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The treatment of dissociative states in the calculation of the partition function of a weakly bound system,
such as the water dimer, is discussed. For a dissociative system, the number of phase-space configurations
that contribute to the total partition function from energies above the dissociation energy depends on the
system volume. For a sufficiently large system volume, entropy from these configurations will dominate
over the energy contribution of the local minimum and contributions from dissociative states will dominate
the total partition function. The calculation of the dimer partition function requires limiting the phase space
of the cluster or providing a definition of those phase-space points that correspond to a dimer. Because there
is no unique procedure to constrain the phase space of a dimer, we provide an analysis of the dimer partition
function using a series of constraints. For the water dimer at temperatures in the range 200-500 K, the
values of the dimer partition function change by over 2 orders of magnitude depending on the choice of the
constraint.

1. Introduction

The role of water dimers in the atmosphere has received
considerable attention,1-4 yet their equilibrium population
remains uncertain.3-5 The water dimer is a relatively weakly
bound complex, and thus, its thermodynamic properties are
difficult to determine experimentally. For example, significant
variations are found in the observed values of the dimer enthalpy
of formation determined using different techniques.6 Theoretical
determination of the thermodynamic properties of the water
dimer (e.g., the equilibrium constant for dimerization) persists
as an active area of research.1,4,5,7-9

A recent publication in this journal9 reported impressive
calculations of the vibrational energy levels up to near the
dissociation of the water dimer for a very accurate potential
energy surface.10,11 These energy levels were then used in
calculations of the dimer partition function and the dimerization
equilibrium constant as a function of relative humidity for
temperatures ranging from about 25 to 130°C. From these
calculations, the authors concluded that “it is probable that the
water dimer can be indeed present in the atmosphere in sufficient
quantities to have significant effects on solar absorption.”
Although these calculations represent the most accurate deter-
mination of energy levels to date, the authors did not discuss
the role of dissociative states of the weakly bound water dimer
on the dimer partition function in their study. In a recent study,8

it was shown that the enthalpy of formation of the water dimer
at 85 °C can change by over 10 kJ/mol depending upon how
dissociative states are treated. Upon the basis of our previous
work calculating the thermodynamics and kinetics of clusters
relevant to the nucleation process,12,13 we found that the
treatment of dissociative states can affect the computed partition

functions and equilibrium constants for the water dimer,
particularly at higher temperatures. For example, if the free
energy of dimerization displays similar changes, as does the
dimerization enthalpy, e.g., 10 kJ/mol, then different treatments
of dissociative states can shift the equilibrium constant by over
a factor of 30. The purpose of this work is to take a closer look
at the role of dissociative states on the computed partition
function and to provide an estimate of the change in the partition
function, which determines the equilibrium constant, for dif-
ferent treatments of these states.

One way to understand the effects of dissociative states on
thermodynamic properties of the dimer is to write the partition
function,Q(T), for the dimer in terms of a convolution of the
density of rovibrational states,F(E), and the Boltzmann factor
as

whereT is temperature,E is the total energy (relative to the
energy at the equilibrium geometry of the dimer),â ) 1/(kBT),
andkB is Boltzmann’s constant. If we treat rotations of the dimer
by the rigid rotor approximation and vibrations harmonically,
the classical density of states (DOS) scales asEs+1/2, wheres is
the number of active vibrations in the dimer. (Vibrational modes
with sufficiently high frequencies will not contribute appreciably
to the quantum mechanical DOS and are often not included in
the number of vibrational modes.) The rigid rotor harmonic
oscillator (RRHO) approximation provides a qualitatively correct
description of the dependence ofF(E) on energies below
dissociation. For energies above dissociation, the DOS scales
linearly with the total volume of the system. Figure 1 depicts
the behavior of the Boltzmann factor, DOS, and their product
(the integrand of eq 1) for energies below dissociation. For the
lower temperature (dashed curves in Figure 1), the integrand
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peaks well below the dissociation energy and the population is
negligible for energies near but below the dissociation energy.
For the higher temperature (dotted curves in Figure 1), the
integrand peaks very close to the dissociation energy and has
an appreciable value at dissociation. For a sufficiently large
volume, the total partition function will be dominated by
configurations with energies above dissociation; that is, entropy
from these configurations will dominate over the energy
contributions of the local minima. However, many of the states
above dissociation could not be characterized as dimers (e.g.,
they may correspond to collision complexes or resonances that
are too short lived to contribute to any physically observable
property of the dimer). For the lower temperature, the clear
separation of the distribution below dissociation from that above
dissociation makes it easy to determine what energies should
contribute to the dimer partition function. Even though dis-
sociative states are ultimately the most probable (for a large
enough system volume), the dimer is sufficiently stable at the
low temperature (i.e., there is no appreciable probability of being
at energies close to but below dissociation) that the time scale
to achieve the most probable (dissociated) states is long
compared to any observation of dimer properties. For the higher
temperature, it is not immediately obvious what role dissociative
states should play in the dimer partition function. The large
distribution of states near dissociation at the higher temperature
is a measure of the instability of the dimer at this temperature,
and it is possible that some states above dissociation will be
sufficiently long-lived to contribute to dimer properties.

Calculation of the dimer partition function requires limiting
the phase space of the two molecules, which is equivalent to
providing a functional definition of the dimer. Most often this
constraint is implicit in the calculation. For example, in quantum
mechanical calculations of the partition function using the
RRHO approximation, the dissociative continuum is discretized
by extending the harmonic representation of the potential above
dissociation, thereby converging the vibrational partition func-
tion. Most previous calculations of the water dimer partition
function have employed this approximation. Accurate quantum
mechanical calculations on polyatomic systems are now pos-

sible, which allow determination of bound energy levels beyond
the harmonic approximation.9,10,14,15The question still arises of
how to treat the dissociative continuum. Goldman et al.9 have
limited their calculations of the water dimer partition function
to energies below dissociation, thereby imposing an energetic
constraint. Christoffel and Bowman15 computed energy levels
above dissociation for the HCO2 system using an approximate
expression for the potential through three-mode coupling in
normal mode coordinates. This approximate form for the
potential could also effectively constrain the phase space to
effectively discretize the continuum.

The definition of a molecular cluster has long been recognized
as an important issue in molecular theories of gas-to-liquid
homogeneous nucleation, because clusters that contribute to
nucleation are inherently unstable.12,13,16-19 In these approaches,
the constraints are often geometric ones. For example, “physi-
cally consistent” clusters18 are defined such that all molecules
in the cluster lie within a spherical volume centered on the center
of mass of the cluster. Stillinger provided an alternate geometric
definition that requires each molecule to lie within a specified
distance of another molecule in the cluster.16

The dimer partition function is an important component in
the construction of rate theories for unimolecular reactions, such
as cluster dissociation reactions that are important in nucleation.
Dissociative states should be included in the reactant partition
function for the evaluation of unimolecular rate constants
because these states are the ones that lead to reaction. In practice,
separate calculations are performed for the reactive flux and
reactant partition function, and the reactant partition function
could be approximated by only bound-state contributions,
although this would be inconsistent with the treatment of
dissociative states in the reactive flux calculation. For a
unimolecular reaction with a barrier, a dividing surface through
the saddle point for the reaction provides a convenient separation
of the configuration space into reactants (dimers) and products
(monomers). This definition of the dimer is implicit in conven-
tional forms of transition state theory (TST),20 which is used in
the Rice-Ramsperger-Kassel-Marcus (RRKM) theory21 of
unimolecular reactions, and explicitly displayed in formulations
of transition state theory in terms of time correlation functions.22

Definition of dimer partition functions for dissociation of the
water clusters is made difficult by the lack of an intrinsic barrier
to reaction (i.e., the potential energy is monotonically downhill
in energy for a water molecule recombining with a cluster). In
this case, variational transition state theory23 can be used to
define the optimum dividing surface separating reactants from
products.12,13 Most calculations do not apply this type of
constraint though because the reactant partition function is
calculated using the harmonic approximation. One exception
is the accurate classical evaluation of the reactant phase space
bounded by the reaction coordinate of the variational transition
state for the H3+ dissociation.24

Constraints on the energy can also be used to avoid
divergence of the partition function. As noted above, Goldman
et al.9 effectively replaced the upper limit of integration in eq
1 by the dissociation energy,D. This constraint will be most
appropriate for properties for which the low-lying energy levels
dominate the average. For example, it is possible that high-
lying states may not contribute appreciably to absorption over
narrow frequency ranges (such as those near the shifted donor
OH stretch in the water dimer). This total energy constraint
excludes all states that are above the dissociation energy.
Orbiting resonances, which correspond qualitatively to states
with vibrational energy below dissociation and total energy

Figure 1. Logarithmic plot of (E/D)s-1 (solid line) for s ) 7.5 and
Boltzmann factors, e-âE (dashed and dotted lines), for two values ofâ
) 1/kBT, as a function of energyE from zero toD (a). The vertical
line is at E ) D. Part b shows the linear plot of (E/D)s-1 e-âE

(normalized to one at its maximum) for two values ofâ. The dashed
(dotted) curves in parts a and b are for the lower (higher) values of
temperature,T.
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(vibrational plus rotational) above dissociation, can be long-
lived, indicating a relatively weak coupling to dissociative modes
in the complex, and therefore, it may be important to include
these types of states in some averages. This suggests that an
energy constraint on vibrational energy may be more appropriate
than one on total energy. Similarly, there may be some
vibrational modes that couple weakly to dissociative modes of
the complex and therefore support long-lived excitations. In this
case, a constraint on only the subset of dissociative modes may
be more appropriate.

The use of the lifetime of dissociative (resonance) states to
understand their contributions to the partition function arises
naturally out of the preceding discussion. Rather than assigning
constraints based upon energy content of certain modes, the
lifetime of individual resonance states could be used to
determine whether the energy level should be included in the
partition function. An effective Hamiltonian formulation has
been used to model quantum mechanically the intramolecular
dynamics that controls the lifetimes of energy levels.25 Alter-
natively, classical trajectories can be used to evaluate the lifetime
of points in phase space. This latter approach was used in
calculations of the water dimerization enthalpy.8 In this previous
work, the time for water dimers, at energies above dissociation,
to dissociate (i.e., for the intermolecular separation to increase
beyond a limit) was used to determine whether the state should
be included in the average. The relationship between collision
lifetimes and thermodynamic functions was first recognized by
Smith.26 In this seminal paper, it was noted that the concentration
of an unstable complex is given by the product of its rate of
formation (i.e., the collision frequency) and its lifetime, and a
general expression was derived that related the lifetime matrix27

to the “molecular internal partition function”. Contributions from
the collisional continuum are included in terms of the difference
between the lifetime of a collision and the time for motion of
the particles in the absence of the interaction (i.e., with the
potential turned off). In this approach, a convergent expression
is obtained for the partition function without the need to
introduce additional parameters such as cutoff energies or
distances. The relationship between the DOS and the collision
lifetime, which is implicit in Smith’s work, has also been
explicitly displayed28 (see also Brumer et al.29 and references
therein). It should also be noted that the collision lifetime has
played an important role in derivation of rate expressions for
recombination reactions.30 Although an approach based upon
the lifetime matrix is conceptually compelling, it requires full
solution of the collision dynamics. Evaluation of the lifetime
matrix has been carried out for reactions involving a small
number of atoms (for a recent example, see the calculations for
the H + O2 reaction by Pack et al.31).

In the present work, we analyze the partition function
calculations for the water dimer, first, to explore the effects of
energetic and geometric constraints on the partition functions.
Second, we examine what contributions are made by dissociative
states in the approaches used in the literature. We use the
interaction potential of Dang and Chang,32 which provides a
reasonable description of water interactions with accurate
binding energies and intermolecular vibrational frequencies. In
this model, the monomers are treated as rigid bodies (i.e., no
internal vibrations of the monomers), and thus, contributions
from intramolecular modes are not explicitly included in our
partition functions. The effects of coupling between the
intermolecular and intramolecular vibrational modes are included
implicitly in the energetics because these models were param-
etrized empirically. For example, the effects of shifts in the OH

vibrational frequency upon forming a hydrogen bond are
included in some average sense. However, effects of the
coupling on dynamics, such as lifetimes of resonances, will not
be included, even implicitly. It can be argued that the frequency
mismatch between the high-frequency intramolecular modes and
the lower-frequency intermolecular modes will decrease dy-
namic coupling between these sets of modes. The goal of this
work is to provide a qualitative understanding of the effects of
dissociative states and not to provide quantitative estimates of
thermodynamic properties. Therefore, the use of this ap-
proximate model of the water-water interaction will be
sufficient for this study.

Section 2 and Appendices A and B present explicit expres-
sions for the density of states and partition functions so that
the effects of the different constraints are clearly displayed.
Section 3 presents the results and a discussion of the effects of
the different constraints. Section 4 presents a summary and
conclusions.

2. Theory and Calculational Details

Four constraints on the phase space of the dimer are
considered: (i) the available phase space is restricted to those
states with total energies below the dissociation energy,D; (ii)
the available phase space is restricted to those states with
energies ink vibrational modes belowD, wherek can take on
values from 1 to the total number of vibrational modes; (iii)
configuration space is constrained so that vibrational motion is
restricted to lie within the turning points of the harmonic
approximation to the potential; (iv) configuration space is
constrained so that the center-of-mass separation between the
two water molecules is restricted to be less than the distance
RCUT. The first two constraints are energetic ones, and the last
two are geometric ones. We do not explicitly consider any
constraints based upon lifetimes of dissociative states in this
paper, although the energetic constraints can be qualitatively
related to assumed lifetimes. Constraint (i) is equivalent to
assuming that all states above dissociation couple strongly to
the dissociative mode and their lifetimes are sufficiently short
so that they will not contribute appreciably to the partition
function. Constraint (ii) relaxes this restriction and is equivalent
to assuming that some modes couple weakly to the dissociative
mode and they are sufficiently long-lived that they contribute
to the partition function. By considering a range of energy
constraints (e.g., number of modes included in the constraint),
we can span a range of possible behaviors of the lifetimes of
the states. These constraints are first defined in terms of the
classical density of states. Although a classical description of
the water dimer is not valid at energies corresponding to low-
lying bound states, it should be a reasonable approximation for
describing the DOS at energies near and above dissociation.

In this section, we describe accurate classical simulations of
the classical DOS and partition functions for the coupled
vibrational and rotational degrees of freedom. We also consider
an approximate treatment of the vibrations and rotations that
allows us to explore the effects of the different constraints. The
rotations and vibrations are treated as separable in the ap-
proximate treatment with rotations treated as those for a rigid
asymmetric top and vibrations treated in the harmonic ap-
proximation. The extension of these constraints to quantum
mechanical calculations of the DOS and partition functions are
then presented for the first three of these constraints using the
rigid rotor harmonic oscillator (RRHO) approximation.

A. Classical Density of States and Partition Function.The
classical partition function is given by eq 1 with the classical
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anharmonic (CA) density of states for rotations and vibrations
given by

whereh is Planck’s constant,N is the number of vibrational
and rotational degrees of freedom in the system,q andp are
the coordinate and conjugate momentum vectors for vibrations
and rotations,δ(x) is the Dirac delta function,H(q,p) is the
total Hamiltonian for the system, andfy(q,p) is the constraint
function that limits the phase-space integration. The quantities
that are computed classically using the rigid rotor harmonic
oscillator (RRHO) approximation are denoted by replacing the
subscript CA by CH in expressions for the classical DOS and
partition function.

The first constraint (total energy constrained below dissocia-
tion, y ) D) is easily applied to both the anharmonic and RRHO
treatments by defining the constraint function as

whereθ(x) is a Heaviside step function [θ(x) ) 0, x < 0; θ(x)
) 1, x > 0]. With this constraint, the DOS and partition function
(for the rotational and vibration coordinates) are denoted by
FCA

D (E) and QCA
D (T), when the system is treated anharmoni-

cally, or they are denoted byFCH
D (E) andQCH

D (T) in the RRHO
approximation.

The second constraint (vibrational energy constrained below
dissociation,y ) DVk) requires a separation of the rotational
and vibrational degrees of freedom, so its use is restricted to
the RRHO approximation. The constraint is imposed using the
function

where HVk is the approximate harmonic Hamiltonian fork
vibrational modes. Note that for the classical calculations it is
not necessary to specify which modes are constrained because
the DOS depends only on the number of modesk that are
constrained. Again, this constraint is implemented only when
the DOS is calculated in the RRHO approximation. The DOS
and partition function are denoted byFCH

DVk(E) and QCH
DVk(T),

respectively.
The third constraint (coordinates constrained within turning

points of the harmonic approximation to the potential,y ) HO)
is implicitly imposed by assuming that the functional form for
the DOS in the RRHO approximate model can be extended to
energies above dissociation. This approach can naturally be
applied to the RRHO calculations and is generally the approach
used in the literature. We also extend this approach to the
anharmonic calculations by fitting the numerically calculated
DOS for energies below dissociation to the RRHO functional
form, which is used to extendF(E) aboveD. With this constraint,
the DOS and partition function are denoted byFCA

HO(E) and
QCA

HO(T), when the system is treated anharmonically, or by
FCH

HO(E) andQCH
HO(T) in the RRHO approximation.

The fourth constraint (center-of-mass separation constrained
below RCUT, y ) R) is imposed using the function

whereRCM is the center-of-mass separation of the two water
molecules andRCUT is a constant. This constraint has been used
extensively in molecular theories of gas-to-liquid nucleation and

has been termed the physically consistent cluster.17,18We have
used this approach previously in anharmonic calculations on
water clusters.12,13In the current work, we employ this approach
only for calculating the partition functions,QCA

R (T).
The water monomers in our calculations are treated as rigid.

When three intramolecular vibrational degrees of freedom for
each monomer and three center-of-mass degrees of freedom for
the dimer are removed, the number of degrees of freedom is
nine (N ) 9) corresponding to six intermolecular vibrations and
three rotations of the dimer. Explicit analytical expressions for
RRHO DOS and partition functions without constraints are
available in textbooks.21 Appendix A reviews these expressions
and presents extensions to the constraints discussed above.
Accurate anharmonic calculations of the DOS for the first
constraint in eq 3,FCA

D (E), are obtained numerically using a
multiple histogram method similar to that used by Weerasinghe
and Amar.33 A series of canonical ensemble simulations were
performed by using a Metropolis Monte Carlo procedure to
generate the distributions, e-âE F(E), as a function of total energy
at temperatures of 10, 20, 30, 40, 50, 100, 150, and 200 K. The
total energy at each phase-space configuration is obtained by
sampling phase-space configurations for the effective Hamil-
tonian

whereêi is a Gaussian-distributed random variable with unit
standard deviation andN ) 9. A total of 105 Monte Carlo moves
were sampled for each temperature. The Monte Carlo procedure
was initiated with a minimum energy configuration so that there
was sufficient sampling of configurations withE < D. The
energy was binned in the range 0< E < D to obtain an
unnormalized distribution,C e-âE F(E). Distributions for the
various temperatures were matched to recover an unnormalized
distribution across the full energy range. The methods used in
the calculations of the partition functions with the fourth
geometric constraint are provided elsewhere.13

B. Quantum Mechanical Density of States and Partition
Function. The quantum mechanical density of states and
partition function can be expressed in terms of the discrete
energy levels of the system. Although Goldman et al. have
calculated accurate (anharmonic) vibrational energy levels,9

those calculations are computationally intensive, and the rigid
rotor harmonic oscillator treatment presented here will allow
us to demonstrate the effect of the different constraints. The
energetic constraints listed above (y ) D andy ) DVk) can be
easily implemented in quantum mechanical calculations by
including only those energy levels that obey the constraints in
the calculations of the DOS and partition function. For the
RRHO approximation, the implicit harmonic constraint (y )
HO) is also easily implemented in the quantum mechanical
calculations.

As noted by Goldman et al.,9 theB andC components of the
principle moment of inertia of the water dimer are approximately
equal (IB ≈ IC), so it is a good approximation to treat the water
dimer as a prolate symmetric top. In this case, the rotational
energy levels and degeneracies are given by

whereδKK ′ is the Kronecker delta function and in our imple-

FCA
y (E) ) 1

hN∫dp dq δ[E - H(q,p)]fy(q,p) (2)

fD(q,p) ) θ[D - H(q,p)] (3)

fDVk(q,p) ) θ[D - HVk(q,p)] (4)

fR(q,p) ) θ[RCUT - RCM] (5)

Heff ) V(q) + 1/2∑
i)1

N

kBTêi
2 (6)

εJK
r ) BJ(J + 1) + (A - B)K2

gJK ) (2J + 1)(2 - δK,0) (7)
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mentation the rotational constants are defined by

where values of the constants are given in Table 1. Given the
analytical expressions for the vibrational and rotational energy
levels, the DOS and partition function can be written in terms
of explicit sums over these energy levels. The partition function
with no constraints takes the standard form for the RRHO
approximation.21 Appendix B reviews these expressions. We
note that although the classical DOS with this constraint depends
only on the number of modesk that are constrained, for the
quantum mechanical DOS it is necessary to specify which
modes are constrained.

There are over 150 000 rotational energy levels for energies
below dissociation, and when combined with the vibrational
states, there are over 107 energy levels forE < D. We are also
interested in extending the calculations to energies well above
dissociation, where the number of states is much larger and a
direct sum over energy levels is impractical. The large number
of rotational states indicates that a classical approximation to
the rotational DOS and partition function might be accurate.
We examine the validity of the classical approximation for
rotations within the rigid rotor approximation by examining the
number of rotational states as given by eqs B.10 and B.11. The
comparison ofNQR

r and NCR
r is shown in Figure 2. The

excellent agreement between these quantities indicates that a
classical treatment of the rotational number of states and DOS
is valid. Appendix B also reviews expressions for the RRHO
DOS and partition function with a mixed treatment (quantum
mechanics for vibrations and classical mechanics for rotations).
We use the mixed expression for the DOS (quantum mechanical
for vibrations and classical for rotations), which is given in eq
B.12, to examine the effects of the energy constraints on the
quantum mechanical partition function.

3. Results and Discussion

The parameters used in the rigid rotor harmonic calculations
are listed in Table 1. Also, note that the dissociation energy
that we use in these calculations, 1640 cm-1, is relative to the
bottom of the classical well (i.e., without contribution from zero-
point energy). Figure 3 compares the classical RRHO DOS for
the DVk constraint with different values ofk. The results for
FCH

DVk(E) show a range of behavior, withk ) 6 giving the
greatest decrease in the DOS for energies above dissociation
and withk ) 1 giving results that are very close to theFCH

HO(E)
values for energies up to 5 times the dissociation energy.

The frequencies of the six intermolecular modes of the water
dimer are shown in Table 1. We number the modes in the order
that they appear in the table. Note that the frequencies are listed
by symmetry block and in increasing order within each block.
For the Dang-Chang potential, the equilibrium geometry of
the water dimer hasCs symmetry and the dissociative mode,
corresponding qualitatively to an O-O stretch, hasA′ symmetry
and a frequency of 220 cm-1. We expect vibrational modes to
couple more strongly with modes of the same symmetry;
therefore, for the remainder of the calculations, we report the
results with theDVk constraint withk ) 3 and 6 only. In the
quantum mechanical calculations withk ) 3, the three modes
are taken to be those withA′ symmetry. As shown in Figure 3,
the HO constraint and theDVk constraint withk ) 3 and 6 will
give an adequate sampling of the range of behavior of the DOS
above dissociation.

The main results of this work are the calculated densities of
states as a function of energy, which are summarized in Figures
4 and 5, and the corresponding partition functions, which are
presented in Table 2 and Figure 6. Figure 4a shows the classical
rovibrational DOS that are calculated using the anharmonic
potential and the RRHO approximation with the first three
constraints, and Figure 5a shows the quantum mechanical

TABLE 1: Parameters Used in Rigid Rotor Harmonic Oscillator Calculations

ωm(cm-1)a 127.0 (A′) 220.2 (A′) 405.3 (A′) 108.4 (A′′) 168.5 (A′′) 619.6 (A′′)
IA, IB, IC (au) 15 840 492 600 493 400
A, B (cm-1) 6.929 0.2226
D (cm-1) 1640

a Symmetries of the vibrational modes are given in parentheses.

Figure 2. Comparison of classical (symbols) and quantum mechanical
(curve) rotational number of states. Figure 3. Calculated classical rigid rotor harmonic oscillator density

of states for the water dimer using the Dang-Chang interaction model.
The topmost curve is the harmonic oscillator approximation to the DOS
with the harmonic oscillator constraint above dissociation,FCH

HO(E).
The lower curves represent the DOS with the vibrational energy
constraintFCH

DVk(E), with k ) 1-6. At a fixed energy,FCH
DVk(E) mono-

tonically decreases with increasingk and the results fork ) 1 are closest
to those for the harmonic oscillator constraint.

A ) p2

2IA

B ) p2

IB + IC
(8)
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rovibrational DOS calculated using the RRHO approximation
with the first three constraints. Parts b and c of Figures 4 and
5 show the product of the DOS with the Boltzmann factor at
300 and 400 K, respectively. The classical RRHO DOS with
the HO constraint is also shown in Figure 5 for comparison.
The classical anharmonic DOS is higher than the classical
RRHO DOS at the dissociation energy by a factor of 5.3. The
numerical calculations ofFCA

D (E) only determine the quantity
to within an arbitrary scaling factor. The absolute value of
FCA

D (E) is determined by settingFCA
D (E) equal toFCH

D (E) at the
lowest energy for whichFCA

D (E) was calculated, namely, 31
cm-1. The classical RRHO DOS scales asE6.5, whereas a linear
least-squares fit of ln[FCA

D (E)] vs ln(E) gives a slope of 6.93,
giving rise to a value ofFCA

D (E) that is over 5 times larger than
FCH

D (E) at E ) D. The classical anharmonic results are
extrapolated to energies above dissociation using the HO
constraint with the expressionFCA

HO(E) ) FD(E/D)6.5 whereFD is
the value of the linear least-squares fits of ln[FCA

D (E)] vs ln(E)
evaluated atE ) D.

As shown in Figures 4 and 5, the total energy constraint (y
) D) is the most restrictive followed by the vibrational energy
constraint (y ) DVk) and the harmonic oscillator constraint (y
) HO) to give FCH

D (E) e FCH
DVk(E) e FCH

HO(E) and FQH
D (E) e

FQH
DVk(E) e FQH

HO(E), where the equality holds for energies below
dissociation. As temperature is increased, the contribution to
the partition function from energies above dissociation increases
for the vibrational energy constraint and harmonic oscillator
constraint. Figures 4 and 5 also show that the maximum in the
F(E) e-âE distribution for both the classical and quantum
densities of states with the harmonic oscillator constraint is
below dissociation at 300 K but moves to an energy above

dissociation at 400 K, so asignificant contribution to the
partition function comes from energies aboVe dissociation. One
measure of the contribution to the partition function from
energies above dissociation is the ratio of the partition function
with the vibrational energy or harmonic oscillator constraint to
the partition function with the total energy constraint, which
has no contribution from energies above dissociation. The ratio
QCH

DVk(T)/QCH
D (T) with k ) 6 increases from 1.1 to 2.3 as the

temperature increases from 200 to 500 K, and the ratio
QCH

HO(T)/QCH
D (T) increases from 1.1 to 6.8 as the temperature

increases from 200 to 500 K. Similarly,QQH
DVk(T)/QQH

D (T) and
QQH

HO(T)/QQH
D (T) increase from 1.2 to 2.8 and from 1.2 to 11.1,

respectively, as the temperature increases from 200 to 500 K.
The effect of anharmonicity on the classical DOS is large at

energies near dissociation, leading to a factor of 5 enhancement
in the DOS relative to the harmonic DOS. Because of the more
rapid rise of the anharmonic DOS, the contribution to the
partition function from energies near dissociation is greater for
the anharmonic compared to the harmonic DOS. Imposing the
harmonic oscillator constraint on the anharmonic DOS extrapo-
lates the anharmonic DOS above dissociation using the same
functional form as for the RRHO DOS. Therefore, the curves
for FCH

HO(E) and FCA
HO(E) in Figure 4 are parallel aboveE ) D

with FCA
HO(E) shifted up by about a factor of 5. As shown in

Table 2, the anharmonic partition functions,QCA
D (T), are larger

than the harmonic ones,QCH
D (T), by factors of 3.3 to 3.9, and

values ofQCA
HO(T) are larger thanQCH

HO(T) by factors of 3.3 to
4.1. The ratioQCA

HO(T)/QCA
D (T) is similar in value toQCH

HO(T)/
QCH

D (T), rising from 1.1 to 7.2 as the temperature increases
from 200 to 500 K.

Figure 5 provides a comparison of the classical and quantum
mechanical DOS in the RRHO approximation. For energies

Figure 4. Calculated classical rovibrational density of states for the
water dimer using the Dang-Chang interaction model. Part a displays
the DOS, and parts b and c show the product of the DOS with the
Boltzmann factor at 300 and 400 K, respectively. The solid circles are
the accurate anharmonic results,FCA

D (E), the solid curve is a linear fit
to ln FCA

D (E) vs ln E, for energies below the dissociation energy, and
the long-dash curve is the extrapolation of the accurate DOS above
dissociation using the harmonic oscillator approximation,FCA

HO(E). The
dotted curve is the RRHO DOS with the harmonic oscillator constraint
above dissociation,FCH

HO(E), the short-dash curve is the RRHO DOS
with vibrational energy constrained in all modes above dissociation,
FCH

DVk(E) (k ) 6), and the open circles are the RRHO DOS with
vibrational energy constrained in three modes above dissociation,
FCH

DVk(E) (k ) 3).

Figure 5. Calculated quantum mechanical rovibrational density of
states for the water dimer using the Dang-Chang interaction model.
Part a displays the DOS, and parts b and c show the product of the
DOS with the Boltzmann factor at 300 and 400 K, respectively. The
solid line is the harmonic oscillator approximation below the dissocia-
tion energy,FQH

D (E), the dotted curve is the RRHO DOS with the
harmonic oscillator constraint above dissociation,FQH

HO(E), the short-
dashed curve is the RRHO DOS with vibrational energy constrained
in all modes above dissociation,FQH

DVk(E) (k ) 6), and the open circles
are the RRHO DOS with vibrational energy constrained in three modes
above dissociation,FQH

DVk(E) (k ) 3). For comparison, the classical
harmonic DOSFCH

HO(E) is shown as the long-dashed curve.
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below dissociation, the classical density scales asE6.5, as shown
in eq A.4, rising from zero atE ) 0. Because of the zero-point
energy constraint, the quantum mechanical DOS is zero for
energies up to the zero-point energy, which is about 824 cm-1

in the RRHO approximation. Just above dissociation, the
classical DOS is much larger than the quantum mechanical one,
for example,FCH

HO(E)/FQH
HO(E) is 3.8 atE ) 1000 cm-1, and this

difference decreases so that at dissociation the ratio is only 1.5.
Therefore, the classical DOS appears to be a reasonable
approximation to the quantum mechanical one (to within about
50%) for energies above dissociation. The classical partition
functions are larger than the analogous quantum mechanical
ones, as shown in Table 2. For exampleQCH

D (T)/QQH
D (T),

QCH
DVk(T)/QQH

DVk(T) for k ) 6, andQCH
HO(T)/QQH

HO(T) are 4.1, 3.8, and
3.6, respectively, at 200 K and decrease to 2.0, 1.6, and 1.2 at
500 K. Figure 6 displays the same trend, which shows that the
classical and quantum mechanical partition functions for a given
constraint converge with increasing temperature (compare the
solid and dotted curves for the same symbol, such as circle, in
Figure 6), whereas the quantum mechanical partition functions
for different constraints diverge with increasing temperature

(compare the three solid curves in Figure 6). At higher
temperatures, the differences between the classical and quantum
partition functions are much less than the differences due to
different constraints.

4. Summary and Conclusions

In this paper, we examine four different treatments of
dissociative states in classical and quantum mechanical calcula-
tions of partition functions for the water dimer. Two of the
constraints restrict the energy of the system; either the total
energy or the vibrational energy is constrained to lie below the
dissociation energy. These energy constraints yield the smallest
partition functions, with the total energy constraint giving the
smallest partition functions of the two. A third constraint uses
the rigid rotor harmonic oscillator approximation to extend the
calculation of the density of states above the dissociation energy.
This constraint imposes no restriction on the total energy of
the system but implicitly restricts the phase space of the dimer
so that dissociative states are approximated by a discrete
spectrum of quantum states rather than by a continuum of states.
The fourth constraint restricts the center-of-mass separation of
the two water molecules to lie within a constant value. This
geometric constraint is only applied to the calculation of classical
partition functions and yields the largest partition functions.

For temperatures above 300 K, we find that different
constraints lead to differences in the computed partition func-
tions by more than 2 orders of magnitude. The magnitude of
these changes is larger than the differences in the classical and
quantum mechanical RRHO partition functions, which are
typically less than a factor of 8 for temperatures above 300 K.
This study shows that for the water dimer at temperatures above
300 K, the choice of how dissociatiVe states are treated is just
as important as an accurate quantum mechanical treatment in
eValuating the partition function. Furthermore, the importance
of dissociative states indicates that the accuracy of previous
calculations of the dimer partition function1,4,5,7,9 is highly
suspect, because they have either entirely neglected contributions
from above dissociation or have implicitly used an untested
approximation (e.g., the harmonic approximation) to include
contributions from energies above dissociation.

The ambiguity in defining the water dimer partition function
indicates that asking questions about the equilibrium population
of water dimers without any additional information is ill-posed.
Ultimately, we are not interested in knowing the number of
water dimers present for some set of physical conditions (i.e.,
temperature and humidity), but we want to know the effect of

TABLE 2: Calculated Partition Functions

temperature (K)

method 200 250 300 350 400 450 500

QCH
D (T) 2.6× 102 1.2× 103 3.5× 103 8.1× 103 1.5× 104 2.6× 104 3.9× 104

QCH
DVk(T), k ) 6 2.7× 102 1.4× 103 4.6× 103 1.2× 104 2.7× 104 5.2× 104 9.0× 104

QCH
DVk(T), k ) 3 2.8× 102 1.5× 103 5.8× 103 1.8× 104 4.7× 104 1.1× 105 2.3× 105

QCH
HO(T) 2.8× 102 1.5× 103 5.8× 103 1.9× 104 5.1× 104 1.2× 105 2.7× 105

QCA
D (T) 8.5× 102 4.1× 103 1.3× 104 3.0× 104 5.8× 104 9.9× 104 1.5× 105

QCA
HO(T) 9.3× 102 5.4× 103 2.2× 104 7.3× 104 2.0× 105 5.0× 105 1.1× 106

QCA
R (T) 9.9× 106 1.7× 107

QQH
D (T) 6.3× 101 3.9× 102 1.4× 103 3.5× 103 7.2× 103 1.3× 104 2.0× 104

QQH
DVk(T), k ) 6 7.2× 101 5.2× 102 2.2× 103 6.5× 103 1.5× 104 3.1× 104 5.5× 104

QQH
DVk(T), k ) 3 7.8× 101 6.4× 102 3.2× 103 1.1× 103 3.3× 104 8.2× 104 1.8× 104

QQH
HO(T) 7.8× 101 6.4× 102 3.2× 103 1.2× 104 3.6× 104 9.3× 104 2.2× 104

Figure 6. Calculated partition functions for the water dimer using the
Dang-Chang interaction model. Dotted and dashed lines and open
symbols denote classical partition functions, while solid lines and filled
symbols denote quantum mechanical partition functions. The dotted
and solid lines indicated calculations that use the RRHO approximation,
while the dashed line is for anharmonic calculations. Circles, squares,
and diamonds indicate the total energy constraint, vibrational energy
constraint withk ) 6, and harmonic oscillator constraint, respectively,
for energies above dissociation. Key:QCH

D (T) (O, dotted line),QCH
DVk(T)

(0, dotted line),QCH
HO(T) (), dotted line),QCA

D (T) (O, dashed line),
QCA

HO(T) (), dashed line),QQH
D (T) (b, solid line), QQH

DVk(T) (9, solid
line), QQH

HO(T) ((, solid line).
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water dimers on a physical observable. For instance, to
understand the influence of water dimers on solar absorption
requires knowing absorption cross sections for individual states
of the dimer and the population of those states. By starting from
a rigorous expression for the physical quantity of interest, one
could make simplifying approximations that yield an expression
for the observable in terms of the concentration of dimers
multiplied by a value of the observable that is averaged over
different states of the dimer. A careful analysis of the ap-
proximations made in the simplified expression could provide
insight into what type of constraint is most appropriate for a
given physical observable. However, it is not possible to present
a general prescription for constraining weakly bound systems,
such as the water dimer above 300 K, without any additional
information about the physical observable due to the appreciable
population of states near the dissociation energy.
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Appendix A. Classical Rigid Rotor Harmonic Oscillator
Density of States and Partition Functions

In the RRHO approximation, it is possible to write the
classical rovibrational density of states as a convolution of the
DOS for classical rigid (CR) rotations and the DOS for classical
harmonic (CH) vibrations. The RRHO approximation to the
rovibrational DOS, using the third constraint listed above (y )
HO), is expressed as

The RRHO approximation is obtained by expanding the
potential about one of the eight equivalent minima on the
potential energy surface and using unsymmetrized expressions
for the rotational partition function. By doing this, the correct
symmetry factor of 8 associated with the rotational symmetry
of each water molecule and the indistinguishability between the
water molecules is properly taken into account. The classical
rotational density of state for an asymmetric top is given by

whereIA, IB, andIC are the principle moments of inertia andp
≡ h/2π. The classical harmonic vibrational density of state is
given by

whereωm is the frequency for themth vibrational mode andM
) 6 for the intermolecular vibrations of the water dimer.
Inserting eqs A.2 and A.3 into eq A.1 yields the result

In the RRHO approximation, the partition function for this
constraint takes the usual form

where the rotational partition function is given by

and the vibrational partition function is given by

The third constraint is also applied to the anharmonic DOS for
energies above dissociation by using the expression

where the constantCCA
HO is fitted by matching this expression to

FCA
D (E) at an energy nearD. The partition functionQCA

HO(T) in
this case is obtained by numerical integrating of eq 1 using
FCA

D (E) for energies up to dissociation andFCA
HO(E) for energies

above dissociation.

For the first constraint (y ) D) given by eq 3, the rovibrational
DOS is given by

and the partition function takes the form

where erf(x) is the error function. The anharmonic partition
function for the first constraint,QCA

D (T) is obtained by numer-
ical integration of eq 1, including energies only up to dissocia-
tion and using numerically determined values forFCA

D (E).

For the second constraint (y ) DVk) given by eq 4, the
rovibrational DOS is written

where

FCH
HO(E) ) EM+1/2

(8IAIBIC)1/2

p3
2∏

m)1

M 1

(m +
1

2)pωm

(A.4)

QCH
HO(T) ) QCR

r (T)QCH
v (T) (A.5)

QCR
r (T) )

(8πIAIBIC)1/2

p3
(kBT)3/2 (A.6)

QCH
v (T) ) ∏

m)1

M kBT

pωm

(A.7)

FCA
HO(E) ) CCA

HOEM+1/2, E > D (A.8)

FCH
D (E) ) θ(D - E)∫0

E
dε FCR

r (E - ε)FCH
v (ε)

) FCH
HO(E)θ(D - E) (A.9)

QCH
D (T) ) QCH

r (T)QCH
v (T) ×

[erf(xâD) - 2xâD

π
e-âD∑

m)0

M m!(4âD)m

(2m + 1)!] (A.10)

FCH
DVk(E) ) FCH

HO(E){1, E e D

1 - ∑
m)0

M-1

Cm
k (1 -

D

E)m+3/2

, E > D

(A.11)

FCH
HO(E) ) ∫0

E
dε FCR

r (E - ε)FCH
v (ε) (A.1)

FCR
r (E) )

2(8IAIBIC)1/2

p3
E1/2 (A.2)

FCH
v (E) )

EM-1

(M - 1)!
∏
m)1

M 1

pωm

(A.3)

1564 J. Phys. Chem. A, Vol. 106, No. 8, 2002 Schenter et al.



The partition function with this constraint is given by

Note that this constraint is only applied with the RRHO
approximation.

Appendix B. Quantum Mechanical Rigid Rotor
Harmonic Oscillator Density of States and Partition
Functions

The quantum mechanical partition function in the RRHO
approximation, using the third constraint (y ) HO), is given
by an expression analogous to eq A.1

where the vibrational DOS in the harmonic approximation is
given by

the collection of vibrational quantum numbers is denoted byn
) (n1, n2, ..., nM), the vibrational energy levels in modem are
given by

and the total vibrational energy for staten is denoted

For the prolate symmetric top energy levels and degeneracies
given by eq 7, the rotational DOS is given by

whereδK,K ′ is the Kronecker delta function and the rotational

energy levels are given by eq 7. Substituting eq B.2 into B.1
yields

and the partition function is then obtained using eq B.6 in eq 1
to give

The rigid rotor approximation to the rotational partition function
QQR

r (T) is given by

and the quantum mechanical HO partition function for vibrations
is the standard expression

As mentioned above, calculating the DOS by a direct sum over
energy levels is impractical, so we explore the validity of the
classical approximation to the rotational DOS.

It is convenient to compare the classical and quantum
mechanical number of rotational states. The quantum mechanical
number of rotational states is defined by

and classically, it is given by

Numerical comparisons ofNQR
r andNCR

r are shown in Figure 5
and discussed above. We approximateFQH

HO(E) using eq B.6
with FQR

r replaced byFCR
r

and the total RRHO partition function is approximated by

Equation B.12 is the starting point for examining the effects of
the energy constraint on the partition function.

The RRHO quantum mechanical DOS with the total energy
constraint (y ) D) is approximated by

and the partition function with this constraint is given by

Cm
k ) 0, m ) 0, k ) 1, ...,M - 1

Cm
k )

(-1)M+k+m

(k - 1)!(m +
3

2)
∏
l)1

M (l +
1

2) ∑
l)0

min(M- k-1,M-m-1)

1

l!(M - m - l - 1)!
∑
n)l

min(M-k-1,m+l-1)

(-1)n(M - n - 2)!

(M - k - n - 1)!(n - l)!(m + l - n - l)!(n - l +
3

2)
,

m > 0, k ) 1, ...,M - 1

Cm
k )

(-1)m

(M - m - 1)!m!(m +
3

2)
∏
l)1

M (l +
1

2),
k ) M (A.12)

QCH
DVk(T) ) QCH

r (T)QCH
v (T)[1 - e-âD∑

m)0

k-1(âD)m

m! ] (A.13)

FQH
HO(E) ) ∫0

E
dε FQR

r (E - ε)FQH
v (ε) (B.1)

FQH
v (E) ) ∑

n1)0

∞

∑
n2)0

∞

...∑
nM)0

∞

δ(E - ∑
m)1

M

εnm

v ) ) ∑
n)0

∞

δ(E - εn
v) (B.2)

εnm

v ) pωm(nm + (1/2)) (B.3)

εn
v ) ∑

m)1

M

εnm

v (B.4)

FQR
r (E) ) ∑

J)0

∞

(2J + 1)∑
K)0

J

(2 - δK,0)δ(E - εJK
r ) (B.5)

FQH
HO(E) ) ∑

n1)0

∞

∑
n2)0

∞

...∑
nM)0

∞

FQR
r (E - ∑

m)1

M

εnm

v ) ) ∑
n)0

∞

FQR
r (E - εn

v)

(B.6)

QQH
HO(T) ) QQR

r (T)QQH
v (T) (B.7)

QQR
r (E) ) ∑

J)0

∞

(2J + 1)∑
K)0

J

(2 - δK,0) exp(-εJK
r /kBT) (B.8)

QQH
v (E) ) ∏

m)1

M 1

2 sinh(pωm/(2kBT))
(B.9)

NQR
r (E) ) ∫0

E
dε FQR

R (ε) )

∑
J)0

∞

(2J + 1)∑
K)0

J

(2 - δK,0)θ(E - εJK
r ) (B.10)

NCR
r (E) )

4(8IAIBIC)1/2

3p3
E3/2 (B.11)

FQH
HO(E) ≈ ∑

n1)0

∞

∑
n2)0

∞

...∑
nM)0

∞

FCR
r (E - ∑

m)1

M

εnm

v ) ) ∑
n)0

∞

FCR
r (E - εn

v)

(B.12)

QQH
HO(T) ≈ QCR

r (T)QQH
v (T) (B.13)

FQH
D (E) ≈ θ(D - E)FQH

HO(E) (B.14)
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The RRHO quantum mechanical DOS with the vibrational
energy constraint (y ) DVk) requires specification of thek
modes. For convenience, we take these to be the modem ) 1,
..., k. With this definition, the DOS is given by

where we define the vibrational energy in thek modes as

The partition function for this method takes the form
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