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Energy transfer in polymers is characterized by nonexponential decays, mostly due to the disorder of the
underlying medium. In this work we take as models for the medium small-world networks (SWNs). SWNs
are built starting from regular lattices (say from linear chains) through the insertion (with probabitty
additional links, which then connect distant pairs of sites. In this way SWNs combine random and regular
features. As a dynamical problem we evaluate the energy migration followed by trapping (quenching) by
acceptors, randomly distributed over the SWN, and compare the trapping decay to the forms found when the
underlying structures are regular lattices, fractals or ultrametric spaces; as we show, trapping on SWNs displays
new decay aspects.

1. Introduction short and medium-time decay patterns, where cumulant expan-
sion$ allow to approximate fairly well the part of the decay
which is readily accessible to experiments. In section 4 we
contrast these results to the decay forms which obtain on low-
dimensional systems, on fractal structures, and on UMS.

Energy transport and trapping in polymeric media is a subject
of continuous interest. When the incoherent transport dominates,
one often describes the motion of the excitations over the donors
through random walks (RWY:2 A process of much interest is
guenchingd 8 by which the excitation leaves the donor sub-
system by being transferred to an acceptor; in the RW-picture 2. Small-World Networks (SWN)
the process is termed trappifgand it corresponds’ to the In disordered media, such as polymeric materials, one is often
reaction A+ B — B. As is well-known by now, even when the  confronted with coexisting regular and stochastic features. This
density of excitations is very low, their decay is seldom finding is quite general: Neglecting the causes leading to the
exponential; trapping is characterized by typical departures from networks' creation, and focusing on the emerging structures only,
exponentiality, which depend on the dimensionality of the lattice one finds that things as diverse as air-traffic networks, electrical
over which the walk takes place and on the disorder (geometric, power grids, neural nets and polymer networks have in common
temporal or energetié)?3’Much work has focused on trapping  that they are neither fully regular nor completely randigni5-36
on regular lattice$28on percolating and on fractal network$, One also observes that in such networks the minimal (chemical)
and also on cases which involve energetic disorder; here distance between any two sites scales logarithmically (as in
descriptions in terms of ultrametric spaces (UMS) have turned random graphs) with the networks’ siZet?3Now a procedure
out to be very fruitful:®12 In this work we extend such random-  to model such networks was introduced in ref 13: The starting
walk approaches to small world networks (SWis):8 Small- point is a regular lattice, with bonds connecting all sites whose
world networks (SWN) are a special class of random grdphs; mutual distance is less than a preassigned, small length. Then
they provide an elegant way to model the randomness encoun-a small number of additional links (ALs), of arbitrary length,
tered in systems which are neither fully random nor fully are added to the network. Such networks are then termed small
regulari3-24in this way they complement previous approaches world networks (SWNSs). Interestingly, even a very small density
based either on fractal$;?>2which depict situations determined  of ALs changes drastically the network’s properties, such as
by geometric disorder (such as percolation), or based ongiven by its vibrational density of statésjts stretching by
UMS,1-12which focus on the energetic aspects of randomness. external mean®23 or the diffusion of particles over #:21
Experimentally, energy transfer in such complex media getsto  One is naturally led to SWN-ideas when considering energy
be more and more accessible, due to advances in modernransport over polymer chains; there, realistically, the excita-
fluorescence techniques and in the fixing of chromophores to tion’s motion is not restricted only to steps along the backbone
macromolecular systeni§:2° but (due to the fact that monomers far away along the backbone

The paper is structured as follows: In section 2 we introduce may be close to each other in space), also energy transfer
the concept of SWNs and show that it allows to interpolate between such monomer-pairs is possitfié! In fact several
between fully regular and fully random networks. Section 3 is experimental groups report that in one-dimensional (1D) systems
devoted to the trapping problem on SWNs. Now trapping is the dynamics of the backbone facilitates departures from the
very sensitive to disorder; leaving aside the aspects related withsimple picture of transport along linear chafdshis suggests
the “Lifshitz-tails”, which give rise to long-time decay-forms  enlarging the model by the introduction of ALs between pairs
associated with rare everit$3%3%> we will focus here on the  of monomers.

In our case we choose as underlying regular lattice for the
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to use numerical simulation procedures. Previously, much work
has focused on diffusion and trapping on regular lattiée?, 52
on fractals (see, for example. refs 2, 9, 45, 48 and references

) ) ] therein), on Cayley treé$;55 on dendrimer8® and on UMS\%-12

Eg%‘ggcgioiﬁifguﬂgigirtth‘g f‘? fr\éVN* built from a ring. Some ALS  iere e follow our study of RWs on SWN82021 while
gure: focusing on trapping.
AL gets attached, with equal probability, to any of the other  FOr trapping numerical simulations are the method of choice;
sites. In this way we add on the averggenew bonds (ALs) in these a walker performs at fixed time intervals a step to one
to the ring. Figure 1 displays a small portion of such a SWN- Of its NN (for the SWNs considered here either along the ring
realization. We hasten to note that (as shown in recent works) OF Over an AL); trapping occurs instantaneously, if the walker
SWN with ALs attached corresponding to a scaling fawn lands on a site occupied by a B. For a particular realization of
one hand, and self-avoiding polymer chains (SAW) with ALs the random walk of the excitation |&, denote the number of
added in places where two monomers get togethé?,on the distinct sites visited by it in the first steps (usually one sets
other, may differ in their dynamical behavié. Ro = 1). For the same realization of the walk f&t denote the
While the first works on SWNs focused mainly on their static Probability that trapping has not occurred up to titie step. If

(geometric) properties, nowadays dynamical aspects start to gairfn€ traps are placed randomly over the lattice, with probability
importance; among the subjects treated recently we mention thed: one ha$
dynamics of Ising models on SWN$%the spectral properties Ri—1_ —y(Ri—1)
of SWN-Laplaciang? the spreading of diseases on SWAs, Fo=00-0g™ "=e 3)
and problems related to chemical physics, such as the target

problem on SWNE and the modeling of polymers’ dynamics ~ Where we have set (+ g)= &7 and assumed the origin of the
by SWN2223|n the following we will examine the trapping of walk not to be a trap. The measurable survival probability is
electronic excitations in media described by SWNs. the average oF, over all the realizations of RWs and, in our
case here, also of the underlying SWNs; therefore,
3. The Trapping Problem - _
pping . S & =F, = =D, @)
We start to model the trapping of electronic excitations in

terms of the A+B—B reaCtion, and take the initial number In the f0||owing we focus onb,, which is an average over
Ao of excitations to be much less than the number of quenchersan exponential expession: a powerful way to proceed is to

B, i.e., Ao < B. In this case, under well-stirred conditions, express it as an exponent of averaged quantities, the so-called
chemical kinetics predicts an exponential decay faw: cumulants In this way, one is lead to

At) = A 1)

In this section we focus on deviations from the exponential

behavior of eq 1 due to the fact that the Bs are stationary (traps).,yhere the Kin are the semiinvariants (cumulants) of the

As mentioned above, the trapping problem (in which the A . .. .. . _ _ _ _
particles move and get annihilated by stationary B traps) has Séstgtt::utlssn d?;ﬁ’sléiafrl{nref anv?eEc?H }:]Zor\‘N triﬂftzmate[iﬁf sum on
received considerable attention due to its marked departuresﬂ;‘(’e i ht-hand side of eq 5: !
from exponentiality at very long time8:3545this aspect is due 9 q>
to the statistics of rare events and it is still of much current [
interest3*3>46\We do not consider these aspects here, since we O, = eXp[Z K, n(—)/)j/j!] (6)
want to focus on the experimentally accessible region, which ’ =
also shows clear departures from exponentidlity. ) ] ] ) ]

As stated in the previous section, we model the dynamics by @1d Use theb;, as increasingly reliable approximations fbr

letting the excitation move randomly over the sites of the 2t short and medium times (i.e). On a note of caution we
underlying structure. In former works we studied such walks NOteé that this procedure does not capture the asymptotics of

on regular and on fractal lattic&:47-4° For any given lattice ~ ®m given that forn — o in general®, is not an analytical
stepwise motion is a Markov process, defined by specifying all function ofy anymore. o _

the transition probabilities; of going from sitei to sitef in Exemplarily, the simplest nontrivial decay form is

one step. If one stipulates that at each time step the particle has _ =

to leave the site it just occupies and if all neighbors are equally P, =exprS) (7)
prone to receive it, thew; = 1/z, wherez is the connectivity

of site i. The master equation for the probabilitizg) of being

at sitei after thenth step reads:

P, =@ 0= exp[i K (=)l (5)

Now §, = [R,[Jthe mean number of distinct lattice sites visited
in n-steps, has a long history of study. Montroll and Weiss have
shown that it can be calculated for reguledimensional lattices
using generating function technique®¥-52 One finds, depend-

N N
i i i 1,52
P(n+1)—P(n) = Z w,P.(n) — P,(n) ZW“ ) ing on the dimension and for not too smaif
= =

it
S§~n?  d=1) ®)

where thei andj denote the sites of the underlying lattice.

Equation 2 is nothing but the discrete-time variant of diffusion S, ~ n/In(n) d=2) 9)

on the given lattice.

Let us focus on what happens in the presence of traps. Nowand
trapping is considerably more difficult to study thgiin), since
for it no expression like eq 2 is known in general, and one has S~n (d=3) (10)



Energy Transfer in Polymers

For fractals,S, depends on the spectral dimensidn it
obeys®’

S, ~ n?? (ford < 2) (11)
and follows eq 10 ford > 2. Henced = 2 is the marginal
dimension for the mean number of distinct sites visited. A
similar situation occurs for UMS, whelfe

S, ~n

whereu = (In b)kgT/A, with b + 1 being the connectivity and
exp(— ksT/A) the Boltzmann factor for thermally activated steps.
On the other hand, for > 1 one recovers eq 10. The same
holds true for RW over nontriviali. b > 1) Cayley trees. In

(foru < 1) (12)

all these cases, evidently, by inserting eqgs 8, 9, 11, and 12 into

eqg 7 one is led to nonexponential decay patterns.

Given that the domain of validity ofb;, may be quite
restricted (as for instance th= 1, eq 8) one may now try to
go stepwise higher in the approximation.

Thus including the variancer,ﬁ, leads to

D,,=expyS, + 1 02 (13)

Further terms of the cumulant expansion eq 6 may be determined ¢

from the higher moments d®,. We note, however, that even
for regular lattices the determination of the higher cumulants
of R, is an arduous task.

As a first approximation for evaluating trapping on SWN,
we focus now o™ = exp(—yS;"™), and hence o™,
As shown in ref 18 through numerical simulatiorg,"" is
very well described by the following scaling relation:

S?WN — n1/2f (np2)

wheref (x) = /8l for x— 0 andf x) = Cv/x for x— w. Note
that for very smalln or p, such amp? < 1, one recovers the
one-dimensional character §f, eq 8. This was to be expected,
since, for a small number of steps and very few ALs, a walker
sees mainly 1D surroundings. On the other hand nftarge

(14)

the walker explores a quite open structure, not very different

from a random treé® Hence, on SWNs, one has a temporal
transition with respect t§, between a confined situation at small
n and an open one for large. Evidently, eq 7 again leads to a
nonexponential behavior for smatl. For n large ®, stays
nonexponential, due to the highé , forms.

Given that everS;"" is known (at least for the moment)
only numerically, we focus now on the numerical evaluation
of ®,. We note from the start that placing the traps randomly
over different SWNs and simulating walks which stop on
trapping would be an extremely computer time-consuming
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Figure 2. Decay due to trapping on a linear chain devoid of Aps (
= 0); the trap densities agg= 0.01 for the upper and = 0.05 for the
lower curves. The full lines give®, and the other line®;, to @4,
The approximations ar®; , (dotted),®,, (short-dashed)ps,, (long-
dashed), andbs, (dot—dash).
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Figure 3. Survival probabilities®, (solid lines) on SWNs with an
AL-density of p = 0.04, compared to the corresponding cumulant
approximationsb; , (dotted),®,, (short-dashed)Ps, (long-dashed),
and®,, (dot—dash). The trap desities age= 0.01 for the upper and

g = 0.05 for the lower curves.

egs 5 and 6, to evaluate numerically (for arbitrapyalues)
both @™ and also the correspondingy™. The results of
these calculations are presented in Figures 3 and 4, whereas
Figure 2 shows trapping on the 1D chain.

In Figure 2 we depict trapping on a linear chain. Note that
this corresponds faithfully to our SWN-model (a ring) for=
0, since we keep the number of steps below 10000, and

hence the limitations of the ring cannot be seen. Displayed are

procedure. We prefer instead to work using eq 5, since it offers in logarithmic scales the decays for the trap densidies0.01

the great advantage of being, in factgandependent algo-
rithm: as is evident from eq %} appears in it only through,

a parameter. Numerically one has only to determine Rhe
values on SWN-latticedevoid of traps, evidently, however, for
many SWN-realizations.

We start our procedure as follows: For a givgwe construct
10 different SWNs, of siz&. = 9 x 1P each. On these we
simulate a total of DRWs with randomly chosen starting
points, and determine th®, for each walk; from these we obtain
the Ry-distribution. By choosing the starting points randomly

andqg = 0.05. We present both the exact decay forms and also
the first four approximations, as given by eq 6. The results
reproduce those of ref 8. Clearly evident from Figure 2 is the
nonexponential character of the decay. Furthermore, \While
provides a reasonable description for the decay in the first
decade, it already fails to provide it in the second and further
decades. In the second decade, visible in the Figure onlg for
= 0.05, the form®,, turns out to be quite reasonable. One
may also note the fact that the increasing cumulants approximate
the true decay from below (if they are odd) and from above (if

we sample, in fact, a very large class of local SWN-geometries, they are even); this is due to the fact that all four cumulants
much larger than what the 10 SWN-realizations indicate at first considered are strictly positive, and to the changes of sign in
glance. The so-determindg}-distribution allows us then, via  the exponent of eq 6.
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10° of realistic materials. As stressed above, such SWNs are akin
in spirit to situations encountered in polymeric media.

Trapping on SWNs displays a series of features which
interpolate between pure order and pure disorder. For a small
densityp of additional links (AL) the decay follows for some
time the structure imposed by the parent lattice. Nonetheless,
one observes in the decay behavior at longer times a crossover
to a situation typical for an open tréethis is due to the fact
that the excitation uses increasingly steps along the ALs. A third
decay domain would open up at very long times, where again
the underlying geometry gets to be import&htye did not
discuss this domain here, because we wanted to focus on the
experimentally accessible decay regions.

N The crossover behavior found here for trapping on SWNs is
10 0 550 1\(?00 15|oo 2()'00 quite reminiscent of the transition in trapping behavior on regular
n lattices when going from low (smaldl) to high (larged)

Figure 4. The same as in Figure 3 for SWNs with an AL-density of ~dimensions. The crossover is also akin to what happens in
p = 0.2. In the upper group of curves (fgr= 0.01) in the range of  yltrametric spaces (UMS), when increasing the temperature
the figure only®;, can be distinguished from the true dechy. namely, at highe the decay law gets to be more regular and
can be more readily described throughthe mean number of
distinct sites visited by the walker im-steps. In lower
dimensions and at lower temperatures this is no more the case;

The situation changes when we go to nontrivipl#£ 0)
SWNSs. In Figures 3 and 4 we display the trapping decay for o Sl s : > ;
concentrations of ALs equal tp = 0.04 and top = 0.2, the full distribution of distinct sites visited (and not only its

respectively. One expects with increasimthat the SWN will mean value) matters. Starting here from a ring, on which we
behave in a more and more regular manner, at least in what the?dded ALs, several aspects of the decay are of importance: For
first few decades of the decay are concerned. This is also the!2'9eP, as mentioned, the decay gets to be very regular so that
case when one looks at the decay do= 0.01; there, already (at least for a very low densﬂy of traps_) it becomes close to
for p= 0.2, the description in terms g, , is very satisfactory gxponentlal; furt_herr_nore evenin the_reglon where such_ a decay
for the first two decades shown:; in fact, the decay itself is hardly 'S nonexponential, its form may still be well approximated
distinguishable from an exponential. Also the situationder through @, i.e. with help of &, On the other hand, at very
0.2 andq = 0.05 is satisfactory: as can be inferred from Figure 'OW AL densities, the 1D behavior persists for a long time. Of
2, d1,is not bad at all over the first two decades of the decay, paruqular interest is the intermediate region of medium AI__
and the description which us€, , performs very nicely over ~ density, where the decay forms are quite complex: Their

4 orders of magnitude in the decay (possibly the experimental @PProximation through cumulant forms gets to be inaccurate at
limit nowadays), a region in which nonexponential features a rather early stage; our preliminary calculations show that this

appear quite clearly. In the intermediate region, fox 0.04, is dt_Je to the higher cum'ulants, which (distinct f_rom the pre\_/i_ous
the situation is more complex, as displayed in Figure 3. Here findings fqr regular- lattices) do not necessarily stay positive.
all @, are clearly nonexponential and already ép= 0.01 a e thus view trapping on SWNs as a rather complex problem,
description solely in terms ofbi, turns out not to be  Which certainly deserves further study.

satisfactory; one has to use at ledst, in order to get a good
picture of what happens during the first three decades of the
decay. More complex even is the situation épr= 0.05: there
®,,, can be employed only over the first decade (as a roug
approximation); als@,, captures only part of the picture, given
that it does not approximate anymotig, strictly from above.
While the region where this happens may not be of experimental
relevance (and still under the proviso that our numerical (1) Weiss, G. HAspects and Applications of the Random Whliirth-
procedure may have its limitations) we can, on the basis of our Holland: Amsterdam, 1994. .

preliminary results, state that for largethe behavior of the Glag)egg?h%'&kg’,f'ggﬁrhje'iaéﬁmgéfgr’efht'?ggg?ﬁ%eg‘ftroscor’y of
cumulants is by far more complex on SWNs than on regular (3) ben-Avraham, D.; Havlin, Diffusion and Reactions in Fractals
lattices or on Cayley trees. In fact, on inhomogeneous lattices and(E;S&rgggg ?\lysherlteﬂUAr;iglerg%grl%S; éiga?ggdge, 2000.
complexity may be very higkf5° Also the @3, and ®4, r NI : 1 93, 13,

approximants are not of mugh help, since they start their % mg:ZgZ: H g'éﬁ aIFfﬁ’y;A gﬁe%heéndo';h{agfgég 7, 431.
(unphysical, divergent) behavior before three decades of the  (7) Blumen, A.; Sokolov, I. M.; Zumofen G.; Klafter, J. in: Hoffmann,
decay are reached. Similar situatidmgere also encountered in K. H.; Schreiber, M. EdsComputational PhysicsSpringer: Berlin 1996;

i [P p 102.
one-dimension; there, however, one may help oneself through (8) Zumofen, G.; Blumen, AChem. Phys. Let1982 88, 63.

Acknowledgment. This article is dedicated to Prof. N.
Mataga, with our best regards. The support of the Deutsche
h Forschungsgemeinschaft and of the Fonds der Chemischen
Industrie are gratefully acknowledged.

References and Notes

the knowledgé of a closed form ford; for SWNs, additional (9) Klafter, J.; Blumen, AJ. Chem. Phys1984 80, 875.

analyses are clearly necessary. (10) Blumen, A.; Klafter J.; Zumofen, Gl. Phys. A1986 19, L 77.
(11) Zumofen, G.; Blumen A.; Klafter, J. Chem. Physl986 84, 6679.

4. Conclusions (12) Blumen, A.; Zumofen G.; Klafter, J. Phys. A1986 19, L 861.

(13) Watts, D. J.; Strogatz, S. Mature (Lono_lon)1998 393 440.
In this work we have focused on energy transfer and trapping _ (14) Watts, D. JSmall Worlds: The Dynamics of Networks between
on small world networks (SWNs). As discussed in the work, Order and Randomnes@rlncgton Un|ver.5|ty I?[ess. Pr.lnceton, NJ, 1999.
. (15) Nunes Amaral, L. A.; Scala, A.; Bartiéeny, M.; Stanley, H. E.
such SWNs are new classes of random graphs, which allow topyc. Natl. Acad. Sci. U.S.200q 97, 11149.

combine in a judicious manner ordered and disordered aspects (16) Barrat, A.; Weigt, MEur. Phys. J. B200Q 13, 547.



Energy Transfer in Polymers

(17) Monasson, REur. Phys. J. B200Q 12, 555.

(18) Jasch, F.; Blumen, APhys. Re. E 2001, 63, 041108; see also
Lahtinen, J.; Kertesz, J.; Kaski, lRhys. Re. E 2001, 64, 057105.

(19) Bolloba, B. Random GraphsAcademic Press: London, 1985.

(20) Jespersen, S.; Sokolov, I. M.; Blumen, Phys. Re. E 200Q 62,
4405.

(21) Jespersen, S.; Blumen, Rhys. Re. E 200Q 62, 6270.

(22) Jespersen, S.; Sokolov, I. M.; Blumen, A.Chem. Phys2000
113 7652.

(23) Blumen, A.; Gurtovenko, A. A.; JespersenJSNon. Cryst. Solids
2001 in press.

(24) Gurtovenko, A. A.; Blumen, AJ. Chem. Phys2001, 115, 4924.

(25) Bunde, A.; Havlin, S. eds$;ractals and Disordered Systepnd
ed.; Springer: Berlin, 1996.

(26) Alexander, S.; Orbach, R. Phys. (France) Lettl982 43, L625.

(27) Masuhara, H.; Sasaki, K.; Fukumura, H.; FurutaniAHalyst1998
123 531.

(28) Yoshikawa, H.; Sasaki, K.; Masuhara, H.Phys. Chem. B00Q
104, 3429.

(29) Ito, S.; Yoshikawa, H.; Masuhara, BWppl. Phys. Lett2001, 78,
2566.

(30) Balagurov, B. Ya; Vaks, V. &Zh. Exp. Theor. FizZ1973 65, 1939.
(English translation:Sa. Phys. JETP1L974 38, 968.)

(31) Donsker, M. D.; Varadhan, S. R. Sommun. Pure Appl. Math
1975 28, 525; Commun. Pure Appl. Matt1979 32, 721.

(32) Klafter, J.; Zumofen, G.; Blumen, A. Phys. Lett1984 45, L 49.

(33) Havlin, S.; Dishon, M.; Kieffer, J. E.; Weiss, G. IRhys. Re.
Lett 1984 53, 407.

(34) Bunde, A.; Havlin, S.; Klafter, J.; GifaG.; Shehter, APhys. Re.
Lett 1997 78, 3338.

(35) Gallos, L. K.; Argyrakis, P.; Kehr, K. WPhys. Re. E 2001, 63,
021104.

J. Phys. Chem. A, Vol. 106, No. 10, 2002317

(36) Newman, M. E. J.; Watts, D. Phys. Re. E 1999, 60, 7332.

(37) Chakrabarti, B. K.; Bhattacharya, &.Phys. A1983 17, L 547.

(38) Chakrabarti, B. K.; Maggs, A. C.; Stinchcombe, R.JBPhys A
1985 18, L373.

(39) Yang, Y. S.; Chakrabarti, B. Kl. Phys. A1990, 23, 319.

(40) Sokolov, I. M.; Mai, J.; Blumen, APhys. Re. Lett 1997, 79, 857.

(41) Sokolov, I. M.; Mai, J.; Blumen, ACzech. J. Phys998 48, 487.

(42) T. Pédszegi, |I. M. Sokolov, and H. KauffmaniMacromolecules
199§ 31, 2521 and references therein.

(43) Sen, P.; Chakrabarti, B. Kond-mat0105346

(44) Moukarzel, C. FPhys. Re. E 1999 60, R6263.

(45) Klafter, J.; Blumen, A.; Zumofen, @. Stat. Phys1984 36, 561.

(46) Jasch, F.; Blumen, Ahys. Re. E 2001, 64, 066104.

(47) Zumofen, G.; Blumen, A.; Klafter, J. Chem. Phys1985 82,
3198.

(48) Blumen, A.; Kdnler, G. H.Proc. R. Soc. London Ser.1®89 423
189.

(49) Blumen, A.; Klafter, JPhys. Re. B 1984 30, 5379.

(50) Weiss, G. H.; Rubin, R. Adv. Chem. Phys1983 52, 363.

(51) Montroll, E. W.; Weiss, G. HJ. Math. Phys1965 6, 167.

(52) Montroll, E. W.Proc. Symp. Appl. MathAm. Math. Soc1964
16, 193.

(53) Kbohler, G. H.; BlumenA. J. Phys. AL99Q 23, 5611.

(54) Cassi, DPhys. Re. B 1992 45, 454.

(55) Cassi, DEurophys. Lett1989 9, 627.

(56) Bar-Haim, A.; Klafter, J.; Kopelman, R. Am. Chem. S0d 997,
119 6197.

(57) Rammal, R.; Toulouse, G. Phys. Lett1983 44, 13.

(58) Burioni, R.; Cassi, D.; Vezzani, Al. Phys. A1999 32, 5539.

(59) Burioni, R.; Cassi, D.; Vezzani, Aur. Phys. JB 200Q 15, 665.



