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The treatment of dissociative states in the calculation of the partition function of a weakly bound system,
such as the water dimer, is discussed. For a dissociative system, the number of phase-space configurations
that contribute to the total partition function from energies above the dissociation energy depends on the
system volume. For a sufficiently large system volume, entropy from these configurations will dominate
over the energy contribution of the local minimum and contributions from dissociative states will dominate
the total partition function. The calculation of the dimer partition function requires limiting the phase space
of the cluster or providing a definition of those phase-space points that correspond to a dimer. Because there
is no unique procedure to constrain the phase space of a dimer, we provide an analysis of the dimer partition
function using a series of constraints. For the water dimer at temperatures in the rangg0QX, the

values of the dimer partition function change by over 2 orders of magnitude depending on the choice of the
constraint.

1. Introduction functions and equilibrium constants for the water dimer,
particularly at higher temperatures. For example, if the free
energy of dimerization displays similar changes, as does the
dimerization enthalpy, e.g., 10 kJ/mol, then different treatments
of dissociative states can shift the equilibrium constant by over
a factor of 30. The purpose of this work is to take a closer look
at the role of dissociative states on the computed partition
function and to provide an estimate of the change in the partition
function, which determines the equilibrium constant, for dif-
ferent treatments of these states.

The role of water dimers in the atmosphere has received
considerable attentioh;? yet their equilibrium population
remains uncertaifi.> The water dimer is a relatively weakly
bound complex, and thus, its thermodynamic properties are
difficult to determine experimentally. For example, significant
variations are found in the observed values of the dimer enthalpy
of formation determined using different technig@dheoretical
determination of the thermodynamic properties of the water

dimer (e.g., the equilibrium conFsgant for dimerization) persists One way to understand the effects of dissociative states on
as an active areg Of, resgaﬁe"rﬁ ) ) ) thermodynamic properties of the dimer is to write the partition
A recent publication in this journ&lreported impressive function, Q(T), for the dimer in terms of a convolution of the

calculations of the vibrational energy levels up to near the gensity of rovibrational stateg(E), and the Boltzmann factor
dissociation of the water dimer for a very accurate potential ¢

energy surfacé®!! These energy levels were then used in

calculations of the dimer patrtition function and the dimerization @ _BE

equilibrium constant as a function of relative humidity for QM = j(; dEe” p(E) 1)
temperatures ranging from about 25 to 13D. From these

calculations, the authors concluded that “it is probable that the WhereT is temperatureE is the total energy (relative to the
water dimer can be indeed present in the atmosphere in sufficientenergy at the equilibrium geometry of the dimet)= 1/(keT),
quantities to have significant effects on solar absorption.” andke is Boltzmann's constant. If we treat rotations of the dimer
Although these calculations represent the most accurate deterby the rigid rotor approximation and vibrations harmonically,
mination of energy levels to date, the authors did not discuss the classical density of states (DOS) scaleE%%? wheresis

the role of dissociative states of the weakly bound water dimer the number of active vibrations in the dimer. (Vibrational modes
on the dimer partition function in their study. In a recent stéidy, With sufficiently high frequencies will not contribute appreciably
it was shown that the enthalpy of formation of the water dimer to0 the quantum mechanical DOS and are often not included in
at 85°C can change by over 10 kJ/mol depending upon how the number of vibrational modes.) The rigid rotor harmonic
dissociative states are treated. Upon the basis of our previousoscillator (RRHO) approximation provides a qualitatively correct
work calculating the thermodynamics and kinetics of clusters description of the dependence of{E) on energies below
relevant to the nucleation procédd3 we found that the dissociation. For energies above dissociation, the DOS scales

treatment of dissociative states can affect the computed partitionlinearly with the total volume of the system. Figure 1 depicts
the behavior of the Boltzmann factor, DOS, and their product

* To whom correspondence should be addressed. E-mail: bruce.garrett@(the integrand of eq 1) for energies k_)e|0\_N diSSOCiation_- For the
pnl.gov. Phone: (509) 376-1353. Fax: (509) 376-0420. lower temperature (dashed curves in Figure 1), the integrand
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sible, which allow determination of bound energy levels beyond
the harmonic approximatiohl?1415The question still arises of
how to treat the dissociative continuum. Goldman €t lzhve
limited their calculations of the water dimer partition function
to energies below dissociation, thereby imposing an energetic
constraint. Christoffel and Bowmé&hcomputed energy levels
above dissociation for the HGQystem using an approximate
expression for the potential through three-mode coupling in
normal mode coordinates. This approximate form for the
potential could also effectively constrain the phase space to
effectively discretize the continuum.

The definition of a molecular cluster has long been recognized
as an important issue in molecular theories of gas-to-liquid
homogeneous nucleation, because clusters that contribute to
nucleation are inherently unstaBfe:316-19 |n these approaches,
the constraints are often geometric ones. For example, “physi-
cally consistent” clustet8 are defined such that all molecules
in the cluster lie within a spherical volume centered on the center

of mass of the cluster. Stillinger provided an alternate geometric
definition that requires each molecule to lie within a specified
distance of another molecule in the cluster.

Figure 1. Logarithmic plot of E/D)s* (solid line) fors = 7.5 and
Boltzmann factors, &€ (dashed and dotted lines), for two valuesiof

= 1/kgT, as a function of energf from zero toD (a). The vertical ) o o ” )
line is at E = D. Part b shows the linear plot oE(D)s! e & The dimer partition function is an important component in

(normalized to one at its maximum) for two values/fThe dashed the construction of rate theories for unimolecular reactions, such
(dotted) curves in parts a and b are for the lower (higher) values of as cluster dissociation reactions that are important in nucleation.
temperatureT. Dissociative states should be included in the reactant partition
function for the evaluation of unimolecular rate constants

peaks well below the dissociation energy and the population is b h h hat lead i :
negllglble for energieS near but below the dissociation energy. ecause these states are the ones that lead to reaction. In praCtlce,

For the higher temperature (dotted curves in Figure 1), the separate cal_cqlations are performed for the reaqive flux _and
integrand peaks very close to the dissociation energy and hadeactant partition _functlon, and the reactant partition _fung:tlon
an appreciable value at dissociation. For a sufficiently large could be approximated by only bound-state contributions,
volume, the total partition function will be dominated by although this would be inconsistent with the treatment of
configurations with energies above dissociation: that is, entropy diSsociative states in the reactive flux calculation. For a
from these configurations will dominate over the energy unimolecular _react|on with a barrler,_a dividing sur_face throug_h
contributions of the local minima. However, many of the states the saddle point f_or the reaction provides a convenient separation
above dissociation could not be characterized as dimers (e.g.0f the configuration space into reactants (dimers) and products
they may correspond to collision complexes or resonances that(Mmonomers). This definition of the dimer is implicit in conven-
are too short lived to contribute to any physically observable tional forms of transition state theory (TS¥)which is used in
property of the dimer). For the lower temperature, the clear the Rice-RamspergerKasset-Marcus (RRKM) theor§* of
separation of the distribution below dissociation from that above Unimolecular reactions, and explicitly displayed in formulations
dissociation makes it easy to determine what energies shouldOf transition state theory in terms of time correlation functiths.
contribute to the dimer partition function. Even though dis- Definition of dimer partition functions for dissociation of the
sociative states are ultimately the most probable (for a large water cl_uste_rs is made dlffl_cult by the _Iack of an intrinsic bamgr
enough system volume), the dimer is sufficiently stable at the 0 reaction (i.e., the potential energy is monotonically downhill
low temperature (i.e., there is no appreciable probability of being In €nergy for a water molecule recombining with a cluster). In
at energies close to but below dissociation) that the time scalethis case, variational transition state thérgan be used to
to achieve the most probable (dissociated) states is |0ngdeflne the optimum d|V|d|ng surface separating reactants from
compared to any observation of dimer properties. For the higher|°r0duc'f_51-2‘13 Most calculations do not apply this type of
temperature, it is not immediately obvious what role dissociative constraint though because the reactant partition function is
states should play in the dimer partition function. The large calculated using the harmonic approximation. One exception
distribution of states near dissociation at the higher temperatureiS the accurate classical evaluation of the reactant phase space
is a measure of the instability of the dimer at this temperature, bounded by the reaction goord|nate of the variational transition
and it is possible that some states above dissociation will be State for the H" dissociatior*
sufficiently long-lived to contribute to dimer properties. Constraints on the energy can also be used to avoid
Calculation of the dimer partition function requires limiting divergence of the partition function. As noted above, Goldman
the phase space of the two molecules, which is equivalent to et al? effectively replaced the upper limit of integration in eq
providing a functional definition of the dimer. Most often this 1 by the dissociation energjp. This constraint will be most
constraint is implicit in the calculation. For example, in quantum appropriate for properties for which the low-lying energy levels
mechanical calculations of the partition function using the dominate the average. For example, it is possible that high-
RRHO approximation, the dissociative continuum is discretized lying states may not contribute appreciably to absorption over
by extending the harmonic representation of the potential above narrow frequency ranges (such as those near the shifted donor
dissociation, thereby converging the vibrational partition func- OH stretch in the water dimer). This total energy constraint
tion. Most previous calculations of the water dimer partition excludes all states that are above the dissociation energy.
function have employed this approximation. Accurate quantum Orbiting resonances, which correspond qualitatively to states
mechanical calculations on polyatomic systems are now pos-with vibrational energy below dissociation and total energy
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(vibrational plus rotational) above dissociation, can be long- vibrational frequency upon forming a hydrogen bond are
lived, indicating a relatively weak coupling to dissociative modes included in some average sense. However, effects of the
in the complex, and therefore, it may be important to include coupling on dynamics, such as lifetimes of resonances, will not
these types of states in some averages. This suggests that abe included, even implicitly. It can be argued that the frequency
energy constraint on vibrational energy may be more appropriate mismatch between the high-frequency intramolecular modes and
than one on total energy. Similarly, there may be some the lower-frequency intermolecular modes will decrease dy-
vibrational modes that couple weakly to dissociative modes of hamic coupling between these sets of modes. The goal of this
the complex and therefore support long-lived excitations. In this work is to provide a qualitative understanding of the effects of
case, a constraint on only the subset of dissociative modes maydissociative states and not to provide quantitative estimates of
be more appropriate. thermodynamic properties. Therefore, the use of this ap-

The use of the lifetime of dissociative (resonance) states to Proximate model of the watewater interaction will be
understand their contributions to the partition function arises Sufficient for this study.
naturally out of the preceding discussion. Rather than assigning Section 2 and Appendices A and B present explicit expres-
constraints based upon energy content of certain modes, thesions for the density of states and partition functions so that
lifetime of individual resonance states could be used to the effects of the different constraints are clearly displayed.
determine whether the energy level should be included in the Section 3 presents the results and a discussion of the effects of
partition function. An effective Hamiltonian formulation has the different constraints. Section 4 presents a summary and
been used to model quantum mechanically the intramolecular conclusions.
dynamics that controls the lifetimes of energy lev&lalter-
natively, classical trajectories can be used to evaluate the lifetime2- Theory and Calculational Details

of point_s in phase space. This _Iatter approac_h was_used in Four constraints on the phase space of the dimer are
calculatlon_s of the water d_lmerlzatlon enthaﬁjyl. this Previous = considered: (i) the available phase space is restricted to those
work, the time for water dimers, at energies above dissociation, giates with total energies below the dissociation enedgyii)
to dissociate (i.e., for the intermolecular separation to increase e available phase space is restricted to those states with
beyond a limit) was used to determine whether the state Sh°“|denergies irk vibrational modes belowd, wherek can take on
pe i.ncluded in the average. The re}ationshipl between gollision values from 1 to the total number of vibrational modes; (i)
lifetimes and thermodynamic functions was first recognized by ¢qnfiguration space is constrained so that vibrational motion is
Smith2®In this seminal paper, it was noted that the concentration ragtricted to lie within the turning points of the harmonic
of an unstable complex is given by the product of its rate of 555 oximation to the potential; (iv) configuration space is
formation (i.e., the collision frequency) and its lifetime, and & ¢onstrained so that the center-of-mass separation between the
general expression was derived that related the lifetime Matrix 1o water molecules is restricted to be less than the distance
to the “molecular internal partition function”. Contributions from Reut. The first two constraints are energetic ones, and the last
the collisional continuum are included in terms of the difference g gre geometric ones. We do not explicitly consider any
between the lifetime of a collision and the time for motion of  constraints based upon lifetimes of dissociative states in this
the particles in the absence of the interaction (i.e., with the paper, although the energetic constraints can be qualitatively
potential turned off). In this approach, a convergent expression rejated to assumed lifetimes. Constraint (i) is equivalent to
is obtained for the partition function without the need to assuming that all states above dissociation couple strongly to
introduce additional parameters such as cutoff energies orthe dissociative mode and their lifetimes are sufficiently short
distances. The relationship between the DOS and the collisiongg that they will not contribute appreciably to the partition
lifetime, which is implicit in Smith’s work, has also been  fynction. Constraint (ii) relaxes this restriction and is equivalent
explicitly displayed® (see also Brumer et &t.and references {0 assuming that some modes couple weakly to the dissociative
therein). It should also be noted that the collision lifetime has mode and they are sufficiently long-lived that they contribute
played an important role in derivation of rate expressions for to the partition function. By considering a range of energy
recombination reactiori. Although an approach based upon constraints (e.g., number of modes included in the constraint),
the lifetime matrix is conceptually compelling, it requires full e can span a range of possible behaviors of the lifetimes of
solution of the collision dynamics. Evaluation of the lifetime the states. These constraints are first defined in terms of the
matrix has been carried out for reactions involving a small classical density of states. Although a classical description of
number of atoms (for a recent example, see the calculations forthe water dimer is not valid at energies corresponding to low-
the H+ O reaction by Pack et &). lying bound states, it should be a reasonable approximation for
In the present work, we analyze the partition function describing the DOS at energies near and above dissociation.
calculations for the water dimer, first, to explore the effects of In this section, we describe accurate classical simulations of
energetic and geometric constraints on the partition functions. the classical DOS and partition functions for the coupled
Second, we examine what contributions are made by dissociativevibrational and rotational degrees of freedom. We also consider
states in the approaches used in the literature. We use thean approximate treatment of the vibrations and rotations that
interaction potential of Dang and Chaffgwhich provides a allows us to explore the effects of the different constraints. The
reasonable description of water interactions with accurate rotations and vibrations are treated as separable in the ap-
binding energies and intermolecular vibrational frequencies. In proximate treatment with rotations treated as those for a rigid
this model, the monomers are treated as rigid bodies (i.e., noasymmetric top and vibrations treated in the harmonic ap-
internal vibrations of the monomers), and thus, contributions proximation. The extension of these constraints to quantum
from intramolecular modes are not explicitly included in our mechanical calculations of the DOS and partition functions are
partition functions. The effects of coupling between the then presented for the first three of these constraints using the
intermolecular and intramolecular vibrational modes are included rigid rotor harmonic oscillator (RRHO) approximation.
implicitly in the energetics because these models were param- A. Classical Density of States and Partition FunctionThe
etrized empirically. For example, the effects of shifts in the OH classical partition function is given by eq 1 with the classical
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anharmonic (CA) density of states for rotations and vibrations has been termed the physically consistent clugt&fWe have
given by used this approach previously in anharmonic calculations on
water clusterd?13in the current work, we employ this approach
pea(E) = iN f dp dg S[E — H(q,p)]f,(a.p) ) only for calculating the partition functi(_)nQEA(T). .
h The water monomers in our calculations are treated as rigid.
When three intramolecular vibrational degrees of freedom for
whereh is Planck’s constantN is the number of vibrational  each monomer and three center-of-mass degrees of freedom for

and rotational degrees of freedom in the systgqnandp are  the dimer are removed, the number of degrees of freedom is
the coordinate and conjugate momentum vectors for vibrations nine (N = 9) corresponding to six intermolecular vibrations and
and rotationsp(x) is the Dirac delta functionti(q,p) is the three rotations of the dimer. Explicit analytical expressions for

total Hamiltonian for the system, arfg(q,p) is the constraint ~ RRHO DOS and partition functions without constraints are
function that limits the phase-space integration. The quantities qyailable in textbook3! Appendix A reviews these expressions
that are computed classically using the rigid rotor harmonic and presents extensions to the constraints discussed above.
oscillator (RRHO) approximation are denoted by replacing the Accurate anharmonic calculations of the DOS for the first
subscript CA by CH in expressions for the classical DOS and constraint in eq 3p2,(E), are obtained numerically using a
partition function. _ __ multiple histogram method similar to that used by Weerasinghe
The first constraint (total energy constrained below dissocia- 5354 Amard? A series of canonical ensemble simulations were
tion,y = D) is easily applied to both the anharmonic and RRHO  performed by using a Metropolis Monte Carlo procedure to

treatments by defining the constraint function as generate the distributions; & p(E), as a function of total energy
f — 0D —H 3 at temperatures of 10, 20, 30, 40, 50, 100, 150, and 200 K. The
p(a.p) = 0] @.p)] 3) total energy at each phase-space configuration is obtained by
whered(x) is a Heaviside step functiodx) = 0, x < 0; 6(x) f:r:?;)r:mg phase-space configurations for the effective Hamil-

=1,x > 0]. With this constraint, the DOS and patrtition function

(for the rotational and vibration coordinates) are denoted by N

pea(E) and Q2,(T), when the system is treated anharmoni- Hop = V(@) + 1, ks TE? (6)
cally, or they are denoted Ipg,,(E) andQ2,(T) in the RRHO =

approximation.

The second constraint (vibrational energy constrained below where§; is a Gaussian-distributed random variable with unit
dissociation,y = DuKk) requires a separation of the rotational standard deviation arld = 9. A total of 1& Monte Carlo moves
and vibrational degrees of freedom, so its use is restricted towere sampled for each temperature. The Monte Carlo procedure
the RRHO approximation. The constraint is imposed using the was initiated with a minimum energy configuration so that there
function was sufficient sampling of configurations with < D. The

energy was binned in the range © E < D to obtain an

fouda.p) = 6[D — H,(q,p)] (4) unnormalized distributionC e € p(E). Distributions for the

various temperatures were matched to recover an unnormalized
where H, is the approximate harmonic Hamiltonian far  distribution across the full energy range. The methods used in
vibrational modes. Note that for the classical calculations it is the calculations of the partition functions with the fourth
not necessary to specify which modes are constrained becausgeometric constraint are provided elsewh€re.
the DOS depends only on the number of modtethat are B. Quantum Mechanical Density of States and Partition
constrained. Again, this constraint is implemented only when Function. The quantum mechanical density of states and
the DOS is calculated in the RRHO approximation. The DOS partition function can be expressed in terms of the discrete

and partition function are denoted ty/K(E) and Q2(T), energy levels of the system. Although Goldman et al. have
respectively. calculated accurate (anharmonic) vibrational energy Ievels,

The third constraint (coordinates constrained within turning those calculations are computationally intensive, and the rigid
points of the harmonic approximation to the potentyat HO) rotor harmonic oscillator treatment presented here will allow

is implicitly imposed by assuming that the functional form for us to demonstrate the effect of the different constraints. The
the DOS in the RRHO approximate model can be extended to energetic constraints listed abowe= D andy = Duk) can be
energies above dissociation. This approach can naturally beeasily implemented in gquantum mechanical calculations by
applied to the RRHO calculations and is generally the approachincluding only those energy levels that obey the constraints in
used in the literature. We also extend this approach to thethe calculations of the DOS and partition function. For the
anharmonic calculations by fitting the numerically calculated RRHO approximation, the implicit harmonic constraigt=
DOS for energies below dissociation to the RRHO functional HO) is also easily implemented in the quantum mechanical
form, which is used to extenaE) aboveD. With this constraint, calculations.

the DOS and partition function are denoted HS&’(E) and As noted by Goldman et &.the B andC components of the
Q(H;,?(T), when the system is treated anharmonically, or by principle moment of inertia of the water dimer are approximately
pgﬁ(E) and Qggm in the RRHO approximation. equal (8~ lc), soitisa good_ approximat_ion to treat the water
The fourth constraint (center-of-mass separation constraineddimer as a prolate symmetric top. In this case, the rotational
below Reut, Y = R) is imposed using the function energy levels and degeneracies are given by
fr(a,P) = O[Reur — Rewl (5) €« =BJJ+ 1)+ (A— B)K?
whereRcy is the center-of-mass separation of the two water Ok = (23 + 1)(2— d¢ ) (1)

molecules andRcyr is a constant. This constraint has been used
extensively in molecular theories of gas-to-liquid nucleation and wheredkk: is the Kronecker delta function and in our imple-
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TABLE 1: Parameters Used in Rigid Rotor Harmonic Oscillator Calculations

wm(cm )2 127.0 ) 220.2 Q) 405.3 Q) 108.4 @) 168.5 A 619.6 A"
Ia, Ig, Ic (au) 15 840 492 600 493 400

A, B(cm) 6.929 0.2226

D (cm™) 1640

a Symmetries of the vibrational modes are given in parentheses.
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Figure 2. Comparison of classical (symbols) and qguantum mechanical E(em)
(curve) rotational number of states. Figure 3. Calculated classical rigid rotor harmonic oscillator density
of states for the water dimer using the Darghang interaction model.
. ) i The topmost curve is the harmonic oscillator approximation to the DOS
mentation the rotational constants are defined by with the harmonic oscillator constraint above dissociatiof(E).
The lower curves represent the DOS with the vibrational energy
K2 constraintoaiK(E), with k = 1—6. At a fixed energy pei¥(E) mono-
A= o tonically decreases with increasikgnd the results fdc= 1 are closest
A to those for the harmonic oscillator constraint.
2
B= h (8) 3. Results and Discussion
g+ 1¢

The parameters used in the rigid rotor harmonic calculations
) ) ) are listed in Table 1. Also, note that the dissociation energy
where values of the constants are given in Table 1. Given the 4t \we use in these calculations, 1640 énis relative to the
analytical expressions for the vibrational and rotational energy poom of the classical well (i.e., without contribution from zero-
levels, the DOS and partition function can be written in terms point energy). Figure 3 compares the classical RRHO DOS for

of explicit sums over these energy levels. The partition function {ho p,k constraint with different values d€ The results for

with no constraints takes the standard form for the RRHO bk . e .

approximatior?! Appendix B reviews these expressions. We pcn () show a range of behavior, Wlth. =6 gving the. .

note that althomljgh the classical DOS with this constraint dépendsgreateSt decrease in the DOS for energies above dissociation
AR o

only on the number of moddsthat are constrained, for the and withk = 1 giving results that are very close to tb‘é*(E)

. o : - values for energies up to 5 times the dissociation energy.
quantum mecham(_:al DOS it is necessary to specify which The frequencies of the six intermolecular modes of the water
modes are constrained.

) ~dimer are shown in Table 1. We number the modes in the order
There are over 150 000 rotational energy levels for energies that they appear in the table. Note that the frequencies are listed
below dissociation, and when combined with the vibrational py symmetry block and in increasing order within each block.
states, there are over 1énergy levels foE < D. We are also  For the Dang-Chang potential, the equilibrium geometry of
interested in extending the calculations to energies well abovethe water dimer ha€s symmetry and the dissociative mode,
dissociation, where the number of states is much larger and acorresponding qualitatively to an-@D stretch, hag' symmetry
direct sum over energy levels is impractical. The large number and a frequency of 220 crh. We expect vibrational modes to
of rotational states indicates that a classical approximation to couple more strongly with modes of the same symmetry;
the rotational DOS and partition function might be accurate. therefore, for the remainder of the calculations, we report the
We examine the validity of the classical approximation for results with theDvk constraint withk = 3 and 6 only. In the
rotations within the rigid rotor approximation by examining the quantum mechanical calculations wih= 3, the three modes
number of rotational states as given by eqs B.10 and B.11. Theare taken to be those with symmetry. As shown in Figure 3,
comparison ofNogz and Neg is shown in Figure 2. The  the HO constraint and thBuk constraint withk = 3 and 6 will
excellent agreement between these quantities indicates that gjive an adequate sampling of the range of behavior of the DOS
classical treatment of the rotational number of states and DOSabove dissociation.
is valid. Appendix B also reviews expressions for the RRHO  The main results of this work are the calculated densities of
DOS and partition function with a mixed treatment (quantum states as a function of energy, which are summarized in Figures
mechanics for vibrations and classical mechanics for rotations).4 and 5, and the corresponding partition functions, which are
We use the mixed expression for the DOS (quantum mechanicalpresented in Table 2 and Figure 6. Figure 4a shows the classical
for vibrations and classical for rotations), which is given in eq rovibrational DOS that are calculated using the anharmonic
B.12, to examine the effects of the energy constraints on the potential and the RRHO approximation with the first three
guantum mechanical partition function. constraints, and Figure 5a shows the quantum mechanical
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Figure 4. Calculated classical rovibrational density of states for the Figure 5. Calculated quantum mechanical rovibrational density of
water dimer using the DargChang interaction model. Part a displays states for the water dimer using the Darghang interaction model.

the DOS, and parts b and ¢ show the product of the DOS with the Part a displays the DOS, and parts b and ¢ show the product of the
Boltzmann factor at 300 and 400 K, respectively. The solid circles are DOS with the Boltzmann factor at 300 and 400 K, respectively. The
the accurate anharmonic resul§,(E), the solid curve is a linear fit solid line is the harmonic oscillator approximation below the dissocia-

toIn pgA(E) vs In E, for energies below the dissociation energy, and tion energy,ng(E), the dotted curve is the RRHO DOS with the
the long-dash curve is the extrapolation of the accurate DOS above harmonic oscillator constraint above dissociatipg,cj(E), the short-
dissociation using the harmonic oscillator approximatjnzﬁg(E). The dashed curve is the RRHO DOS with vibrational energy constrained
dotted curve is the RRHO DOS with the harmonic oscillator constraint in all modes above dissociatio Di:‘(E) (k = 6), and the open circles
above dissociationpga(E), the short-dash curve is the RRHO DOS  are the RRHO DOS with vibrational energy constrained in three modes
with vibrational energy constrained in all modes above dissociation, above dissociationpgﬁ'k(E) (k = 3). For comparison, the classical

pgﬁk(E) (k = 6), and the open circles are the RRHO DOS with harmonic DOSpgﬁ(E) is shown as the long-dashed curve.
vibrational energy constrained in three modes above dissociation,

peH(E) (k= 23). N _— -

dissociation at 400 K, so aignificant contribution to the
rovibrational DOS calculated using the RRHO approximation partition function comes from energies alecdissociationOne
with the first three constraints. Parts b and ¢ of Figures 4 and measure of the contribution to the partition function from
5 show the product of the DOS with the Boltzmann factor at energies above dissociation is the ratio of the partition function
300 and 400 K, respectively. The classical RRHO DOS with with the vibrational energy or harmonic oscillator constraint to
the HO constraint is also shown in Figure 5 for comparison. the partition function with the total energy constraint, which
The classical anharmonic DOS is higher than the classical has no contribution from energies above dissociation. The ratio
RRHO DOS at the dissociation energy by a factor of 5.3. The Qgﬂ‘(T)/QgH(T) with k = 6 increases from 1.1 to 2.3 as the
numerical calculations o,bgA(E) only determine the quantity  temperature increases from 200 to 500 K, and the ratio
to within an arbitrary scaling factor. The absolute value of Qgﬂ T)/QEH(T) increases from 1.1 to 6.8 as the temperature
pea(E) is determined by setting2,(E) equal top2,(E) at the increases from 200 to 500 K. Similarl@(T)/QQ(T) and
lowest energy for whichogA(E) was calculated, namely, 31 Qgﬂ('D/QgH(T) increase from 1.2 to 2.8 and from 1.2 to 11.1,
cmL. The classical RRHO DOS scalesE, whereas a linear  respectively, as the temperature increases from 200 to 500 K.
least-squares fit of Ipf,(E)] vs In(E) gives a slope of 6.93, The effect of anharmonicity on the classical DOS is large at
giving rise to a value ObgA(E) that is over 5 times larger than _energies near di_ssociation, Ieadin_g to a factor of 5 enhancement
p2(E) at E = D. The classical anharmonic results are N the DOS relative to the ha(monlc DOS. Because _of the more
extrapolated to energies above dissociation using the HO'apid rise of the anharmonic DOS, the contribution to the
constraint with the expressiqf@f\’(E) = op(E/D)é5 wherepp is partition function from energies near dissociation is greater for

the value of the linear least-squares fits ofpﬁ}l[(E)] vs In(E) the anh_armor_nc compared_to the harmonic DO.S' Imposing the
evaluated aE = D. harmonic oscillator constraint on the anharmonic DOS extrapo-

As shown in Figures 4 and 5, the total energy constraint ( Iates'the anharmonic DOS above dissociation using the same
= D) is the most restrictive followed by the vibrational energy funct:{%nal form ﬁ(sj for_the _RRHO DOS. Therefore, the curves
constraint Y = DzK) and the harmonic oscillator constraiyt (07 pcm(oE) and pca(E) in Figure 4 are parallel above =D
= HO) to give ng(E) < pgﬁ,k(E) < pgﬁ(E) and ng(E) < with pca(E) shifted up .by ab.o.ut a fact.or of 5. As shown in
pg;i.k(E) < pga(E), where the equality holds for energies below Table 2, the anhgrmonlc Igoartmon functlo@gA(U, are larger
dissociation. As temperature is increased, the contribution to than the harmonic oneQc(T), by factors of 3.3 to 3.9, and
the partition function from energies above dissociation increasesvalues ofQEL(T) are larger tharQgg(T) by factors of 3.3 to
for the vibrational energy constraint and harmonic oscillator 4.1. The ratiOQgg(T)/QgA('D is similar in value IOQES(T)/
constraint. Figures 4 and 5 also show that the maximum in the QEH(T), rising from 1.1 to 7.2 as the temperature increases
p(E) e FE distribution for both the classical and quantum from 200 to 500 K.
densities of states with the harmonic oscillator constraint is  Figure 5 provides a comparison of the classical and quantum
below dissociation at 300 K but moves to an energy above mechanical DOS in the RRHO approximation. For energies
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TABLE 2: Calculated Partition Functions

temperature (K)

method 200 250 300 350 400 450 500
Q2N 2.6x 10 1.2x 10° 3.5x 10° 8.1x 10 1.5x 10 2.6x 10¢ 3.9x 10
ank T),k=6 2.7x 10 1.4x 1C¢° 4.6 x 10° 1.2 x 10 2.7x 10 52x 10¢ 9.0x 10
ank(T), k=3 2.8x 107 15x 1¢° 5.8x 10° 1.8x 10 4.7 x 10 1.1x 10° 2.3x 10°
QHom 2.8x 10 1.5x 10 5.8x 10° 1.9 x 10* 5.1x 10* 1.2x 10° 2.7x 10°
QEA(T) 8.5x 177 4.1x 10° 1.3 x 10 3.0x 10¢ 5.8 x 10* 9.9x 10¢ 15x 10
QE,?(T) 9.3x 107 54x 10° 2.2x 10 7.3x 10¢ 2.0x 10° 5.0x 10° 1.1x 10
QM 9.9x 10° 1.7x 100
Qu(M 6.3 x 10t 3.9x 1 1.4x 10° 3.5x 10° 7.2x 10° 1.3 x 10 2.0x 10
ank(T), k=6 7.2x 10 52x 107 2.2x 10 6.5x 10° 1.5x 10¢ 3.1x 10 5.5x 10
Qg;’_:‘(T), k=3 7.8x 10 6.4 x 1% 3.2x 10 1.1x 10° 3.3x 10 8.2x 10¢ 1.8x 10*
QoM 7.8x 10t 6.4x 10 3.2x 10 1.2x 10 3.6x 10¢ 9.3x 10¢ 2.2x 10
o ARRRARARARRARRRRARRA RARRERARED (compare the thre_e solid curves in Figure _6). At higher
E 73 temperatures, the differences between the classical and quantum
i - .- partition functions are much less than the differences due to
10° o different constraints.
~ F PR oo _
'8 O R N 4. Summary and Conclusions
; g “ In this paper, we examine four different treatments of
10° { ’,sz' = dissociative states in classical and quantum mechanical calcula-
! 3 tions of partition functions for the water dimer. Two of the
1021, ] constraints restrict the energy of the system; either the total
e e energy or the vibrational energy is constrained to lie below the

200 300 T 400 500 dissociation energy. These energy constraints yield the smallest
. - . ) ) partition functions, with the total energy constraint giving the
Figure 6. Calculated partition functions for the water dimer using the smallest partition functions of the two. A third constraint uses

Dang—-Chang interaction model. Dotted and dashed lines and open the riaid rotor h . illat imation t tend th
symbols denote classical partition functions, while solid lines and filled 1€ gid rotor harmonic oscillator approximation to extend the

symbols denote quantum mechanical partition functions. The dotted calpulation Of th? density of states .ab.ove the dissociation energy.
and solid lines indicated calculations that use the RRHO approximation, This constraint imposes no restriction on the total energy of
while the dashed line is for anharmonic calculations. Circles, squares, the system but implicitly restricts the phase space of the dimer
and dia_monQS indicate the total energy constraint, yibrational energy so that dissociative states are approximated by a discrete
constraint withk = 6, and harmonic oscillator constraint, respectively, spectrum of quantum states rather than by a continuum of states.

H H fati H Dok
for e;ergn:jasl_aboveHgnssoczatéon. };e%@H(T) ©. dottedclilner)],Qdcw(ﬂ The fourth constraint restricts the center-of-mass separation of
Q. °tte<> (;”e)r;Qngm (0, dotte o 'nel).’dQ?Am ©, as.e 'rl'%)’ the two water molecules to lie within a constant value. This
Qca(T) (9, dashed line)Qo,(T) (®, solid line), Qqu(T) (M, sol geometric constraint is only applied to the calculation of classical

. HO . .
line), Qor(T) (4, solid line). partition functions and yields the largest partition functions.

For temperatures above 300 K, we find that different
below dissociation, the classical density scale§%sas shown  constraints lead to differences in the computed partition func-
in eq A.4, rising from zero & = 0. Because of the zero-point  tions by more than 2 orders of magnitude. The magnitude of
energy constraint, the quantum mechanical DOS is zero for these changes is larger than the differences in the classical and
energies up to the zero-point energy, which is about 824'cm quantum mechanical RRHO partition functions, which are
in the RRHO approximation. Just above dissociation, the typically less than a factor of 8 for temperatures above 300 K.
classical DOS is much larger than the quantum mechanical one,This study shows that for the water dimer at temperatures above
for example,pgﬁ(E)/pgﬂ(E) is 3.8 atE = 1000 cn1?, and this 300 K, the choice of how dissocia® states are treated is just
difference decreases so that at dissociation the ratio is only 1.5.as important as an accurate quantum mechanical treatment in
Therefore, the classical DOS appears to be a reasonablesvaluating the partition functionFurthermore, the importance
approximation to the quantum mechanical one (to within about of dissociative states indicates that the accuracy of previous
50%) for energies above dissociation. The classical partition calculations of the dimer partition functidh®>72is highly
functions are larger than the analogous quantum mechanicalsuspect, because they have either entirely neglected contributions
ones, as shown in Table 2. For examg@Hm/QgH(T), from above dissociation or have implicitly used an untested
Qgﬁk(U/Qgﬁk(ﬂ for k=6, anngﬁ(T)/Qgﬂ(T) are 4.1,3.8,and  approximation (e.g., the harmonic approximation) to include
3.6, respectively, at 200 K and decrease to 2.0, 1.6, and 1.2 atcontributions from energies above dissociation.

500 K. Figure 6 displays the same trend, which shows that the The ambiguity in defining the water dimer partition function
classical and quantum mechanical partition functions for a given indicates that asking questions about the equilibrium population
constraint converge with increasing temperature (compare theof water dimers without any additional information is ill-posed.
solid and dotted curves for the same symbol, such as circle, inUltimately, we are not interested in knowing the number of
Figure 6), whereas the quantum mechanical partition functions water dimers present for some set of physical conditions (i.e.,
for different constraints diverge with increasing temperature temperature and humidity), but we want to know the effect of
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water dimers on a physical observable. For instance, to (8l,l51)"% ™
. . . A'B'C
understand the influence of water dimers on solar absorption Pad(E) = gM+1/2 2 (A.4)
requires knowing absorption cross sections for individual states R3 e
of the dimer and the population of those states. By starting from m+ 5 hao,

a rigorous expression for the physical quantity of interest, one
could make simplifying approximations that yield an expression . . . .
for the observable in terms of the concentration of dimers N the RRHO approximation, the partition function for this
multiplied by a value of the observable that is averaged over constraint takes the usual form

different states of the dimer. A careful analysis of the ap-

proximations made in the simplified expression could provide QIR = QLr(MQLL(T) (A.5)
insight into what type of constraint is most appropriate for a

given physical observable. However, it is not possible to present,yere the rotational partition function is given by
a general prescription for constraining weakly bound systems,

such as the water dimer above 300 K, without any additional 8ozl 11 )22
information about the physical observable due to the appreciable QLT = (87lalglc) (kBT)3/2 (A.6)
population of states near the dissociation energy. CR he '
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The third constraint is also applied to the anharmonic DOS for
energies above dissociation by using the expression

where the constanI(H:,? is fitted by matching this expression to

pea(E) at an energy nedd. The partition functionQES(T) in

this case is obtained by numerical integrating of eq 1 using
In the RRHO approximation, it is possible to write the o2 (E) for energies up to dissociation apdS(E) for energies

classical rovibrational density of states as a convolution of the gphgove dissociation.

DOS for classical rigid (CR) rotations and the DOS for classical

harmonic (CH) vibrations. The RRHO approximation to the

rovibrational DOS, using the third constraint listed aboye=(

HO), is expressed as

Appendix A. Classical Rigid Rotor Harmonic Oscillator
Density of States and Partition Functions

For the first constraint(= D) given by eq 3, the rovibrational
DOS is given by

PPH(E) = 6(D — E) [ de pLr(E — e)ply(e)

HO/— _ [E r IR
pCH(E) - ‘/(‘) de pCR(E G)pCH(e) (A.1) — pg(H)(E)@(D —-E) (A.9)

The RRHO approximation is obtained by expanding the . .
potential about one of the eight equivalent minima on the and the partition function takes the form

potential energy surface and using unsymmetrized expressions

for the rotational partition function. By doing this, the correct Q2(T) = QLu(MQLL(T) x

symmetry factor of 8 associated with the rotational symmetry y m

of each water molecule and the indistinguishability between the erf(«/ﬁ—D) s pD g m!(44D) (A10)
water molecules is properly taken into account. The classical - Zo—(2m+ 1) .
rotational density of state for an asymmetric top is given by ™ ’

2(8141 ] )1/2 where erf) is the error function. The anharmonic partition
per(E) = A—icEl/z (A.2) function for the first constrainiQ2,(T) is obtained by numer-
h ical integration of eq 1, including energies only up to dissocia-

tion and using numerically determined values fgg(E).

For the second constrainy & Duk) given by eq 4, the
rovibrational DOS is written

wherela, Ig, andlc are the principle moments of inertia ahd
= h/2z. The classical harmonic vibrational density of state is

given by
M-l M q 1, E<D
peH(E) = mﬂaﬂ (A.3) p24E) = p"(E) - MZ:Cfn(l - E)m+3/2' c- b
wherewn is the frequency for thetth vibrational mode ani " - (A.12)

= 6 for the intermolecular vibrations of the water dimer.
Inserting eqs A.2 and A.3 into eq A.1 yields the result where
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Ck=0, m=0, k=1,..M—1

( 1 M-+k+m M ( ) min(M— k—1M-m—1)
min(M—k—1,m+I-1)

M —m—1—1)! Z,
(—1)'(M — n— 2)!

Ck

m

(k — 1)'(m+ )

M—=k=n—=DIn—=DH{(m+I —n—I)!(n—I+§)
m=>0, k=1,...M—-1

(—1)" M 1

3)”('+5)’

(M—m-— 1)!m!(m+£

Ck

m

k=M (A.12)
The partition function with this constraint is given by

(D))"

DUK(T) QCH(T)QCH(T)I —e/P ZO— (A.13)

Note that this constraint is only applied with the RRHO
approximation.

Appendix B. Quantum Mechanical Rigid Rotor
Harmonic Oscillator Density of States and Partition
Functions

The quantum mechanical partition function in the RRHO
approximation, using the third constraint € HO), is given
by an expression analogous to eq A.1

PQH(E) ,/:) de pQR(E E)PQH(G)

where the vibrational DOS in the harmonic approximation is
given by

pQH(E) nZOnZO 26(E

the collection of vibrational quantum numbers is denotech by

(B.1)

e )= zoé(E—en) (B.2)

= (ny, Ny, ..., Ny), the vibrational energy levels in moae are
given by
e‘rﬁm = ho (N, + (1/2)) (B.3)
and the total vibrational energy for statds denoted
M
€= Zex (B.4)
= m
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energy levels are given by eq 7. Substituting eq B.2 into B.1

yields
Zexg = 3 ror® )
n=

pQH(E) zo zo
o (B.6)

and the partition function is then obtained using eq B.6 in eq 1
to give

Z PQR(E

ny=0

QBT = QLML

The rigid rotor approximation to the rotational partition function
Qor(T) is given by

(B.7)

) J
Qor(E) = ZO(ZJ + 1)20(2 — 0 o) exp(—ei/kgT) (B.8)

and the quantum mechanical HO partition function for vibrations
is the standard expression

M 1
Q\(IQH(E) =

|‘l - (B.9)
m=12 sinhfiw,/(2ksT))

As mentioned above, calculating the DOS by a direct sum over
energy levels is impractical, so we explore the validity of the
classical approximation to the rotational DOS.

It is convenient to compare the classical and quantum
mechanical number of rotational states. The quantum mechanical
number of rotational states is defined by

NoR(E) = [ de plr(e) =
0 J
JZo(zJ + 1)20(2 — Ok )b(E — €5 (B.10)

and classically, it is given by

4(85l51 )"

NL(E) = Té’2 (B.11)

Numerical comparisons cMQR andNgg are shown in Figure 5
and discussed above. We apprommag%j(E) using eq B.6
with pQR replaced bypcg

PQH(E) nz—Onz—O ZPCR(E

ny=0
and the total RRHO patrtition function is approximated by

QEH(T) ~ QLr(TQGH(T)

Equation B.12 is the starting point for examining the effects of

Zexn) =Y Per(E — &)
n=

(B.12)

(B.13)

For the prolate symmetric top energy levels and degeneraciesthe energy constraint on the partition function.

given by eq 7, the rotational DOS is given by

0 J
PorE)= 3 IF D)3 2 0 IE~ 0 (B)

wheredg k' is the Kronecker delta function and the rotational

The RRHO quantum mechanical DOS with the total energy
constraint §y = D) is approximated by

PoH(E) ~

and the partition function with this constraint is given by

6(D — E)pgi(E) (B.14)
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Qon(T ~ Qer(M) ) 0D = €n) expe;/(kgT)) x
D—e, D—e D—e,
erf] -2 exg — (B.15)
KsT kg T ks T

The RRHO quantum mechanical DOS with the vibrational

energy constrainty(= Duk) requires specification of th&
modes. For convenience, we take these to be the model,
., k. With this definition, the DOS is given by

Dyk(E): zz zpCR(E Z m)@(D Z n)

m=0,=0 ny=

00

=) Per(E — enO(D — €

n=

(B.16)

where we define the vibrational energy in tkenodes as

vk __ \
w“=3ya,
=

The partition function for this method takes the form

(B.17)

QAT ~ Qir(M ﬂ

12 smhhwm/(ZkBT))
Zo Zo 0D — Z ") expt Ze (kgT)),
1 2 k=" M _ 1
Qan(M) ~ QCR(T) 0(D — ;) expe /(kgT)), k=M
) (B.18)
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