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Energy transfer in polymers is characterized by nonexponential decays, mostly due to the disorder of the
underlying medium. In this work we take as models for the medium small-world networks (SWNs). SWNs
are built starting from regular lattices (say from linear chains) through the insertion (with probabilityp) of
additional links, which then connect distant pairs of sites. In this way SWNs combine random and regular
features. As a dynamical problem we evaluate the energy migration followed by trapping (quenching) by
acceptors, randomly distributed over the SWN, and compare the trapping decay to the forms found when the
underlying structures are regular lattices, fractals or ultrametric spaces; as we show, trapping on SWNs displays
new decay aspects.

1. Introduction

Energy transport and trapping in polymeric media is a subject
of continuous interest. When the incoherent transport dominates,
one often describes the motion of the excitations over the donors
through random walks (RW).1-3 A process of much interest is
quenching,4-6 by which the excitation leaves the donor sub-
system by being transferred to an acceptor; in the RW-picture
the process is termed trapping1,2 and it corresponds2,3,7 to the
reaction A+ B f B. As is well-known by now, even when the
density of excitations is very low, their decay is seldom
exponential; trapping is characterized by typical departures from
exponentiality, which depend on the dimensionality of the lattice
over which the walk takes place and on the disorder (geometric,
temporal or energetic).1,2,3,7Much work has focused on trapping
on regular lattices,1,2,8on percolating and on fractal networks,3,9

and also on cases which involve energetic disorder; here
descriptions in terms of ultrametric spaces (UMS) have turned
out to be very fruitful.10-12 In this work we extend such random-
walk approaches to small world networks (SWNs).13-18 Small-
world networks (SWN) are a special class of random graphs;19

they provide an elegant way to model the randomness encoun-
tered in systems which are neither fully random nor fully
regular;13-24 in this way they complement previous approaches
based either on fractals,3,9,25,26which depict situations determined
by geometric disorder (such as percolation), or based on
UMS,10-12 which focus on the energetic aspects of randomness.
Experimentally, energy transfer in such complex media gets to
be more and more accessible, due to advances in modern
fluorescence techniques and in the fixing of chromophores to
macromolecular systems.27-29

The paper is structured as follows: In section 2 we introduce
the concept of SWNs and show that it allows to interpolate
between fully regular and fully random networks. Section 3 is
devoted to the trapping problem on SWNs. Now trapping is
very sensitive to disorder; leaving aside the aspects related with
the “Lifshitz-tails”, which give rise to long-time decay-forms
associated with rare events,1,2,30-35 we will focus here on the

short and medium-time decay patterns, where cumulant expan-
sions8 allow to approximate fairly well the part of the decay
which is readily accessible to experiments. In section 4 we
contrast these results to the decay forms which obtain on low-
dimensional systems, on fractal structures, and on UMS.

2. Small-World Networks (SWN)

In disordered media, such as polymeric materials, one is often
confronted with coexisting regular and stochastic features. This
finding is quite general: Neglecting the causes leading to the
networks' creation, and focusing on the emerging structures only,
one finds that things as diverse as air-traffic networks, electrical
power grids, neural nets and polymer networks have in common
that they are neither fully regular nor completely random.13-15,36

One also observes that in such networks the minimal (chemical)
distance between any two sites scales logarithmically (as in
random graphs) with the networks’ size.14,19,36Now a procedure
to model such networks was introduced in ref 13: The starting
point is a regular lattice, with bonds connecting all sites whose
mutual distance is less than a preassigned, small length. Then
a small number of additional links (ALs), of arbitrary length,
are added to the network. Such networks are then termed small
world networks (SWNs). Interestingly, even a very small density
of ALs changes drastically the network’s properties, such as
given by its vibrational density of states,17 its stretching by
external means,22,23 or the diffusion of particles over it.20,21

One is naturally led to SWN-ideas when considering energy
transport over polymer chains; there, realistically, the excita-
tion’s motion is not restricted only to steps along the backbone
but (due to the fact that monomers far away along the backbone
may be close to each other in space), also energy transfer
between such monomer-pairs is possible.37-41 In fact several
experimental groups report that in one-dimensional (1D) systems
the dynamics of the backbone facilitates departures from the
simple picture of transport along linear chains.42 This suggests
enlarging the model by the introduction of ALs between pairs
of monomers.

In our case we choose as underlying regular lattice for the
SWN a ring withL sites (vertexes), whereL . 1, each site
being connected to its two nearest neighbors (NN). Then we
add to each site an AL, with probabilityp. The other end of the
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AL gets attached, with equal probability, to any of the other
sites. In this way we add on the averagepL new bonds (ALs)
to the ring. Figure 1 displays a small portion of such a SWN-
realization. We hasten to note that (as shown in recent works)
SWN with ALs attached corresponding to a scaling law,21 on
one hand, and self-avoiding polymer chains (SAW) with ALs
added in places where two monomers get together,37-39 on the
other, may differ in their dynamical behavior.43

While the first works on SWNs focused mainly on their static
(geometric) properties, nowadays dynamical aspects start to gain
importance; among the subjects treated recently we mention the
dynamics of Ising models on SWNs,16 the spectral properties
of SWN-Laplacians,17 the spreading of diseases on SWNs,44

and problems related to chemical physics, such as the target
problem on SWNs18 and the modeling of polymers’ dynamics
by SWN.22,23 In the following we will examine the trapping of
electronic excitations in media described by SWNs.

3. The Trapping Problem

We start to model the trapping of electronic excitations in
terms of the A+ B f B reaction, and take the initial number
A0 of excitations to be much less than the number of quenchers
B, i.e., A0 , B. In this case, under well-stirred conditions,
chemical kinetics predicts an exponential decay law:2

In this section we focus on deviations from the exponential
behavior of eq 1 due to the fact that the Bs are stationary (traps).
As mentioned above, the trapping problem (in which the A
particles move and get annihilated by stationary B traps) has
received considerable attention due to its marked departures
from exponentiality at very long times:30-35,45this aspect is due
to the statistics of rare events and it is still of much current
interest.34,35,46We do not consider these aspects here, since we
want to focus on the experimentally accessible region, which
also shows clear departures from exponentiality.8,45

As stated in the previous section, we model the dynamics by
letting the excitation move randomly over the sites of the
underlying structure. In former works we studied such walks
on regular and on fractal lattices.2,7,47-49 For any given lattice
stepwise motion is a Markov process, defined by specifying all
the transition probabilitieswfi of going from sitei to site f in
one step. If one stipulates that at each time step the particle has
to leave the site it just occupies and if all neighbors are equally
prone to receive it, thenwfi ) 1/zi, wherezi is the connectivity
of site i. The master equation for the probabilitiesPi(n) of being
at sitei after thenth step reads:

where thei and j denote the sites of the underlying lattice.
Equation 2 is nothing but the discrete-time variant of diffusion
on the given lattice.

Let us focus on what happens in the presence of traps. Now
trapping is considerably more difficult to study thanPi(n), since
for it no expression like eq 2 is known in general, and one has

to use numerical simulation procedures. Previously, much work
has focused on diffusion and trapping on regular lattices,1,2,50-52

on fractals (see, for example. refs 2, 9, 45, 48 and references
therein), on Cayley trees,53-55 on dendrimers,56 and on UMS.10-12

Here we follow our study of RWs on SWNs,18,20,21 while
focusing on trapping.

For trapping numerical simulations are the method of choice;
in these a walker performs at fixed time intervals a step to one
of its NN (for the SWNs considered here either along the ring
or over an AL); trapping occurs instantaneously, if the walker
lands on a site occupied by a B. For a particular realization of
the random walk of the excitation letRn denote the number of
distinct sites visited by it in the firstn steps (usually one sets
R0 ≡ 1). For the same realization of the walk letFn denote the
probability that trapping has not occurred up to thenth step. If
the traps are placed randomly over the lattice, with probability
q, one has8

where we have set (1- q)≡ e-γ and assumed the origin of the
walk not to be a trap. The measurable survival probability is
the average ofFn over all the realizations of RWs and, in our
case here, also of the underlying SWNs; therefore,

In the following we focus onΦn, which is an average over
an exponential expession: a powerful way to proceed is to
express it as an exponent of averaged quantities, the so-called
cumulants.8 In this way, one is lead to

where the Kj,n are the semiinvariants (cumulants) of the
distribution ofRn, i.e.,K1,n ) 〈Rn〉 t Sn, K2,n ) 〈Rn

2〉 - 〈Rn〉2 t

σn
2, etc. As discussed in ref 8, we can now truncate the sum on

the right-hand side of eq 5:

and use theΦi,n as increasingly reliable approximations forΦn

at short and medium times (i.e.,n). On a note of caution we
note that this procedure does not capture the asymptotics of
Φn, given that forn f ∞ in generalΦn is not an analytical
function of γ anymore.

Exemplarily, the simplest nontrivial decay form is

Now Sn ≡ 〈Rn〉, the mean number of distinct lattice sites visited
in n-steps, has a long history of study. Montroll and Weiss have
shown that it can be calculated for regulard-dimensional lattices
using generating function techniques.1,50-52 One finds, depend-
ing on the dimension and for not too smalln:51,52

and

Figure 1. Sketch of part of a SWN, built from a ring. Some ALs
connect to sites outside the figure.

A(t) = A0e
-Bkt (1)

Pi(n + 1) - Pi(n) ) ∑
j)1

N

wijPj(n) - Pi(n) ∑
j)1

N

wji (2)

Fn ) (1 - q)Rn - 1 ) e-γ(Rn - 1) (3)

Φ̃n ) 〈Fn〉 ) eγ〈e-γRn〉 ≡ eγΦn (4)

Φn ) 〈e-γRn〉 ) exp[∑
j)1

∞

Kj,n(-γ)j/j!] (5)

Φi,n ) exp[∑
j)1

i

Kj,n(-γ)j/j!] (6)

Φ1,n ) exp(-γSn) (7)

Sn ∼ n1/2 (d ) 1) (8)

Sn ∼ n/ln(n) (d ) 2) (9)

Sn ∼ n (d ) 3) (10)
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For fractals,Sn depends on the spectral dimensiond̃; it
obeys:57

and follows eq 10 ford̃ > 2. Henced̃ ) 2 is the marginal
dimension for the mean number of distinct sites visited. A
similar situation occurs for UMS, where10

whereµ ) (ln b)kBT/∆, with b + 1 being the connectivity and
exp(- kBT/∆) the Boltzmann factor for thermally activated steps.
On the other hand, forµ > 1 one recovers eq 10. The same
holds true for RW over nontrivial (i.e. b > 1) Cayley trees. In
all these cases, evidently, by inserting eqs 8, 9, 11, and 12 into
eq 7 one is led to nonexponential decay patterns.

Given that the domain of validity ofΦ1,n may be quite
restricted (as for instance ind ) 1, eq 8) one may now try to
go stepwise higher in the approximation.

Thus including the variance,σn
2, leads to

Further terms of the cumulant expansion eq 6 may be determined
from the higher moments ofRn. We note, however, that even
for regular lattices the determination of the higher cumulants
of Rn is an arduous task.

As a first approximation for evaluating trapping on SWN,
we focus now onΦ1,n

SWN ) exp(-γSn
SWN), and hence onSn

SWN.
As shown in ref 18 through numerical simulations,Sn

SWN is
very well described by the following scaling relation:

wheref (x) ) x8/π for x f 0 andf (x) ) Cxx for x f ∞. Note
that for very smalln or p, such asnp2 , 1, one recovers the
one-dimensional character ofSn, eq 8. This was to be expected,
since, for a small number of steps and very few ALs, a walker
sees mainly 1D surroundings. On the other hand, forn large
the walker explores a quite open structure, not very different
from a random tree.46 Hence, on SWNs, one has a temporal
transition with respect toSn between a confined situation at small
n and an open one forn large. Evidently, eq 7 again leads to a
nonexponential behavior for smalln. For n large Φn stays
nonexponential, due to the higherΦi,n forms.

Given that evenSn
SWN is known (at least for the moment)

only numerically, we focus now on the numerical evaluation
of Φn. We note from the start that placing the traps randomly
over different SWNs and simulating walks which stop on
trapping would be an extremely computer time-consuming
procedure. We prefer instead to work using eq 5, since it offers
the great advantage of being, in fact, aq-independent algo-
rithm: as is evident from eq 5,q appears in it only throughγ,
a parameter. Numerically one has only to determine theRn

values on SWN-latticesdeVoid of traps, evidently, however, for
many SWN-realizations.

We start our procedure as follows: For a givenq we construct
10 different SWNs, of sizeL ) 9 × 105 each. On these we
simulate a total of 105 RWs with randomly chosen starting
points, and determine theRn for each walk; from these we obtain
the Rn-distribution. By choosing the starting points randomly
we sample, in fact, a very large class of local SWN-geometries,
much larger than what the 10 SWN-realizations indicate at first
glance. The so-determinedRn-distribution allows us then, via

eqs 5 and 6, to evaluate numerically (for arbitraryq-values)
both Φn

SWN and also the correspondingΦi,n
SWN. The results of

these calculations are presented in Figures 3 and 4, whereas
Figure 2 shows trapping on the 1D chain.

In Figure 2 we depict trapping on a linear chain. Note that
this corresponds faithfully to our SWN-model (a ring) forp )
0, since we keep the number of steps belown ) 10000, and
hence the limitations of the ring cannot be seen. Displayed are
in logarithmic scales the decays for the trap densitiesq ) 0.01
andq ) 0.05. We present both the exact decay forms and also
the first four approximations, as given by eq 6. The results
reproduce those of ref 8. Clearly evident from Figure 2 is the
nonexponential character of the decay. Furthermore, whileΦ1,n

provides a reasonable description for the decay in the first
decade, it already fails to provide it in the second and further
decades. In the second decade, visible in the Figure only forq
) 0.05, the formΦ4,n turns out to be quite reasonable. One
may also note the fact that the increasing cumulants approximate
the true decay from below (if they are odd) and from above (if
they are even); this is due to the fact that all four cumulants
considered are strictly positive, and to the changes of sign in
the exponent of eq 6.

Sn ∼ nd̃/2 (for d̃ < 2) (11)

Sn ∼ nµ (for µ < 1) (12)

Φ2,n ) exp(-γSn + γ2 σn
2/2) (13)

Sn
SWN ) n1/2f (np2) (14)

Figure 2. Decay due to trapping on a linear chain devoid of ALs (p
) 0); the trap densities areq ) 0.01 for the upper andq ) 0.05 for the
lower curves. The full lines giveΦn and the other linesΦ1,n to Φ4,n.
The approximations areΦ1,n (dotted),Φ2,n (short-dashed),Φ3,n (long-
dashed), andΦ4,n (dot-dash).

Figure 3. Survival probabilitiesΦn (solid lines) on SWNs with an
AL-density of p ) 0.04, compared to the corresponding cumulant
approximationsΦ1,n (dotted),Φ2,n (short-dashed),Φ3,n (long-dashed),
andΦ4,n (dot-dash). The trap desities areq ) 0.01 for the upper and
q ) 0.05 for the lower curves.
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The situation changes when we go to nontrivial (p * 0)
SWNs. In Figures 3 and 4 we display the trapping decay for
concentrations of ALs equal top ) 0.04 and top ) 0.2,
respectively. One expects with increasingp that the SWN will
behave in a more and more regular manner, at least in what the
first few decades of the decay are concerned. This is also the
case when one looks at the decay forq ) 0.01; there, already
for p ) 0.2, the description in terms ofΦ1,n is very satisfactory
for the first two decades shown; in fact, the decay itself is hardly
distinguishable from an exponential. Also the situation forp )
0.2 andq ) 0.05 is satisfactory; as can be inferred from Figure
2, Φ1,n is not bad at all over the first two decades of the decay,
and the description which usesΦ2,n performs very nicely over
4 orders of magnitude in the decay (possibly the experimental
limit nowadays), a region in which nonexponential features
appear quite clearly. In the intermediate region, forp ) 0.04,
the situation is more complex, as displayed in Figure 3. Here
all Φn are clearly nonexponential and already forq ) 0.01 a
description solely in terms ofΦ1,n turns out not to be
satisfactory; one has to use at leastΦ2,n in order to get a good
picture of what happens during the first three decades of the
decay. More complex even is the situation forq ) 0.05: there
Φ1,n can be employed only over the first decade (as a rough
approximation); alsoΦ2,n captures only part of the picture, given
that it does not approximate anymoreΦn strictly from above.
While the region where this happens may not be of experimental
relevance (and still under the proviso that our numerical
procedure may have its limitations) we can, on the basis of our
preliminary results, state that for largen the behavior of the
cumulants is by far more complex on SWNs than on regular
lattices or on Cayley trees. In fact, on inhomogeneous lattices
complexity may be very high.58,59 Also the Φ3,n and Φ4,n

approximants are not of much help, since they start their
(unphysical, divergent) behavior before three decades of the
decay are reached. Similar situations8 were also encountered in
one-dimension; there, however, one may help oneself through
the knowledge1 of a closed form forΦ; for SWNs, additional
analyses are clearly necessary.

4. Conclusions

In this work we have focused on energy transfer and trapping
on small world networks (SWNs). As discussed in the work,
such SWNs are new classes of random graphs, which allow to
combine in a judicious manner ordered and disordered aspects

of realistic materials. As stressed above, such SWNs are akin
in spirit to situations encountered in polymeric media.

Trapping on SWNs displays a series of features which
interpolate between pure order and pure disorder. For a small
densityp of additional links (AL) the decay follows for some
time the structure imposed by the parent lattice. Nonetheless,
one observes in the decay behavior at longer times a crossover
to a situation typical for an open tree;46 this is due to the fact
that the excitation uses increasingly steps along the ALs. A third
decay domain would open up at very long times, where again
the underlying geometry gets to be important;46 we did not
discuss this domain here, because we wanted to focus on the
experimentally accessible decay regions.

The crossover behavior found here for trapping on SWNs is
quite reminiscent of the transition in trapping behavior on regular
lattices when going from low (smalld) to high (large d)
dimensions. The crossover is also akin to what happens in
ultrametric spaces (UMS), when increasing the temperatureT;
namely, at higherT the decay law gets to be more regular and
can be more readily described throughSn, the mean number of
distinct sites visited by the walker inn-steps. In lower
dimensions and at lower temperatures this is no more the case;
the full distribution of distinct sites visited (and not only its
mean value) matters. Starting here from a ring, on which we
added ALs, several aspects of the decay are of importance: For
largep, as mentioned, the decay gets to be very regular so that
(at least for a very low density of traps) it becomes close to
exponential; furthermore even in the region where such a decay
is nonexponential, its form may still be well approximated
throughΦ1,n, i.e. with help of Sn. On the other hand, at very
low AL densities, the 1D behavior persists for a long time. Of
particular interest is the intermediate region of medium AL
density, where the decay forms are quite complex: Their
approximation through cumulant forms gets to be inaccurate at
a rather early stage; our preliminary calculations show that this
is due to the higher cumulants, which (distinct from the previous
findings for regular lattices) do not necessarily stay positive.
We thus view trapping on SWNs as a rather complex problem,
which certainly deserves further study.
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