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This paper uses the simple reversible isomerization reaction to illustrate and clarify the roles played in chemical
kinetics by recently proposed forms for the chemical Langevin equation and chemical Fokker-Planck equation.
It is shown that the stationary solution of the chemical Fokker-Planck equation for this model reaction provides,
for most purposes, an excellent approximation to the stationary solution of the chemical master equation. It
is also shown that, when allowance is made for the stipulated macroscopic nature of the time increment dt in
the chemical Langevin equation, the changes in molecular population during dt predicted by that equation for
this model reaction closely approximate the changes prescribed by the chemical master equation. The discussion
highlights the role of the chemical Langevin equation as not only a potential computational aid but also a
conceptual bridge between the stochastic chemical master equation and the traditional deterministic reaction
rate equation.

1. Introduction

When molecules of a well-stirred mixture ofN molecular
species{S1, ..., SN} interact throughM chemical reaction
channels{R1, ..., RM}, the molecular population vectorX(t) ≡
(X1(t), ..., XN(t)), where

changesstochasticallybecause of the inherent randomness of
molecular collisions. If the molecules are confined to a fixed
volume and kept at constant temperature, straightforward kinetic
theory arguments show that for each reaction channelRj there
is a functionaj such that1

Thispropensity function aj, together with thestate-changeVector
νj ≡ (νj1, ..., νjN) as defined by

completely characterizes reaction channelRj. So, for example,
if Rj is the reactionS1 + S2 f 2S1, thenνj ) (+1, -1, 0, ..., 0)
and aj(x) ) cjx1x2 where cj in this case is the conventional
reaction rate constantkj divided by the volume of the system.

Using only eqs 2 and 3 and the laws of probability
theory, one can prove that the probabilityP(x,t|x0,t0), that
X(t) will equalx givenX(t0) ) x0 for t g t0, obeys thechemical
master equation(CME):1,2

Equations 2-4 imply that the system’s state pointX(t)
performs a “random walk” on the integer lattice in the
N-dimensional species population space; in mathematical terms,
X(t) is a jump MarkoV process. But if the molecular population
levels happen to be so large that the granularity of the integer
lattice is not noticeable, the randomness in the trajectory ofX(t)
is often also not noticeable. In that case, the trajectory takes on
the character of acontinuous, deterministicprocess which is
described by the set of ordinary differential equations

This is the well-known reaction rate equation(RRE) of
traditional chemical kinetics, although expressed in terms of
molecular populations instead of concentrations.

For well-stirred systems the CME (4) has a firm microphysi-
cal basis,1 so for such systems it describes accurately the effects
of molecular level randomness. In contrast, the RRE (5), which
also requires the system to be well-stirred, is a more phenom-
enological equation; yet we know from experience that it
describes most macroscale chemical systems quite well. Just
how the CME (4) gets supplanted by the RRE (5) as a chemical
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Xi(t) ≡ thenumberof Si molecules in the system at timet

(i ) 1, ...,N) (1)

aj(x) dt ≡ theprobability, givenX(t) ) x, that oneRj

reaction will occur in the system in the next
infinitesimal time interval [t,t+dt) (j ) 1, ...,M) (2)

νji ≡ the change in the number ofSi molecules produced

by oneRj reaction (j ) 1, ...,M; i ) 1, ...,N) (3)

∂

∂t
P(x,t|x0,t0) ) ∑

j)1

M

[aj(x - νj) P(x - νj,t|x0,t0) -

aj(x) P(x,t|x0,t0)] (4)

dXi(t)

dt
) ∑

j)1

M

νjiaj(X(t)) (i ) 1, ...,N) (5)
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system approaches the “thermodynamic limit” of infinite
molecular populations has been the subject of much study and
considerable debate for several decades. Recently this issue has
become more than merely academic: Biochemists are finding
that, inside a living cell, the relatively small molecular popula-
tion levels of some key reactant enzymes can sometimes cause
molecular level randomness to have a dramatic impact on
cellular development.3

In an attempt to articulate more clearly the relation between
the CME (4) and the RRE (5), this writer recently presented in
ref 4 arguments showing that, under certain specific conditions,
the jump Markov process defined by the CME (4) can be
decentlyapproximatedby a continuousMarkov process that
satisfies the followingchemical LangeVin equation(CLE):4

Here,N1(t), ...,NM(t) areM statistically independent, temporally
uncorrelatednormal(or Gaussian) random variables with means
0 and variances 1; and dht is a positiVe macroscopically
infinitesimal time increment, which will be defined more
precisely in a moment. The CLE (6) evidently tells us how, if
we know the state of the system at timet, we can compute the
state at the slightly later timet + dht; in principle, this is all we
need to trace the time evolution of the system.5

The definition of themacroscopic infinitesimaldht in eq 6 is
important, because it defines thespecial circumstancesunder
which that approximate equation is valid: The key requirement
is that dht be (i) small enough that none of the propensity
functionsaj changes in a macroscopically noticeable way during
dht, yet (ii) largeenough that each reaction channelRj fires many
more times than once during dht. Only to the extent that the
system admits a dht satisfyingboth of these conditions will the
CLE (6) decently approximate the time evolution of the process
X(t) defined by the CME (4). In cases where it is not possible
to find a dht that satisfies both conditions i and ii, the CLE (6)
will not be a reliable approximation to the CME (4).

This notion of a macroscopically infinitesimal time increment
is not at all new in physics or chemistry. For example, the
definition of electrical current as the ratio dQ ÷ dt, where dQ
is the charge passing in infinitesimal time dt, is meaningfulonly
if dt is amacroscopicinfinitesimal; because, if dt were allowed
to be arbitrarily close to zero, as for a “true” infinitesimal, we
would eventually observe “shot noise” as charge passes by in
discrete chunks (on electrons): the ratio dQ ÷ dt would not
approach a well-defined limiting value. So, in conventional
electrical circuit theory, it is always tacitly understood that the
dt in the ratio dQ/dt is large enough that very many electrons
pass by in time dt. But this “macroscopic” character of the
infinitesimal dt in electrical circuit theory is rarely called out
in a notationally explicit way, as we have done in eq 6; indeed,
eq 6 appears in ref 4, where it was derived,without the overbar
on the “d.” The reason for the notational emphasis in this paper
will become clear later.

Even the derivative in the RRE (5) presumes a macroscopic
dt: The change [Xi(t+dt) - Xi(t)] in the number ofSi molecules
between timest and t + dt approaches zero with dt not
continuously but rather throughdiscretevalues (and likewise
for the concentration ofSi), a behavior that is really not allowed
in a differentiable function. Therefore, if we were to write the

RRE (5) indifferentialform, replacing the left side by [Xi(t+dt)
- Xi(t)]/dt and then multiplying through by dt, we should really
use some kind of “macroscopic” dt. Notice that if we used dht
in that differential form, we would obtain the CLE (6)except
for the last summation term therein.

As was discussed in ref 4, eq 6 is but one of several different
candidates for “the” chemical Langevin equation that have been
proposed in the prior literature. The main contribution of ref 4
was to show that eq 6 has the distinction of beingrigorously
deriVable from the same premise (2) that underlies the CME
(4), by makingspecific approximationsthat should be valid
whenever conditions i and ii hold.

It is known in continuous Markov process theory that every
LangeVin equation for a processX(t) is accompanied by a
unique Fokker-Planck equationfor the probability density
functionP(x,t|x0,t0) of that process. The Fokker-Planck equa-
tion corresponding to the specific Langevin eq 6 turns out to
be4

Rather amazingly, the time evolution ofP(x,t|x0,t0) prescribed
by this chemical Fokker-Planck equation(CFPE) exactly
parallels the time evolution ofX(t) prescribed by the CLE (6).6

The inherently approximate nature of the CFPE (7) can be
discerned from the fact thatx in that equation is areal variable,
whereasx in the exact CME (4) is anintegervariable. Indeed,
since the CFPE (7) is a direct consequence of the CLE (6), it
too is ultimately predicated on the system possessing a
macroscopically infinitesimal time scale, in the sense of
conditions i and ii. In ref 4, plausibility arguments were given
suggesting that conditions i and ii will usually be satisfied if
the molecular population levels of all the reactant species stay
sufficiently large.

Concerns about the correctness of the CLE (6) and the CFPE
(7) were recently raised7 in connection with the simple reversible
isomerization reaction,

Assuming that the total number of isomers is a constantxT, we
can put

and treat this reaction set as an (N ) 1, M ) 2) process with
X(t) ) X(t). The propensity functions and the state-change
vectors for this univariate process are

In ref 7, it was questioned whether, for this particular reaction
scheme, the stationary solution of the CFPE (7) really matches
the stationary solution of the CME (4), and also whether the

Xi(t+ dht) ) Xi(t) + ∑
j)1

M

νjiaj(X(t)) dht +

∑
j)1

M

νjiaj
1/2(X(t)) Nj(t) (dht)1/2 (i ) 1, ...,N) (6) ∂

∂t
P(x,t|x0,t0) ) -∑

i)1

N ∂

∂xi
[(∑

j)1

M

νjiaj(x))P(x,t|x0,t0)] +

1

2
∑
i)1

N ∂
2

∂xi
2[(∑j)1

M

νji
2aj(x))P(x,t|x0,t0)] +

∑
i,i′)1
i<i′

N ∂
2

∂xi∂xi′
[(∑

j)1

M

νjiνji ′aj(x))P(x,t|x0,t0)] (7)

S1 {\}
c1

c2
S2 (8)

X1(t) ≡ X(t), X2(t) ) xT - X(t)

a1(x) ) c1x, a2(x) ) c2(xT-x) (9a)

ν1 ) - 1, ν2 ) + 1 (9b)
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infinitesimal increment inX(t) prescribed by the CLE (6) really
matches the increment that is implied by the CME (4). In the
following sections we shall investigate each of these questions
numerically. We shall find that this reversible isomerization
reaction model actually provides a felicitous illustration of many
features of the CME-CLE-CFPE-RRE relationship which was
drawn, rather more abstractly, in ref 4.

2. The Stationary Distribution of X(t)

The stationary or “equilibrium” solutionsPs(x) to both the
exact CME (4) and the approximating CFPE (7) are defined,
whenever they exist, by

For the univariate processX(t) that describes the reversible
isomerization reactions (8) according to eqs 9, it is possible to
calculate analytically and exactly the stationary solutions of both
the CME (4) and the CFPE (7). In this section we shall obtain
those solutions and then compare them, with a view to getting
some idea of just how successful the CFPE (7) is at approximat-
ing the CME (4).

In Appendix A we review the argument showing that the
stationary solution of the CME (4), which we shall designate
with a superscript “m”, is thebinomial distribution8

where

The mean and variance ofPs
m are therefore given by the

standard binomial formulas8

To compute the stationary solutionPs
FP of the CFPE (7), we

first use eq 9 to evaluate two relevant quantities, namely,

Then, as explained in Appendix A, the stationary solution of
the univariate form of the CFPE (7) takes the quadrature form

whereK is a normalization constant. The integral in eq 14 can
be evaluated for theA and D functions in eq 13 by simply
consulting a common table of integrals; however, the two cases
c1 ) c2 andc1 * c2 must be treated separately.

For the casec1 ) c2, the integration in eq 14 gives

This is evidently anormal (Gaussian) distribution with mean
xT/2 and variancexT/4. We note that this mean and variance
agree exactly with those of the stationary CME distributionPs

m

in eq 12 for the casec1 ) c2.
For c1 * c2, the integration in eq 14 yields the result

where

andK′ is a normalization constant. To the best of this writer’s
knowledge, the distribution (16a) is not a named type. It is
clearly not normal, though, as was claimed in ref 7.9 But the
important question is, do the results forPs

FP(x) in eqs 15 and 16
decently approximate the result forPs

m(x) in eq 11? Let’s look
at two examples.

In Figure 1 we compare, for the casec1 ) c2, the stationary
solutionPs

FP(x) of the CFPE given in eq 15 with the stationary
solution Ps

m(x) of the CME given in eq 11 for the threexT

values (a)xT ) 10, (b)xT ) 50, and (c)xT ) 500. In each plot,
the exact CME function is shown byheaVy dots at integer
x-values, and the approximating CFPE function is shown as a
solid curVe (which for simplicity has been linearly interpolated
between the integerx-values). The agreement in each case
appears to be excellent. In Figure 2 we press the comparison a
bit harder by plotting the same data on alogarithmic vertical
scale, and here we can see some differences: In the far tails of
the distributions, which all appear to be zero on the linear scales
of Figure 1,Ps

FP(x) overestimatesPs
m(x). For example, in thexT

) 500 case (Figure 2c), the two curves are virtually indistin-
guishable in the 13-standard-deviation interval 100< x < 400,
but the equilibrium probability of finding, for instance, only 50
S1 molecules is pegged by the CFPE to be about 10-73 instead
of the correct value of about 10-85.

Figures 3 and 4 show a similar treatment of the casec1 * c2,
taking for definitenessc1 ) 1 andc2 ) 2. The heavy dots again
show the exact stationary solutionPs

m(x) in eq 11, and the line
curves show the approximating stationary solutionPs

FP(x), now
given by eq 16. The story is much the same as in thec1 ) c2

case: No differences are noticeable betweenPs
m(x) andPs

FP(x)
on thelinear scale plots (Figure 3), but on thelogarithmicscale
plots (Figure 4)Ps

FP(x) is seen to overestimate the near-zero
probabilities of finding numbers of molecules that differ from
the mean by many standard deviations.

A clear explanation for the errors in the far tails ofPs
FP(x) is

difficult to discern, since the CFPE (7) is related only indirectly
to conditions i and ii through the CLE (6). But it is probably
no accident that these errors are occurring in regions of state
space where the number of eitherS1 or S2 molecules is so small
that conditions i and iicannotsimultaneously be satisfied. For
example, in thexT ) 500 case described by Figures 1c and 2c,
suppose there arex ) 8 S1 molecules at a particular instant.
During any subsequent time interval that is large enough for
both reaction channels to fire many more times than once, in
satisfaction of condition ii, the propensity functiona1(x) will
almost certainly change from its starting value ofc1x ) 8 by a
relatively large amount, in violation of condition i; because,

Ps(x) ) lim
(t-t0)f∞

P(x,t|x0,t0) (10)

Ps
m(x) )

xT!

x!(xT - x)!
qx(1 - q)xT-x (x ) 0, 1, ...,xT) (11a)

q ≡ c2

c1 + c2
(11b)

〈X〉s
m ) xTq )

xTc2

c1 + c2
(12a)

var{X}s
m ) xTq(1 - q) )

xTc1c2

(c1 + c2)
2

(12b)

∑
j)1

2

νjaj(x) ) c2xT - (c1 + c2)x ≡ A(x) (13a)

∑
j)1

2

νj
2aj(x) ) c2xT + (c1 - c2)x ≡ D(x) (13b)

Ps
FP(x) ) K

D(x)
exp( ∫x 2A(x′)

D(x′)
dx′) (14)

Ps
FP(x) ) 1

x2π(xT/4)
exp(-

(x - xT/2)2

2(xT/4) ) (c1 ) c2) (15)

Ps
FP(x) ) K′e-Rx[c2xT + (c1 - c2)x]â (c1 * c2) (16a)

R ≡ 2(c1 + c2

c1 - c2
), â ≡ 4xTc1c2

(c1 - c2)
2

- 1 (16b)
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mostof those next reactions will beR2 reactions, each of which
increasesx by 1 and hence alsoa1(x) by 1. So, when the system
is in statex ) 8, there simply is no time interval that satisfies
both of conditions i and ii.

Certainly there will be circumstances in which the inaccura-
cies in the far tails ofPs

FP(x) shown in Figures 2 and 4 can pose
a problem; for instance, those errors would lead us to overes-
timate the chances of an extremely large fluctuation from
equilibrium. But for most practical purposes, such as making
ordinary linear plots such as those in Figures 1 and 3, the
stationary solution of the CFPE (7) appears to provide a
remarkably good approximation to the stationary solution of
the CME (4), at least for the reversible isomerization reaction
set (8).

3. The Increment in X(t) in the Next dt

As was mentioned in section 1, the CLE (6) is essentially a
formula for “updating” the populations of all the molecular
species from the present timet to a slightly later timet + dht. In
Appendix B, it is shown that the CLE (6) makes the following
prediction for the reversible isomerization process: If that
process has the valuex at timet, i.e., if X(t) ) x, then thechange
in the process in the next dht, namely

will be a normal (Gaussian) random variable withmean
A(x)dht andVariance D(x)dht:

Here,A(x) andD(x) are the functions defined in eq 13. In this
section we shall examine theaccuracyof this prediction of the
CLE. But before doing that, we need to discuss a related issue
that was raised in ref 7.

Consider atrue infinitesimal time increment dt, one that is
so small that it is very unlikely to span more than one reaction
event of any kind. Then in the next dt, one of three things can
happen: Either oneR1 reaction will occur, or oneR2 reaction
will occur, or no reaction will occur. Equation 2 gives the
probabilities of those three eventualities when the system’s
current state isx, and thereby implies that the state change
∆(x,dt) in that next dt will be the tri-Valued integerrandom
variable

This result is expressed more compactly in ref 7 in terms of the
Heaviside step functionΘ and the unit-interval uniform random
variableU (0,1):10

Figure 1. Stationary (equilibrium) probability distribution ofX(t) ≡
X1(t) for the reversible isomerization reaction 8 for the casec1 ) c2

and (a)xT ) 10, (b)xT ) 50, and (c)xT ) 500. In each frame, thedots
show theexact CME function (11), and the line curve shows the
approximatingCFPE function (15).

Figure 2. Same data as in Figure 1, but plotted on a logarithmic vertical
scale.

∆(x,dht) ≡ X(t+dht) - x (17)

∆(x,dht) ) N(A(x) dht, D(x) dht) (CLE) (18)

∆(x,dt) ) [-1, w/ probabilitya1(x) dt
+ 1, w/ probabilitya2(x) dt
0, w/ probability [1- a1(x) dt - a2(x) dt] ]

(19a)

∆(x,dt) ) Θ(a2(x) dt - U(0,1))-
Θ(U(0,1)- 1 + a1(x) dt) (19b)
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It was suggested in ref 7 that theGaussianstate increment (18)
predicted by the CLE (6)conflicts with the tri-Valued state
increment (19) implied by the fundamental premise (2), and
that therefore eq 19b might be more deserving of the title
“chemical Langevin equation” than eq 6.

If the macroscopic infinitesimal dht in eq 18 had been written
withoutthe overbar on the d, as in fact it was in ref 4 where the
CLE (6) was derived (and as it also is in the ordinary reaction
rate eq 5 and many other equations of applied science and
engineering), one might indeed be tempted to conclude that there
is a conflict between eqs 18 and 19. But our notation here makes
it clear thatthere is no conflict, because the time increments in
eqs 18 and 19 are not the same. The time increment dt in eq 19
is, by definition, so small that there is an insignificant probability
that more than one reaction event will occur anywhere inside
the system during the next dt. In contrast, the time increment
dht in eq 18 is, by condition ii, large enough that each of the
reaction channelsR1 andR2 will likely fire many more times
than once during the next dht. Both results (18) and (19) are
logical consequences of the fundamental premise (2): eq 19 is
an exactconsequence of (2), following by the straightforward
argument outlined above, while eq 18 is anapproximate
consequence of (2) which follows, subject to conditions i and
ii, by the somewhat more involved argument given in ref 4.
We note also that eq 6 has the canonical form of a “Langevin

equation” in the technical sense of continuous Markov process
theory, while eq 19b does not.

Returning now to the question of the accuracy of formula
(18) for ∆(x,dht), and hence also accuracy of the CLE (6), we
are immediately faced with two problems: First, how should
we go about selecting an appropriate value for dht? And second,
how can we compute the “true” value of∆(x,dht), in accordance
with the CME (4), against which to measure the accuracy of eq
18?

Guidelines for selecting values for dht that satisfy conditions
i and ii are derived in Appendix C. There it is shown that
condition i should be satisfied if

while condition ii should be satisfied if

Simultaneous satisfaction of these conditions evidently hinges
on making the right-hand side of (20b) sufficiently small. An
inspection of the propensity function formulas (9a) shows that
this can always be done if theS1 population x and theS2

populationxT - x areboth sufficiently large.
Once a value for dht satisfying conditions (20) has been chosen,

which of course requires that values have been specified for
the parametersc1, c2, xT, andx, we can straightforwardly com-
pute the normal probability density function prescribed by eq
18 for the random variable∆(x,dht). But in order to assess the

Figure 3. Stationary (equilibrium) probability distribution ofX(t) ≡
X1(t) for the reversible isomerization reaction 8 for the casec1 ) 1,
c2 ) 2, and (a)xT ) 10, (b)xT ) 50, and (c)xT ) 500. Thedotsshow
theexactCME function (11), and the line curve shows theapproximat-
ing CFPE function (16).

Figure 4. Same data as in Figure 3, but plotted on a logarithmic vertical
scale.

dht , (c1 + c2)
-1 (20a)

dht . Max{ 1
a1(x)

,
1

a2(x)} (20b)
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fidelity of that prediction of the CLE (6), we must determine
the exactprobability density function of∆(x,dht). That exact
density function can be expressed (as a function ofδ) as
P(x+δ,dht|x,0); so, one way to proceed would be to solve the
CME (4). But the CME is typically very difficult to solve, either
analytically or numerically. So we shall take a different ap-
proach: We shall make very many statistically independent
numerical simulationsof the processX(t). Each simulation will
be started at the specified statex at time 0 and will be run to
time dht to obtain a valueX(dht) ) x + δ. The δ-values thus
obtained will constitute a set ofstatistically independent samples
of the random variable∆(x,dht); so a normalized frequency
histogramof thoseδ-values will provide an estimate of the
corresponding probability density functionP(x+δ,dht|x,0). The
histogram will of course be subject to uncertainties arising from
the necessarily finite number of sample values plotted, but those
uncertainties can be easily estimated. This approach is feasible
because there exists a simple way of numerically simulating
chemical reactions that isexactly equiValent to the CME (4):
the so-calledstochastic simulation algorithm.11

Let’s look at a specific numerical example. We shall take
for the reaction probability rate constantsc1 ) 1 andc2 ) 2,
and we shall fix the total number of molecules atxT ) 104.
Equations 12a and 12b then predict that the processX(t) will
eventually come to equilibrium by fluctuating about its mean
〈X〉s

m ) 6666.7 with standard deviation sdev{X}s
m ) 47.1. Let

us choose as our starting statex ) 6430, a value that is roughly
5 standard deviations below the stationary mean. For these
parameter values, conditions (20) will be found to require that
any acceptable dht should be,0.33 and.1.6 × 10-4. We can
satisfy both conditions reasonably well by taking dht ) 10-2.
Using the definitions (13), we find that the CLE formula (18)
becomes

Figure 5 shows as thesolid curVe the probability density
function of this normal random variable. Superimposed is the
normalized frequency histogram of state change values that were
actually obserVed in 104 exact stochastic simulation runs; each
run started in statex ) 6430 at time 0 and ended at time dht )
10-2. The vertical error bars indicate the conventional one-
standard deviation (n ( xn) uncertainty estimates. Figure 5
shows that the distribution (21) predicted by the CLE (6)
provides a remarkably good fit to numerical simulations carried
out in exact accord with the CME (4).

To test the assertion of ref 4 that the CLE approximation
should become even better as the number of molecules involved
is made larger, let us keep the same reaction constants but
increase the total number of molecules by a factor of 100, toxT

) 106. And let us choose as our starting statex ) 660 000,
which can be shown from eq 12 to be about 14 standard
deviations below the stationary mean. For these values, we find
from conditions (20) that an acceptable dht should be,0.33 and
.1.5× 10-6, an acceptance range for dht that is about 100 times
larger than in the previous case. Taking dht ) 10-3, we find
that the CLE formula (18) now gives for∆(x,dht)

Figure 6 shows the density function for this normal distribution,
along with the results of 104 exact stochastic simulation runs
that were made using the same parameter values. The agreement
indeed appears to be as good as, if not better than, the agreement
exhibited in Figure 5 for a smaller total number of molecules.

Besides confirming the essential correctness of the CLE (6),
these model calculations also give us a glimpse of the potential
utility of that approximate equation. In Appendix C it is shown
that the averagetotal number of reactions that occur when the
system makes the state change∆(x,dht) is D(x)dht; this number
is also, by eq 18, the estimated variance of∆(x,dht). So, in the
last example considered, eq 22 tells us that a single run typically
entails simulating 1340 individual reactions events (a figure that
was confirmed in the actual simulations). But Figure 6 shows
that the net state change produced by those 1340 reaction events
can be accurately approximated by simply drawing a single
random number from the normal distribution (22), a computa-
tional task that is very easy to accomplish. The message here
is thatwhen conditions i and ii can be satisfied, the CLE (6)
can enable substantial gains in simulation efficiency.12

∆(6430,10-2) ) N(7.1,135.7) (xT ) 104) (21)

∆(660000,10-3) ) N(20,1340) (xT ) 106) (22)

Figure 5. For the casec1 ) 1, c2 ) 2, andxT ) 104, a comparison of
two different estimates of the probability density function of thechange
in stateover a time dt ) 10-2, starting atx ) 6430 (about 5 standard
deviations below the stationary mean). The solid curve is the prediction
(21) of the CLE, a normal (Gaussian) distribution with mean 7.1 and
variance 135.7. The frequency histogram displays the results of 104

exact stochastic simulation runs, reflecting the prediction of the CME.
The vertical interval bars in the frequency histogram indicate the one-
standard deviation (n ( xn) uncertainty estimates inferred from the
bin occupation numbersn.

Figure 6. Same as in Figure 5, except the total number of isomers
has been increased by 2 orders of magnitude toxT ) 106, and the state
change is measured from the initial statex ) 660 000 (about 14 standard
deviations below the stationary mean) over a time dht ) 10-3. This larger
molecular population level makes it easier to satisfy the approximation
conditions (20) required by the CLE.
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4. Summary and Conclusions

The chemical master equation(4) has a sound theoretical
basis in kinetic theory for “well-stirred” chemical systems.1

Reference 4 argued that, under certain specific conditions, the
CME can be decentlyapproximatedby thechemical LangeVin
equation (6) and its companionchemical Fokker-Planck
equation (7). In this paper we have tested that claim by
quantitatively comparing certain predictions of the CME with
those of the CLE and CFPE for the reversible isomerization
reaction 8.

We found in section 2 that the equilibrium solution of the
CFPE approximates that of the CME quite well (see Figures 1
and 3), erring only in predicting precisely how close to zero
the CME solution is in the far tails (see Figures 2 and 4), which
are regions of the state space where the conditions stipulated
in ref 4 are violated. And in section 3 we found that, provided
the time infinitesimal dht in the CLE (6) is “macroscopic” in the
sense stipulated by ref 4, the change in the molecular populations
in time dht predicted by the CLE matches very well the change
predicted by the CME (see Figures 5 and 6).

The question arises, did we just get lucky here, or may we
expect these simple model results to typify those for more
complex reaction schemes? Of course, until we explicitly address
those other reactions schemes we cannot be sure. But in the
past, Langevin-type equations in applied physics have usually
been obtained by simply adding to a deterministic, phenom-
enological rate equation a “random noise term,” the form of
which has been chosen to ensure some desired thermal equi-
librium effect. It must be stressed that the derivation of the CLE
(6) given in ref 4 does not use thatad hocstrategy; instead, ref
4 starts from premise (2), the same premise that leadsexactly
to the CME (4), and it shows how satisfaction oftwo specific
conditions leadsapproximatelyto the CLE (6). The specific
conditions are that the time increment dht in the CLE (6) must
be (i) small enough that none of the propensity functions changes
in a macroscopically noticeable way during dht, yet (ii) large
enough that each reaction channel fires many more times than
once during dht. After establishing the CLE (6), ref 4 then infers
the CFPE (7) from some general results in the theory of
continuous Markov processes.6 The logic of the analysis in ref
4 strongly suggests that, so long as conditions i and ii are
satisfied, the CLE (6) and the CFPE (7) should provide
acceptable approximations to the CME (4) forany chemical
reaction scenario. If that is true, then the favorable showing of
the CLE (6) and CFPE (7) here for the simple reversible
isomerization reaction is not just a lucky accident.

A larger question is, why should we bother to concern
ourselves with approximating the CME by a CLE/CFPE? There
are two reasons. On the practical side, this approximation can
open the way tomore efficient computational strategies. This
fact is not so evident in the computations carried out in section
2, where the stationary solutions of the CFPE in eqs 15 and 16
were no easier to obtain than the stationary solution of the CME
in eq 11. But, more generally, the art of solving partial
differential equations such as the CFPE (7) is much more highly
developed than the art of solving differential-difference equa-
tions such as the CME (4). A more significant computational
advantage afforded by the CLE/CFPE approximation probably
lies in the area ofnumerical simulation. Thus, in the last example
considered in section 3 it was found that the CLE offers a way
of accurately replicating the effect of some 1340 reaction events
by simply drawingonenormal (Gaussian) random number (see
Figure 6).12 Of course, all of these potential computational
advantages of the CLE/CFPE approximation are predicated on

the satisfaction of conditions i and ii; if the situation is such
that those conditions cannot be satisfied, the CLE and the CFPE
will have no claim to validity.

The second reason for concerning ourselves with the CLE/
CFPE approximation has to do withconceptual understanding.
As was mentioned at the beginning of this paper, it has never
been clear how the CME (4) gets supplanted, in the thermo-
dynamic limit, by the conventionalreaction rate equation(5).
The CLE (6) appears to answer this question. Its derivation from
premise (2) under conditions i and ii shows that, when the
reactant populations become sufficiently large, the CME (4)
segues to the CLE (6) and the CFPE (7). The further connection
to the RRE (5) can then be understood from a simple inspection
of the two summation terms on the right-hand side of the CLE
(6): The first summation term (thedeterministic drift term
containing dht) is essentially proportional to the propensity
functions, while the second term (therandomly fluctuatingterm
containing (dht)1/2) is basically proportional to thesquare root
of the propensity functions. Since the propensity functions (eq
9a) for our reactions are themselves proportional to the
molecular populations, then the deterministic component of the
motion will scale like the molecular populations while the
fluctuating component will scale like thesquare rootof the
molecular populations.13 Therefore, as the molecular populations
increase, the fluctuating component willdecreaserelative to
the deterministic component as the inverse square root of the
molecular populations. And in the thermodynamic limit of an
infinite molecular population, the last term in the CLE (6)
usually becomes negligible, so the CLE (6) collapses to the RRE
(5). The CLE/CFPE approximation thus appears to be the
“bridge” between the CME (4) and the RRE (5).

The concerns about the CLE (6) raised in ref 7 fail to take
cognizance of condition ii, which stipulates the “macroscopic”
nature of the infinitesimal time increment in the CLE (6). The
alternative increment formula (19b) proposed in ref 7 involves
a “true” time infinitesimal and hence amounts to an exact
restatement of the fundamental premise (2) for the reversible
isomerization processX(t), reaffirming that X(t) is a jump
Markov process obeying the master eq 4. Equation 6 by contrast
represents a deliberate attempt toapproximatethatjumpMarkov
process by acontinuousMarkov process. The results presented
here for the simple reversible isomerization reaction model
provide concrete evidence of the validity of that approximation.

For the pedagogical purpose of emphasizing the macroscopic
nature of the infinitesimal time increment in eq 6, we have used
here the notation dht. But once this point has been clearly
understood, it would seem reasonable to revert to the simpler
dt notation used in ref 4. That designation for a “macroscopic
time infinitesimal” has been commonplace in applied science
and engineering for many years; indeed, the dt in the traditional
RRE (5) is a macroscopic infinitesimal.
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Appendix A: Derivation of Eqs 11 and 14

The stationary solutionPs
m(x) of the CME (4) is by defini-

tion a time-independent solution of that equation. So for the
process defined by eq 9, we have
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Here x is an integer variable on the interval [0,xT]. The last
equality implies that the quantities in brackets must have a value
that is independent ofx. A consideration of the last bracketed
term for the casex ) 0 shows that that constant value must in
fact be zero; hence,Ps

m(x) satisfies the “detailed balance”
condition,

Dividing this by a1(x) gives a simple recursion relation for
Ps

m(x). Iterating that recursion relation yields

where the last step has invoked eq 9a. This result was noted in
ref 7. The value ofPs

m(0) can be determined by normalizing
Ps

m(x) on the integer interval 0ex e xT; however, it is simpler
to observe that, with the definition (11b), eq A1 can be written
the binomial form (11a).8

The CFPE (7) simplifies for a univariate process by losing
the cross-derivative terms. With the definitions of the functions
A andD in eq 13, the time-independent solutionPs

FP(x) of that
equation for the process defined by eq 9 will be seen to satisfy

wherex is now areal variable. This shows that the bracketed
term is independent ofx. Since Ps

FP(x) must vanish for
sufficiently large and small values ofx, the constant value of
the bracketed term must be zero. So we are left with the first-
order ordinary differential equation,

or

Integrating this last equation gives the quadrature result (14).

Appendix B: Derivation of Eq 18

For X(t) ) x, the CLE (6) gives for theM ) 2 reversible
isomerization process

Here,N1(t) andN2(t) are statistically independent normal random

variables with means 0 and variances 1. Denoting the normal
random variable with meanm and varianceσ2 by N(m,σ2), and
using the well-known linear combination rule for statistically
independent normal random variables, namely we can manipu-

late the above expression as follows:

where the last step invokes the definitions (13). A final
application of the linear combination rule for normal random
variables results in eq 18.

Appendix C: Derivation of Conditions (20)

Condition i essentially requires dht to be very small from a
macroscopicpoint of view. To get a quantitative handle on this
requirement, let us examine the temporal behavior of themean
of X(t): If one multiplies the CME (4) byx and then averages
over x, one can show quite generally that

For the reversible isomerization processX(t), the linearity of
the two propensity functions (9a) allows this equation to be
simplified to

where the last step follows from eq 13a. The solution to this
equation for the initial condition〈X(t0)〉 ) x0 is easily shown to
be

where 〈X〉s
m is the stationary mean given in eq 12a. This

result shows that the mean ofX(t) relaxes to its stationary value
〈X〉s

m on a time scale of order (c1 + c2)-1. So, (c1 + c2)-1

typifies a “macroscopic” duration of time, and we may take
condition i as requiring that dht in the CLE (6) should always
be very small compared to that value. This gives us condition
(20a).

Assuming now that dht has been chosen so that condition (20a)
is satisfied, then withX(t) ) x we can be assured that both
propensity functions will remainapproximately constantat their
valuesaj(x) throughout the entire interval [t,t+dht]. So by eq 2,
the probability that anRj reaction will occur duringany true
infinitesimal interval dt inside [t,t+dht] will be aj(x)dt. This
implies that the total number ofRj reactions occurring during
the larger interval [t,t+dht] will be a Poissonrandom variable
with mean (and variance)aj(x)dht [the detailed reasoning behind
this conclusion is reviewed in Appendix A of ref 4]. So, viewing
condition ii as requiring that theaVeragenumber ofRj reactions
occurring in [t,t+dht] be very large compared to 1 forall reaction

0 ) [a1(x+1) Ps
m(x+1) - a1(x) Ps

m(x)] +

[a2(x-1) Ps
m(x-1) - a2(x) Ps

m(x)]

) [a1(x+1) Ps
m(x+1) - a2(x) Ps

m(x)] -

[a1(x) Ps
m(x) - a2(x-1) Ps

m(x-1)]

a1(x) Ps
m(x) ) a2(x-1) Ps

m(x-1)

Ps
m(x) ) Ps

m(0)∏
k)1

x a2(k-1)

a1(k)

) Ps
m(0)(c2

c1
)x xT!

x!(xT - x)!
(x ) 0, 1, ...,xT) (A1)

0 ) d
dx[-A(x) Ps

FP(x) + 1
2

d
dx

(D(x) Ps
FP(x))]

d
dx

(D(x) Ps
FP(x)) ) 2A(x) Ps

FP(x)

d(D(x) Ps
FP(x))

D(x) Ps
FP(x)

)
2A(x)

D(x)
dx

∆(x,dht) ≡ X(t+dht) - x

) ∑
j)1

2

νjaj(x) dht + ∑
j)1

2

νjaj
1/2(x) Nj(t) (dht)1/2

RN1(m1,σ1
2) + âN2(m2,σ2

2) ) N(Rm1+âm2,R
2σ1

2+â2σ2
2)

∆(x,dht) ) ∑
j)1

2

νjaj(x) dht + ∑
j)1

2

[νjaj
1/2(x) (dht)1/2]Nj(0,1)

) ∑
j)1

2

νjaj(x) dht + N(0,∑
j)1

2

νj
2aj(x) dht)

) A(x) dht + N(0,D(x) dht)

d〈X(t)〉

dt
) ∑

j)1

M

νj〈aj(X(t))〉

d〈X(t)〉

dt
) ∑

j)1

2

νjaj(〈X(t)〉) ) c2xT - (c1 + c2)〈X(t)〉

〈X(t)〉 ) 〈X〉s
m + [x0 - 〈X〉s

m]e-(c1+c2)(t-t0)
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channelsRj, we have the mathematical requirementaj(x)dht .
1 for j ) 1 and 2. This gives us condition (20b).

As just noted, when dht satisfies conditions i and ii,aj(x)dht
gives the mean number ofRj reactions occurring in the next dht.
The mean number of reactions ofany kind occurring in the
next dht is therefore

For the reversible isomerization process, the state change vectors
of both reaction channelsRj satisfy νj

2 ) 1 (see eqs 9b);
therefore, it follows from the definition (13b) that the average
total number of reactions occurring in the next dht can also be
written D(x)dht.
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