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The vibrational motion of highly excited molecules is discussed in terms of exact quantum and classical
mechanics calculations, employing global potential energy surfaces, as well as in terms of a spectroscopic
Hamiltonian and its semiclassical limit. The main focus is saddle-node bifurcations and their influence on the
spectrum. The general features are illustrated by three examples, which despite their quite different
intramolecular motions have several aspects in common: HCP, HOCl, and HOBr. In all three cases a 1:2
Fermi resonance is the ultimate cause of the complications observed in the spectra.

I. Introduction

Close to the bottom of a potential energy surface (PES),
vibrational motion can be well described by normal modes.1

The normal mode picture is based on approximating the PES
up to second-order about the equilibrium configuration. This
leads to a Hamiltonian, which is the sum of uncoupled harmonic
oscillator Hamiltonians. For a molecule withN atoms and 3N
- 6 vibrational degrees of freedom, there are 3N - 6 normal
modes, and each vibrational state can be assigned a set of
quantum numbers (V1, V2, ...,V3N-6). The motion associated with
this state consists ofV1 quanta of excitation in the harmonic
oscillator associated with normal mode 1, plusV2 quanta of
excitation in harmonic oscillator associated with normal mode
2, etc. up to modeV3N-6.

However, this simple picture usually is valid only for low
energies or, alternatively, for motion confined to small displace-
ments from the equilibrium. As energy increases, the assump-
tions of the normal mode picture gradually break down. First,
the individual oscillators will become more anharmonic, and
second, and more importantly, the coupling between the
oscillators will steadily increase. One possible consequence is
that the normal modes, loosely speaking, vary with energy. For
example, an almost pure bend normal mode can acquire a
substantial stretch character as energy increases. Therefore,
assigning a set of quantum numbers is not sufficient to
characterize a quantum state; one also has to identify the type
of vibration associated with each particular mode. More critical,
however, is the frequent observation that some normal modes
can be destroyed while new ones appear. Within classical
mechanics, this happens at discontinuities of the classical phase

space known as bifurcations.2,3 Therefore, the set of basis
functions into which the vibrational motion is decomposed varies
with increasing energy, and one has to indicate explicitly what
basis is used for a given set of (V1, V2, ..., V3N-6) quantum
numbers. At last, the coupling between all the normal modes
becomes so strong that the classical motion becomes chaotic3,4

and the nodal structure of most of the quantum mechanical wave
functions becomes so bizarre that a meaningful assignment is
obsolete. The reason for all this to happen is the departure of
the molecule from the region of the coordinate space where an
expansion of the potential up to second order is appropriate.

The development of vibrational motion from the low-energy
regime to high excitations has been studied in great detail,
especially in the context of nonlinear dynamics. However, the
vast majority of investigations has used either simple, mostly
two-mode systems, like the Henon-Heiles Hamiltonian,5,6 or
Hamiltonians based on only few experimentally observed low-
lying vibrational states7-10 (see the end of section VI for a short
discussion of somewhat more complex systems investigated very
recently). Nevertheless, these simple models have been very
illuminating in studying the interesting nonlinear motions, which
take place at high excitation energies.11 Thanks to the advent
of more and more powerful computers and efficient ab initio
electronic structure methods,12 it has become possible to
construct potential energy surfaces (PESs) for real molecules,
which areglobal, that is, which encompass the equilibrium as
well as configurations far away from equilibrium, including the
breaking of one or several bonds. The PES of ozone in the
ground electronic state is an illustrative recent example.13 With
these PES at hand, an expansion of the potential up to low order
is dispensable.
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The achievements in constructing accurate PES are paralleled
by advances in calculating hundreds of energy levels by solving
exactly the Schro¨dinger equation for the motion of the atoms
on these PES.14-16 For a triatomic molecule it is nowadays
possible to calculateall bound states and their wave functions
up to the dissociation limit.13 Inspecting the wave functions
shows whether a meaningful assignment is possible and what
kind of motion is connected with the quantum numbers or
whether the nodal structure is so complex that an assignment
is not obvious.17

Such complete studies (accurate PES, exact level calculations,
and assignment for hundreds of states) have been performed
for HCP18,19 and DCP,20 HOCl,21-23 HOBr,24,25 HCO26,27 and
DCO,28,29 and HCN.30,31 These studies allow us to investigate
for real molecules how the vibrational motion, encoded in the
spectrum, develops from the bottom of the potential well all
the way to the dissociation threshold. Except for the dynamics
of HCN, which looks deceptively simple, it turns out, as
expected, that bifurcations profoundly affect the spectra. In
particular, the spectra of HCP, HOCl, HOBr, and DCO are
governed bysaddle-node(or tangent) bifurcations, whereas that
of DCP is governed by severalperiod-doubling(or pitchfork)
bifurcations.32,33

To illustrate the complexity of a spectrum at high excitation
energies, we compare in Figure 1 for HCP the spectrum in the
low-energy region (left panel) with the spectrum at considerably
higher energies (right panel). In both cases, the spectrum consists
of clusters of levels, so-calledpolyads(see below), which are
organized according to the HC stretch quantum numberV1 )
0, 1, .... While in the low-energy portion all polyads are quite

compact and well separated, at higher energies they become
considerably wider and strongly overlap, which makes the
assignment more difficult. The qualitative change of the
spectrum is partly related to a saddle-node bifurcation. It is not
difficult to surmise how complex the spectrum becomes at even
higher energies. Experimentally,34 states up to∼25 000 cm-1

have been analyzed!
The principal aim of this Feature Article is to give an

overview of the basic results of these studies and to emphasize
the common framework of the spectra, with the hope that
experimental and theoretical spectroscopists understand better
the high-energy portions of spectra of other molecules. It must
be noted that due to modern spectroscopic methods such as
stimulated emission pumping35 (SEP), it is possible today to
record at least parts of spectra at high energies.36 Because of
lack of space we will concentrate on saddle-node bifurcations
here. They have been much less studied than the normal-to-
local mode bifurcations,2,37-39 and they are much less familiar
to the spectroscopic community, although both types of bifurca-
tions have several properties in common, especially the more
or less abrupt birth of new types of modes in a narrow energy
regime.

The most thorough picture about the vibrational dynamics
and how it shows up in the spectrum is obtained when we look
from different perspectives. The foundation is the global ab initio
PES and the exact vibrational eigenstates obtained from the
solution of the Schro¨dinger equation (section II). Viewing each
wave function, which in practice needs a lot of patience, reveals
how the basic structure of the spectrum changes when energy
increases. Additional insight is gained from analyzing the

Figure 1. Calculated energy-level spectrum of HCP in two energy regimes.V1, V2, andV3 are the HC stretch, the bend, and the CP stretch quantum
numbers, respectively. The isomerization states born at the saddle-node bifurcation are indicated by the dotted lines. Reprinted, with permissionof
Annual ReView of Physical Chemistry, from ref 19 (copyright 1999).
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classical phase space and how its construction reorganizes with
energy (section III). Effective (or resonance or spectroscopic)
Hamiltonians, frequently used by spectroscopists to fit experi-
mental data, provide yet supplementary information (section IV).
They uncover the primary cause for the bifurcations, namely
the nonlinear resonance between two normal modes. Further-
more, they effectively allow a reduction of the number of
degrees of freedom by introducing approximate quantum
numbers and are a convenient basis for semiclassical treatments.

Sufficient experimental data, which beyond doubt confirm
the existence of saddle-node bifurcations, to our knowledge,
are available only for HCP.40 A thorough comparison between
the substantial set of spectroscopic data for HCP and the
theoretical results can be found in refs 18, 19, and 41.
Spectroscopic information for HOCl, the other cornerstone of
this article, is much sparser.42,43For technical reasons only states
with large excitations of the OH stretch have been analyzed
experimentally; although these states are very interesting for
investigating the dissociation of HOCl,44-46 they exhibit a clear
local-mode behavior and therefore are not relevant for the topic
of this article. Although HOBr behaves much like HOCl, there
are distinct differences. Because this study is not completely
finished yet, we will concentrate the discussion on HCP and
HOCl.

II. Quantum Mechanical Point of View: The Genesis of
“Isomerization” and “Dissociation” States

The purpose of this section is 3-fold: (1) outlining the general
approach of exact quantum mechanical calculations on a global
PES, (2) summarizing the characteristic features of the molecules
the article is basically centered on-HCP, on one hand, and
HOCl and HOBr, on the other-, and (3) presenting the essential
observations made in the quantum mechanical studies, which
actuated our combined efforts.

The cornerstone of any realistic dynamical investigation of
intramolecular motion and the resulting spectrum is a global
PES,V(q), whereq comprises a complete set of coordinates
necessary for describing the molecule. The ab initio construction
of a PES is a two-step process. First, the potential energies have
to be calculated from first principles by using high-level
electronic structure theory at many nuclear geometries. All
regions of the coordinate space that are energetically accessible
must be covered. This includes, of course, geometries far away
from the equilibrium. Usually, for a triatomic molecule without
symmetry a thousand points or so are sufficient. Particular
regions such as, e.g., isomerization or dissociation barriers may
require a higher density of points.

The second step is the fitting of the calculated energies to an
analytical expression to be used in the dynamics calculations.47,48

It must be stressed that a power series expansion in many cases
is not appropriate, because it is not likely to reproduce all the
dynamically relevant features with sufficient precision. Fitting
a PES over broad coordinate and energy ranges is probably the
most tedious, though necessary, task in constructing a PES.

The calculated18 PES of HCP is depicted in Figure 2. It has
an interesting “peanut”-like shape with the waist occurring
where the HC bond is broken and a PH bond begins to be
formed.49 Needless to say, representing such a shape by a power
series expansion around the equilibrium is bound to fail.

The main properties of the PES of HCP, HOCl, and HOBr
are summarized in Table 1. HCP is linear at equilibrium.18,49

However, the other linear configuration, CPH, is not a local
minimum but a saddle, which is about 27 000 cm-1 above the
HCP well. Although CPH is not a real minimum of the PES,

the HCP/CPH system has been investigated as a prototype for
an isomerization reaction. Large-angle H-atom bending motion
would be a better characterization.

In contrast to HCP, both HOCl and HOBr have a bent
equilibrium geometry and their isomers, OClH and OBrH, are
true minima of the energy surfaces.21,24,50-53 However, except
for three states of HClO, all of the levels belonging to the HClO
and HBrO wells are located above the lowest dissociation
threshold. Moreover, the dissociation energies for the HOXf
HO + X reactions (Table 1) are much smaller than the energies
of the isomerization barriers and therefore the OClH and OBrH
isomers will be disregarded throughout.

Although their intramolecular dynamics and hence their
spectra are quite different, HCP, HOCl, and HOBr have
something important in common, which allows us to discuss
them together: The reaction coordinate is involved in a Fermi
resonance54,55 with another mode. For the HCPT CPH
isomerization the reaction coordinate is obviously the bending
angle, while for the HOXf HO + X (X ) Cl and Br)
dissociation the reactive coordinate is the OX stretch. The Fermi
resonance plays a central role in molecular dynamics whenever
there exist two modes, such that twice the fundamental
frequency of one mode (which hereafter will be called the
“slow” mode) is approximately equal to the frequency of the
other mode (to be called the “fast” mode), i.e., 2ωs ≈ ωf.
Because of this resonance condition, all states that share the
same polyad number

whereVf and Vs denote respectively the number of quanta in
the fast and slow mode, remain close in energy over broad
energy ranges. As a result of this the Fermi resonance, which
couples states with the same value ofP, has a very pronounced
influence on the spectrum. In triatomic molecules there exists
only one additional mode, which in all three cases, however,
remains fairly decoupled from the other two modes over the
entire range of energies studied and therefore will be labeled
with a “u” (for “uncoupled”). In the remainder of this article, a
polyad [Vu, P] will denote the set of states coupled by the Fermi
resonance.

Figure 2. Contour plot of the HCP ground-state potential energy
surface. The CP bond distance is fixed.R, r, and γ are the Jacobi
coordinates used in the dynamics calculations. Reprinted, with permis-
sion of Annual ReView of Physical Chemistry, from ref 19 (copyright
1999).

P ) 2Vf + Vs (1)
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The data in Table 1 confirm that for HCP twice the frequency
of the bend (2ω2 ) 1396 cm-1) is close to the frequency of the
CP stretch (ω3 ) 1301 cm-1), whereas for HOCl and HOBr,
twice the frequency of the OX stretch (2ω3 ) 1508 cm-1 and
2ω3 ) 1266 cm-1, respectively) is not too far from the frequency
of the bend (ω2 ) 1259 cm-1 and ω2 ) 1183 cm-1,
respectively). These coincidences strongly hint to possible
couplings due to Fermi resonances and must be taken into
consideration early on. As the reader will see below, the Fermi
resonance between the reactive coordinate and one of the other
coordinates (and therefore the possibility for energy to flow
between them) istheprincipal cause of interesting observations
in the spectra. Conversely, no special effects associated with
large-amplitude motion in the reactive coordinate are expected
or observed, when the reaction coordinate remains decoupled
from the other degrees of freedom up to the reaction threshold
(this is the case, for example, for the bend degree of freedom
in the HCNT CNH31 and DCPT CPD20 isomerizations).

The comparison between the three molecules can be carried
even further. First, the normal mode built on the reactive
coordinate is the slow mode in the Fermi resonance. Second,
in all three cases 2ωs > ωf such that, up to moderate energies,
the overtone states corresponding to the slow mode are expected
at the top of the polyads, whereas those corresponding to the
fast mode are expected at the bottom. However, the PES
naturally is most anharmonic in the reaction coordinate (slow
mode) so that at high energies, closer to the isomerization saddle
or the dissociation limit, the ordering of the overtone states must
be reversed, that is, the states corresponding to the reactive mode
must be at the bottom of the polyads. It is this interplay of the
Fermi resonance and the drastic change of the anharmonicity
of the PES along the reaction coordinate that leads to the
interesting features in the quantum mechanical spectra to be
discussed next.

Once the PES is known, it is used, together with an exact
expression for the kinetic energy operator, to calculate the
rovibrational spectrum by solving the Schro¨dinger equation.14-16

Usually, Jacobi coordinatesR, r, andγ are employed (see Figure
2 for HCP). The main difficulty is to find an appropriate basis
set for expanding the wave function. One usually starts with
products of one-dimensional basis functions,15,16,56for example,
spherical harmonics for angular motions and oscillator wave
functions for the stretches. Alternatively, one can exploit more
general basis sets, which are defined by discrete points on
multidimensional grids (discrete variable representation, DVR57).

In any case, to represent highly excited states, a very large
number of such primitive basis functions are required, typically
several hundred thousand of them for triatomic molecules. This
is by far too large for direct diagonalization of the Hamiltonian.
The problem can be circumvented by using methods such as
filter diagonalization,58,59which are devised for performing very
accurate calculations in narrow energy windows, or by reducing
the basis sets to a manageable size (less than 10 000 or so)
through several steps of contraction/truncation schemes.14,60Both
methods have been applied in the studies presented below.

As indicated in Table 1, many hundreds of states have been
computed for each molecule. The wave function foreachstate
has been visually examined in order to check whether it makes
sense to assign quantum numbers to them. It turned out that
even close to the isomerization saddle in HCP or the dissociation
threshold of HOCl and HOBr still many states can be rigorously
assigned.18,22,23,25In the case of HOCl (and probably HOBr as
well) a large number of states located even above the threshold
for dissociation (so-called “resonance states”, ref 61) can be
assigned.23 This has, of course, important consequences for the
dissociation rates and the applicability of statistical models.62

Assigning hundreds of states by analyzing the wave function
structure is a tedious undertaking. However, if one wants to
understand how the spectrum develops from low to high
energies, it is absolutely essential.

After completing the assignment, all the states belonging to
the same polyad [Vu, P] are collected and their wave functions
are plotted in the plane spanned by the slow and the fast
coordinates, because this is the plane in which the dynamically
interesting developments as the energy increases can be seen
most clearly. Examples at intermediate energies are displayed
in Figure 3 for HOCl. Shown are theP/2 + 1 (seven) wave
functions belonging to polyad [0, 12] centered at about 7500
cm-1 above the lowest vibrational state. They evolve in a regular
manner from a wave function withP/2 nodes along the (vertical)
axis for the fast coordinate at the bottom of the polyad, state
(0,6,0), to a wave function withP nodes along the (horizontal)
axis for the slow coordinate at the top of the polyad, state (0,
0, 12). The latter one is slightly curved, which manifests
noticeable energy flow between the slow and the fast coordinate
caused by the Fermi resonance even at these moderate energies.
At higher energies, the backbones of these curved wave
functions will develop a horseshoe-type structure characteristic
for the 2:1 resonance (see below). Despite the curvature, all
wave functions unambiguously can be assigned three quantum

TABLE 1: Spectroscopic and Computational Information for the Three Molecules Discussed

HCP HOCl HOBr

lowest feature of PES isomerization saddle dissociation dissociation
HCPT CPH HOClf HO + Cl HOBr f HO + Br
27 360 cm-1 D0 ) 19 290 cm-1 D0 ) 17 227 cm-1

exact quantum 1000 calculated states 827 calculated states 706 calculated states
≈750 assigned states ≈500 assigned states ≈650 assigned states

resonance Hamiltoniana first 370 states first 702 states first 592 states
E e g000 + 18 750 cm-1 E e g000 + 18 650 cm-1 E e g000 + 16 400 cm-1

77% of the saddle energy 97% ofD0 95% ofD0

30 quanta in mode s 38 quanta in mode s 37 quanta in mode s
∆rms ) 7.7 cm-1, Np ) 15 ∆rms ) 5.3 cm-1, Np ) 28 ∆rms ) 7.3 cm-1, Np ) 34

mode s bend (ω2 ) 698 cm-1) OCl (ω3 ) 754 cm-1) OBr (ω3 ) 633 cm-1)
mode f CP (ω3 ) 1301 cm-1) bend (ω2 ) 1259 cm-1) bend (ω2 ) 1183 cm-1)
mode u CH (ω1 ) 3343 cm-1) OH (ω1 ) 3777 cm-1) OH (ω1 ) 3755 cm-1)

SN bifurcation E ) g000 + 7744 cm-1 E ) g000 + 13 135 cm-1 E ) g000 + 5663 cm-1

for Vu ) 0b PSN ) 12.30 PSN ) 21.76 PSN ) 9.78

a ∆rms ) root-mean-square error,Np )number of parameters.b PSN ) polyad number at which the saddle-node bifurcation occurs.
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numbers, with thecaVeat that the overtones of the slow mode
(the top state in each polyad) are no longer associated with
motion exclusively along the reactive coordinate but have
acquired a nonnegligible contribution from the fast mode. [The
quantum numbers for HOCl and HOBr areV1 ) OH stretch
(coordinater), V2 ) bend (γ), andV3 ) OCl/OBr stretch (R).]
Although the coordinates involved in the Fermi resonance are
different for HCP, the wave functions of HCP at intermediate
energies are very similar to the wave functions shown in Figure
3, with the difference thatr is the fast coordinate andγ the
slow one. In contrast to HOCl, the HCP wave functions are
symmetric with respect to the origin of the angular axis. [The
quantum numbers for HCP areV1 ) HC stretch (coordinateR),
V2 ) bend (γ), andV3 ) CP stretch (r).]

Continuing to considerably higher energies, severe changes
of the wave function structures become apparent. Figures 4 and
5 depict the complete sets of wave functions for polyad [Vu, P]
) [0, 30] of HOCl and [0, 32] of HCP, respectively. They are
centered at about 17 200 cm-1 for HOCl and 19 500 cm-1 for
HCP. The state at the top of the polyad for HOCl, (0, 0, 30),
still displays the horseshoe-shaped wave function discussed
above, the horseshoe being, however, more pronounced and
narrower than in Figure 3. This means that forP ) 30 the fast
coordinate contributes more to the underlying motion than the
reactive one, although a naive progression-type assignment
would still describe this state as the 30th overtone of the slow
reactive mode. The same holds for HCP, too. The assignment

of many of the HOCl states appears mysterious at the first
glance. However, systematically following the states from the
low-energy part of the spectrum confirms the quoted assign-
ments. For HCP one sees already perturbations from other
polyads, e.g., states (0, 32, 0) and (0, 22, 5). The perturbations
obviously become more pronounced with energy.

More striking, however, are the following observations: (i)
The overtones of the fast mode, which were located at the
bottom of the polyads (see Figure 3 for HOCl), have now moved
inside the polyads [(0, 15, 0) for HOCl and (0, 0, 16) for HCP];
(ii) several members of the regular progression are missing [(0,
13, 4), (0, 12, 6), ..., (0, 9, 12) for HOCl and (0, 10, 11), ..., (0,
4, 14) for HCP], and (iii) the missing states are replaced, close
to the bottom of the polyad, by states with new kinds of wave
functions [e.g. (0, 0,x)D(30) for HOCl and (0, 32, 0)I for HCP].
Because the latter follow very closely the reaction pathway, they
have been termed “isomerization” states for HCP and “dis-
sociation” states for HOCl and HOBr in refs 18, 19, 23, 41,
and 63 in order to emphasize their role as precursors of the
isomerization and dissociation reactions. It must be emphasized
that the new states do not exist in the low-energy regime; they
come into existence rather abruptly at intermediate energies.

The existence of the isomerization states for HCP had been
first predicted by calculations employing a PES of limited
accuracy.64,65Inspired by this prediction, Ishikawa et al.40 have
searched for these states and indeed found a series of states,
which could not be assigned in the way the other levels were
assigned. Moreover, these states showed a large anharmonicity
and had unusually large rotationalB0 constants, just the criteria
typical for the isomerization states.19 The subsequent calculations
with the more accurate PES unambiguously confirmed that the
levels found by the experimentalists are the predicted isomer-
ization states.18

Systematically analyzing the wave functions from the bottom
of the well up to high energies clearly showshow the polyad
structure changes. However, it does not give a cluewhy these
changes happen. Explanations are provided by classical periodic
orbits (PO) and their bifurcations in the classical phase space,
which will be the topic of the next section.

Before concluding this section, it is, however, worth mention-
ing that the existence of the horseshoe-type and the isomeriza-
tion/dissociation-type states in the same polyad create a problem
of assigning these states. For the polyad [0, 30] shown in Figure
4, for example, one is tempted to describe two different states
as the 30th overtone of the reactive mode, two states as the
combination with 28 quanta in the reactive mode and 1 quantum
in the fast one, and so on. To solve this ambiguity, we could
have chosen, as for the distinction of normal and local states,
to use square brackets [...] for assigning the isomerization/
dissociation states and parentheses (...) for assigning the states
belonging to the normal progressions, which evolve in a regular
manner from the low-energy regime.66-68 We instead add either
an “I” (for “isomerization”) or a “D” (for “dissociation”) as an
index in order to specify that this state belongs to the new
progression, which follows the reaction pathway.

III. Classical Mechanics Point of View: Periodic Orbits
and Saddle-Node Bifurcations

The purposes of this section are (1) to emphasize the role of
stable periodic orbits (POs) as backbones of quantum mechanical
wave functions, (2) to emphasize their role in assigning quantum
states, and (3) to demonstrate that the birth of the new quantum
states, phenomenologically described in section 2, is related to
the existence of saddle-node bifurcations in the classical phase
space.

Figure 3. Wave functions of HOCl at low energies.V1, V2, andV3 are
the HO stretch, the bend, and the OCl stretch quantum numbers,
respectively. State (0, 6, 0) is at the bottom and state (0, 0, 12) marks
the top of the polyad [0, 12]. Energy normalization is such that HO(re)
+ Cl corresponds toE ) 0. For orientation, the potential energy surface
is shown in the upper left panel. Reprinted, with permission of the
American Institute of Physics, from ref 23 (copyright 2000).
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Periodic orbits, i.e., closed classical trajectories on which the
molecule remains for an infinite time,2,69-71 are essential for
understanding the structure of the classical phase space.69,72One
distinguishes between stable POs and unstable ones. If a
trajectory is started close to a stable PO, it remains close to it
for all times, even if the trajectory is not periodic. In contrast,
trajectories launched in the vicinity of an unstable PO depart
exponentially from it. Loosely speaking, each stable PO is at
the center of an independent subspace of the total phase space
that defines a distinct type of motion, whereas unstable POs
separate different subspaces. Finding POs for a system with
more than two degrees of freedom is not simple, principally
because the strong coupling among the degrees of freedom under
normal circumstances introduces large instabilities. Several
numerical methods have been proposed for solving this
problem.73-75 In our work we use shooting methods, which
convert the problem of finding POs to an initial value
problem: One chooses initial values for a trajectory, integrates
Hamilton’s equations of motion for a given time, and compares
the initial and final positions in the phase space. If the difference
is unacceptably large, the initial coordinates and momenta and
additionally the integration time are modified.

Just above the minimum of the PES the normal modes and
the stable POs coincide.76,77This means that if one puts a small
amount of energy in a particular normal mode and lets the
system evolve, the energy remains in this mode forever and
the trajectory, which the system follows, is a stable PO.
Moreover, there exist no other POs beside those obtained by
depositing the energy successively in each normal mode. In view
of this one-to-one correspondence at very low energies, one is

tempted to identify POs with normal modes. However, because
of the increasing coupling the dynamics rapidly becomes more
complex as the energy increases. Consequently, if one puts more
energy in one mode, then part of it is transferred to the other
modes and the resulting trajectory is usually not a PO.
Nevertheless, in integrable systems or systems close to an
integrable one, the fundamental POs, i.e., those found at lower
energies, persist to higher energies, even though they may
gradually change their shapes as a consequence of the energy
transfer between the modes.

The major difference between normal modes and POs
concerns their numbers as energy is increased: While, for a
triatomic molecule, there are always three normal modes, the
number of stable POs can be, as a consequence of bifurcations
in particular saddle-node (SN) bifurcations, larger. Saddle-node
(or tangent) bifurcations are discontinuities of the classical phase
space, where a stable and an unstable PO are created simulta-
neously.2,3,32,33,69,72This is illustrated in Figure 6, which shows
the Poincare´ surfaces of section of a two-dimensional model
for HOCl at different energies (measured with respect to the
energy of the quantum mechanical ground state).63 Here, only
the two lowest energies are relevant. In these representations
POs appear as single points, because the PO crosses the surface
only one time during each period. At 12 500 cm-1, i.e., just
below the first SN bifurcation, there are only three POs, labeled
[R], [γ], and [r] (the latter one cannot be seen in this surface).
However, at the slightly higher energy of 13 000 cm-1, above
the first SN bifurcation, the structure of the phase space has
qualitatively changed and there exists now one extra PO, which
is labeled [D]. The SN bifurcation and therefore the birth of

Figure 4. Wave functions for HOCl in polyad [0, 30]. Energy normalization is such that HO(re) + Cl corresponds toE ) 0. The upper left panel
is the bottom of the polyad and the lower right panel marks the top of the polyad. Reprinted, with permission of American Institute of Physics, from
ref 23 (copyright 2000).
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the new type of PO occurs at a particular energy. As energy is
increased, the stability area around the [D] PO first becomes
larger.

At this point, it is necessary to strongly emphasize that, when
normal modes and POs begin to deviate, the quantum mechan-
ical dynamics follows the POs. This applies to the principal
families of POs as well as to those created at SN bifurcations.
Normal modes eventually cease to influence the quantum wave
functions, simply because their definition becomes unrealistic
with increasing energy. Periodic orbits, on the other hand,
continue to be the building blocks of quantum dynamics up to
high energies. Within classical mechanics they are exact objects;
their calculation does not require any approximation of either
the kinetic energy or the potential. Formulated in the language
of spectroscopy, this means that a set of quantum numbers
assigned to a given state does not indicate the amount of energy
put in each normal mode, as it is sometimes understood, but
instead indicates the amount of energy traveling along the set
of stable POs. In order for assignments to be meaningful, it is
not sufficient to just quote the quantum numbers; it is equally
important to visualize the POs, which structure the classical
phase space.

The “scarring” of quantum mechanical wave functions by
stable POs has been amply demonstrated in the literature.70,71,78-80

Some examples for HCP are shown in Figure 7. Panels a and

c depict, in two different representations, the wave function for
state (0, 24, 0). This state belongs to the progression, which at
low excitations is aligned along the reaction coordinate, i.e.,
the angleγ. Due to the mixing with the fast mode, [r] in HCP,
it becomes significantly curved at higher energies and avoids
the isomerization path. The corresponding PO, termed [B],
shows exactly the same behavior. The quantum numberV2

simply counts the number of nodes along the [B] PO. Panels b
and d depict an example of an isomerization state, i.e., those
states that do not exist at low energies and that are born at
intermediate energies. It stretches along the isomerization path
and so does the PO, called [SN1] here, which belongs to the
family that is born at the first saddle-node bifurcation. The same
general picture holds for HOCl and HOBr; examples for HOCl
are given in Figure 11 of ref 23.

Thus, the “new” quantum states born at intermediate energies,
which we called isomerization states for HCP and dissociation
states for HOCl/HOBr, are scarred by the saddle-node POs. The
birth of the SN trajectories occurs at a specific energy. In
quantum mechanics, on the other hand, the new type of wave
functions comes into existence in a more gradual manner, as
illustrated in Figure 8 of ref 23 for HOCl and Figure 10 of ref
19 for HCP.

The close correspondence between quantum mechanical states
and POs is further illustrated in Figure 8 by showing for HCP

Figure 5. Wave functions for HCP in polyad [0, 32]. State (0, 32, 0) is at the top of the polyad and state (0, 32, 0)I marks the bottom. For
orientation, the potential energy surface is shown in the first row.
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the classical continuation/bifurcation (CB) diagram (lower panel)
and its quantum mechanical analogue (upper panel). Plotted are
the frequencies of the POs for the slow, [B], and the fast, [r],
mode as well as the SN mode, [SN1], [SN2], etc., as functions
of energy. Such a CB diagram81,82is quite convenient for getting
an overview of the structure of the phase space and the different
families of periodic orbits and how they behave as a function
of energy. In the quantum mechanical part of the figure, the
energy separations between the neighboring states of a given
progression are depicted. The isomerization POs and the
corresponding quantum states advance along the reaction
coordinate, i.e., the coordinate with the largest anharmonicity.
As a consequence, the corresponding frequency curves exhibit
the largest negative gradient. The large anharmonicity of the
isomerization states is the primary cause for the complexity of
the energy-level spectrum at intermediate and higher energies
in Figure 1; the polyads forVu ) V1 ) 0 begin to overlap, and
this overlap becomes more and more severe with energy. A
plot similar to Figure 8 exists also for HOCl.23

In the same manner as the Fermi resonance deflects the slow-
mode POs and wave functions away from the reaction pathway,
higher-order resonances, whose importance increases with
energy, might deflect the saddle-node POs and prevent them
from further advancing along the reaction coordinate. An
illustration thereof is indicated in Figure 7, panel d. This
deflection away from the reaction path, however, is again
balanced by the appearance of another stable PO named [SN2]
at a second saddle-node bifurcation (Figure 8). The [SN2] PO
replaces the [SN1] PO as the backbone for the quantum

isomerization states. The same feature has also been observed
in a two-dimensional model of HOCl (see Figures 1 and 4 of
ref 63). One might surmise that, at still higher energies, more
and more saddle-node bifurcations occur, which give birth to
an increasing number of stable POs, which stretch further and
further along the reaction pathway.83 However, these successors
of the SN POs are very difficult to find, because the classical
phase space becomes more and more chaotic with increasing
energy.

IV. The Semiclassical Mechanics Point of View: Analysis
of an Effective Hamiltonian

The goal of this section is to demonstrate that (1) effective
(or resonance) Hamiltonians, often used by spectroscopists to
fit spectra, are able to reproduce the results of exact quantum
calculations over very broad energy ranges (including SN
bifurcations) and (2) that the semiclassical analysis of these
Hamiltonians provides elegant interpretations of even the most
subtle features observed in the quantum mechanical spectra in
terms of classical quantities.

In contrast to the exact quantum and classical mechanics
approaches, which are based on global PESs, the resonance
Hamiltonian incorporates severe assumptions regarding the
intramolecular energy flow: It assumes that all of the couplings
are negligible, except for the Fermi resonance between the fast
(f) and the slow (s) modes, whose fundamental frequencies are
in near 1:2 degeneracy. For a triatomic molecule with a third,
almost uncoupled mode (u), the resonance Hamiltonian in its
classical version is written in the form

Figure 6. (γ, pγ) Poincare´ surfaces of sections at different energies
for a two-dimensional model of HOCl; the HO bond distance is fixed
at the equilibrium value of the dissociated OH fragment. The black
dots indicate the various stable periodic orbits (PO). [R] and [γ] are
the two fundamental POs associated with the slow and the fast degrees
of freedom, respectively. [D] is the stable PO born at the first saddle-
node (SN) bifurcation, which scars the dissociation states at intermediate
energies. [DD] is another stable PO born at a second SN bifurcation,
which takes place close to the dissociation threshold. [2γ] and [4γ]
are the stable POs obtained from [γ] after one and two period doubling
bifurcations, respectively; they are not discussed in this article. See ref
63 for more details.

Figure 7. Examples of wave functions and classical periodic orbits
for HCP. Reprinted, with permission ofAnnual ReView of Physical
Chemistry, from ref 19 (copyright 1999).
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where the (Ii, æi) are action-angle-like sets of conjugate
coordinates built on dimensionless normal coordinates (pi, qi)
according to

HD is known as the Dunham expansion, whileHF is the Fermi
coupling, which describes the flow of energy between the slow
and fast degrees of freedom. The spectroscopic constantsωi,
xij, k, ki, etc. are obtained by fitting the eigenvalues of exact
quantum mechanical calculations (see refs 22, 25, and 41; note
that in Table 2 of ref 22 the numerical value fory233 should
read 0.2503 cm-1 instead of-0.2503 cm-1 and the parameter
y123 ) -0.4304 cm-1 has been omitted.). Alternatively, they
can be determined by fitting experimental transition energies,
if available. The essential point is that the quantum mechanical
resonance Hamiltonian is block diagonal in a (direct product)

harmonic oscillator basis, each block corresponding to a different
polyad [Vu, P]. Stated in other words,Vu andP are exact quantum
numbers in the resonance Hamiltonian approach, in contrast to
the exact quantum approach, where, because of the nonnegligible
coupling between polyads, they are only approximately good
quantum numbers.

The resonance Hamiltonian satisfactorily reproduces the exact
quantum mechanical energies within a few cm-1 over very broad
energy ranges (for example, up to more than 97% of the
dissociation thresholdD0 for HOCl), several hundreds of states,
and tens of quanta in the slow mode (see Table 1).22,25,41Even
more important is the fact that the wave functions and all their
subtleties are also qualitatively reproduced by the Fermi
resonance Hamiltonian. Examples for HOCl are depicted in
Figure 9. In particular, the wave functions of the dissociation
states and their ordering inside the polyads are correctly
described. This is also true for HOBr and HCP (see, for example,
Figure 1 of ref 41). The good qualitative agreement underlines
that the Fermi resonance, the only coupling term in the
resonance Hamiltonian, is the principal cause for the saddle-
node bifurcations and therefore of the complexity of the quantum
mechanical spectrum.

There is, however, one little problem associated with the
resonance Hamiltonian approach: Since the resonance Hamil-
tonian cannot be decomposed into a kinetic energy term and a
potential, the relation between the generalized coordinates (qu,
qs, qf) and the real coordinates of the molecule, e.g., the Jacobi
coordinates (R, r, γ) is not unambiguous. Nevertheless, for
HOCl, for example, the slow-mode coordinateqs has predomi-
nantly OCl stretch character. It should not be overlooked that
the wave functions from the effective Hamiltonian have, by
construction, a symmetry, which is not real. However, these
shortcomings do not restrain the usefulness of this approach.

We shall now briefly describe the dynamics of the resonance
Hamiltonian, before showing how this knowledge leads to an
understanding of the details of the quantum mechanical observa-
tions. It is convenient to make a linear transformation from the
sets of conjugate coordinates (Ii, æi) defined in eq 3 to new
sets (Ji, ψi), such that

for the generalized momenta and

for the generalized coordinates. With these new variables the
resonance Hamiltonian of eq 2 is rewritten in the form

with trivial linear relations between the spectroscopic coef-
ficientsωi, xij, yijk, k, andki of eq 2 and the coefficientsΩi, Xij,
Yijk, K, Ki of eq 6. Since eq 6 depends neither onψu nor onψP,
their conjugate momentaJu and JP are classical constants of
motion, which according to the EBK (Einstein-Brillouin-
Keller) semiclassical quantization rules84-86 can be set to

Figure 8. (a) Energy differences between neighboring states of the
three progressions (0,P, 0), (0, 0,P/2), and (0,P, 0)I versus polyad
quantum numberP. The black dots are the quantum mechanical results,
whereas the open circles indicate the experimental values. (b) The
frequencies of the various families of periodic orbits as functions of
the energy. Reprinted, with permission ofAnnual ReView of Physical
Chemistry, from ref 19 (copyright 1999).
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respectively, withVu andP being positive integers.ηu andηP

depend on the degree of degeneracy of the three normal
modes: ηu is equal to 1 for the three molecules HCP, HOCl,
and HOBr, whileηP is equal to 4 for HCP and to 3 for HOCl
and HOBr. The only nontrivial equations of motion are those
concerning (J0, ψ0). The corresponding quantization condition
reads

wheren0 can be any positive or negative integer number. Stated
in other words, the classical resonance Hamiltonian in eq 6 can
be considered as an effective one-dimensional problem in the
variables (J0, ψ0), with coefficients depending parametrically,
through eq 7, on the particular polyad.

The cornerstones of the subsequent analysis are thefixed
pointsof this Hamiltonian, that is, according to the Hamilton’s
equations of motion, those points which satisfy

The fixed points in the (J0, ψ0) space define POs in the space
of the dimensionless coordinates, which are coupled by the
Fermi resonance, that is (pf, ps, qf, qs). As long as the third
mode, u, remains essentially decoupled from the modes involved
in the Fermi resonance, these POs with reduced dimensionality
are sufficient for understanding the properties of the quantum
wave functions. In comparison with the six-dimensional POs
obtained from the exact classical mechanics study using the full
PES, the semiclassical POs are determined for a particular pair
of quantum numbersVu andP, i.e., for a particular polyad [Vu,
P], instead of just the energy. Examples for the polyad [Vu, P]
) [0, 30] of HOCl are plotted in Figure 9 on top of the wave
functions obtained from the effective Hamiltonian.

Why are the isomerization and dissociation states found at
the low-energy ends of the polyads? Plotting, for given values
of Vu, the energies of the POs as a function of the polyad number
P, which in principle can be any real number, provides an
immediate answer (Figure 10). The energies of the quantum
states for a particularP (30 for HOCl in the figure), aligned on
a vertical line, are always confined to the region between the
two stable POs with the lowest and the highest energy. For low
values of P, there exist only two stable POs, which are

Figure 9. Wave functions for polyad [0, 30] of HOCl as obtained from the effective Hamiltonian. The coordinateq3 ranges from-9.5 to+9.5,
andq2 ranges from-6.7 to+6.7. Note that the underlying Hamiltonian was fitted to the quantum mechanical calculations of Peterson et. al.,21 who
used a slightly different potential energy surface than the one employed by Weiss et al.23 Therefore, the order of the states at high energies slightly
differs from the order in Figure 4. The continuous lines in four of the panels indicate the corresponding periodic orbits (see Figure 10).

J ) 1
2π∫0eψ0eπ

J0 dψ0 ) n0 + 1
2
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associated with the slow (highest energy) and fast (lowest
energy) modes, respectively. However, above the first SN
bifurcation (the corresponding values ofP are listed in Table
1) there exists a third stable PO, which scars the isomerization/
dissociation states and is named, according to the classical
mechanics calculations, [SN] for HCP and [D] for HOCl and
HOBr. Although the stable PO appearing at the saddle-node
bifurcation is born inside the classically accessible range,
because of the large anharmonicity its energy quickly drops
below the energy of the PO, which is associated with the fast
degree of freedom. The same development occurs in the
quantum mechanical spectrum, i.e., the isomerization/ dissocia-
tion states, which are also born inside the polyad, rapidly move
to the lower end of the polyad (a clear illustration thereof is
provided in Figure 10 of ref 19). The net result is that states
stretching mainly along the reaction pathway, which due to the
mixing with the fast mode have disappeared from the top of
the polyads, reappear at the bottom as a consequence of the
SN bifurcations. Although this might seem, from the quantum
mechanical point of view, like a simple crossing due to the very
different anharmonicities, the classical and semiclassical pictures
illustrate that, because of the Fermi resonance, this is a quite
involved process; it requires, first, a saddle-node bifurcation to
take place and, second, that the stable PO born at this bifurcation
advances along the reaction pathway and thus becomes the low-
energy boundary of the classically accessible phase space.

There are further essential observations explained by the
semiclassical approach. For example, how can one understand
that the increase of the number of SN states is counterbalanced
by a decrease of the number of states belonging to the normal
progression? A plot of the action integralJ as function of energy
E as well as polyad numberP provides an answer. In Figure
11 we depict for HOCl a sequence ofJ(E) for four different
values ofP; Vu ) 0 in all cases. The action integral for the
lowest polyad, located below the value ofP where the saddle-
node bifurcation occurs,PSN, consists of a single branch, which
extends between the two stable POs found at this energy.
According to the semiclassical quantization rule in eq 8, the
quantum states correspond to half-integer values ofJ and are
indicated by the black dots. This single branch supports the states
belonging to the normal progressions, which are found below
PSN.

As P increases and approachesPSN from below, a point with
increasingly larger derivative develops in the plot ofJ(E) (see
P ) 21 in Figure 11). Just at the bifurcation, two developments
are observed. First, the derivative becomes infinite and the single
branch splits into two, which further and further separate asP
increases. This discontinuity arises at the energy of theunstable
PO (labeled by [D*]), which is born at the bifurcation
simultaneously with the new stable PO (labeled by [D]). Most
importantly, these two branches still support only states belong-
ing to the normal progression, and the semiclassical quantization
rule in eq 8 applies to each branch separately. As the gap inJ
between the two branches becomes larger, it encompasses an
increasing number of half-integer values, with the result that
more and more members of the normal progression disappear,
simply because eq 8 has no real solution for these values ofn0.

The second phenomenon, which takes place at the bifurcation,
is the appearance of a new branch with positive values ofJ(E),
which extends between the energies of the two POs born at the
bifurcation, the stable PO and the unstable one (seeP ) 24 in
Figure 11). In contrast to the two other branches, this one
supports the members of the new progression of dissociation
states, indicated by the open diamonds. AsP increases, this
branch extends further and further and the semiclassical
quantization rule ensures that a member of the new progression
is created each time the new branch encompasses an additional
half-integer value ofJ. At last, it should be noted that there
exists a given energy range where the two branches coexist at
the same energy. This energy range extends from the unstable
PO born at the bifurcation down to either the stable PO born at
the bifurcation or the stable PO associated with the fast degree
of freedom, depending on which one is higher in energy. Since
one branch supports members of the normal progression and
the other branch members of the new progression, the two
progressions overlap at the bottom of the polyad. There are even
finer details revealed by the semiclassical approach, which are
also seen in the exact quantum wave functions; they are partly
caused by the occurrence of a period doubling bifurcation
slightly above the SN bifurcation (Figure 10 andP ) 30 in
Figure 11). However, because of lack of space the reader is
referred to the original literature.22,41

V. Some Notes on Vibrational Chaos

The purpose of this section is to discuss briefly the question
of vibrational chaos and particularly to emphasize that for highly
excited small molecules classical and quantum mechanics do
not necessarily agree when describing a system as “regular” or
“chaotic”. A more thorough discussion of chaos, concerning
HOCl, can be found in ref 63 and the references therein.

Figure 10. Energies of the periodic orbits (PO) as functions of the
polyad numberP with respect to the energy of the PO corresponding
to the fast mode ([r] for HCP and [γ] for HOCl). The insets show the
absolute energies. The heavy dots marked SN indicate the saddle-node
bifurcations, and PD for HOCl marks a period doubling bifurcation.
Stable periodic orbits are indicated by the solid lines, while unstable
periodic orbits created at the saddle-node bifurcation or emerging from
the period doubling bifurcation are indicated by the dashed curves and
by the asterisks, e.g., [D*]. The vertically arranged dots for HOCl and
P ) 30 indicate the quantum mechanical energy levels. In both cases,
Vu ) V1 ) 0.
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Chaos in classical mechanics is well-defined: A region of
the phase space is chaotic if two neighboring trajectories
launched in this region separate exponentially. There exist
several reliable methods for checking and visualizing chaos,
for example, the computation of Lyapunov exponents and the
plot of Poincare´ surfaces of section. The notion of “quantum
chaos” is less well-defined. It relies on the proposition made
by Percival87,88 that the bound-state energy spectrum might be
divided into two parts, a regular and an irregular one, which
would correspond, respectively, to classical regimes of integrable
and chaotic motions. The notion of an irregular (or chaotic)
spectrum indicates that the underlying classical chaotic motion
has a hallmark in the quantum mechanical properties of the
system.

It has been suggested that the distributions of the level
spacings, like the nearest-neighbor level spacing or the spectral
rigidity3,69,89,90for example, distinguishes regular and irregular
spectra. These tests are, however, of little help for the systems
studied in this article because of three reasons. First, the number
of states is still too small, so that most distributions are obscured
by noise. Second, all the tests rely on the assumption that the
density of states remains nearly constant in the investigated
energy window, whereas this is not the case when an isomer-
ization saddle or a dissociation limit is approached. As a
consequence, the results depend sensitively on the particular
procedure for unfolding the spectra. However, even if one would
find numerical tricks for solving these problems, a major
objection would still hold: The degree of (quantum) chaos of
a system can be estimated by how its spectrum evolves from a
Poisson to a Wigner distribution as energy increases. The
spectrum of a triatomic molecule with a hydrogen atom (and
consequently one fundamental frequency much larger and fairly
decoupled from the two other ones) is, however, neither Poisson
at low energies nor Wigner at high energies, so that no firm
conclusions can be drawn from the examination of level-spacing
distributions. Thus, statistical arguments fail to give a clear-cut
indication regarding the (ir)regularity of a spectrum, especially
for the systems discussed in this overview.

Alternatively, one can examine the nodal lines of quantum
wave functions. Indeed, when increasing the energy, one usually
observes a change in the nodal structure, from a regular pattern
of intersecting nodal lines to an irregular structure with
apparently no crossing of nodal lines. However, Pechukas91 has
shown that one cannot decide on the basis of this observation
alone, whether the change is due to the underlying chaotic
classical dynamics or due to an increase of the nonseparability
of the system, which is not at all related to chaos. On the other
hand, the opposite observation that most wave functions have
a sufficiently clear nodal pattern should be considered as an
indication for the underlying classical dynamics to be principally
regular.

Let us test this idea by a two-dimensional model for HOCl
in which the HO bond length is frozen. As discussed in ref 63,
the quantum spectrum and wave functions closely resemble
those of the full three-dimensional calculation forVu ) V1 ) 0.
The structure of the classical phase space for the 2D model is
illustrated by Poincare´ surfaces of section (SOS’s) displayed
in Figure 6 for several energies. If the dynamics is regular, the
motion is confined to a torus and the trajectory cuts the section
in one or several closed curves. In contrast, areas filled with
randomly distributed points indicate that tori no longer exist in
these regions and that the dynamics is chaotic. Examination of
the SOS’s atE ) 13 000 and 14 000 cm-1 shows that the saddle-
node bifurcation, where the dissociation PO ([D]) is born, plays
a fundamental role in the onset of chaotic motion; the first
extended region filled with chaotic trajectories clearly develops
around the unstable PO created at this bifurcation together with
the stable PO [D]. AtE ) 17 000 cm-1, the largest part of the
phase space is already chaotic and atE ) 18 500 cm-1, which
is about 800 cm-1 below the dissociation threshold, all of the
regular regions have disappeared, except for a very thin crescent
around [R] and an even smaller, almost indistinguishable island
around [DD]. Also this last pocket of regularity eventually
vanishes, around 18 800 cm-1, and the SOS’s henceforth look
totally chaotic.

Figure 11. Action integralJ(E) for HOCl and four polyads. The vertical lines indicate the energies of the various periodic orbits. The quantum
mechanical states belonging to the normal and to the new progressions are indicated by the filled circles and the open diamonds, respectively.
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The finding that close to the dissociation threshold the entire
classical phase space is chaotic, which is intuitively expected,
is in contrast with three observations made in the quantum
mechanical analysis of the 2D model. First, the nodal lines of
nearly all the wave functions up to the dissociation threshold
are sufficiently regular to allow an unambiguous assignment.
Second, the quantal SOS’s based on Husimi distribution
functions are much more regular than the classical ones (see
Figures 6 and 7 of ref 63). The Husimi functions are constructed
with the help of the exact quantum wave functions. Last, but
not least, the ability to reproduce the ab initio quantum energies
and wave functions with a fully integrable Hamiltonian up to
400 cm-1 below the dissociation threshold with an error of only
a few cm-1 clearly suggests that, from the quantum point of
view, the nonintegrable part of the Hamiltonian is merely a small
perturbation around a basically integrable system, even in the
case where classical chaos is fully developed and occupies all
the available phase space (see also ref 92). The same discussion
and conclusions also hold for HCP and HOBr (see Table 1)
and HCN/CNH.31 From the mathematical point of view, this
disagreement between classical dynamics (chaos) and quantum
dynamics (regularity) indicates that these triatomic molecules
are not “semiclassical” or, in other words, that the system still
does not approach the mathematical limitp f 0, despite the
fact that nearly forty quanta of energy are deposited in the
reactive mode.

VI. Discussion

That changes in the classical phase space structure may leave
a clear fingerprint in the corresponding quantum mechanical
spectrum is certainly not new. Many previous studies have
indeed focused on the changes in spectra induced by the normal-
to-local bifurcation.2,37,38,93-106 As emphasized earlier in this
article, the condition for a bifurcation to take place is that at
least two modes are coupled by a systematic nonlinear off-
diagonal resonance. It must be emphasized that an accidental
near degeneracy of some pairs of states, which is absolutely
unavoidable, does not lead to systematic changes of the spectrum
over wide regions of energy (see, e.g., HCO and refs 27 and
107).

The most frequently encountered couplings are the 1:1
Darling-Dennison108 and the 1:2 Fermi54,55 resonances. The
dynamics induced by these two generic resonances has been
studied in detail by Kellman and co-workers in a long series of
articles,7,8,109-113 where the connection with mathematical tools
such as the catastrophe map and the theory of elementary
bifurcations is nicely discussed and illustrated, and more recently
by Joyeux.114-117 A nonexhaustive list of the molecules for
which the 1:1 Darling-Dennison coupling plays a fundamental
role includes water,66 ozone,67 the CH stretches of acetylene,7

hydrogen sulfide,68 DCO,28,29 and SO2.118 While the dynamics
of DCO is governed by a SN bifurcation,107 all of the other
molecules experience a normal-to-local bifurcation at low
energies.

Prior to our analysis of phosphaethyne (HCP), hypochlorous
acid (HOCl), and hypobromous acid (HOBr), the Fermi
resonance was shown to have a fundamental influence on the
spectra of carbon dioxide,9,10,119-121carbone disulfide,122-125and
the CH chromophore in substituted methanes (HCX3, for a
review see ref 126 and references therein). The dynamics of
CO2, CS2, and the substituted methanes is dominated by period-
doubling bifurcations,111 although systems with a Fermi reso-
nance can undergo period-doubling as well as SN bifurcations.
As shown in ref 116, the reason for this is that a strong Fermi

resonance leads to a period-doubling bifurcation at low energies,
whereas a weaker resonance leads to a SN bifurcation only at
higher energies. Since the older studies7,8,109-117 were based on
model Hamiltonians fitted to a relatively small number of
experimentally observed transitions, it is not surprising that
systems with a strong, and therefore easy to detect, resonance
were focused on. Our ability to clearly identify SN bifurcations
in the vibrational dynamics of HCP, HOCl, and HOBr, for which
the Fermi resonance is much weaker than for CO2, CS2, and
the substituted methanes, relies on the fact that we were able to
compute and investigate very large sets of quantum states, up
to extremely high energies.

The only molecule up to now, for which an SN bifurcation
has been unambiguously detected, is HCP.19,40 Another mol-
ecule, which shows a SN bifurcation107 and for which a large
number of states have been measured28 as well as calculated,29

is DCO. The progression born at the SN bifurcation is the DC
stretch mode, i.e., the dissociation mode. Since the dissociation
energy is unusually small, this progression is very short and
therefore the effect of the SN bifurcation on the spectrum is
not pronounced.

In this article we only discussed the spectra with no excitation
in the uncoupled mode, i.e., the CP stretch in HCP and the HO
stretch in HOCl and HOBr. Although these modes are only
weakly coupled to the Fermi resonance modes, they do have a
noticeable influence on the spectra and the appearance of the
SN states. For more details see refs 41 and 65 for HCP and for
HOCl.

There are a few recent studies that generalize the results
presented here. First of all, some systems, like water,127,128the
bending vibrations of acetylene,129,130or DCO,131 require that
at least two resonances be taken into account for a correct
description. Although somewhat more tedious than for molecules
with a single prominent resonance, the dynamical investigation
of such systems is still possible, as shown by Sibert and
McCoy132 and Jacobson et al.133 for the bending vibrations of
acetylene and Jung et al.134 for CHBrClF. Moreover, the
description of the reactive mode in terms of harmonic oscillators
becomes insufficient for energies substantially higher than those
discussed here. Jacobson and Child135,136 have solved this
difficulty in the case of HCP by describing the bending motion
as an internal rotor. They have shown that the investigation of
the quantum and classical dynamics of the interaction between
a hindered internal rotor mode and a stretch mode provides
additional and original information on the bond-breaking internal
rotation of HCP.

At last, it is interesting to note that SN bifurcations are not
only observed in systems with few degrees of freedom but also
in infinite one-dimensional systems. Sievers and Takeno137

originally noticed and MacKay and Aubry138 and Aubry139

proved that spatially localized motion periodic in time, called
discrete breathers, exists in infinite periodic lattices with
nonlinear terms and with conditions close to the decoupled limit.
These results have been recently extended to one-dimensional
chains of random anharmonic oscillators by Kopidakis and
Aubry.140,141They have constructed CB diagrams and showed
that the discrete breathers are associated with POs originating
from SN bifurcations.
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