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Research into the nature of atom-migration dynamics has demonstrated a linear relationship between the
driving force for these processes and the probability for forward as opposed to reverse reaction. An assumption
that this observation would prove to be just as valid for stoichiometric chemical reactions would allow a
thermodynamic-probabilistic model to be developed. Using this linear approach, the resulting probabilistic
reaction path developed was correlated with empirical kinetic data. The exceedingly high correlation between
the probabilistic path and the empirical data over the entire range of experimental observations constitutes
definitive evidence that stoichiometric chemical reactions are themselves purely stochastic processes and,
moreover, that the linear assumption is in fact valid.

Introduction

The analytical description of the reaction path transversed
by a chemical process proceeding from initiation to equilibrium
should be a rather straightforward affair, but this has been not
the case. In fact there is a surfeit of such descriptions, often
mutually exclusive. There is the mechanistic approach and the
thermodynamic approach, and these can be either deterministic
or probabilistic as shown below.

The mechanistic and thermodynamic approaches are easily
distinguished: one investigates the interactions between reacting
particles and the other the energy exchange between reaction
states, respectively. Either approach can be deterministic or
probabilistic.

According to the deterministic approach, the properties of
the system immediately prior to the present state determine the
properties of the present state and the properties of the present
state determine the properties of the state immediately following
the present state. Because of the assumed predetermination, an
analytical expression can describe the progression of states.

In contrast, according to the probabilistic approach, the
properties of the system immediately prior to the present state
do not determine the properties of the present state and the
present state does not determine the properties of the state
immediately following the present state. Because there is no
assumed predetermination, no analytical expression can describe
the progression of states. The reaction can go off in any direction
it desires. The only relevant consideration is that certain paths
are highly probable and others are not. While it is expected
that the reaction will follow the most probable path, this is not
necessarily so.

The actual formalism chosen depending on the proclivity of
the investigator and each approach has its proponents. Although
the proponents of the Deterministic and Probabilistic approaches
have found some common ground when the most probable path
is the deterministic path, this is not the situation for the
proponents of the Mechanistic versus the Thermodynamic
approach. They are fundamentally antagonistic and rarely, if
ever, share the same podium, much in the same manner as the
old dispute between the corpuscular and waveform proponents
in optics.

To better understand these differences, consider the homo-
geneous stoichiometric chemical reaction

proceeding in a closed system at fixed temperatureT and volume
V from reaction initiation to reaction equilibrium, whereνm is
the stoichiometric coefficient andMm is the molecular weight
of reacting componentm, with νm < 0 for reactants. The process
proceeds in accordance with reaction stoichiometry.

Fundamentally, chemical kinetics as a formal study began
with the Empirical Rate Equations some century and a half ago.1

This formalism constitutes the classical Mechanistic-Determin-
istic description of reaction 1 from reaction initiation to
equilibrium and is based on mass action. According to the
classical Kinetic Mass Action Law, the reaction rate or velocity
V for reaction 1 is the transformation rate for each chemical
species expressed as concentrations, with this rate dependent
on the concentration of each particular species in the reaction
volume:

where kf and kr are the forward and reverse reaction rate
constants, respectively, and [Rm] and [Pm] designate the
concentration of each reactant and product, respectively.
Evidently, the reverse reaction rate is zero at reaction initiation
because no products are present in the reaction volume. This
approach is purely deterministic in that the values of the
constants and variables of eq 2 determine the future values of† E-mail: garfinkm@mail.drexel.edu.

Mechanistic Mechanistic
Deterministic Probabilistic

Thermodynamic Thermodynamic
Deterministic Probabilistic

Σ[νmMm]T,V ) 0 (1)

ν ) kfΠ[Rm]νm - krΠ[Pm]νm (2)
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the reaction velocity as reaction 1 proceeds, indicating a singular
reaction path from initiation to equilibrium. Because the values
of the reaction rate constantskf andkr depend on the reaction
mechanism for all but the very simplest reactions, Kinetic Mass
Action constitutes a purely mechanistic approach.

In contrast to the Mechanistic-Deterministic description, a
Mechanistic-Probabilistic description of a chemical reaction
results in a myriad of reaction paths inasmuch as the paths are
described as a succession of stochastic reaction steps. This
approach is based on the generalMaster Equationformalism,
which, when derived for chain processes is known as the
KolmogoroV forward differential equation2 and was formulated
to investigate the rate of return to equilibrium of a perturbed
system originally at equilibrium.3

For example, consider as a specific case of reaction 1: the
reversible transformation AT B for which the concentration
of reactant [A] at reaction initiation (t ) 0) is [A]0 and product
[B]0 ) 0, generally the condition under which kineticists observe
chemical reactions. Essentially, the probabilityp[A] n,[A] n+1 that
the reactant concentration at staten transforms to the concentra-
tion at staten + 1: [A]n f [A] n+1, depends solely on the
concentration [A]n, not on any prior concentration [A]n-1.
Accordingly,p[A] n,[A] n+1 ∝ [A] n with the condition that as [A]n

f [A] eq the probabilityp[A] n,[A] n+1 f 0. Hence any perturbation
from equilibrium requires an infinity period to return to
equilibrium inasmuch asp[A] eq-1,[A] eq ) 0, as in the Mass Action
approach.

Compare now the deterministic Mass Action approach to the
probabilistic Master Equation approach. Integrating deterministic
eq 2 and solving for concentration of [A]t at time t yields

Now contrast eq 3a with the expected concentration of reactant
{A}t at time t derived from the stochastic approach, which is
expressed in eq 3b:

The similarity is not too surprising for this very simple reaction
considering that the probability for reactant A to transform to
product B depends on the concentration of reactant [A] and
product [B], exactly as does the reaction velocity for the
deterministic Mass Action approach.4 For highly complex
reactions, however, this Mechanistic-Probabilistic approach
becomes exceedingly difficult.5,6 Essentially, the Kolmogorov
approach cannot be rigorously tested for complex reactions.7

The thermodynamics of irreversible processes remains the
classical example of the Thermodynamic-Deterministic approach
to the study of chemical reactions. According to the Clausius
inequality irreversible processes are characterized by entropy
production dS> dQ/T greater than that for reversible processes
dS ) dQ/T. For equilibrium of course dS ) 0. Hence for a
chemical reaction proceeding irreversibly toward equilibrium
dS/dt f 0. The rate of this process dS/dt, however, is not directly
discernible, although the linear phenomenological equation had
offered hope in this regard.

The Linear Phenomenological Equation is an irreversible
thermodynamic formalism that had been devised to describe
transport phenomena such as electrical conductivity, thermal
conductivity, and atomic diffusion.8,9 According to this theory,
a flux (flow) term and a force (driving) term for transport
phenomena are assumed to be linearly related. For example,
for electric conduction the current is the flow and the potential
gradient the driving force and similarly for thermal conduction

heat is the flow and the temperature gradient the force. The
unqualified success of this linear assumption is universally
recognized.10,11 With the success of reciprocity, the Linear
Phenomenological Equation is fully established as the basis of
irreversible thermodynamics of transport phenomena.12

When the Linear Phenomenological Equation is applied to
chemical reactions, however, difficulties arise: identifying the
flux and force terms. Logically, the flux term can be identified
with the reaction velocityV and the force term with the driving
force or chemical affinityAi, a function of state introduced by
De Donder to quantify the force driving a chemical reaction.13,14

It is precisely in the case of homogeneous chemical reactions,
however, that the Linear Phenomenological Equation has proven
a failure.15 In fact, Manes et al.16 cast doubt on the validity of
the linear equation even on close approach to chemical
equilibrium. What is straightforward as far as transport phe-
nomena is concerned is not so in the case of closed chemical
reactions. In transport phenomena the flux and force terms have
spatial coordinates. In chemical reactions they do not. Hence
there is no independent means of describing the time-
dependency of dS/dt. The true value of this Thermodynamic-
Deterministic approach, however, is in validating thermody-
namic variables as time-dependent quantities although originally
derived for reversible processes.17-19

Three of the four possible formalisms involved in describing
the reaction path of chemical reactions have been considered.
As far as the literature is concerned, no Thermodynamic-
Probabilistic formalism has been developed to describe the
progress of a chemical reaction along some probabilistic reaction
path. To determine whether such formalism is possible and the
extent of its validity is the subject of this study.

Rather than relying on the chemical concentration [A]i to
distinguish the states of a reacting system, De Donder’s chemical
affinity Ai will admirably fulfill this role. It is furthermore
proposed that in a closed homogeneous reacting system
comprising a temporal succession of statesi between reaction
initiation and equilibrium the reacting system can be fully
characterized at any such statei by the intensive variablesTi,
Pi, Vi, andAi.

Objective

The objective of this study is to simulate actual chemical
reaction paths for chemical reactions between reaction initiation
and equilibrium using a probabilistic analysis. Essentially any
transformation between a reaction statei and a subsequent
reaction statei ( 1 can either be in the forward direction toward
equilibrium i f i + 1 or in the reverse direction backward
toward reaction initiationi - 1 r i. Once the transformation
probability for each state is delineated, the succession of states
i, each described by itsAi, can be compared to theAi calculated
from empirical chemical reaction data.

In this regard, the probabilistic reaction path and the empirical
chemical data will be compared for several chemical processes
whose reaction kinetics has been reported in the literature. If
the probabilistic paths do coincide with the experimental data,
this coincidence will constituteprima facie evidence that
chemical reactions are themselves purely stochastic processes
amenable to a probabilistic analysis despite the inherent
mechanistic complexities that distinguish one reaction from
another.

[A] t ) [kf[A] 0/(kf + kr)][1 - e-(kf+kr)t] (3a)

{A}t ) [kf[A] 0/(kf + kr)][1 - e-(kf+kr)t] (3b)

Vi ∝ Ai (4)
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State Variables

This probabilistic analysis requires that certain essentially self-
evident assumptions be made that fully agree with the ordinary
conditions under which chemical reaction are observed:

(1) The isothermal, isochoric reacting system is homogeneous
in that all reacting species are uniformly distributed in a single
fluid phase.

(2) The reacting system is closed in that there is no mass
transfer between the reacting system and its surroundings.

(3) Transformation of one state to another involves transfor-
mations between reactants and products in a fixed stoichiometric
ratio.

Although irreversible thermodynamics teaches that the progress
of a chemical reaction can be fully described in terms of the
intensive variablesTi, Pi, Vi, andAi, the difficulty with these
intensive variables is that they are classically defined only for
states at equilibrium. It is immediately evident thatVi as a
physical constant can describe a nonequilibrium system as easily
as an equilibrium system. The principal difficulties arise with
Ti andPi, for they are not necessarily uniform across a reacting
system at any temporal state, as required to define a uniqueAi

for any statei in a succession of statesi f i + 1 between
reaction initiationi0 and equilibriumieq. This obstacle can be
overcome, however, by modifying the postulate of local
equilibrium derived from Landsberg’s so-called Fourth Law of
Thermodynamics.20

Local equilibrium is essentially a spatial postulate for open
systems, as it is concerned with contiguous time-invariant
equilibrium cells. That is, the cells are temporally coincident
but spatially distinct: the steady-state scenario. An example is
an open flow-tube reaction with reactants uniformly entering
at one end with reactants and products uniformly exiting the
other end. The tube can be divided into adjacent imaginary
cells with each of the invariant cells examined at stations along
the tube. These cells exist simultaneously but are distinct
spatially.

What is required for the homogeneous closed system,
however, the conditions pertinent to this study, is a postulate
of temporal equilibrium that teaches that an irreversible process
can comprise a succession of homogeneous equilibrium cells
of short duration, with each occupying the entire system. In
this case the cells are temporally distinct but spatially coinci-
dent: a reaction in a closed reaction chamber of fixed volume.21

In theory, the minimum periodτD required for the homoge-
neous equilibrium cells to occupy the entire system is simply

whereV is the volume of the reacting cell andVD ) D/V1/3,
for which D is the diffusion coefficient.22 However, reactions
do not continually initiate at each state and then proceed from
a single point in the reaction cell across to the cell walls a
distanceV1/3 to equilibrate the cell but rather from many points
scattered throughout the cell. Ostensibly, a sufficient period is
thereby available to regain uniformity across the reaction cell
at each reaction statei: essentially temporal equilibrium. This
is generally accepted by kineticists, as it is required for absolute
rate theory.23 Happily, this position is strongly supported by
Garcia-Colin24 and Bhalekar25 who demonstrated that the non-
equilibrium contibutions to absoluteT andP cancel. There is
no such thing as nonequilibrium temperature (the adjective
applies to systems, not to state parameters).

In practice, temporal equilibrium can be sufficiently ap-
proached that both temperature and pressure differences across
the reacting cell essentially vanish:δTi f 0 and δPi f 0.
Hence, for practical purposes bothTi and Pi have unique
instantaneous values at any statei, permittingAi to be as fully
definable as in a simple equilibrium system. Accordingly, the
path followed by a chemical reaction in a closed homogeneous
system from reaction initiation to equilibrium can be described
unambiguously by determining the value ofAi at each statei
of the system.

Reaction Parameters

To describe the progress of a chemical reaction as a system
of transformations between states, it is necessary to first identify
each state uniquely in terms of the reacting particles present.
Although many such state identifiers are possible, such as simply
the fraction of reactant particles present relative to the initial
number or perhaps the mole fraction, instead a scheme consistent
with the formalism of chemical thermodynamics will be chosen
in which the identifiers for both the initial and equilibrium states
each have values that can be directly related to thermodynamic
functions.

Although a chemical reaction physically proceeds stepwise
in terms of the change in the number of reacting particlesnmi

f nmi(1, wherei indicates the temporal state of the system, the
influence of each component on the reacting system is repre-
sented by its thermodynamic activityam. The activity is a
measure of the chemical reactivity of componentnm. Hence at
any statei of the system each componentm has a specific
activity am. Moreover, the products of the activities of the
reacting components at statei can be used to describe statei by
the relationship

whereQi is identified as the activity ratio at statei.
To representQi at any statei in terms of the number of

particles present requires that several relationships be estab-
lished, first between the number of particlesnm and the
concentrationcm of componentmat statei, and thence between
cm andam.

The first step is straightforward withnm ) cmVN, whereN is
Avogadro’s number. Althoughcm andam are related bycm )
am/γm at statei whereγm is the activity coefficient of component
m, unfortunately γm is a complex function of component
concentrationcm.

Fortunately, homogeneous stoichiometric chemical reactions
are generally investigated by kineticists under conditions of
sufficient dilution thatγm f 1 and thereforecm f am, permitting
Qi to be approximated by the instantaneous number of each of
the reacting particles at statei.

However, as defined,Qi requires that the instantaneous number
of all reacting particlesnmi be known at statei. This complication
can be remedied, however, by resorting to the reaction advance-
ment termêi, conveniently defined as

where nm0 is the number of particlesm present at reaction
initiation. Substituting fornmi in eq 5 yields

τD ∝ V1/3/VD (5)

Qi ) Π(am)νm (6)

Qi ) Π[(nm)νm(VN)νm] (7a)

êi ) (nmi
- nm0

)/(-νmi
) (7b)

Qi ) Π[(nm0
+ êiνmi

)νm(VN)νm] (7c)
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relating the system variableQi to a single concentration term
ê0,i.

As defined,Qi has a unique state value ofQi ) Q0 at reaction
initiation andQi ) Qeq at reaction equilibrium. By definition
Q0 ≡ 0 andQeq ≡ K, respectively, withK the thermodynamic
equilibrium constant defined from eq 7c as

Taking the ratio of eqs 7c to 8 permits a thermodynamic
extent-of-reaction termúQi to be defined as

Accordingly, reaction initiation and reaction equilibrium are the
uniquely defined statesúQ0 ) 0 andúQeq ) 1, respectively.26

Probabilistic Modeling

Although chemical reaction 1 is perceived macroscopically
to proceed unidirectionally, this is a continuum perception that
does not exclude both forward and reverse state transformations
occurring on a particulate level, prohibiting only time-reversal
symmetry. However, the number of forward steps must clearly
outweigh the number of reverse steps overall because the
reaction is perceived to progress away from its specific initiation
stateúQ0 ) 0 toward a specific equilibrium stateúQeq ) 1.
Consequently, the probability of any state transformation toward
equilibrium must be greater than the probability of any state
transformation away from equilibrium.

Clearly, if the reaction statei immediately following reaction
initiation is specified by the thermodynamic extent-of-reaction
úQi, then a transformation toward equilibrium can be defined
as the forward reactionúQi f úQi+1 and a transformation away
from equilibrium can be defined as the reverse reactionúQi-1

r úQi.
According to this probabilistic analysispi,i+1 is defined as

the probability of reaction transformation from stateúQi forward
to stateúQi+1 andpi,i-1 is the probability for transformation from
stateúQi backward to stateúQi-1. Because any stateúQ0-1 prior
to the initiation stateúQ0 by definition cannot occur, any reverse
transformation fromúQ0 is precluded, and thereforep0,0-1 ) 0,
which indicates that the transformation probabilitypi,i(1 clearly
depends on the state of the systemúQi. Accordingly, the forward
or reverse reaction probability is dependent on the state of the
systemi.

Research into the nature of atom-migration dynamics has
demonstrated a probable linear relationship betweenpi,i(1 and
úQi under various circumstances.27 Using this simple but rather
tenuous support, a verifiable assumption of linearity will be
made. It must be understood, however, that this assumed linear
relationship between probabilities and reaction state is totally
divorced from the linear expression (4) assumed in irreversible
thermodynamics between the Mass Action velocityVi and the
chemical affinityAi.28 Accordingly,

This linear proportionality is the crucial relationship of this
stochastic analysis, and itsVeracity is essential to theValidity
of this probabilistic approach.

Because the reaction can only proceed in single steps
(transforming from one defined state to only the previous or
successive state), only transformationsi - 1 r i or i f i + 1
from statei are allowed. Hence, for the reverse reaction

and for the forward reaction

Because the only allowable transformations fromúQi are either
to úQi-1 or to úQi+1, clearly

Accordingly, the reacting system can either transform forward
toward equilibrium or backward toward reaction initiation, with
the probability of transformationpi,i(1 dependent on stateúQi

in accordance with expression 12. Consequently, some relation-
shippi,i(1 ) cpúQi must be elucidated, wherecp is a constant of
proportionality to be determined. This objective can be ac-
complished by relating the values ofpi,i(1 to the corresponding
stateúQi at specific boundary conditions.

At reaction, initiation products are not present and thusúQ0

) 0. Because stateúQ0-1 cannot exist, there can be no reverse
transformation from reaction initiation as previously discussed,
hence

From eq 13, for the forward reaction

Accordingly, the probability of transformation forwardpi,i+1

(away from reaction initiation) is greater than the probability
of transformation backwardpi,i-1 (toward reaction initiation).
Consequently, following reaction initiation the probability of
transformation in the direction shown

is always greater toward equilibrium inasmuch aspi,i-1< pi,i+1.
It is evident, therefore, that as a reaction progresses:pi,i-1

increases from its initial zero value andpi,i+1 decreases from
its initial unit value.

Accordingly, as a reaction proceeds, the decreasing probability
pi,i+1 f 0 for forward reaction must eventually intersect the
increasing probabilitypi,i-1 f 1 for backward reaction. Sto-
chastically, equilibrium is defined as the state of the system
úQeq at intersectionpi,i-1 ) pi,i+1. Hence, at equilibrium the
probabilities for the forward and reverse transformations are
equal. From eq 13 for the backward reaction

and for the forward reaction

According to this stochastic model, following reaction initiation
the probability of transformation in the direction shown

K ) Π[(nm0
+ êeqνmi

)νm(VN)νm] (8)

úQi
) Qi/K (9)

pi,i(1 ∝ úQi
(10)

pi,i-1 ≡ the probability of transformationúQi-1
r úQi

(11)

pi,i+1 ≡ the probability of transformationúQi
f úQi+1

(12)

pi,i-1 + pi,i+1 ) 1 (13)

p0,0-1 ) 0:
the probability of transformationúQ0-1

r úQ0
(14a)

p0,0+1 ) 1:
the probability of transformationúQ0

f úQ0+1
(14b)

úQ0
f úQ1

f úQ2
f ‚‚‚ f úQeq-2

f úQeq-1
f úQeq

(15)

peq,eq-1 ) 1/2
≡ the probability of transformationúQeq-1

r úQeq

(16a)

peq,eq+1 ) 1/2
≡ the probability of transformationúQeq

f úQeq+1

(16b)
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between initiationúQ0 (no products present) and completionúQc

(no reactants present) is always toward equilibrium. Beyond
equilibrium the probability for reverse reaction becomes pro-
gressively greater than for forward reaction and consequently
the probability of ever attaining completion becomes essentially
nil. Note, however, from Figure 1 that according to this
probabilistic approach the equilibrium state is always within a
range rather than a discrete value. From the values ofpi,i(1 and
úQi identified at reaction initiation (eq 14b) and at reaction
equilibrium (eqs 16a and 16b) the following equalities follow.
For the backward reaction

and consequently from eq 13

for the forward reaction. Equations 18a and 18b describe the
progress of chemical reaction 1 from reaction initiationúQ0 to
reaction equilibriumúQeq in terms of this stochastic model, the
implications of which are addressed in detail in the following
section.

Statistical Analysis

For stoichiometric chemical reactions to be amenable to this
probabilistic analysis requires that the reaction path followed
conform to certain conditions.

(1) The process must be discontinuous in that it proceeds in
discrete stepsdi that can be identified with specific statesúQi.

(2) The process must be periodic in that the number of
reaction steps∆i,i(n between stepsdi anddi(n required to return
to any stateúQi from any other stateúQi(n is a multiple of some
positive integer.

(3) The process must be irreducible in that the probabilities
pi,i(1 associated with the transformation of any present stateúQi

to any future stateúQi(n must be independent of any past state
úQi-n or úQi+n.

Several chemical reactions will be described in terms of an
array of probabilistic (Ai, di) coordinates and these will then
be compared to empirical (Ai, ti) data taken from the literature.
Fortunately, the chemical affinityAi can be equated to the
thermodynamic extent-of-reaction termúQi by the classical Gibbs
relationship

allowing the rate of probabilistic affinity decay to be charted
over the range of observations. Because the stochastic model
depends on a procedure rather than on an analytical equation,
the required analysis must be described by an algorithm. The
results of this procedure are shown in Table 1 for reaction 1
and illustrated schematically in Figure 1 as purely probabilistic
curves.

Column 1 lists the reaction steps. For an actual reaction the
steps would number perhaps three times the running time of
the experiment in seconds. Column 2 lists the output of a random
number generator for random numbersn where 0e n e 1.
Column 3 lists the probabilitypi(1 for the next step of the
reaction moving either forward or backward. Column 4 is the
extent of reaction for each step calculated from eq 18b using

the linearity assumption. Column 5 is the chemical affinity
calculated from the extent of reaction.

The purpose of this exercise is to compare the affinity-step
data (Ai, di) generated by the probabilistic analysis with the
empirical affinity-time data (Ai, ti) found in the literature. As
the probabilistic analysis proceeds, the probabilistic chemical
affinity tends to decay. Hence between any steps∆di there is
an affinity difference∆Ai. Likewise, as an actual chemical
reaction proceeds, the empirical chemical affinity decays. Hence
between any time interval∆ti there is an affinity decay∆Ai.
To correlate the probabilistic affinity difference with the
empirical affinity decay, it would necessitate adjusting the
probabilistic affinity difference∆Ai. This procedure is ac-
complished simply by introducing a fixed term∆p, which is
the probability difference∆pi,i(1 between succeding steps. The
term ∆p is adjusted until the probabilistic affinity agrees as
closely as possible with the adjustedúQ according to eq 18b
and thence∆Ai according to eq 19. Were this accomplished,

Figure 1. Probabilistic affinity decay curve.

TABLE 1: Determination of the Chemical Affinity Decay

1
step

2
random
number

3
probability

4
extent of
reaction

5
chemical
affinity

0 - 1.000 0.000 ∞
1 0.802 0.985 0.030 5831
2 0.157 0.970 0.060 4678
3 0.019 0.955 0.090 4004
4 0.115 0.940 0.120 3526
5 0.259 0.925 0.150 3155

25 0.367 0.715 0.570 935
26 0.483 0.700 0.600 849
27 0.933 0.685 0.630 768
28 0.211 0.700 0.600 849
29 0.277 0.685 0.630 768

50 0.246 0.580 0.840 290
51 0.814 0.565 0.870 232
52 0.078 0.580 0.840 290
53 0.417 0.565 0.870 232
54 0.249 0.550 0.900 175

70 0.294 0.520 0.960 68
71 0.531 0.505 0.990 17
72 0.700 0.520 0.960 68
73 0.079 0.535 0.930 121
74 0.738 0.520 0.960 68

96 0.721 0.490 1.020 -33
97 0.133 0.505 0.990 17
98 0.259 0.490 1.020 -33
99 0.993 0.475 1.050 -81

100 0.880 0.490 1.020 -33

úQ0
f úQ1

f úQ2
f ‚‚‚ f úQeq-2

f úQeq-1
f

úQeq
r úQeq+1

r úQeq+2
r ‚‚‚ r úQc-1

r úQc
(17)

pi,i-1 ) 1/2úQi
(18a)

pi,i+1 ) 1 - 1/2úQi
(18b)

Ai ) -RT ln(úQi
) (19)
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then∆di would presumably equal∆ti and the data correlated.
For each reaction,∆p has a single fixed value.

The affinity-step data (Ai, di) are generated by this
probabilistic analysis. From eq 18b the thermodynamic extent
of reaction is zero at reaction initiation, as shown in Table 1.
From eq 19 the affinity is infinite. For step 1 the value of the
random number generator is compared to the probability. If the
random number is smaller than the probability, the probability
is decreased by the fixed value∆p. In contrast, if the random
number is larger than the probability, the probability is increased
by a fixed value∆p. With the probability value 1.000 and the
random number 0.802, the probability decreases to 0.985, in
this instance by an arbitrary amount∆p ) 0.015, chosen simply
to illustrate the approach to equilibrium as the number of steps
approach 100. This procedure is in accordance with expression
17 that the reaction always has a greater tendency toward
equilibrium than away from it. At step 2 the random number
0.157 is less than the probability 0.985 of step 1, and therefore
the probability decreases again to 0.970 with the extent of
reaction calculated from eq 18b and the affinity from eq 19.
By step 29 the probability value of 0.685 indicates roughly a
two-thirds possibility that the next step will be toward equilib-
rium. By step 71 the probability is just over one-half, indicating
that the possibility of retrograde steps is almost equal to the
possibility of forward steps. Hence this probabilistic analysis
is in agreement with eqs 18a and 18b. These probabilistic data
are then correlated with the empirical affinity data using solely
∆p.

Empirical Verification

The chemical affinityAi not only unambiguously identifies
each reaction stepdi from reaction initiation to equilibrium but
also represents the actual thermodynamic driving force for
chemical reactions. Accordingly, the decay rate of the chemical
affinity is the most significant metric in examining the progress
of chemical reactions, particularly in regard to empirical
verification of the stochastic approach described herein.

For verification, the probabilistic extents-of-reactionúQi are
calculated from eq 18b and the experimental extents-of-reaction
úQi are calculated from eq 9 for each reaction examined. The
probabilistic and empirical affinitiesAi are then calculated from
eq 10 and compared.

To accommodate this procedure, a Microsoft Excel 98
spreadsheet with its built-in random number generator was used
to calculate the probabilistic (Ai, di) data and plot the resultant
curves. Six probability curves were generated for each experi-

ment, differing only by the random numbers generated. These
were compared with the experimental (Ai, ti) data entered onto
the Excel spreadsheet and superimposed on the curves. The
value of ∆p was fixed for the six probability curves of each
experiment and used to correlate the probabilistic data with the
empirical. The chemical reactions examined were chosen to
represent a wide selection of mechanisms, with reaction orders
ranging from first to third. The number of stepsdi for each
experiment was between 1000 and 4000.

The isomerization of 2-methylmethylenecyclopropane to
ethylidenecyclopropane

involves an intermediate activated complex (‡) in equilibrium
with the reactants

whose configuration is not precisely known. Alternatively, the
activated complex may be bimolecular:

Six simulations of the affinity decay for this isomerization
process are shown in Figure 2 for∆p ) 6.7 × 10-3 and
compared with the experimental chemical affinities.29

The reaction of styrene with iodine in carbon tetrachloride
to form styrene diiodide is quite complex.

The process apparently involves both a free-radical chain
mechanism and a concurring nonchain reaction that has a first-
order dependency on iodine concentration and a 3/2-order
dependency on styrene concentration.30 Six simulations of the
affinity decay for this iodination process are shown in Figure 3

Figure 2. Affinity decay for the reaction of styrene with iodine in
CCl4.

Figure 3. Affinity decay for the isomerization of ethylidenecyclopro-
pane.

C6H5sCHdCH2 + I2 f C6H5sCHIsCH2I (22)
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for ∆p ) 9.0 × 10-4 and compared with the experimental
chemical affinities.

The bromination of platinic ammonia chloride ion in KCl
solution is probably a simple substitution reaction wherein

although an activated intermediate species is possibly involved.31

Six simulations of the affinity decay for this substitution process
are shown in Figure 4 for∆p ) 2.2× 10-3 and compared with
the experimental chemical affinities.

Unexpectedly, the formation of acetone cyanohydrin in
aqueous solution does not involve catalysis, as does many other
such cyanohydrin-formation processes.

Rather, the formation reaction is a two-step process

with the slower reaction 25a controlling the overall reaction.32

Six simulations of the affinity decay for this cyanohydrin process
are shown in Figure 5 for∆p ) 1.1× 10-4 and compared with
the experimental chemical affinities.

The formation of ferrous tris(dipyridyl) ions in acetic acid is
unusual in that the reaction is third order.33

The reaction proceeds in a simple stepwise fashion:

where reaction 27c is the rate-determining step. Six simulations
of the affinity decay for the formation of ferrous tris(dipyridyl)
ions are shown in Figure 6 for∆p ) 5.0× 10-6 and compared
with the experimental chemical affinities.

The dehydrogenation of isobutane by iodine vapor at 333 K
is exceedingly complex.

The reaction mechanism involves a free-radical chain reaction,
with the postulated reaction rate depending on the equilibrium
constant for iodine, where M is any molecule present.34

It is immediately evident that the overall reaction rate depends
on the concentration of I2 and HI molecules. Six simulations of
the affinity decay for this dehydrogenation process are shown
in Figure 7 for ∆p ) 5.0 × 10-4 and compared with the
experimental chemical affinities.

It is evident from these examples that excellent correlations
were achieved between the probabilistic model with the empiri-
cal kinetic data for highly complex processes. Moreover, only
one degree of freedom was allowed: the value of∆p. As would
be expected, the probabilistic curves become increasingly more
erratic as they approach equilibrium withpi,i(1 f 1/2.

Discussion

According to the classical approach, the forward reaction rate
Vf is proportional to the concentration of the reactants of reaction
1 and consequently is a maximum at reaction initiation and
decreases as the reaction proceeds. Likewise, the reverse reaction
velocity Vr is proportional to the concentration of products and
is zero at reaction initiation and increases as the reaction
proceeds. The value of the overall reaction velocityVo is simply
Vo ) Vf + Vr, its value depending on the state of the system
between reaction initiation and equilibrium. This formalism may
superficially resemble the stochastic relationship between the
probability for forward reactionpeq,eq+1, which is unity at
reaction initiation and decreases as the reaction proceeds, and
the probability for reverse reactionpeq,eq-1, which is zero at
reaction initiation and increases as the reaction proceeds.
However, the sum of these probabilities is always unity
independently of the state of the system.

The only gap in this stochastic procedure is the lack of a
relationship between the probabilitypeq,eq(1 and the extent-of-
reactionúQi. This gap, however, was bridged by the assumption
of linearity, an assumption that has been demonstrated to be
valid. The term∆p represents the single degree of freedom

Figure 4. Affinity decay for the bromination of platinic ammonia
chloride in KCl solution.

Figure 5. Affinity decay for the formation of acetone cyanohydrin.

Pt(NH3)Cl+ + Br- f Pt(NH3)Br+ + Cl- (23)

CH3COCH3 + HCN f (CH3)2C(OH)CN (24)

CH3COCH3 + CN- f (CH3)3COCN- (25a)

(CH3)3COCN- + H+ f (CH3)3C(OH)CN (25b)

Fe2+ + 3(C10H6N2) f Fe(C10H6N2)3
2+ (26)

Fe2+ + (C10H6N2) f Fe(C10H6N2)
2+ (27a)

Fe(C10H6N2)
2+ + (C10H6N2) f Fe(C10H6N2)2

2+ (27b)

Fe(C10H6N2)2
2+ + (C10H6N2) f Fe(C10H6N2)3

2+ (27c)

i-CH6 + I2 f i-CH4 + 2HI (28)

I2 + M T 2I + M (29a)

i-BuH + I f t-Bu + HI (29b)

t-Bu + I2 f t-BuI + I (29c)

t-BuI f i-Bu + HI (29d)
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allowed, which proved to suffice in correlating the probabilistic
to the experimental data. The necessity for∆p is obvious. The
time units used for the actual chemical reaction are arbitrary,
generally seconds, while the number of probabilistic steps is
simply a tabulation. The value of∆p is chosen to aligndi to ti.

The requirement for a source of random-numbers, however,
imposes a potentially serious impediment to the application of
this stochastic approach, as it does for all such approaches,
including Monte Carlo simulations. In practice, such sources

generate only pseudorandom numbers that can impose patterns
on resultant probabilities. Haggstrom et al. argue that such
patterns can significantly affect reaction paths.35 This problem
was somewhat alleviated in the present study by alternating
between the generated pseudorandom numberni and number 1
- ni each time the random number generator was accessed,
where, of course, 0e ni e 1. The resultant probabilistic paths
are shown in Figure 8 for the bromination of platinic ammonia
chloride in KCl solution, as previously discussed. No preferred
paths appeared to be discernible.

Conclusion

The description of homogeneous stoichiometric chemical
processes using the probabilistic model matches experimental
results exceedingly well, confirming the validity of the assump-
tions of a linear proportionality between reaction probability
and extent of reaction. Accordingly, stoichiometric chemical
reactions can be understood as purely stochastic processes
amenable to a probabilistic analysis.
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Figure 6. Affinity decay for the formation of ferrous tris(dipyidyl)
ion in acetic acid.

Figure 7. Affinity decay for the dehydrogenation of isobutane by
iodine vapor.

Figure 8. Detail of the affinity decay for the bromination of platinic
ammonia chloride.
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