generalized
thermodynamic theory of irreversible processes is, rigorously
speaking, not the same as the entropy production in the linear
theory of irreversible processes mentioned earlier, but a more
general notion valid for irreversible processes at any degree of
removal from equilibrium of the system. For this reason we
keep the terminology of calortropy and calortropy production
in this work.

The chemical reactions in cells are the same throughout the
array. The rateRl

(s) of reactionl in the cells can be expressed in
terms of forward rateΛl

+ and reverse rateΛl
-:

in accordance with the mass action law. Furthermore, if we

denote byxa,s the excess concentrations of speciesa beyond
those in the cells which are in the same thermodynamic state
so that there is no material exchange between the cells, and if
the chemical potentials are assumed to be those of ideal solutions
as is generally assumed in the literature, the chemical potentials
of speciesa can be expressed as

whereµ̂a
0(s) is the chemical potential for the homogeneous state

(i.e., the standard state) with regard to speciesa throughout the
array. In other words, the cells are in equilibrium with respect
to speciesa in such a condition. Note that in such a state

for all s. Then the aforementioned calortropy production for
the array of cells may be written in the form

whereR denotes the gas constant. To derive this equation we
have made use of the relation between the chemical equilibrium
constant, which is equal to the ratio of the forward and reverse
rate constants of the reaction. On summing the cell contributions
in the square brackets over the array of cells, the total calortropy
production arising from the chemical reactions in the entire
system is obtained.

In the case of an array of cells in which cells are coupled by
exchanging matter between them, there are also contributions
to the global calortropy production of the array that arise from
the material exchange (the compensated heat) between the cells.
This global contribution is given by1,2

whereMa
(s) is the mass of speciesa in cell s and the symbol

de/dt denotes the transfer time derivative for the rate of change
in, for example,Ma

(s), that arises from exchange of matter (Ma
(s))

between cells and its surroundings. It should be noted thatQc

in this expression does not imply heat, but (dQc/dt)arraydenotes
the rate of calortropy change arising from material exchanges
between the cells. Since it can be shown that by the mass
conservation law within the array

the rate of calortropy change associated with the material
exchange between the cells through their boundaries is given
by the formula

Finally, the total rate of global change in calortropyΨ in the
array of cells is given by the formula

(d¥/dt)array) -VT-1∑
s)1

ν

∑
l)1

m

Al
(s) Rl

(s) (3)

Rl
(s) ) Λl

+ - Λl (4)

µ̂a
(s) ) µ̂a

0(s) + kBT lnxa,s (5)

µ̂a
0(s-1) ) µ̂a

0(s) ) µ̂a
0(s+1)

(d¥/dt)array) VR∑
s)1

ν

[∑
l)1

m

(Λl
+ - Λl

-) ln(Λl
+/Λl

-)]s (6)

(dQc

dt )
array

) -T-1∑
s)1

ν

∑
a)1

r

µ̂a
(s)

deMa
(s)

dt
(7)

∑
s)1

ν

∑
a)1

r

µ̂a
0(s)

deMa
(s)

dt
) 0 (8)

(dQc

dt )
array

) -R∑
s)1

ν

[∑
a)1

r

â(xa,s-1 + xa,s+1 - 2xa,s) ln xa,s]s (9)
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The terms on the right-hand side of this equation will be
abbreviated by the symbols

It should be noted thatσnet is the sum of calortropy productions
within cells, whereasφnet is the sum over the entire array of
calortropy changes arising from the exchange of matter between
the cells. The latter should not be regarded as the calortropy
production if there is only one cell that exchanges matter with
its surroundings, but in the case of an array of cells exchanging
matter, the accompanying calortropy change should be included
in the calortropy production in the entire array of cells.
Therefore,σnet is the volume integral of the cellular calortropy
productions over the entire array, whereas (dΨ/dt)array is the
volume integral of the calortropy over the entire array of cells.

If the concentrations oscillate with a periodτp, then it is useful
to define the mean value ofσnet by the time average

We remark that in the case of a single cell enclosed by its
surroundings, the calortropy production is given byσnet only if
there are only chemical reactions progressing in the system and
φnet is just the calortropy flux into or out of the cell or its
surroundings. However, if there are coupled cells as is for the
present case, then the intercellular interactions and material flow
between them must be included in the calortropy production
for the whole global systemsthe global calortropy production.
This is one of the major differences between irreversible
thermodynamics of a single cell and that of an assembly of cells
which is regarded as a single system. Another feature to
remember is that the variables involved are uniform over the
cellular volume, that is, they are volume averages of local
hydrodynamic variables, which are integrated over the cellular
volume for the volume averages. For the details of this aspect
see ref 2.

III. The Oregonator Model for Chemical Reactions

The system of chemical reactions considered in this work is
the Oregonator model,26 which is based on the Field-Köros-
Noyes (FKN) mechanism27 proposed to explain the oscillatory
behavior observed in the Belousov-Zhabotinsky reaction. The
values of the kinetic constants are taken from the paper by
Gyorgyi et al.34 The Oregonator model (see reactions CR1-
CR6 and Table 1) describes the ceric ion oxidation by bromate
ions in a sulfuric acid medium and the oxidative bromination
of malonic acid. The system of reactions, when allowed to occur
in a CSTR, exhibits a hysteresis between two steady states and
thus bistability and oscillations in an interval of values for the

control parameterf. Typically, this parameter ranges in our
dimensionless version from 0.4769 to 2.1166; see Figure 1. If
the value of f is smaller than 0.4769, the steady state is
characterized by high concentrations in Ce4+ ion (oxidated state),
while if the value off is larger than 2.1166 the steady state is
characterized by low concentrations in Ce4+ ion (reduced state).
At a value betweenf ) 0.4769 andf ) 2.1166, the system makes
the transition from one steady state to another because the
system is bistable (i.e., because of the presence of the hysteresis
loop).

The reactions for the Oregonator model obtained from the
FKN mechanism are as follows:

These chemical reactions have been abbreviated by the Orego-
nator model as follows:

where X≡ HBrO2, Y ≡ HOBr, Z ≡ 2Ce4+, A ≡ BrO3
-, and P

≡ HOBr. To cast the evolution equations for the chemical
species of the Oregonator model in a general form, it is
convenient to use a unified system of notation. Let us denote

(dΨ

dt )
array

) -R∑
s)1

ν

[∑
a)1

r

â(xa,s-1 + xa,s+1 - 2xa,s)ln xa,s]s

+ VR∑
s)1

ν [∑l)1

m

(Λl
+ - Λl

-) ln (Λl
+

Λl
-)]

s

(10)

φnet) -R∑
s)1

ν

[∑
a)1

r

â(xa,s-1 + xa,s+1 - 2xa,s) ln xa,s]s (11)

σnet) VR∑
s)1

ν [∑l)1

m

(Λl
+ - Λl

-) ln (Λl
+

Λl
-)]

s

(12)

σosc) 1
τp
∫0

τpdτ σnet(τ) (13)

Figure 1. Bifurcation diagram for the Oregonator model. The points
in set a denote the branch of steady states of high concentrations in
thez (Ce4+) component (oxidated state); the points in setb denote the
states in the region of oscillatory behavior (0.4769e f e 2.1166), the
lines indicating the amplitude of the oscillation; and the points in set
c denote the branch of steady states of low concentrations in thez (Ce4+)
component (reduced state).

TABLE 1: Rate Constants for the Oregonator Model

reaction forward rate constant reverse rate constant

O1 k1 ) 2.1 k-1 ) 3.3
O2 k2 ) 2 × 106 k-2 ) 5 × 10-5

O3 k3 ) 2200 k-3 ) 33
O4 k4 ) 3 × 103 k-4 ) 1 × 10-8

O5 k5 ) 1 k-5 ) 1 × 10-5

BrO3
- + Br- + 2H+ h HBrO2 + HOBr (14)

HBrO2 + Br- + H+ h 2HOBr (15)

BrO3
- + HBrO2 + 2Ce3 + + H+ h 2HBrO2 + 2Ce4+ (16)

2HBrO2h BrO3
- + HOBr + H+ (17)

2Ce4+ + CH2(COOH)2 + H+ h 2Ce3+ + fBr- + ‚ ‚ ‚ +
other products (18)

A + Y h X + P (19)

X + Y h 2P (20)

A + X h 2X + Z (21)

2X h A + P (22)

Z h fY (23)
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the concentrations byxi and order them in the following manner:

The rate constants34 for this system of reactions are summarized
in Table 1, whereki andk-i denote the rate constants for the
forward and reverse reaction of reactioni, respectively.

Then the mass action laws for the forward and reverse
reactions, respectively denotedΛi

+ and Λi
-, are given as

below:

In this notation the reaction rates for various species in the model
are given by

The evolution of species in an isolated cell is then described
by the differential equations

wherex4 ) 0.06 andx5 ) 1 are constants; recall that species 4
and 5 are maintained at a fixed concentration in the model
considered. If the cell is exchanging matter at the ratekf with
its surroundings which are maintained at a fixed composition
(xi

0: i g 1), then the rate equations should be written as

If the cells are coupled and in exchange of matter with each
other at the ratekf, as is assumed for the present model, it is
necessary to distinguish the cells. For this purpose we affix a
superscript (s) on various quantities. Furthermore, the material
exchange term should be modified so that material exchanges
between neighboring cells are properly described by replacing
xi

0 with the concentrations of the neighboring cells. Thus we
obtain the evolution equations for cells

for which we have assumed a uniform material exchange rate
at the cell boundaries, namely,kfi are independent of the cell
boundaries. It is possible to make the material exchange rate
dependent on the cell boundaries at the expense of simplicity
in evolution equations. In the present work, it is assumed that
only for species 3 is the exchange rate nonvanishing, that is,
kf3 * 0 for x3 only.

Since it is convenient to work with reduced equations, the
following reduced variables and dimensionless parameters are
defined:

Note thatx10, x20, andx30 are the initial values forx1, x2, and
x3, respectively. In this reduction scheme the evolution equations
of chemical species of the Oregonator in cells are given by the
dimensionless differential equations

where the reduced reaction rates are given by the nonlinear
functions of variablesx, y, andz

These evolution equations are solved for the concentration
evolution until the whole array reaches a uniform steady state
after timeτ0. The following initial conditions are taken:

Then at that instant ofτ ) τ0 a cells0 (the cell at the center in

x1 ) X, x2 ) Y, x3 ) Z, x4 ) A, x5 ) P

Λ1
+ ) k1x4x2, Λ1

- ) k-1x1x5

Λ2
+ ) k2x1x2, Λ2

- ) k-2x4
2

Λ3
+ ) k3x4x1, Λ3

- ) k-3x1
2x3

Λ4
+ ) k4x1

2, Λ4
- ) k-4x4x5

Λ5
+ ) fk5x3, Λ5

- ) fk-5x2

R1 )Λ1
+ - Λ1

- - Λ2
+ + Λ2

- + Λ3
+ - Λ3

- - 2Λ4
+ + 2Λ4

-

R2 ) -Λ1
+ + Λ1

- - Λ2
+ + Λ2

- + Λ5
+ - Λ5

-

R3 ) Λ3
+ - Λ3

- - Λ5
+ + Λ5

- (24)

dxi

dt
) Ri (i ) 1, 2, 3) (25)

dxi

dt
) kf(xi

0 - xi) + Ri (i ) 1, 2, 3) (26)

dxi
(s)

dt
) kfi(xi

(s-1) - xi
(s)) + kfi(xi

(s+1) - xi
(s)) + Ri

(s)

(i ) 1, 2, 3;s ) 1, 2,‚ ‚ ‚ , N) (27)

x10) k1x4/k2, x20 ) k5/k4, x30 ) k3x4/k2,

x ) x1/x10, y ) x2/x20, z ) x3/x30

τ ) t/t0, t0 ) (k1k3x4
2)-1/2

R0 ) (k-2x5
2 + 2k-4x4x5)/x4, R1 ) k1(k3x4 - k-1x5)/k2,

R2 ) R3 ) k1k5/k4

R4 ) k-3k3k1
2 x4

2/k2
3, R5 ) 2k1

2k4x4/k2
2, R6 ) k1/k2

â ) kf3k2/x4k3xk1k3

â0 ) k-2x5
2/x4, â1 ) k-1k1x5/k2, â2 ) k1k5/k4 + fk5k-5/k4x4

â3 ) k1k5/k4, â4 ) fk3k5/k2, â5 ) k5/k4x4,

γ0 ) k1k3x4/k2, γ1 ) k-3k3k1
2 x4

2/k2
3, γ2 ) k3k5/k2,

γ3 ) k5k-5/k4x4, γ4 ) k3/k2,

Tx ) k1(k1k3)
1/2x4/k2, Ty ) k5(k1k3)

1/2/k4, Tz ) k3(k1k3)
1/2x4/k2

Tx

dxs

dτ
) gx(xs, ys, zs) for 1 e s e N

Ty

dys

dτ
) gy(xs, ys, zs) for 1 e s e N

Tz

dz1

dτ
) gz(x1, y1, z1) + âγ4(z2 - z1) for s ) 1 (28)

Tz

dzs

dτ
) gz(xs, ys, zs) + âγ4(zs-1 + zs+1 - 2zs)

for 2 e s e (N - 1)

Tz

dzN

dτ
) gz(xN, yN, zN) + âγ4(zN-1 - zN) for s ) N

gx(x, y, z) ) R0 + R1x + R2y - R3xy - R4x
2z - R5x

2 - R6x

gy(x, y, z) ) â0 + â1x - â2y - â3xy + â4z - â5y (29)

gz(x, y, z) ) γ0x - γ1x
2z - γ2z + γ3y

xs(0) ) 0, ys(0) ) 0, zs(0) ) 0, s ) 1, 2,‚ ‚ ‚ , N (30)
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the present work) is perturbed with regard toz (ceric ion) by a
step function with an amplitudeε0. The concentrations atτ0

then can be summarized as follows:

The perturbation applied to cells0 initiates a wave which may
propagate through the array. We numerically investigate the
mode of wave propagation and the associated calortropy
production in this work.

IV. Numerical Results

The systems of ordinary differential equations (eq 28)
corresponding to the array of 101 coupled cells are solved
numerically with the LSODE35 subroutine based on Gear’s
method36 for stiff ordinary differential equations. We have used
a numerically estimated Jacobian matrix and a tolerance between
10-8 and 10-12 to eliminate spurious numerical data. The array
of coupled Oregonators has been studied of its dynamic
evolution for the following three distinctive cases of initial
steady states of the system. See Figure 1 for the significance of
the bifurcation parameterf used in the following subsections.

A. Initial Steady State Given by f ) 0.4 (Oxidated State).
The one-dimensional array of coupled Oregonators ofN ) 101
evolves according to the system of evolution equations (eq 28)
from the initial state corresponding to a bistable steady state as
given by eq 30. The value of the bifurcation parameterf of the
model is takenf ) 0.4. When the reduced time reachesτ0 )
1000, the array has attained a global steady state characterized
by a high concentration of the Ce4+ ion (oxidated state). At
this time the array is perturbed at positions ) 51, namely, cell
51 is perturbed by an instantaneous pulse according to the
conditions (eq 31), and the concentrations of species thenceforth
evolve in time (τ > 1000) according to the evolution equations
(eq 28). The perturbation then may induce a transition of the
perturbed cell to the other stable steady state, and the effect of
transition may propagate throughout the array owing to the
intricate interactions between nonlinear chemical reactions and
material exchange between the cells. For this initial global steady
state of the array we have found that only a positive amplitude
perturbation (ε0 > 0) is able to trigger a wave front propagation,
and the magnitude of the perturbation amplitude varies with
the magnitude of the coupling constantâ between cells (i.e.,
exchange rate of mass). Figure 2 shows the phase diagram

constructed with the minimal value for the perturbation ampli-
tude that is able to trigger a wave front propagation for a given
value of the coupling constantâ. Since it was discovered that
the calortropy production changes discontinuously as a wave
front appears and disappears asâ is varied, we found it
convenient to follow the rate of calortropy change for each cell
and construct the phase diagram with the information provided
by the calortropy production. It is thus an example of practical
use of the calortropy production in the study of the propagation
failure problem. Figure 2 shows three different regions in the
phase diagram. (a) The region where the wave front entirely
fails to propagate from the perturbed central cell; we may call
this phenomenon complete wave propagation failure. Ifâ e 6
× 10-5, such wave front propagation failure occurs regardless
of the value ofε0. In this case, there is no change in the states
of the cells in the entire array.(b) The region where the wave
front propagates until a certain cell is reached-we sometimes
will call it partial propagation failure. (c) The region where the
wave front propagation occurs throughout the array. It must be
noted that wave propagation is unidirectional and irreversible.
The phase diagram constructed is useful because it shows the
relation between the coupling constant and the minima pertur-
bational amplitude that is able to trigger a wave front. We have
explored other values for the bifurcation parameter in this branch
of oxidated states (see Figure 1) and have found similar
behaviors can be observed iff < 0.4, but when the value forf
is near the bifurcation pointf ) 0.4769, a complex relationship
betweenε0 andâ emerges and a series of wave front propagation
failure seems to occur. We will call this a cascade of wave front
propagation failure. This phenomenon needs a more thorough
investigation. It will be deferred to a later work.

In Figure 3 we show the global calortropy production (σnet)
arising from the inherent chemical reactions in the cells and
the global calortropy flux (φnet) arising from the material
exchange between the cells in the array. These quantities change
as a function ofâ for a given value of perturbation amplitude
ε0 ) 1400. Note that there is an order of magnitude difference
between σnet and φnet. Consequently, the total calortropy
production for the entire array looks similar to curvea in the
figure. In the region ofâ < 6 × 10-5 where the wave front
does not appear, the calortropy production has the same
nonvanishing value as that in the region ofâJ33 where the
propagation also fails. As the wave front appears and propagates
through the system asâ passes the lower critical value, the
calortropy production rises until it suddenly drops as the wave
front again fails to propagate at the upper critical value ofâ in

Figure 2. Phase diagram in the plane of the perturbation amplitude
(ε0 × 10-3) and the coupling constant (â) in the case of the wave front
propagation when the initial state for the array of cells corresponds to
a steady state (f ) 0.4) in the seta of the Figure 1. Regiona is for
wave propagation failure, regionb is for partial wave propagation, and
regionc is for complete wave propagation. In the inset denotedd, a
blowup of the lower left corner in the figure is shown, where wave
propagation failure occurs ifâ j 6 × 10-5.

xs(τ0) ) xτ0, ys(τ0) ) yτ0zs(τ0) ) zτ0 + ε0δ(τ - τ0)δss0 (31)

Figure 3. Curve a is the global calortropy production (σ* × 10-3)
and curveb is the global calortropy flux (φ*) as a function ofâ, when
a positive perturbation amplitude (addition ofz) with valueε0 ) 1400
is applied to the array of cells. The phase diagram for this figure is
given in Figure 2. Theσ* and Φ* are given in units ofR according
to the definitionsσ* ) σnet/R andφ* ) φnet/R. The inset (c) is a blowup
of the figure nearâ ) 0.
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the neighborhood ofâ ) 33. Thus the array in the initial
thermodynamic state prescribed by the initial conditions as in
eq 30 has a characteristic level of global calortropy production
in the intervalâmin e â e âmax whereâmin = 6 × 10-5 and
âmax = 33. Unlikeσnet, at the upper critical pointφnet vanishes
as it does below the lower critical value ofâ. The presence of
an upper critical valueâmax of â has not been previously
observed in the studies of propagation failure by other au-
thors12,13,20,17,23in the literature. It is certainly present in the
case of the Oregonator used in this work. The phase diagrams
and the discontinuous calortropy production make the presence
of such a critical point rather evident. It is noteworthy that the
total global calortropy production (σnet + φnet) is lower atâ
approachingâmax than in the neighborhood ofâ ) âmin, meaning
that less energy-matter dissipation is required for a wave to
be triggered and propagate nearâ ) âmax than nearâ ) âmin in
the present case examined.

In Figure 4 we show the trajectory of wave front as a function
of time in the case of four different values of the coupling
constant andf ) 0.4. The shape of the trajectories is qualitatively
similar to the experimentally observed shape for the chlorite-
iodide system by Laplante and Erneux.17 Notice the initial rise
of the trajectories and the presence of an inflection point at an
intermediate time for each curve. We observe there is a kink in
each curve, but its origin is not understood at present and it
does not seem to arise from the finite size of the array or
numerical errors. It may be a manifestation of the region
containing the inflection point seen in the data by Laplante and
Erneux, because the scales used in the present investigation are
by necessity coarse-grained. It is possible to calculate the wave
front speed from these curves as a function of the coupling
constant.

B. Initial Steady State Given by f ) 1.1 (Oscillatory
Behavior). We now explore the propagation of a wave triggered
by a localized perturbation, when the initial global state of the
array is oscillatory. The procedure is similar to the one followed
in the previous subsection. The global oscillatory state for the
array is given by the bifurcation parameterf ) 1.1. In this case,
we have found that only for a positive perturbation amplitude
(ε0 > 0) is a particular point (i.e., state) of the limit cycle that
describes the oscillatory behavior able to give rise to a wave
propagation. More specifically, a small positive amplitude for
the perturbation applied at the lowest point (concentration) of
the oscillation is able to trigger a wave propagation, whereas at
other points on the limit cycle it is practically impossible to
trigger a wave propagation with a perturbation with a finite size.
When the perturbation is applied to the cells) 51 at the lowest
concentration point of the limit cycle, a wave starts to propagate

by destroying the oscillatory motion in each cell, and an amazing
variety (a complex stationary pattern) of stable steady states,
which are unsymmetrical, emerges. Figure 5 shows the phase
diagram constructed with the minimal value for the perturbation
amplitude that is able to trigger a wave propagation for a given
value of the coupling constantâ. The phase diagram shows that
in this case a partial wave propagation is not present, but the
wave completely propagates throughout the array, if there is a
wave triggered. Therefore, we have either a complete wave
propagation (region b in the phase diagram) or a complete wave
propagation failure (region a in the phase diagram). The phase
diagram was constructed by following the calortropy production
in a manner similar to the previous subsection. Figure 6 shows
the global calortropy production (σnet) arising from the chemical
reactions in the whole system and the global calortropy flux
(φnet) arising from the material exchange between the cells in
the system as a function ofâ for ε0 ) 0.15. In Figure 5 for the
phase diagram, the propagation failure occurs atâ j 6.8 andâ
J 20 if ε0 ) 0.15. In this case, the global calortropy production
(σnet) and the global calortropy flux (φnet) vary in a complex
and discontinuous manner in the interval 6.7e â e 19.9,
exhibiting many discontinuities that are associated with complex
patterns emerging in the cells in the wake of the wave front.
This means that the complex patterns have characteristic
calortropy productions, and this is consistent with a similar
observation37,38 made in connection with pattern formations in

Figure 4. Trajectory of the wave front propagation at different coupling
constants: 30 (b), 22.5 (2), 15 (9), 10 ((). The initial homogeneous
steady state is given byf ) 0.4 in the seta of Figure 1, and the
perturbation amplitude byε0 ) 1400.

Figure 5. Phase diagram in the plane ofâ andε0 for the wave front
propagation, when the initial state for the array of cells corresponds to
an oscillatory behavior (f ) 1.1) in the setb of Figure 1. Regiona is
for wave propagation failure and regionb is for complete wave
propagation. The positive perturbation (addition ofz) is applied on the
lowest point of the oscillation to generate a wave. The dividing line in
the phase diagram means the minimal value in the positive perturbation
to obtain wave propagation for a given value ofâ.

Figure 6. Curve a is for the global calortropy production (σ*) and
curveâ is for the global calortropy flux (φ*) as a function ofb when
a positive perturbation (addition ofz) with valueε0 ) 0.15 is applied
to the array of cells. The phase diagram for this figure is given in Figure
5. The meanings of the symbols are the same as Figure 3.
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a single cell made up of the Selkov model of chemical reactions.
Notice thatσnet is again about 2 orders of magnitude larger than
φnet, and it means that the total global calortropy production
for the entire array looks similar toσnet. Again in this case, the
total global calortropy production is lower in the region ofâmax

than in the region ofâmin.

C. Initial Steady State Given by f ) 2.2 (Reduced State).
Finally, we explore the wave front propagation triggered as a
result of localized perturbation when the initial global steady
state of the array is that specified by the bifurcation parameter
f ) 2.2. This state is characterized by a low concentration of
the Ce4+ ion (reduced state). The procedure of calculation is
similar to the one followed in the previous subsections.
Surprisingly, we have found that for this global steady state it
is impossible to trigger a wave front propagation with a positive
perturbation amplitude for any value of the coupling constant
â. This means that the initial state is stable to the perturbation
and the system would not make the transition from it to the
other stable steady state. However, we have found that a negative
perturbation amplitude is able to trigger a wave propagation.
Figure 7 shows the phase diagram constructed with the minimal
value (taken absolute) for the perturbation amplitude that is able
to trigger a wave propagation for a given value of the coupling
constantâ. The phase diagram was constructed by following
the calortropy production in the same manner as for the previous
subsections. In this case, the phase diagram is simpler and shows
three different regions: (a) partial wave propagation; (b)
complete wave propagation; and (c) complete wave propagation
failure. In Figure 7 for the phase diagram we see that the
propagation failure occurs atâ j 5.3 and â J 38.9. For
â e 5.3, complete wave propagation failure occurs regardless
of the magnitude of the perturbation amplitude. Figure 8 shows
the global calortropy production (σnet) arising from the chemical
reactions in the cells and the global calortropy flux (φnet) arising
from the material exchange between the cells in the array as a
function ofâ for ε0 ) - 0.28. In the case considered here, the
global calortropy production (σnet) and the global calortropy flux
(φnet) increase monotonically from a small but nonvanishing
value for σnet and from a vanishingφnet until a propagation
failure occurs at the upper critical value ofâ where bothσnet

and φnet change discontinuously, the former to a small non-
vanishing value and the latter to zero. In contrast to the initial
conditions considered in the previous two subsections, the total
global calortropy production in the present case is lower atâ
) âmin than atâ ) âmax.

V. Discussion and Concluding Remarks

In this work we have numerically explored the conditions to
trigger a wave, the wave propagation, and its failure in a linear
assembly of 101 interacting cells in which chemical reactions
occur according to the Oregonator model. We have also
calculated the calortropy production accompanying the phe-
nomena by applying the theory of irreversible processes
formulated for networked reactor cells reported previously. The
thermodynamic theory of irreversible processes in an assembly
of discrete interacting subsystems provides a useful tool for
getting insights into this kind of phenomena, for example, by
facilitating the construction of phase diagrams. The calortropy
production also provides a way to interpret propagation failure
in terms of energy-matter dissipation by the system and,
perhaps, to optimize wave propagation or, more generally, the
irreversible process of interest, with regard to energy-matter
dissipation. From the standpoint of irreversible thermodynamics
it is possible to view the propagation failure to occur, when the
system gets into a state where it is not able to dissipate energy
and matter required for the process to evolve into a wave. In
any event, since all physical and biological phenomena must
be framed within the bounds of the thermodynamic laws, it is
necessary to develop a thermodynamic theory of irreversible
processes therein, and the present work is an effort toward that
end. The propagation failure has attracted the attention of many
research workers because of its possible implications in some
biological systems. The theory of irreversible thermodynamics
presented for an assembly of cells appears to provide an
insightful means to investigate various irreversible processes
in such systems in a thermodynamically consistent manner, and
the wave propagation or its failure examined in this work is an
example of application of the theory of irreversible thermody-
namics. For example, the sharp changes in calortropy production
accompanying propagation failure allow us to find precisely the
critical values of control parameters for the wave propagation
or its failure. Moreover, since the calortropy surface is an
information storage for processes in the system, investigating
its mathematical structure might be able provide some useful
insights into how the system would behave and wave propaga-
tion might arise from the thermodynamic viewpoint. However,
a more complete construction of such a calortropy surface would
require much more elaborate investigations into the question
than what is presented in this paper. It should be left to future
work.

Figure 7. Phase diagram in the plane ofâ andε0 for the wave front
propagation, when the initial state for the array of cells corresponds to
a steady state (f ) 2.2) in the setc in Figure 1. Regiona is for partial
wave propagation, regionb is for complete wave propagation, and
regionc is for wave propagation failure.

Figure 8. Curve a is for the global calortropy production (σ*) and
curveâ is for the global calortropy flux (φ*) as a function of b when
a negative perturbation (elimination ofz, e.g., precipitation or com-
plexation) with valueε0 ) -0.28 is applied to the array of cells. The
phase diagram for this figure is given in Figure 7. The meanings of
the symbols are the same as in Figure 3.
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(24) Fáth, G. Physica D1998, 116, 176.
(25) Bressloff, P. C.Physica D2001, 155, 83.
(26) Field, R. J.; Noyes, R. M.J. Chem. Phys.1974, 60, 1877.
(27) Field, R. J.; Ko¨ros, E.; Noyes, R. M.J. Am. Chem. Soc. 1972, 94,

8649.
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in Handbuch der Physik; Flügge, S., Ed.; Springer: Berlin, 1959; Vol. 3.
(30) Prigogine, I.Thermodynamics of IrreVersible Processes, 3rd ed.;

Interscience: New York, 1967.
(31) de Groot, S. R.; Mazur, P.Nonequilibrium Thermodynamics;North-

Holland: Amsterdam, 1962.
(32) Clausius, R.Ann. Phys. (Leipzig)1865, 125, 355.
(33) Eu, B. C.Chem. Phys. Lett. 1988, 143, 65.
(34) Gyorgyi, L.; Turanyi, T.; Field, R. J.J. Phys. Chem.1990, 94,

7162.
(35) Hindmarsh, A. C.LiVermore SolVer for Ordinary Differential

Equations, Technical Report No. UCID-3001; Lawrence Laboratory,
Livermore, CA, 1972.

(36) Gear, C. W.Numerical Initial Value Problems in Ordinary
Differential Equations; Prentice-Hall: Englewood Cliffs, NJ, 1971.

(37) Al-Ghoul, M.; Eu, B. C.Physica D1996, 90, 119.
(38) Al-Ghoul, M.; Eu, B. C.Physica D1996, 97, 531.

996 J. Phys. Chem. A, Vol. 106, No. 6, 2002 Barragán and Eu


