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Departamento de Quı´mica Fı́sica, Facultad de Ciencias, Apartado de Correos 40,
11510 Puerto Real (Ca´diz), Spain

ReceiVed: August 7, 2001; In Final Form: March 28, 2002

The analysis of the shadows projected by a particle on a plane may be used as a basis for a study of particle
three-dimensional shape and size. In that study, a mathematical function describing the value of the area
projected by a particle in every spatial orientation could be a very useful tool. In the present work, a method
for calculating the angular projection function (apf) of a flat-sided convex solid has been developed. The
standard deviation of the apf signal spectrum has been calculated for different model particles and found to
be useful as a distinctive signature of particle shape. The relationship between this signature and the noise
associated with the transmittance of a suspension has been discussed.

Introduction

Modeling is a very useful tool used in science to understand
data. For example, it is used with light scattering devices to
calculate the size distribution and absolute concentration of the
particles suspended in a solution. In the case of spherical
particles, the scattered intensity distribution allows us to
calculate their size distribution. Furthermore, if intensity data
of the unscattered beam is considered, the absolute concentration
is obtained.1 However, for a particle shape other than a sphere,
the approximation is wrong. In these cases, a proper shape
modeling is crucial for understanding experimental data.

The problem of particle characterization may be analyzed
from projected area determination.2 Therefore, the definition
of mathematical functions describing the projected areas of
nonspherical particles represents an effective tool for such
characterization. In the interpretation of light scattering mea-
surements, the information included in the cumulative distribu-
tion functions and, furthermore, in the probability density
functions3 has been proved to be useful as signatures for specific
shapes.4 From the analysis of these functions it is derived, for
example, that in the prediction of nonspherical diffraction
patterns it is not necessary to consider all possible orientations
because some of them are more representative than others. In
addition, by using maximum-likelihood estimators, particle size
can be obtained.

A solution to the problem of calculating the probability
distribution and density functions for circular cylinders and
cuboids was found by Walters5 and Vickers.6 In this work we
present an alternative method to obtain a function related to
these, the angular projection function, for a flat-sided convex
solid. To assist in the interpretation of the unscattered beam in
light diffraction measurements and image analysis, we analyze
the role of the standard deviation of its signal spectrum as a
distinctive signature of shape.

Finally we focus attention on the theoretical relationship
between this signature and the noise associated with the
transmittance. The discussion is based on experimental data

obtained with laser techniques for detecting growth nuclei in
supersaturated solutions7,8 and computerized simulation studies
carried out on this subject.9-11

Materials and Methods

Shape Models.We want to analyze the possibility that the
standard deviation of the signal spectrum of the areas projected
by a nonspherical particle could be useful as a signature to
discriminate shape. To that end, we will study a set of model
shapes that can easily be described and analyzed from a
mathematical point of view. The selection of these models and
the terminology used are based on mathematical criteria.

As shown in Figure 1, the particles are prismatic with 3-, 4-,
and 6-sided faces, known in this work as P3, P4, and P6,
respectively. By adding two opposing pyramids to each one of
these we obtain another set of three particles which will be
known as P3P, P4P, and P6P. The bases of each one of these
particles are regular polygons whose edge we will callmain
edge. P3, P4, and P6, have been analyzed in a whole variety of
lengths ranging froml ) 0.25 tol ) 3.00 times the length (L)
of the main edge. A special length ofl ) 0.10 has also been
included to emulate a quasi-flat particle.

The opposing pyramids of prisms P3P and P4P are formed
by equilateral triangles whose side lengths are equal to the main
edge. However, this is not possible in the case of the 6-sided
polyhedron, since the bases on which the 6-sided pyramids are
placed are regular hexagons, and the only possible disposition
of equilateral triangles on such bases would have to be on the
same planes. In this case, the height of the pyramid has
arbitrarily been assigned a value equal to the length of the main
edge. P3P, P4P, and P6P have been analyzed within the same
length range as P3, P4, and P6, although the study has been
extended to include the special casel ) 0.00, for which the
particles P3P, P4P, and P6P become bipyramidal variants
without prismatic structure. Finally, the valuesl ) 100.00 and
l ) 1000.00 have been included, as parameters representative
of very elongated structures.

The Angular Projection Function, F(θ, O). The angular
projection functionF(θ, φ) takes the value of the area projected
by a particle in every spatial orientation. To obtain it, we first

* Corresponding author. Phone: 34 956 016 332. Fax: 34 956 016 228.
E-mail: joaquin.martin@uca.es

6334 J. Phys. Chem. A2002,106,6334-6338

10.1021/jp0130618 CCC: $22.00 © 2002 American Chemical Society
Published on Web 06/07/2002



analyze a model consisting of one single freely rotating particle
that projects its shadow onto a fixed plane. On the basis of this
model, we describe an equivalent one, which has the advantage
that it simplifies the analytical treatment required to calculate
the angular projection function. In the latter model, the particle
to be analyzed is placed at a fixed position, unable to rotate or
move. The projection plane, which had a fixed position in the
original model, can move and is at all times tangent to an
enclosing sphere surrounding the particle. The direction of this
moving plane coincides with that of its normal vector. Its
Cartesian coordinates (x,y,z) can be expressed as a function of
the spherical coordinatesF, θ, and φ, from the following
equalities:

If we use a unit radius sphere, i.e., whereF ) 1, the directions
evaluated can simply be expressed as a function of the angular
coordinates (θ,φ).

The particles evaluated in this study are flat-faced convex
solids. Given that every face is represented by a normal vector,
the surface projected by facei (Ai) onto the mobile plane is
determined by the magnitude of the scalar product of their
normal vectors. The area of every face is a distinctive feature
of each shape, and therefore, all we have to do in order to
calculate the projected surface is solve cos(ψi), whereψi is the
angle formed by the normal vector to facei and the normal
vector to the projection plane.

Figure 2 shows a front and back view of an octahedral
particle, (P4P withl ) 0.00), as seen from the direction
perpendicular to the plane of the paper. In both cases, the
projected surfaces coincide, and its area may be calculated from
the contribution made to it by the faces observed in each case.
If we consider the front view, the faces involved in the projection
of the total surface are S1, S2, S3, and S4. If we consider the
opposite view, the faces involved are S5, S6, S7, and S8. If,
furthermore, we consider that the normal vector to the projection
plane is directed toward the front view plane, we will have that
the scalar product of this vector and the vectors representing
faces S1, S2, S3, and S4 is positive. On the contrary, the scalar

product of the normal vector to the projection plane and those
representing faces S5, S6, S7, and S8, is negative. Regardless
of the sign of the scalar product, the surfaces projected by the
front or back faces coincide. Therefore, the angular projection
function can be defined including all faces of the convex solid
as

where the projection of the particle in the direction given by
(θ,φ), is calculated as half the summation of the surface area
projected by each face. According to eq 2, the angular projection
function is expressed in terms of the area of each face and the
cosine of the angle between its normal vector and that of the
orthogonal projection plane (scalar product).

We now describe the procedure to follow in order to calculate
these functions: (1) We label the vertices of the particle fixed
at any given spatial location and define their Cartesian coor-
dinates. (2) The vectors forming every edge are calculated
subtracting from them the coordinates of the adjacent vertices.
(3) The coordinates of the normal vectors to each face are
calculated as the vector product of the edge-vectors that meet
at a vertex (we will take into account the corkscrew rule to
define in every case the coordinates of the normal vector
pointing to the outside of the volume). (4) The areaAi of every
face will be given by the magnitude of the corresponding normal
vector.

Following this procedure, the angular projection function is
easily obtained. For example, for P4 it is given by

Once it has been obtained, the standard deviation (SD) is
calculated by

The second term of the square root can easily be solved by
Cauchy’s theorem,12 which states that the average geometrical
projected area of a convex particle with random orientation is

Figure 1. Description of shape models. Every particle shows a thicker line, which indicates the principal or main edge. A line has been drawn next
to each particle, to show the edge that defines its length. This may be from 0.00 to 3.00 times (l) the length of the principal edge (L). In this figure,
only 1.00 lengths have been drawn.

x ) F sin(θ) sin(φ)

y ) F sin(θ) cos(φ)

z ) F cos(θ) (1)

F(θ, φ) ) ∑
i)1

n |Ai cos(Ψi)|
2

(2)

FP4(θ, φ) ) lL2 (|sin(θ) sin(φ)| +

|sin(θ) cos(φ)|) + L2 |cos(θ)|; (3)

SD ) xF2 (θ, φ) - F2 (θ, φ); (4)
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one-quarter of the total surface area (S),

The first term can be calculated by

where sin(θ) represents the functional or Jacobian determinant
for the mapping transformation of Cartesian coordinates into
spherical coordinates. Knowing the minimum and the maximum
value of the projected area, this term or indeed the mean of
some higher power can alternatively be calculated by using the
cumulative distribution function of the projected area or the
probability density function.5,6

Comparable Volumes. There is clearly a relationship
between the projected areas SD and the size of the particle.
The larger the volume, the larger the projected areas and the
higher the absolute values of the variations caused by changes
in the orientation. For this reason, to establish a relative
comparison among different shapes, it is convenient to set a
criterion that eliminates the influence of size.

Let us compare the model used to calculate theF(θ, φ)
functions to an ideal sample consisting of one single isolated
particle suspended in a solution. Let us suppose that a laser
beam whose section is much larger than the particle’s is crossing
this sample, and let us examine the amount of unscattered light.
The particle changes randomly its orientation and its position,
keeping inside the beam volume and projecting its orthogonal
image on a fixed plane. As the fraction of light obscured by
the particle is related, by the Beer-Lambert law, to the

transmittance, we establish the criterion of comparing those
particles that would generate similar levels of transmittance,
i.e., same values ofFh(θ, φ).

Results and Discussion

Selecting an average projection area,Fh(θ, φ), of 100 units,
the SD of theF(θ, φ) signal spectrum was calculated and plotted
against the length factor (l) in Figure 3. P3, P4, and P6 show
maximum values of noise for small values ofl. For l ) 0.10,
the particle with the highest level of noise is P6, followed by
P4, and finally P3. Therefore, for small values ofl (semi-flat
particles), the higher the number of faces of the polyhedron,
the higher will be the level of the SD. In theoretical terms it
seems obvious that whenl tends to zero, the SD tends to infinity.
This trend tends to reverse as the length parameter increases. It
can be seen that forl ) 3.00, the shape with a higher level of
SD is P3, followed by P4, and, finally P6. It is worth pointing
out that each one of these three particles shows a minimum on
the curves in Figure 3.

The plots of the curves of P3P, P4P, and P6P are distinctively
different from the former ones. In this case, the variations
observed in the SD, in thel ) 0.00 tol ) 3.00 range, are not
so sharp. The behavior of P3P shows there is no minimum.
P4P shows a barely perceptible minimum atl ) 0.10, whereas
in the case of P6P there is a clear minimum atl ) 0.50. As the
relative length of all the particles analyzed increases, the
difference between the SDs tends to minimize. In the hypotheti-
cal limit in which the particles are long needlelike shapes, so
that they are barely distinguishable one from the other (l tends
to infinity), the SD must be very similar. The closeness of the
values obtained for the SD whenl ) 100.00 andl ) 1000.00
confirms this argument.

Figure 2. An octahedral particle (P4P withl ) 0.00) observed from points of view diametrically opposed to each other. In both cases the surface
projected onto a fixed plane perpendicular to the axis of observation coincide.

F(θ, φ) ) S
4

(5)

F2(θ, φ) )
2∫0

2π∫0

π/2sin(θ)F2 (θ, φ) dθ dφ

2∫0

2π∫0

π/2sin(θ) dθ dφ
(6)
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Standard Deviation as a Measure of the Noise Associated
with the Transmittance. The uncertainty inherent in every
experimental measurement can be caused by the performance
of the instrumentation, imperfections of the experimental design,
changes undergone by the physical chemical parameters of the
system, etc. In this context, we use the term “noise” to refer to
all the deviations detected between the exact and experimental
values.

In the ideal one-particle system crossed by a laser beam
described above, as long as the particle remains in the beam
volume, the only cause of variation in the transmittance are the
changes in the orientation of the particle. In these conditions,
the SD ofF(θ, φ) signal spectrum becomes a measure of the
level of noise associated with the transmittance.

However, in actual experiments there is not just one single
particle but many of them. In these systems, the noise associated
with the transmittance may be derived from two additional
sources, one being the different sizes that particles may have
and the other being the particles’ interference with each other.
We have recently analyzed experimental systems in which
crystalline precipitates were generated.8 By using solutions
within a wide range of concentrations, it was observed that
practically flat particles (l ≈ 0) generated high levels of noise
in relation to the noise generated by elongated particles. In those
experiments the laser beam was focused, which added a further
source of noise, caused this time by the different positions at
which particles could be intercepted by the beam.

The computational simulation of these experiments was also
carried out. Under the same virtual conditions, particles systems
with different shapes generated different levels of noise.11

According to these data and according to the model analyzed
in this work, it seems that the higher levels of noise associated
with the transmittance constitute a proof of the qualitative
relationship between the shape of and the noise caused by
crystalline particles.

Indeed the problem of deducing the actual sizes and shapes
of particles from just the associated noise is clearly impossible,
so that the analysis of this signal should be considered here to
be a useful source of information for understanding data. It is
clear that a deeper study on this relationship should be carried
out in order to elucidate the conditions for which the source of
noise caused by the shape of particles arises from others.

Conclusions

A method for calculating the angular projection function of
flat-sided convex particles is presented. Although it has been
applied to a set of model shapes, it may be used for the study
of any crystallographic model. The SD of this function’s signal
spectrum is an interesting discriminator of shape, which could
be used as a help in the interpretation of the transmittance signal
in laser light diffraction measurements and image analysis. Both
the theoretical studies carried out in this work and the
experimental data of previous studies allow us to state that the
noise associated with the transmittance of a system consisting
of crystalline particles suspended in a solution is related to the
shapes of such particles.
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