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Within Hückel theory, the nonresonant third-order nonlinear optical susceptibility of a conjugated polymer is
directly proportional to the bandwidth raised to the third power, and inversely proportional to the optical gap
raised to the sixth power. This functional dependence, if correct, implies that polyacetylene is already an
optimal organic material with regards to the magnitude of the nonresonant hyperpolarizability. Therefore,
any improvements in the figure-of-merit for optical switching applications will come at the expense of the
magnitude of the hyperpolarizability. Here, singles configuration-interaction (S-CI) theory is used to solve
the Pariser-Parr-Pople (PPP) Hamiltonian of polyacetylene, treating both the strength of electron-electron
interactions and the degree of bond alternation as model parameters. The results show that the hyperpolarizability
is independent of the strength of electron-electron interactions and thus the degree of electron-hole correlation,
and instead depends almost exclusively on the optical gap and the bandwidth. Furthermore, the functional
dependence on the optical gap and bandwidth is nearly identical to that obtained from Hu¨ckel theory, giving
strong support to the Hu¨ckel description of long chains, and its implications for materials optimization. In
addition, the inverse-sixth power dependence of the hyperpolarizability is shown to imply a strong dependence
of the transition moments on the optical gap. Finally, the resonant hyperpolarizability associated with two-
photon absorption is found to tend toward an inverse-sixth power dependence on optical gap, although deviations
from this dependence are considerably larger than for the resonant response.

I. Introduction

This paper explores the factors that establish the magnitude
of the third-order nonlinear optical susceptibility of conjugated
organic systems. We begin by considering the nonresonant third-
order nonlinear optical response,1,2 using polyacetylene as a
reference system. Although the nonresonant response of poly-
acetylene is among the largest of any known material,3 the
properties of this material still fall short of those needed for
optical switching applications.4 We also consider two photon
absorption, a resonant third-order nonlinear optical process with
applications in biological imaging and optical fabrication.5-7

In particular, we consider whether the conclusions obtained for
the nonresonant response apply also to this resonant response.

In considering the optimization of the nonresonant hyper-
polarizability, a central issue is whether Hu¨ckel theory captures
the essentials of the nonlinear optical response. This issue is
central because Hu¨ckel theory implies that, at least with regards
to the magnitude of the nonresonant response, polyacetylene is
already an optimal organic material. Within Hu¨ckel theory,
polyacetylene is a one-dimensional semiconductor with two
π-electron bands, one valence band and one conduction band.8,9

The properties of these bands are set by the transfer integrals
for the single and double bonds,â1 andâ2. The bond alternation,
2|â1 - â2|, sets the band gap, while 2|â1 + â2| sets the distance
between the bottom of the valence band and the top of the
conduction band, thereby establishing the bandwidth. The third-
order nonlinear optical susceptibility,γ, can be obtained
analytically, and the result scales approximately as9

whereσ is the density ofπ-electrons, andEg is the gap,Eg )
2|â1 - â2|. Equation 1 indicates that the response is directly
proportional to the density ofπ-electrons and the bandwidth,
and inversely proportional to the band gap. Hu¨ckel theory then
suggests three ways to increase the magnitude of the nonresonant
response. The first is to increase|â1 + â2| and thus the total
bandwidth of the system. However, increasing|â1 + â2| is not
easily accomplished because the overall magnitude ofâ is a
fundamental property of the carbon-carbon multiple bond and
is not amenable to synthetic control. The second way to increase
the response is to lower the band gap. Although this can be
accomplished synthetically by lowering the effective bond
alternation,|â1 - â2|, the band gap of polyacetylene is already
quite low. If the gap were lowered further, it is likely that the
benefits resulting from an increase in the magnitude of the
nonresonant hyperpolarizability would be more than offset by
increased optical loss at the frequencies of relevance to device
design.4 Finally, the response can be improved by increasing
the density ofπ-electrons but, since all of the non-hydrogen
atoms are involved in theπ network, this is also nearly optimal
in polyacetylene.

The above argument implies that polyacetylene is optimal
with regards to the magnitude of the nonresonant hyperpolar-
izability, but not necessarily with regards to the figure of merit
for optical switching applications.4 However, optimizing other
aspects of the figure of merit will likely come at the expense of
lowering the magnitude of the nonresonant response. For
instance, an important parameter in the figure of merit for optical
switching applications is the optical loss of the material. As
alluded to above, this places a lower limit on the optical gap of
the material. In addition, the absorption spectrum of polyacet-
ylene exhibits a low-energy absorption tail that increases the

γ ∝ σ
|â1+â2|3

Eg
6

(1)
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optical loss and thus lowers the figure of merit. Alternative
structures, such as those that introduce phenyl rings into the
main chain, may eliminate the low-energy absorption tail and
lower the optical loss. However, phenyl rings increase the
effective bond alternation10 and thus decrease the per-chain
hyperpolarizability. They also introduce higher-energy pi-bands,
such that not all of the pi-electron density participates in the
lowest energy excitation where it can contribute optimally to
the nonresonant response.

So within Hückel theory, it is not clear how to design a
conjugated polymer that significantly improves on polyacet-
ylene. However, the reliability of Hu¨ckel theory remains an open
issue. For instance, it is well-known that Hu¨ckel theory fails to
correctly describe, even qualitatively, many aspects of the two-
photon excited states that mediate the nonlinear optical
response.10-14 For short polyenes, detailed comparisons between
the nonlinear optical response predicted by Hu¨ckel theory and
that obtained from exact solutions of Pariser-Parr-Pople (PPP)
theory show substantial differences,15,16even when the param-
eters are adjusted such that both theories give the same optical
gap. In addition, using an anharmonic oscillator model on the
PPP Hamiltonian, Mukamel and co-workers17,18concluded that
electron-hole correlation plays a central role in establishing
the nonresonant response.

Despite the above indications that Hu¨ckel theory is not
sufficient to describe the hyperpolarizability, there is some
evidence that its predictions are valid in the limit of long chains.
For instance, the predictions of Hu¨ckel theory for the nonreso-
nant response of long polymer chains are in reasonable
agreement with experiment.19-22 A rationale for the reliability
of Hückel theory in the long-chain limit is that it captures the
essentials of the mechanism that dominates the response of long
chains. In Hu¨ckel theory, the large nonlinear optical response
results from two-photon processes in which the first photon
promotes an electron from a valence to a conduction band,
thereby creating an electron-hole pair, and the second photon
operates on the electron or hole created by the first photon.23,24

Such two-photon processes are very nonlinear because, in effect,
the first photon sees an insulator while the second photon sees
a conductor. Although conjugated molecules possess many
electronic states that are not of this single electron-hole pair
character, it is plausable that (i) the nonresonant response is
dominated by single electron-hole pair states, and that (ii)
Hückel theory captures the essentials of the two-photon
processes mediated by these single electron-hole pair states.
(Note that because the Hu¨ckel parameters are adjusted to give
the bandwidth and optical gap obtained either experimentally
or from higher-level theories, it is the functional dependence
on bandwidth and optical gap of eq 1 that is being tested, not
the ability of Hückel theory to predict the bandwidth or optical
gap.)

In ref 24, we tested the first of the above two conjectures by
comparing a single electron-hole pair theory with a higher-
level theory, using the PPP model of polyacetylene as a test
system. The single electron-hole pair theory was singles
configuration interaction (S-CI) theory, which describes the
excited states as linear combinations of all possible single
electron-hole pair configurations. The higher-level theory was
a scattering formalism that includes double electron-hole
configurations in a manner that allows for size-consistent
calculations on long polymer chains. The inclusion of double
electron-hole pair configurations introduces new classes of
states, such as low-lying Ag symmetry states and states
containing two excitons. Despite the introduction of these new

classes of states, the nonresonant third-order hyperpolarizability
agrees with that from S-CI theory. This agreement indicates
that these new classes of states have little impact on the
nonresonant response of a long chain, and that single electron-
hole pair states dominate the response. A more detailed
discussion of the validity of S-CI theory is given below in
section 2.1.

Our goal here is to test the second of the above two
conjectures by comparing the predictions of Hu¨ckel theory with
those of S-CI theory for a broad range of model parameters.
The validity of the functional relation in eq 1 is of particular
interest because this relation underpins the above arguments
regarding materials optimization. In Hu¨ckel theory, the electrons
and holes do not interact with one another, and all states contain
free electron-hole pairs. It is not surprising, therefore, that the
hyperpolarizability depends only on the band gap for creation
of electron-hole pairs, and the bandwidth that characterizes
their motion. In S-CI theory, the Coulomb interactions between
the electron and hole cause their motion to become correlated.
Coulomb interactions can, for instance, lead to the formation
of bound electron-hole pairs or excitons. It seems reasonable
to expect that the hyperpolarizability will depend on the strength
of these Coulomb interactions, such that the simple functional
dependence of eq 1 holds only in the limit of vanishing
electron-hole interactions. However, in ref 23, we showed that,
for the PPP model of polyacetylene with standard Ohno
parametrization,25 the nonresonant hyperpolarizability of S-CI
theory agrees with that obtained from Hu¨ckel theory, provided
that the Hu¨ckel parameters are adjusted to yield the same optical
gap as S-CI theory. This suggests that the nonresonant hyper-
polarizability is insensitive to electron-hole interactions, but
the comparison was done for only one set of parameters and so
may not be general.

Here, we examine the nonresonant hyperpolarizability pre-
dicted by S-CI theory for a broad range of model parameters,
and show that the functional dependence on the optical gap and
bandwidth is nearly identical to that of eq 1, predicted by Hu¨ckel
theory. The results therefore support the conclusions arrived at
above regarding materials optimization.

This paper also briefly considers the resonant response
associated with two-photon absorption, to see whether optimiza-
tion of this resonant response is fundamentally different than
optimization of the nonresonant response. Bre´das, Marder, and
co-workers26-28 have suggested a chromophore design strategy
based on acceptor-donor-acceptor (A-D-A) and donor-
acceptor-donor (D-A-D) symmetric charge-transfer systems.
The A-D-A systems consist of linear conjugated molecules
with electron acceptors on both ends and electron donors in
the center. This pattern is reversed in D-A-D systems. Here,
we use an internal field to model the effects of the acceptors
and donors. Once again, the magnitude of the resonant response
shows a dependence on optical gap that is similar to Hu¨ckel
theory, although the variance is larger than that observed for
the nonresonant response.

II. Computational Methods

A. Nonresonant Calculations.The nonresonant calculations
are done on a periodic polyacetylene structure, with carbon-
carbon double and single bond lengths of 1.35 and 1.46 Å, and
bond angles of 120°. We treat PPP theory as a 3 parameter
model. Two of these parameters are the transfer integralsRij )
â1 (â2) for single (double) bonds, and one parameter,Se-e, sets
the strength of electron-electron interactions. The Hamiltonian
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is then11

whereai,σ
† (ai,σ) creates (destroys) an electron with spinσ in the

p-orbital on theith carbon,F̂i is the charge operator on theith

carbon, F̂i ) 1 - ai,R
† ai,R - ai,â

† ai,â, and ri,j is the distance
between carbons i and j. Both the electron-electron repulsion
and the electron-nuclear attraction are described with the
following scaled Ohno potential29

whereU is the Hubbard parameter. The parameterSe-e sets the
strength of electron-electron interactions, and is equal to one
for the PPP model,11 and zero for Hu¨ckel theory.I andU are
chosen such that application of the Hamiltonian to a single
carbon atom yields the ionization potential and electron affinity
of an sp2 hybridized carbon,I ) 11.16 eV andU ) 11.13 eV.30

In Hückel theory, the transfer integrals establish both the band
gap and bandwidth. The band gap is set by the difference
between the transfer integrals, 2|â1 - â2|. The difference in
energy between the top of the conduction band and the bottom
of the valence band (the total bandwidth) is 2|â1 + â2|. In the
Hückel model, all of the excited states contain free electron-
hole pairs and the band gap, for creation of free charges, is
equal to the optical gap, the energy of the lowest allowed optical
state. In the PPP model, electron-electron interactions may lead
to the formation of bound electron hole pairs or excitons.
Because the exciton carries optical intensity and lies lower in
energy than the free electron-hole pair states, the optical gap
is lower than the band gap. In PPP theory, the optical and band
gaps depend on the transfer integrals,â1 andâ2 and the strength
of electron-electron interactions,Se-e. PPP calculations on
polyenes typically useâ1 ) -2.228 eV andâ2 ) -2.581 eV.
Unless otherwise stated, in this paper we fix the sum of the
transfer integrals|â1 + â2| at 5.0 eV, and treat|â1 - â2| as an
adjustable parameter. We then explore the dependence of the
hyperpolarizability on two parameters,Se-e and the difference
between the transfer integrals|â1 - â2|.

To connect the nonlinear optical response to the structure of
the excited electronic states, we work within the sum-over-states
formalism for the nonresonant hyperpolarizability1

where|GS〉 is the ground electronic state,|A〉, |B〉, and|C〉 are
excited electronic states,EI is the energy of state|I〉 relative to
the ground state, and〈I|x̂|J〉 are the matrix elements of the
transition moment along thex axis, which is chosen to lie
parallel to the polymer backbone.

The nonresonant calculations presented below are done on a
polyacetylene chain withNcell double bonds and periodic
boundary conditions.23,24Unless otherwise noted, all calculations
are done withNcell ) 81. A transition moment operator,x̂ of eq
5, that is consistent with periodic boundary conditions is
obtained by using thex̂ operator appropriate for a ring of 2Ncell

carbon atoms.23,24,31 In the long chain limit,γxxxx of a ring is
3/8th that of a linear chain with the same number of unit cells.23,24

We remove this geometric factor by multiplyingγxxxx of the
ring by 8/3. Theγxxxx’s reported here thus reflect those of a long,
linear chain. Note that the ring geometry is used only to obtain
a periodic transition moment operator. The Hamiltonian param-
eters used are those appropriate for a linear chain because
inclusion of curvature effects in the Hamiltonian would serve
only to slow convergence to the long-chain limit.

The excited states used in eq 5 are generated using S-CI
theory and a complete basis of all singly excited configurations.
In periodic boundary conditions, the one-dimensional crystal
momentum,k, is a good quantum number. The selection rule
for optical transitions is∆k ) ( 2π/L, whereL is the length of
the polymer, or equivalently the circumference of the ring used
for the x̂ operator. The one-photon allowed states will therefore
havek ) 2π/L and1Bu symmetry. The energy of the lowest such
state is identified as the optical gap. The two-photon allowed
states will have eitherk ) 0 or k ) 4π/L. The m1Ag state is
defined as the two-photon state that has the largest transition
moment with the 11Bu state. In S-CI calculations with periodic
boundary conditions, this is the lowest state with1Ag symmetry,
and so here, them1Ag state is assigned to the lowest allowed
two-photon state. The band, or free-charge, gap is assigned to
the energy of the Hartree-Fock HOMO-LUMO gap, since it
is at this energy that unbound electron-hole pair states appear
in a S-CI calculation.

The S-CI calculations performed here constrain the excited
states to contain one electron and one hole. This approximation
requires some justification, as it is well established that double
excitations must be included to obtain even a qualitatively valid
description of some of the electronic states of polyenes, most
notably the 21Ag state.10,11Despite the large effects that doubly
excited configurations can have on specific excited states, there
is the following strong evidence that S-CI theory provides a
valid description of the nonresonant response.

First, Mazumdar and co-workers12-14 examined exact solu-
tions of the PPP model for polyenes with up to 12 carbon atoms
using a wide range of Hamiltonian parameters. Based on these
calculations, they identified three excited states that dominate
the nonlinear optical response, the 11Bu, m1Ag, andn1Bu states.
The 11Bu state carries most of the one-photon intensity. The
m1Ag state lies above the 11Bu state and carries most of the two-
photon intensity. Then1Bu state is a high energy state that has
a large transition moment with them1Ag state. Abe and co-
workers32-34 identified a similar set of essential states when
using singles-configuration interaction (S-CI) theory to model
third harmonic generation spectra. Within S-CI theory, the 11Bu

andm1Ag states contain a bound electron-hole pair and then1Bu

state is a nearly free electron-hole pair state that occurs at the
edge of the conduction band. Mazumdar and co-workers have
given similar qualitative interpretations to the essential states
of their model. That S-CI theory and exact solutions of the PPP
model agree on the nature of the 11Bu, m1Ag, andn1Bu states
suggests that S-CI theory provides a valid description of the
dominant pathways establishing the nonresonant hyperpolariz-
ability.

Another indication that doubly excited configurations are not
important in nonresonant calculations comes from considering

HPPP) ∑
i,j,σ

[-Iδi,j + Rj,i] aj,σ
† ai,σ

+
1

2
∑

i

U(F̂i - 1)F̂i + ∑
i<j

U(rj,i)F̂jF̂i (2)

U(r) ) Se-e
14.397eVÅ

x(14.397eVÅ/U)2 + r2
(3)

γxxxx) γ+ - γ- (4)

γ+ ) ∑
A,B,C

〈GS|x̂|A〉〈A|x̂|B〉〈B|x̂|C〉〈C|x̂|GS〉

EAEBEC

(5)

γ- ) ∑
A,C

〈GS|x̂|A〉〈A|x̂|GS〉〈GS|x̂|C〉〈C|x̂|GS〉

EA
2EC

(6)
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the approximations involved in applying S-CI theory to the
Hückel Hamiltonian. Because thex̂ operator is a one-electron
operator, the one photon states, A and C in eqs 5 and 6, must
contain a single electron-hole pair. The two-photon states, B
in γ+ of eq 5, may contain either one or two electron-hole
pairs. Because S-CI theory restricts B to states containing a
single electron-hole pair, the summation inγ+ is over two-
photon processes in which the first photon creates an electron-
hole pair and the second photon moves either the electron or
the hole within the one-dimensional band structure. This is the
intra-band term,9,23,24and it dominates the hyperpolarizability.
The approximation involved in S-CI theory is the omission of
those terms inγ+ in which B contains two electron-hole pairs.37

These terms correspond to two-photon processes in which both
the first and second photon create an electron-hole pair. If the
two electron-hole pairs do not interact, then their contribution
to γ+ is identically canceled by terms appearing inγ-. This
cancellation makes sense because the creation of two nonin-
teracting excitations does not correspond to a nonlinear process
and so should not contribute to the hyperpolarizability. In Hu¨ckel
theory, the electron-hole pairs interact only through Pauli-
exclusion, whereby the electron-hole pair created by the first
photon suppresses formation of an additional electron-hole pair.
This “saturable absorbance” or “inter-band” contribution9,24leads
to a small decrease in the hyperpolarizability. So within Hu¨ckel
theory, the approximations involved in S-CI theory are equiva-
lent to neglecting the negative inter-band or saturable absorbance
contribution to the hyperpolarizability. However, the unique
aspect of conjugated polymers is the large positive hyper-
polarizability, which arises from the intra-band contribution and
dominates the nonlinear response (this it illustrated further in
Figure 1 of section 3.1).

When applied to the Hu¨ckel Hamiltonian, S-CI theory
captures the intra-band contribution that dominates the hyper-
polarizability of conjugated polymers. In the PPP Hamiltonian,
electron-electron interactions lead to a number of new effects.
One such effect is the correlation between the motion of the
electron and hole in the single electron-hole pair states, and
this effect is captured by S-CI theory. But electron-electron
interactions introduce other effects that are not captured by S-CI
theory and that could potentially alter the hyperpolarizability.

Consider, for instance, a two-photon process in which two
electron-hole pairs are created. In a model that includes
electron-electron interactions, these electron-hole pairs may
interact through Coulomb forces in addition to the Pauli
exclusion interactions present in Hu¨ckel theory. Also, electron-
electron interactions may lead to a strong mixing between single
and double electron-hole pair configurations and the consequent
formation of low-energy1Ag symmetry states.10,11In a previous
work,24 we developed a scattering formalism that includes both
of these effects. Those results indicate that, although inclusion
of double electron-hole pair configurations has a large effect
on the structure of the excited states, the nonresonant hyper-
polarizability of a long chain is nearly identical to that obtained
from S-CI theory. This strongly suggests that S-CI theory
provides a valid description of the nonresonant hyperpolariz-
ability.

B. Resonant Calculations.The A-D-A and D-A-D
systems of Bre´das, Marder, and co-workers26-28 are modeled
by applying an internal field to a polyene with 20 carbon atoms.
The internal field is zero at the center of the polyene and either
increases (D-A-D) or decreases (A-D-A) linearly with
distance from the center. The Hamiltonian is then

whereHPPP is given in eq 2,V is a free parameter describing
the strength of the acceptors and donors, andxi is the
x-coordinate of theith atom relative to the molecular center.

The nonlinear hyperpolarizabilityγ(-ωs; ω1, ω2, ω3) is
calculated using eq 6.37 of ref 35. Them1Ag state is identified
as the state with the largest transition moment to the 11Bu state.
The 2-photon absorption cross section to them1Ag state is
calculated as Imγ(-ω; ω, -ω, ω), with ω equal to half the
energy of them1Ag state.

III. Results

A. Nonresonant Hyperpolarizability. We begin by examin-
ing the magnitude of the intra-band and inter-band contributions
of Hückel theory. Section 2 pointed out that S-CI theory does
not include double electron-hole pair states. It therefore
includes the intra-band contribution to the hyperpolarizability,
but ignores the inter-band (saturable absorbance) contribu-
tion.9,23,24The relative importance of these terms within Hu¨ckel
theory is examined in Figure 1, which shows both the intra-
band and inter-band contributions as a function of|â1 - â2|,
with (â1 + â2) fixed at -5 eV. The results indicate that the
intra-band term dominates the hyperpolarizability over a wide
range of band gap. The ratio of the inter-band to intra-band
term remains relatively fixed, changing from 22% to 33% as
the band gap, 2|â1 - â2|, increases from 0.9 to 9.6 eV. The
weak dependence of this ratio on band gap may be rationalized
as follows. As|â1 - â2| approaches|â1 + â2|, â1 approaches
zero and the system approaches a collection of noninteracting
ethylene units. In this limit, the system is no longer a
semiconductor and the inter-band, saturable absorbance, con-
tribution begins to dominate. But even with|â1 - â2| ) 4.8 eV
and|â1 + â2| ) 5 eV, for which the band gap is 9.6 eV and the
bands are only 0.2 eV wide, the system is sufficiently
semiconducting that the hyperpolarizability is dominated by the
intra-band contribution.

In Figures 2-4, we examine the dependence of various
calculated quantities onSe-e of eq 3, which sets the strength of
electron-electron interactions.

Figure 1. Log-log plot of the hyperpolarizability obtained from
Hückel calculations on polyacetylene, as a function of|â1 - â2| for
(â1 + â2) ) -5 eV. The breakdown into inter-band and intra-band
contributions is described in section 2.1.

HPPP+ ∑
i

V|xi|F̂i (7)
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Figure 2 shows the energy of the essential states as a function
of Se-e. The bond alternation,|â1 - â2|, is fixed at 1.0 eV,
corresponding to a Hu¨ckel gap of 2.0 eV. AsSe-e is increased,
the difference between the optical gap 11Bu state and the band
(free-charge) gap is increased. This is an indication of exciton
formation, with the difference being the exciton binding energy.
The binding energy of them1Ag state, a higher-lying exciton
state that carries most of the two-photon intensity, also increases
with Se-e. An important feature of these results is that, in
addition to raising the exciton binding energies, increasingSe-e

causes an increase in both the optical gap and the energy of the
m1Ag state.

Figure 4 demonstrates that increasing the strength of electron-
electron interactions, in the manner of Figure 2, leads to a

substantial lowering of the hyperpolarizability. This strong effect
of electron-electron interactions seems to argue against the use
of Hückel theory to model the nonresonant nonlinear optical
response of conjugated polymers.17,18 However, in Hückel
calculations, the parameters are typically adjusted to reproduce
the optical gap of the material. A better comparison is then to
examine the dependence on the strength of electron-electron
interactions while holding the optical gap fixed. This is shown
in Figure 3, whereSe-e is varied over the same range as in
Figure 2 but where the bond alternation,|â1 - â2|, is adjusted
to maintain a constant optical gap. Just as in Figure 2, increasing
Se-e leads to an increase in the exciton binding energies and
the energy of them1Ag state. However, Figure 4 shows that the

Figure 2. State energies as a function of the strength of electron-
electron interactions,Se-e in eq 3. The one-electron-transfer integrals
are fixed atâ1 ) -2.0 eV andâ2 ) -3.0 eV, corresponding to a Hu¨ckel
gap, 2|â1 - â2|, of 2.0 eV. The band gap is the Hartree-Fock HOMO-
LUMO gap, at which free electron-hole pairs states appear in S-CI
theory. All results are for S-CI calculations on a chain with 81 unit
cells, using periodic boundary conditions.

Figure 3. State energies as a function of the strength of electron-
electron interactions,Se-e in eq 3, holding the optical gap fixed. The
calculations are similar to those in Figure 2, except the bond alternation
|â1 - â2| is adjusted to maintain a constant optical gap of 2.0 eV.

Figure 4. Calculated hyperpolarizabilities for the systems of Figures
2 and 3.

Figure 5. Log-log plot of the nonresonant hyperpolarizability versus
the optical gap obtained from S-CI calculations on a polyacetylene chain
with 81 unit cells, using both the Hu¨ckel and PPP Hamiltonian. In
both the Hu¨ckel and PPP calculations,â1 + â2 ) -5.0, and results are
shown for |â1 - â2| ) 0.4 through 1.0 eV in increments of 0.1 eV.
The Hückel results (Se - e)0.0) are shown as open circles, and the
PPP results (Se-e ) 0.2 to 1.2 in increments of 0.2) are shown as filled
circles. To be consistent with S-CI theory, the Hu¨ckel calculations
contain only the migration contribution to the hyperpolarizability (see
section 2). The solid line is a least-squares fit to the PPP data, showing
γ ∝ Eg

-6.1.
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calculated hyperpolarizability varies by only about a factor of
3, as opposed to the nearly 2 orders of magnitude observed when
Se-e was increased without holding the optical gap fixed. This
indicates that the hyperpolarizability is primarily a function of
the optical gap and not the exciton binding energy, as we will
now examine in more detail.

Figure 5 provides a more detailed comparison between S-CI
calculations performed on the PPP and Hu¨ckel Hamiltonians.
According to the Hu¨ckel relation of eq 1, the nonresonant
hyperpolarizability scales asγ ∝ Eg

-6. The open circles of
Figure 5 show results obtained from Hu¨ckel theory, holding
the sum of the transfer integrals fixed at (â1 + â2) ) -5.0 eV,
and varying|â1 - â2| between 0.4 and 1.0 eV. On this log-
log plot, the Hückel results fall on a line with slope-6, as
expected becauseγ ∝ Eg

-6. The closed circles of Figure 5 show
the results of PPP calculations obtained by varying|â1 - â2|
between 0.4 and 1.0 eV andSe-e from 0.2 to 1.0. The PPP results
are nearly collinear, with a slope of-6.1. This indicates thatγ
∝ Eg

-6.1, which is nearly identical to the behavior of Hu¨ckel
theory in eq 1.

The dependence of the nonresonant hyperpolaribility on the
optical gap,γ ∝ Eg

-6, has consequences for the transition
moments between the essential excited states. In the essential-
states model,12-14 the 11Bu state carries most of the intensity
out of the ground electronic state and them1Ag state carries
most of the intensity out of the 11Bu state. The hyperpolariz-
ability of eq 5 may then be written

where we usedEg for the energy of 11Bu state, since this state
sets the optical gap. If we take the energy of them1Ag state as
scaling roughly asEg, then the energy denominator of eq 8 leads
to γ ∝ Eg

-3, as opposed to the inverse sixth power dependence
of eq 1. The remaining dependence onEg must then come from
the transition moments.

The transition moment between the ground state and the 11Bu

state can be understood in terms of the Kuhn-Thomas sum
rule. This sum rule states that the sum of the oscillator strengths
for optical absorption is equal to a constant. Because the 11Bu

state carries most of the optical intensity, this implies that the
oscillator strength to this state

is a constant. For eq 9 to be constant, the transition moment
must be inversely proportional to the square root of the optical
gap,|〈GS|x̂|11Bu〉| ∝ Eg

-1/2. Figure 6 shows a log-log plot of
this transition moment versus optical gap for the PPP calcula-
tions of Figure 5. The results follow a line of slope-1/2,
consistent with the predicted behavior. For eq 8 to yieldγ ∝
Eg

-6, the transition moment between the 11Bu andm1Ag state
must then be inversely proportional to the optical gap,
|〈11Bu|x̂|m1Ag〉| ∝ Eg

-1. Figure 7 shows that the PPP results
approximately obey this proportionality, although the deviation
is somewhat larger than that seen for the|〈GS|x̂|11Bu〉| transition
moment in Figure 6.

The dependence of the hyperpolarizability on|â1 + â2| is
examined in Figure 8, which plots log10(γ) versuslog10(|â1 +
â2|) for Se-e ranging from 0 to 1. The optical gap was held
fixed at 2.0 eV by adjusting 2|â1 - â2|. The Hückel results fit
a line with slope 3, as expected becauseγ ∝ |â1 + â2|3 in eq

1. The PPP results also fit lines with slope 3, indicating that
the functional dependence is the same as that of Hu¨ckel theory,
γ ∝ |â1 + â2|3.

The above results examine the long-chain limit of the
hyperpolarizability. Figure 9 examines the dependence on chain
length. Because these calculations assume periodic boundary
conditions, they do not reflect the actual dependence on the
length of a polyene chain. Nevertheless, they do give some
indication of the relative system size needed to reach the long-
chain limit. Figure 9 shows results obtained for a number of
different values of|â1 - â2|, and withSe-e adjusted such that
the long-chain optical gap is fixed at 2.0 eV. The results show
that the length at which the hyperpolarizability saturates is fairly
independent of the strength of electron-electron interactions
(Se-e), and so depends only on the band gap and bandwidth.

B. Resonant Hyperpolarizability. The resonant hyper-
polarizability associated with two-photon absorption, calculated
as described in section 2.2, is shown in Figure 10. The

Figure 6. Log-log plot of the transition moment between the ground
and 11Bu electronic states versus the optical gap, for the calculations
of Figure 5. The line of slope-1/2 is provided as a guide to the eye.

Figure 7. Log-log plot of the transition moment between the 11Bu

andm1Ag electronic states versus the optical gap, for the calculations
of Figure 5. The line of slope-1 is provided as a guide to the eye.

γ )
|〈GS|x̂|11Bu〉|2|〈11Bu|x̂|m1Ag〉|2

Eg
2Em1Ag

(8)

f11Bu
) |〈GS|x̂|11Bu〉|2Eg (9)
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calculations were done on a polyene with 10 unit cells, using
the potential of eq 7 to model the effects of ADA substitution.

The gray circles are for a polyene without an ADA potential
applied. The results indicate that the resonant hyperpolarizability
has a strong dependence on the optical gap. The nonresonant
hyperpolarizability followed aγ ∝ Eg

-6 dependence, and a
similar dependence here would cause the points in Figure 10
to lie along a line of slope-6, such as that provided in Figure
10 as a guide to the eye. Although the results do tend toward
this behavior, the spread encompasses about an order of
magnitude, such that parameters that give the same optical gap
can lead to resonantγ’s that differ by an order of magnitude.

The black crosses are for ADA potentials of varying strength.
(Due to electron-hole symmetry, DAD potentials give identical
results.) The points tend toward anEg

-6 behavior, but with a
wider spread that encompasses 2 orders of magnitude. Despite
this spread, the band gap remains a predominant factor in
establishing the magnitude of the response. In addition, for most
sets of parameters, and all sets that lead to gaps below 3 eV,

the points for ADA substitution lie below those for the
unsubstituted polyene. This indicates that for systems with
equivalent optical gaps, the resonant response of the unsubsti-
tuted system will be larger than that of the ADA substituted
system.

IV. Discussion

Section 1 discussed the consequences of Hu¨ckel theory for
materials optimization. In Hu¨ckel theory, the nonresonant
hyperpolarizability is given by eq 1, and this implies that
polyacetylene is already an optimal organic material, in terms
of the magnitude of the hyperpolarizability. Thus, any improve-
ments in the figure-of-merit for optical switching applications4

will likely come at the expense of the magnitude of the
nonresonant response. This argument was, however, based on
Hückel theory, a model that fails to capture many aspects of
the excited electronic states that mediate the nonresonant
response.10-14

The calculations presented here show that S-CI solutions of
the PPP model of long polyene chains obey the same functional
relation as Hu¨ckel theory, eq 1. Because there is strong evidence
that S-CI theory provides a valid description of the nonresonant
hyperpolarizability of long chains (see section 2.1), this gives
strong support to the functional relation of eq 1 and its
implications for materials optimization.

This observed agreement between the Hu¨ckel and PPP models
is somewhat surprising, since the Coulomb interactions in the
PPP Hamiltonian lead to correlated electron-hole motion and
the formation of bound electron-hole pairs or excitons. The
degree of electron-hole correlation may be characterized by
the exciton binding energy, the energy needed to break the
exciton into an unbound electron and hole. For the range of
model parameters considered here, the exciton binding energy
spanned from 0 to 4 eV (see Figure 3). Yet over this large range,
the nonresonant hyperpolarizability is essentially independent
of the exciton binding energy, instead depending almost
exclusively on the band gap and bandwidth.

The dependence of the nonresonant response on the inverse-
sixth power of the optical gap,γ ∝ Eg

-6, implies that the optical
transition moments depend strongly on the optical gap. Because

Figure 8. Log-log plot of nonresonantγ versus|â1 + â2| from S-CI
calculations on the PPP Hamiltonian for various values ofSe-e. |â1 -
â2| is adjusted to yield an optical gap of 2.0 eV. All other details are
as in Figure 5.

Figure 9. Plot of γ/N vs chain length (N) for |â1 - â2| ranging from
0.25 to 0.95 eV. (â1 + â2) is fixed at-5 eV, andSe-e is adjusted such
that the optical gap is 2.0 eV.

Figure 10. Log-log plot of the resonant hyperpolarizability versus
the optical gap obtained from S-CI calculations on a polyacetylene chain
with 10 unit cells, for both the Hu¨ckel and PPP Hamiltonians. The
gray circles showγ for |â1 - â2| ) 0.2...2.0 eV andSe-e ) 0...2. The
black crosses showγ for the same range of PPP parameters, and with
ADA acceptor-donor substitution modeled with the internal field model
of eq 7 withV ) 0.1...0.5 eV/Å.
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the energy denominator of eq 5 can account for only an inverse-
third power dependence, the remainder must be in the transition
moments in the numerator of eq 5. Figure 6 shows that the
transition moment between the ground electronic state and the
11Bu state is inversely proportional to the square root of the
optical gap. This is consistent with the behavior expected from
the Kuhn-Thomas sum rule. In addition, Figure 7 shows that
the transition moment between the 11Bu and m1Ag states is
inversely proportional to the optical gap. Taken together, these
dependencies account for the inverse-sixth power dependence
in eq 1.

Two-photon absorption is a resonant third-order nonlinear
optical process and it is interesting to consider whether the
optimization of this process is fundamentally different than the
optimization of the nonresonant response. The results of Figure
10 show that the resonant hyperpolarizability has a strong
dependence on the optical gap, scaling roughly as the inverse
sixth power. However, the variance is much larger than for the
nonresonant hyperpolarizability, such that two different sets of
model parameters can give the same optical gap yet have
resonant hyperpolarizabilities that differ by an order of mag-
nitude. This variance becomes even larger when an internal field
is used to model the effects of ADA or DAD substitution.

The symmetric charge transfer present in ADA and DAD
systems has been suggested as a means to optimize the cross
section for two-photon absorption. In the results of Figure 10,
the hyperpolarizability of an ADA substituted polyene tends to
be smaller in magnitude than that of an unsubstituted polyene
with an equivalent optical gap. This does not argue against the
use of such substitution patterns because they provide a useful
synthetic handle while the other parameters varied in Figure
10 (the bond alternation and effective strength of electron-
electron interactions) are not as easily controlled. However, these
results do suggest that the ADA substitution pattern may serve
primarily as a means to control the optical gap. This interpreta-
tion is somewhat different than that of Albota et al.,27 who
suggest that the symmetric charge transfer in the excited states
of ADA and DAD systems increases the transition moments
thereby enhancing the cross sections for two-photon absorption.
However, a significant portion of the increase in transition
moments can perhaps be attributed to the above dependence of
the transition moments on optical gap.

The model used here to study the resonant hyperpolarizability
has two potential shortcomings. First, the use of an internal field
model may not accurately describe the ADA and DAD substitu-
tion patterns. Second, although S-CI theory may be adequate
for studying the nonresonant response of long chains, double
electron-hole pair configurations can be important for smaller
systems such as the dye molecules used for two-photon
absorption. Section 2.1 argues that the large positive hyperpo-
larizability of long chains arises from the intra-band contribution
and this contribution is well described by S-CI theory. For
smaller systems, the inter-band or saturable absorbance contri-
bution can become important. Indeed, the saturable absorbance
contribution dominates the response of dye molecules with low
bond alternation,36 causing these cyanine-like molecules to
exhibit negative hyperpolarizability. In addition, although the
nonresonant response may be insensitive to the detailed structure
of individual excited states, this is not true of the resonant
response. If double electron-hole pair configurations play an
important role in the state that is in resonance, then S-CI theory
is unlikely to provide an adequate description. Nevertheless,
an examination of the experimental results of Albota et al.27

reveals a trend with optical gap that is consistent with the scaling

obtained from S-CI theory. Figure 11 shows a log-log plot of
the two-photon absorption cross section,δ, versusλmax. Because
δ ∝ ω2γ, if gamma scales as the band gap to the-6th power,
thenδ will scale as the-4th power of band gap, or the 4th power
of λmax. Figure 11 shows that the experimental data do follow
such a dependence, although there is considerable variance.

V. Conclusion

This work examines the positive, intra-band contribution to
the hyperpolarizabilty that dominates the nonresonant response
of long polyene chains. The results show that the response is
insensitive to the strength of Coulomb interactions, and exhibits
a dependence on bandwidth and optical gap that agrees with
that of Hückel theory in eq 1. As discussed in the Introduction,
this functional dependence on bandwidth and optical gap implies
that polyacetylene is already an optimal organic material with
regards to the magnitude of the hyperpolarizability.

For the resonant hyperpolarizability, the functional depen-
dence of eq 1 holds only in terms of general trends. In the simple
model of D-A-D symmetric charge transfer systems consid-
ered here, the intra-band contribution to the hyperpolarizability
is roughly proportional toEg

-6, but can deviate from this
dependence by up to an order of magnitude. Substantial
deviations from a simple scaling behavior are also seen in the
experimental results of Figure 11, which show a general trend
consistent withγ ∝ Eg

-6, but with sufficient variability to allow
for materials optimization by means other than controlling the
optical gap. Nevertheless, in comparing various molecular
engineering approaches, it is useful to take the general scaling
with bandwidth and optical gap into account, noting especially
that the scaling of the hyperpolarizability with optical gap arises
not only from the energy denominator in the sum-over-states
expression of eq 5, but also from the scaling of the transition
moments with optical gap (Figures 6 and7).
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