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This paper uses the simple reversible isomerization reaction to illustrate and clarify the roles played in chemical
kinetics by recently proposed forms for the chemical Langevin equation and chemical +Bkieck equation.

It is shown that the stationary solution of the chemical Fokilanck equation for this model reaction provides,

for most purposes, an excellent approximation to the stationary solution of the chemical master equation. It
is also shown that, when allowance is made for the stipulated macroscopic nature of the time inctément d

the chemical Langevin equation, the changes in molecular population dunmgdicted by that equation for

this model reaction closely approximate the changes prescribed by the chemical master equation. The discussion
highlights the role of the chemical Langevin equation as not only a potential computational aid but also a
conceptual bridge between the stochastic chemical master equation and the traditional deterministic reaction
rate equation.

1. Introduction Using only eqs 2 and 3 and the laws of probability
theory, one can prove that the probabiliB(x,t|Xo,to), that
X(t) will equal x givenX(to) = Xo for t = to, obeys thechemical
master equatiofCME):1:2

When molecules of a well-stirred mixture &f molecular
species{S,, ..., Sy} interact throughM chemical reaction
channel§ Ry, ..., Ru}, the molecular population vectot(t) =
(Xa(t), ..., Xn(1), where

9 M
Xi(t) = thenumberof § molecules in the system at tinte aP(x,ﬂxO,tO) - le[a]-(x — V) P = vtixot) —
(i=1,...,N) (1) a,(x) P(,tIXt)] (4)

changesstochasticallybecause of the inherent randomness of
molecular collisions. If the molecules are confined to a fixed
volume and kept at constant temperature, straightforward kinetic
theory arguments show that for each reaction chaRntiere

is a functiong; such that

Equations 24 imply that the system’s state poi(t)
performs a “random walk” on the integer lattice in the
N-dimensional species population space; in mathematical terms,
X(t) is ajump Marka processBut if the molecular population
levels happen to be so large that the granularity of the integer
aj(x) dt = the probability, givenX (t) = x, that oneR lattice is not noticeable, the randomness in the trajectoX(Df

. . . . is often also not noticeable. In that case, the trajectory takes on
.refagnor.] wil occurin the system n the next the character of @ontinuous deterministicprocess which is
infinitesimal time interval {t+df) (j = 1, ....M) (2) described by the set of ordinary differential equations

This propensity functionjatogether with thetate-changeector

v, = 1, ..., v) as defined by dx(t) ™

= Zvjiaj(X(t)) (i=1,..N) )
v; = the change in the number §fmolecules produced t =
by oneR reaction [=1,..,M;i=1,..,N) (3) This is the well-knownreaction rate equation(RRE) of

traditional chemical kinetics, although expressed in terms of

completely characterizes reaction chanRelSo, for example,  molecular populations instead of concentrations.

if R is the reactior§, + $ — 2§, theny; = (+1,-1,0, .., 0) For well-stirred systems the CME (4) has a firm microphysi-

and &(x) = cixix; whereg; in this case is the conventional  cal basis, so for such systems it describes accurately the effects

reaction rate constaig divided by the volume of the system.  of molecular level randomness. In contrast, the RRE (5), which

- - - alsorequires the system to be well-stirred, is a more phenom-
T Part of this work was performed while the author was a Staff Scientist

in the Research Department of the Naval Air Warfare Center in China Lake, enOIO.glcal equation; yet we kno‘f" from experlence that it
California. describes most macroscale chemical systems quite well. Just

*E-mail: GillespieDT@mailaps.org. how the CME (4) gets supplanted by the RRE (5) as a chemical
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system approaches the “thermodynamic limit” of infinite

Gillespie
RRE (5) indifferentialform, replacing the left side byq(t+dt)

molecular populations has been the subject of much study and— X;(t)]/dt and then multiplying through bytdwe should really
considerable debate for several decades. Recently this issue hasse some kind of “macroscopic’t.d\Notice that if we usedtd
become more than merely academic: Biochemists are finding in that differential form, we would obtain the CLE (&xcept

that, inside a living cell, the relatively small molecular popula-

for the last summation term therein.

tion levels of some key reactant enzymes can sometimes cause As was discussed in ref 4, eq 6 is but one of several different
molecular level randomness to have a dramatic impact on candidates for “the” chemical Langevin equation that have been

cellular developmert.
In an attempt to articulate more clearly the relation between
the CME (4) and the RRE (5), this writer recently presented in

ref 4 arguments showing that, under certain specific conditions,

the jump Markov process defined by the CME (4) can be
decentlyapproximatedby a continuousMarkov process that
satisfies the followingchemical Langein equation(CLE):#

M
X (t+ dt) = Xi(t) + Zvjiaj(x(t)) dt +
£
M

Zvjia,-”z(X(t)) N@® @2 (=1,..,N) (6)
pA

Here,Ny(1), ..., Nu(t) areM statistically independent, temporally
uncorrelateshormal (or Gaussian) random variables with means
0 and variances 1; andtds a positive macroscopically
infinitesimal time increment, which will be defined more
precisely in a moment. The CLE (6) evidently tells us how, if
we know the state of the system at tilq@ve can compute the
state at the slightly later time+ dt; in principle, this is all we
need to trace the time evolution of the system.

The definition of themacroscopic infinitesimadt in eq 6 is
important, because it defines tlpecial circumstancesnder
which that approximate equation is valid: The key requirement
is that d be (i) small enough that none of the propensity
functionsa; changes in a macroscopically noticeable way during
dt, yet (i) large enough that each reaction chanRgfires many
more times than once during.dOnly to the extent that the
system admits atdsatisfyingboth of these conditions will the
CLE (6) decently approximate the time evolution of the process
X(t) defined by the CME (4). In cases where it is not possible
to find a d that satisfies both conditions i and ii, the CLE (6)
will notbe a reliable approximation to the CME (4).

This notion of a macroscopically infinitesimal time increment
is not at all new in physics or chemistry. For example, the
definition of electrical current as the rati®d- dt, where @@
is the charge passing in infinitesimal timg & meaningfubnly
if dt is amacroscopidnfinitesimal; because, iftdvere allowed
to be arbitrarily close to zero, as for a “true” infinitesimal, we

would eventually observe “shot noise” as charge passes by in

discrete chunks (on electrons): the ratiQ & dt would not
approach a well-defined limiting value. So, in conventional
electrical circuit theory, it is always tacitly understood that the
dt in the ratio dQ/dt is large enough that very many electrons
pass by in time d But this “macroscopic” character of the
infinitesimal d in electrical circuit theory is rarely called out
in a notationally explicit way, as we have done in eq 6; indeed,
eq 6 appears in ref 4, where it was deriveithoutthe overbar

on the “d.” The reason for the notational emphasis in this paper

will become clear later.

Even the derivative in the RRE (5) presumes a macroscopic

dt: The changeX;(t+dt) — Xi(t)] in the number of§ molecules
between timest and t + dt approaches zero withtdot
continuously but rather througtiiscretevalues (and likewise
for the concentration d§), a behavior that is really not allowed
in a differentiable function. Therefore, if we were to write the

proposed in the prior literature. The main contribution of ref 4
was to show that eq 6 has the distinction of beiiggprously
derivable from the same premise (2) that underlies the CME
(4), by makingspecific approximationshat should be valid
whenever conditions i and ii hold.

It is known in continuous Markov process theory that every
Langeiin equationfor a processX(t) is accompanied by a
unigue Fokker—Planck equationfor the probability density
function P(x,t|xo,to) of that process. The FokkePlanck equa-
tion corresponding to the specific Langevin eq 6 turns out to
be

+

d NagfM
§P(X,tlxo,t0) = _;&\(;Vﬁaj(X))P(X1t|X01to)
N 2] ™ ,
22 @ (]: V573 (X))P(X,tXo,to)
N 82
i";’la)(iaxi,

+

()

M
() vva (X)) P(X,t X, )
;VJ Vji'dy o'l

Rather amazingly, the time evolution Bfx,t|xo,to) prescribed
by this chemical FokkerPlanck equation(CFPE) exactly
parallels the time evolution of (t) prescribed by the CLE (6).
The inherently approximate nature of the CFPE (7) can be
discerned from the fact thatin that equation is aeal variable,
whereas in the exact CME (4) is aimtegervariable. Indeed,
since the CFPE (7) is a direct consequence of the CLE (6), it
too is ultimately predicated on the system possessing a
macroscopically infinitesimal time scale, in the sense of
conditions i and ii. In ref 4, plausibility arguments were given
suggesting that conditions i and ii will usually be satisfied if
the molecular population levels of all the reactant species stay
sufficiently large.

Concerns about the correctness of the CLE (6) and the CFPE
(7) were recently raisédn connection with the simple reversible
isomerization reaction,

Cy
ST (8)
Assuming that the total number of isomers is a constanive
can put

XM= X0, X0 =% — X(t)
and treat this reaction set as & € 1, M = 2) process with
X(t) = X(t). The propensity functions and the state-change
vectors for this univariate process are

a(X) = C(Xr—X) (9a)

vn=-1 v,=+1 (9b)
In ref 7, it was questioned whether, for this particular reaction
scheme, the stationary solution of the CFPE (7) really matches

the stationary solution of the CME (4), and also whether the
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infinitesimal increment irX(t) prescribed by the CLE (6) really
matches the increment that is implied by the CME (4). In the

following sections we shall investigate each of these questions

numerically We shall find that this reversible isomerization
reaction model actually provides a felicitous illustration of many
features of the CME-CLE-CFPE-RRE relationship which was
drawn, rather more abstractly, in ref 4.

2. The Stationary Distribution of X(t)

The stationary or “equilibrium” solutionBs(x) to both the
exact CME (4) and the approximating CFPE (7) are defined,
whenever they exist, by

P(x) =

lim  P(X,t[Xq,t) (20)
(t—tg)—e0

For the univariate proces¥(t) that describes the reversible
isomerization reactions (8) according to eqgs 9, it is possible to
calculate analytically and exactly the stationary solutions of both
the CME (4) and the CFPE (7). In this section we shall obtain
those solutions and then compare them, with a view to getting
some idea of just how successful the CFPE (7) is at approximat-
ing the CME (4).

In Appendix A we review the argument showing that the
stationary solution of the CME (4), which we shall designate
with a superscript “m”, is théinomial distributior?

Ps(x)=x!( - X)lq(1 Q" (x=0,1,..%) (11a)
where

G

q=c1+c2 (11b)

The mean and variance d¥. are therefore given by the
standard binomial formul8s

X+C
XT=xq= chz (12a)
X+C,C.
vaf X}I' = x;q(1 — q) = m (12b)
1 2.

To compute the stationary solutiéti” of the CFPE (7), we
first use eq 9 to evaluate two relevant quantities, namely,

2

Zvjaj(x) =X — (¢ + )x=AX) (13a)
£

2

Zijaj(X) =X + (¢, — ¢,)x = D(X) (13b)
2

Then, as explained in Appendix A, the stationary solution of
the univariate form of the CFPE (7) takes the quadrature form

FP X2A(X)
P = 55 p(f )

D(x)
whereK is a normalization constant. The integral in eq 14 can
be evaluated for thé and D functions in eq 13 by simply

(14)

J. Phys. Chem. A, Vol. 106, No. 20, 2002065
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J2r(x14) eXp(_

This is evidently anormal (Gaussian) distribution with mean
x7/2 and variance«s/4. We note that this mean and variance
agree exactly with those of the stationary CME distribufgh
in eq 12 for the case; = c,.

For c; # ¢y, the integration in eq 14 yields the result

(x — x/2)?

PEP(X) = 2(x./4) ) (c,=c) (15)

PEF(X) = K'e e, + (¢, — &)X’ c*=Cy) (16a)
where
+ 4
= 2(Cl CZ) B= Llczz —1  (16b)
GG (c,—c)

andK' is a normalization constant. To the best of this writer’s
knowledge, the distribution (16a) is not a named type. It is
clearly not normal, though, as was claimed in reéf But the
important question is, do the results @P(x) in eqgs 15 and 16
decently approximate the result fBf'(x) in eq 11? Let's look

at two examples.

In Figure 1 we compare, for the case= c,, the stationary
solutionPE7(x) of the CFPE given in eq 15 with the stationary
solution P{'(X) of the CME given in eq 11 for the threer
values (a)xr = 10, (b)xr = 50, and (c)xr = 500. In each plot,
the exact CME function is shown blyeavy dots at integer
x-values, and the approximating CFPE function is shown as a
solid cure (which for simplicity has been linearly interpolated
between the integex-values). The agreement in each case
appears to be excellent. In Figure 2 we press the comparison a
bit harder by plotting the same data oriogarithmic vertical
scale, and here we can see some differences: In the far tails of
the distributions, which all appear to be zero on the linear scales
of Figure 1 PFP(x) overestimate®;'(x). For example, in ther
= 500 case (Figure 2c), the two curves are virtually indistin-
guishable in the 13-standard-deviation interval X08 < 400,
but the equilibrium probability of finding, for instance, only 50
S; molecules is pegged by the CFPE to be about'dhstead
of the correct value of about 18P,

Figures 3 and 4 show a similar treatment of the @ase c,,
taking for definiteness; = 1 andc, = 2. The heavy dots again
show the exact stationary soluti®'(x) in eq 11, and the line
curves show the approximating stationary soluﬁéf(x), now
given by eq 16. The story is much the same as inghe c;
case: No differences are noticeable betwBgfx) and PEP(X)
on thelinear scale plots (Figure 3), but on thagarithmicscale
plots (Figure 4)P§P(x) is seen to overestimate the near-zero
probabilities of finding numbers of molecules that differ from
the mean by many standard deviations.

A clear explanation for the errors in the far tailsRﬁP(x) is
difficult to discern, since the CFPE (7) is related only indirectly
to conditions i and ii through the CLE (6). But it is probably
no accident that these errors are occurring in regions of state
space where the number of eitt&ror S molecules is so small
that conditions i and icannotsimultaneously be satisfied. For
example, in thesr = 500 case described by Figures 1c and 2c,
suppose there ane = 8 S molecules at a particular instant.
During any subsequent time interval that is large enough for
both reaction channels to fire many more times than once, in

consulting a common table of integrals; however, the two casessatisfaction of condition ii, the propensity functi@a(x) will

C1 = C; andc; = ¢, must be treated separately.
For the case&; = cy, the integration in eq 14 gives

almost certainly change from its starting valuecpf = 8 by a
relatively large amount, in violation of condition i; because,
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Figure 1. Stationary (equilibrium) probability distribution of(t) =
Xa(t) for the reversible isomerization reaction 8 for the case= c;
and (a)xr = 10, (b)xr = 50, and (cxr = 500. In each frame, theots
show theexact CME function (11), and the line curve shows the
approximatingCFPE function (15).

mostof those next reactions will b reactions, each of which

increasex by 1 and hence alsay(X) by 1. So, when the system

is in statex = 8, there simply is no time interval that satisfies
both of conditions i and ii.

Certainly there will be circumstances in which the inaccura-
cies in the far tails oPE"(x) shown in Figures 2 and 4 can pose
a problem; for instance, those errors would lead us to overes-
timate the chances of an extremely large fluctuation from
equilibrium. But for most practical purposes, such as making
ordinary linear plots such as those in Figures 1 and 3, the
stationary solution of the CFPE (7) appears to provide a
remarkably good approximation to the stationary solution of
the CME (4), at least for the reversible isomerization reaction
set (8).

3. The Increment in X(t) in the Next dt

As was mentioned in section 1, the CLE (6) is essentially a
formula for “updating” the populations of all the molecular
species from the present timhéo a slightly later time + dt. In
Appendix B, it is shown that the CLE (6) makes the following
prediction for the reversible isomerization process: If that
process has the valuet timet, i.e., if X(t) = x, then thechange
in the process in the next,chamely

A(x,dt) = X(t+dt) — x 17)

Gillespie

(@)

log10 Ps(x)

(c)

100 200 300 400 500
X

Figure 2. Same data as in Figure 1, but plotted on a logarithmic vertical
scale.

will be a normal (Gaussian) random variable witmean
A(X)dt and variance D(X)dt:

A(x,dt) = A(A(X) dt, D(x) dt) (CLE) (18)
Here,A(x) andD(x) are the functions defined in eq 13. In this
section we shall examine tlaecuracyof this prediction of the
CLE. But before doing that, we need to discuss a related issue
that was raised in ref 7.

Consider arue infinitesimal time incrementtd one that is
so small that it is very unlikely to span more than one reaction
event of any kind. Then in the next,dne of three things can
happen: Either on&; reaction will occur, or onéR, reaction
will occur, or no reaction will occur. Equation 2 gives the
probabilities of those three eventualities when the system’s
current state i, and thereby implies that the state change
A(x,dt) in that next d will be the tri- valued integerrandom
variable

—1, w/ probabilitya,(x) dt
A(x,dt) = [+ 1, w/ probabilitya,(x) dt
0, w/ probability [1— a,(x) dt — a,(x) dt]

(19a)

This result is expressed more compactly in ref 7 in terms of the
Heaviside step functio® and the unit-interval uniform random
variable 7/(0,1)1°

A(x,dt) = O(a(x) dt — 240,1)) —
©(740,1)— 1+ a,(x) dt) (19b)
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Figure 3. Stationary (equilibrium) probability distribution of(t) = scale.

Xa(t) for the reversible isomerization reaction 8 for the case= 1,
¢ =2, and (ajr = 10, (b)xr = 50, and (cxr = 500. Thedotsshow equation” in the technical sense of continuous Markov process
_theexactCME fl_Jnctlon (11), and the line curve shows tggproximat- theory, while eq 19b does not.
ing CFPE function (16). . .
Returning now to the question of the accuracy of formula

(18) for A(x,dt), and hence also accuracy of the CLE (6), we
It was suggested in ref 7 that t@aussiarstate increment (18) ~ are immediately faced with two problems: _First, how should
predicted by the CLE (6fonflicts with the tri- valued state we go about selecting an appropriate value ﬁﬁ_’f@nd second,
increment (19) implied by the fundamental premise (2), and how can we compute the “true” value a{x,df), in accordance
that therefore eq 19b might be more deserving of the title With the CME (4), against which to measure the accuracy of eq

“chemical Langevin equation” than eq 6. 18? o ) _ . .
If the macroscopic infinitesimaltdn eq 18 had been written Guidelines for selecting values fot that satisfy conditions

withoutthe overbar on the d, as in fact it was in ref 4 where the I(:(?r?(?itilc;na?esr?oel::\éegeIgaﬁgfﬁ)s(;l?;x C. There it is shown that
CLE (6) was derived (and as it also is in the ordinary reaction

rate eq 5 and many other equations of applied science and pr -1

engineering), one might indeed be tempted to conclude that there dt=(c+¢c) (203)

is a conflict between egs 18 and 19. But our notation here makes,, 1o condition ii should be satisfied if

it clear thatthere is no conflictbecause the time increments in
egs 18 and 19 are not the same. The time incremantety 19

is, by definition, so small that there is an insignificant probability
that more than one reaction event will occur anywhere inside
the system during the next.dn contrast, the time increment  Simultaneous satisfaction of these conditions evidently hinges
dt in eq 18 is, by condition ii, large enough that each of the on making the right-hand side of (20b) sufficiently small. An
reaction channel®; andR; will likely fire many more times inspection of the propensity function formulas (9a) shows that
than once during the nextt.dBoth results (18) and (19) are  this can always be done if th populationx and the$S;
logical consequences of the fundamental premise (2): eq 19 ispopulationx; — x are both sufficiently large.

an exactconsequence of (2), following by the straightforward Once a value forigsatisfying conditions (20) has been chosen,
argument outlined above, while eq 18 is approximate which of course requires that values have been specified for
consequence of (2) which follows, subject to conditions i and the parameters,, c;, Xr, andx, we can straightforwardly com-

ii, by the somewhat more involved argument given in ref 4. pute the normal probability density function prescribed by eq
We note also that eq 6 has the canonical form of a “Langevin 18 for the random variabla(x,dt). But in order to assess the

- 1 1
dt> Max{ - (X),az(x)} (20b)
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fidelity of that prediction of the CLE (6), we must determine 0.04 ' . . - — e
the exact probability density function ofA(x,dt). That exact I

density function can be expressed (as a functiondpfas
P(x+c$,at|x,0); so, one way to proceed would be to solve the
CME (4). But the CME is typically very difficult to solve, either 0.037
analytically or numerically. So we shall take a different ap-
proach: We shall make very many statistically independent &
numerical simulationsf the proces¥(t). Each simulation will x 0.02 L
be started at the specified statat time 0 and will be run to E’
time d to obtain a valuexX(dt) = x + 6. The J-values thus
obtained will constitute a set sfatistically independent samples

of the random variableA(x,dt); so anormalized frequency 0.017
histogramof thoseo-values will provide an estimate of the
corresponding probability density functidtx+d,dt|x,0). The
histogram will of course be subject to uncertainties arising from 44 : : : : : : :
the necessarily finite number of sample values plotted, but those 40 30 =20 10 0 10 20 30 40
uncertainties can be easily estimated. This approach is feasible Ax,df)

because there exists a simple way of numerically simulating
chemical reactions that isxactly equialentto the CME (4):

Figure 5. For the case; = 1, ¢; = 2, andxr = 10% a comparison of
two different estimates of the probability density function of thange

the so-calledstochastic simulation algorithrit in stateover a time d= 1072, starting atx = 6430 (about 5 standard
Let’s look at a specific numerical example. We shall take deviations below the stationary mean). The solid curve is the prediction
for the reaction probability rate constarts= 1 andc, = 2, (21) of the CLE, a normal (Gaussian) distribution with mean 7.1 and
and we shall fix the total number of moleculesxat= 10 variance 135.7. The frequency histogram displays the results ‘of 10
Equations 12a and 12b then predict that the prodégswill exact stochastic simulation runs, reflecting the prediction of the CME.

The vertical interval bars in the frequency histogram indicate the one-

standard deviationn(+ «/ﬁ) uncertainty estimates inferred from the
bin occupation numbens.

eventually come to equilibrium by fluctuating about its mean
X' = 6666.7 with standard deviation sde¢ . = 47.1. Let

us choose as our starting state 6430, a value that is roughly
5 standard deviations below the stationary mean. For these ¢g12 . . . ' :
parameter values, conditions (20) will be found to require that
any acceptabletdshould be<0.33 and>1.6 x 1074 We can

satisfy both conditions reasonably well by taking=d 1072, 0010
Using the definitions (13), we find that the CLE formula (18)
becomes 0.0087 i
s
A(6430,10%) =.1(7.1,135.7) % =10") (21) oo -
Figure 5 shows as theolid cure the probability density &0004_ i

function of this normal random variable. Superimposed is the
normalized frequency histogram of state change values that were
actually obseredin 10* exact stochastic simulation runs; each 00027 -
run started in statge = 6430 at time O and ended at time=d
1072 The vertical error bars indicate the conventional one-  o0.000 ! . . . .
standard deviationn(% +/n) uncertainty estimates. Figure 5 -150 -100 -50 0 50 100 150
shows that the distribution (21) predicted by the CLE (6) Alx,d)
provides a remarkably good fit to numerical simulations carried Figure 6. Same as in Figure 5, except the total number of isomers
out in exact accord with the CME (4). has been increased by 2 orders of magnitude te 1(f, and the state
To test the assertion of ref 4 that the CLE approximation cha_ng_e is measured from the initial state 660 (_)_00 (about 14 standard
should become even better as the number of molecules involveddéviations below the stationary mean) over a tithe-d 0=, This larger
. . olecular population level makes it easier to satisfy the approximation
is made larger, let us keep the same reaction constants buﬂ:)nditions (20) required by the CLE.
increase the total number of molecules by a factor of 10&; to
= 10f. And let us choose as our starting state= 660 000, Besides confirming the essential correctness of the CLE (6),
which can be shown from eq 12 to be about 14 standard these model calculations also give us a glimpse of the potential
deviations below the stationary mean. For these values, we findutility of that approximate equation. In Appendix C it is shown
from conditions (20) that an acceptablestiould be<0.33 and that the averageotal number of reactions that occur when the
>1.5x 1076, an acceptance range farttat is about 100 times ~ System makes the state chanfyg,dt) is D(X)dt; this number
larger than in the previous case. Taking & 1073, we find is also, by eq 18, the estimated varianceAk,dt). So, in the
that the CLE formula (18) now gives fax(x,dt) last example considered, eq 22 tells us that a single run typically
entails simulating 1340 individual reactions events (a figure that

A(660000,10% =_1(20,1340) =10° (22) was confirmed in the actual simulations). But Figure 6 shows
that the net state change produced by those 1340 reaction events
Figure 6 shows the density function for this normal distribution, can be accurately approximated by simply drawing a single
along with the results of F0exact stochastic simulation runs random number from the normal distribution (22), a computa-
that were made using the same parameter values. The agreemetibnal task that is very easy to accomplish. The message here
indeed appears to be as good as, if not better than, the agreemeis thatwhen conditions i and ii can be satisfied, the CLE (6)
exhibited in Figure 5 for a smaller total number of molecules. can enable substantial gains in simulation efficiefty




Chemical Langevin and FokkePlanck Equations J. Phys. Chem. A, Vol. 106, No. 20, 2002069

4. Summary and Conclusions the satisfaction of conditions i and ii; if the situation is such
that those conditions cannot be satisfied, the CLE and the CFPE
will have no claim to validity.

The second reason for concerning ourselves with the CLE/
CFPE approximation has to do witlonceptual understanding
As was mentioned at the beginning of this paper, it has never
been clear how the CME (4) gets supplanted, in the thermo-
dynamic limit, by the conventionakaction rate equatiorgs).
The CLE (6) appears to answer this question. Its derivation from
premise (2) under conditions i and ii shows that, when the
reactant populations become sufficiently large, the CME (4)
segues to the CLE (6) and the CFPE (7). The further connection
to the RRE (5) can then be understood from a simple inspection
of the two summation terms on the right-hand side of the CLE
«6): The first summation term (thdeterministic driftterm
containing d) is essentially proportional to the propensity

The chemical master equatiof) has a sound theoretical
basis in kinetic theory for “well-stirred” chemical systefns.
Reference 4 argued that, under certain specific conditions, the
CME can be decentlgpproximatedoy thechemical Langein
equation (6) and its companiorchemical FokkerPlanck
equation (7). In this paper we have tested that claim by
quantitatively comparing certain predictions of the CME with
those of the CLE and CFPE for the reversible isomerization
reaction 8.

We found in section 2 that the equilibrium solution of the
CFPE approximates that of the CME quite well (see Figures 1
and 3), erring only in predicting precisely how close to zero
the CME solution is in the far tails (see Figures 2 and 4), which
are regions of the state space where the conditions stipulate

in ref 4 are violated. And in section 3 we found that, provided functions, while the second term (thandomly fluctuatingerm

the time infinitesimal tlin the CLE (6) is “macroscopic” in the containing (@)% is basically proportional to thequare root
sense stipulated by ref 4, the change in the molecular populations g Y prop d

in time d predicted by the CLE matches very well the change gg;hiofr%%ernfggﬁgggogfé St'ﬂgfntshe?\,z;()per?'zt:g2;}'0{5 Eﬁg
predicted by the CME (see Figures 5 and 6). . >S _Prop
. . . . molecular populations, then the deterministic component of the
The question arises, did we just get lucky here, or may we

. . motion will scale like the molecular populations while the
expect these_S|mpIe model results to ty_plfy thos_e_ for more fluctuating component will scale like thequare rootof the
complex reaction ;chemes’? Of course, until we explicitly adqressmolecular population® Therefore, as the molecular populations
those other reactions schemes we cannot be sure. But in th ncrease, the fluctuating compo'nent wilecreasarelative to
past, Langevin-type equations in applied physics have usuallythe deter’ministic component as the inverse square root of the
been obtained by simply adding to a deterministic, phenom-

. . . . X molecular populations. And in the thermodynamic limit of an
enological rate equation a “random noise term,” the form of

; . Jinfinite molecular population, the last term in the CLE (6
which has been chosen to ensure some desired thermal equi- pop (©)

o > usually becomes negligible, so the CLE (6) collapses to the RRE
I('g)n;ir\?e?]fﬁic:é;t 4mduosé§?1(')S’ttrueSS?r(;Titotgsirgfég;“i?gtgger((e:fLE (5). The CLE/CFPE approximation thus appears to be the
4 starts from premise (2), the same premise that lexdstly bridge” between the CME (4) and the RRE (5)
to the CME (4), and it shows how satisfactiontafo specific
conditionsleadsapproximatelyto the CLE (6). The specific
conditions are that the time incremeritid the CLE (6) must

be (i) small enough that none of the propensity functions changes
in a macroscopically noticeable way during get (ii) large

The concerns about the CLE (6) raised in ref 7 fail to take
cognizance of condition ii, which stipulates the “macroscopic”
nature of the infinitesimal time increment in the CLE (6). The
alternative increment formula (19b) proposed in ref 7 involves
a “true” time infinitesimal and hence amounts to an exact
enough that each reaction channel fires many more times thanfestatement of the fundamenta_l pr_emise 2) for_ the reversible
once during d After establishing the CLE (6), ref 4 then infers 's0Mmerization procesX(t), reaffirming thatX(t) is a jump
the CFPE (7) from some general results in the theory of Markov process.obeylng the master eq 4, EqugtlonGby contrast
continuous Markov processéJhe logic of the analysis in ref represents a dehperate attempapproximatethatjump Markov
4 strongly suggests that, so long as conditions i and ii are PTO¢€SS by aontmuousl\/larkpv pr_ocess._Thg results presented
satisfied, the CLE (6) and the CFPE (7) should provide here_ for the S,lmpleT reversible isomerization reaction mc_:del
acceptable approximations to the CME (4) famy chemical provide concrete evidence of the validity of that approximation.
reaction scenario. If that is true, then the favorable showing of ~ For the pedagogical purpose of emphasizing the macroscopic
the CLE (6) and CFPE (7) here for the simp|e reversible nature of the infinit_esimal time increment in eq 6, we have used
isomerization reaction is not just a lucky accident. here the notation td But once this point has been clearly

A larger question is, why should we bother to concern underst_ood, it unld seem reason_able _to revert to the S|mp_ler
ourselves with approximating the CME by a CLE/CFPE? There dt notation used in ref 4. That designation for a “macroscopic
are two reasons. On the practical side, this approximation cantime infinitesimal” has been commonplace in applied science
open the way tanore efficient computational strategi€ghis and engineering for many years; indeed, thndhe traditional
fact is not so evident in the computations carried out in section RRE (5) is a macroscopic infinitesimal.

2, where the stationary solutions of the CFPE in egs 15 and 16

were no easier to obtain than the stationary solution of the CME ~ Acknowledgment. | thank Carol Gillespie for her assistance
in eq 11. But, more generally, the art of solving partial Wwith the numerical computations and figures. This work was
differential equations such as the CFPE (7) is much more highly supported in part by the Office of Naval Research under Grant
developed than the art of solving differential-difference equa- No. NO001401WX21040, and in part by the Air Force Office
tions such as the CME (4). A more significant computational of Scientific Research under Award No. F30602-01-2-0558 and
advantage afforded by the CLE/CFPE approximation probably The California Institute of Technology.

lies in the area ofiumerical simulationThus, in the last example

considered in section 3 it was found that the CLE offers a way Appendix A: Derivation of Egs 11 and 14

of accurately replicating the effect of some 1340 reaction events

by simply drawingonenormal (Gaussian) random number (see  The stationary solutioy'(X) of the CME (4) is by defini-
Figure 6)12 Of course, all of these potential computational tion a time-independent solution of that equation. So for the
advantages of the CLE/CFPE approximation are predicated onprocess defined by eq 9, we have
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0 = [a,(x+1) PT(x+1) — a,(x) PT(x)] + variables with means 0 and variances 1. Denoting the normal
S S " . random variable with meam and variance? by . /(m,c?), and
[a,(x—=1) Pg(x—1) — ay(X) P5(X)] using the well-known linear combination rule for statistically

= [a,(c+1) PT(xH1) — a0 PTO)] — independent normal random variables, namely we can manipu-

[a,(9) PR(X) — a,(x—1) PI(x—1)] i (My,or%) + BA5(My,0,7) = A(am+pmy, 0’0, *+f%0,7)
Here x is aninteger variable on the interval [&]. The last late the above expression as follows:
equality implies that the quantities in brackets must have a value
that is independent of. A consideration of the last bracketed _ 2 _ 2 Yo s =
term for the case = 0 shows that that constant value must in A(x,dt) = ZVjaj(X) dt + Z[Vjaj () (dt)*4.170,1)
fact be zero; henceP{(x) satisfies the “detailed balance” = =

condition, 2 _ 2 _
= Zvjaj(x) dt +. \(O,vaq(x) dt)
= =

= A(X) dt +_1(0,D(x) dt)

ay(¥) P{(x) = ay(x—1) P{(x~1)

Dividing this by a;(x) gives a simple recursion relation for
PZ(¥). Iterating that recursion relation yields where the last step invokes the definitions (13). A final
application of the linear combination rule for normal random

x ay(k—1)

iabl Its in eq 18.
PI(X) = PQ‘(O)“ variables results in eq

ay(k) Appendix C: Derivation of Conditions (20)
G\ X! Condition i tiall irest do b Il f
_ o[ 2 T _ ondition i essentially require e very small from a
=P (0)(01) X% — X)! (x=0.1,...x7) (A1) macroscopigoint of view. To get a quantitative handle on this

requirement, let us examine the temporal behavior ohtkan

where the last step has invoked eq 9a. This result was noted inof X(t): If one multiplies the CME (4) by and then averages
ref 7. The value ofPT(0) can be determined by normalizing ©OVerx, one can show quite generally that
PZ'(x) on the integer interval &x < xr; however, it is simpler dX@O M
to ob_serve_ that, with the definition (11b), eq A1 can be written _ v-@l-(X(t))D
the binomial form (11aj. dt ]Z )

The CFPE (7) simplifies for a univariate process by losing
the cross-derivative terms. With the definitions of the functions For the reversible isomerization proce¥d), the linearity of

A andD in eq 13, the time-independent solutiBf(x) of that the two propensity functions (9a) allows this equation to be
equation for the process defined by eq 9 will be seen to satisfy simplified to
_df_ PPy 1 d FP dx@mo 2
0= A Ps ) F 5 5(PXI P X)) = 3 73000 = et — (6 + KO0

dt

wherex is now areal variable. This shows that the bracketed :
term is independent ok. Since PL°(x) must vanish for ~ where the last step follows from eq 13a. The solution to this
sufficiently large and small values of the constant value of  equation for the initial conditioiX(to) J= X is easily shown to
the bracketed term must be zero. So we are left with the first- be
order ordinary differential equation,

g IX() 0= XIT + [%, — X[JJe~@ret0

D09 PE(X) = 2A09 PE(¥) _ . . .

where IX[J' is the stationary mean given in eq 12a. This

result shows that the mean Xft) relaxes to its stationary value

or
X[ on a time scale of orderc{ + ¢;)~%. So, €1 + ¢)7!
d(D(x) PEP(X)) 2A(X) typlfl(_e_s a “macroscopic duration of time, and we may take
= = condition i as requiring thattdn the CLE (6) should always
D(x) Ps"(x) D(x) be very small compared to that value. This gives us condition
(20a).

Integrating this last equation gives the quadrature result (14).  Assuming now thatithas been chosen so that condition (20a)
is satisfied, then withX(t) = x we can be assured that both

Appendix B: Derivation of Eq 18 propensity functions will remaiapproximately constaratt their
For X(t) = x, the CLE (6) gives for thel = 2 reversible ~ Valuesa(x) throughout the entire interval,{+dt]. So by eq 2,
isomerization process the probability that arRj reaction will occur duringany true
B B infinitesimal interval d inside ,t+dt] will be a(x)dt. This
A(X,dt) = X(t+dt) — x implies that the total number d® reactions occurring during
2 2 the larger interval tft+di] will be a Poissonrandom variable
_ A (x) A 102 (1) (A2 with mean (and variance)(x) dt [the detailed reasoning behind
;vja,(x) dt -+ ;v]a] 0 N, () () this conclusion is reviewed in Appendix A of ref 4]. So, viewing

condition ii as requiring that thaveragenumber ofR reactions
Here,N(t) andNy(t) are statistically independent normal random occurring in f,t+dt] be very large compared to 1 fall reaction
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channelsR;, we have the mathematical requiremeytk) dt >
1 forj =1 and 2. This gives us condition (20b). ~

As just noted, when tdsatisfies conditions i and iig(x) dt
gives the mean number & reactions occurring in the next.d
The mean number of reactions afy kind occurring in the
next d is therefore

M
[av no. reactions in nextti= Za,-(x) dt
£

For the reversible isomerization process, the state change vector
of both reaction channel® satisfy 2 = 1 (see eqs 9b);
therefore, it follows from the definition (13b) that the average
total number of reactions occurring in the nextcdn also be
written D(x) dt.
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