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The vibrational motion of highly excited molecules is discussed in terms of exact quantum and classical

mechanics calculations, employing global potential energy surfaces, as well as in terms of a spectroscopic
Hamiltonian and its semiclassical limit. The main focus is saddle-node bifurcations and their influence on the

spectrum. The general features are illustrated by three examples, which despite their quite different
intramolecular motions have several aspects in common: HCP, HOCI, and HOBr. In all three cases a 1:2
Fermi resonance is the ultimate cause of the complications observed in the spectra.

I. Introduction space known as bifurcatiod8. Therefore, the set of basis
] functions into which the vibrational motion is decomposed varies

Close to the bottom of a potential energy surface (PES), yith increasing energy, and one has to indicate explicitly what
vibrational motion can be well described by normal motes. pasis is used for a given set ofi( vy, ..., van_e) quantum
The normal mode picture is based on approximating the PES ,ympers. At last, the coupling between all the normal modes
up to second-order about the equilibrium configuration. This pecomes so strong that the classical motion becomes chéotic
leads to a Hamiltonian, which is the sum of uncoupled harmonic gnd the nodal structure of most of the quantum mechanical wave
oscillator Hamiltonians. For a molecule withatoms and functions becomes so bizarre that a meaningful assignment is
— 6 vibrational degrees of freedom, there af¢ 3 6 normal obsolete. The reason for all this to happen is the departure of
modes, and each vibrational state can be assigned a set ofne molecule from the region of the coordinate space where an
quantum numbersy, v, ..., van-¢). The motion associated with  expansion of the potential up to second order is appropriate.
this state consists af; quanta of excitation in the harmonic The development of vibrational motion from the low-energy
oscillator associated with normal mode 1, pysquanta of  yegime to high excitations has been studied in great detail,
excitation in harmonic oscillator associated with normal mode especially in the context of nonlinear dynamics. However, the
2, etc. up to modesy-e. vast majority of investigations has used either simple, mostly

However, this simple picture usually is valid only for low two-mode systems, like the Henon-Heiles Hamiltorfiéiror
energies or, alternatively, for motion confined to small displace- Hamiltonians based on only few experimentally observed low-
ments from the equilibrium. As energy increases, the assump-lying vibrational states1° (see the end of section VI for a short
tions of the normal mode picture gradually break down. First, discussion of somewhat more complex systems investigated very
the individual oscillators will become more anharmonic, and recently). Nevertheless, these simple models have been very
second, and more importantly, the coupling between the illuminating in studying the interesting nonlinear motions, which
oscillators will steadily increase. One possible consequence istake place at high excitation energiésThanks to the advent
that the normal modes, loosely speaking, vary with energy. For of more and more powerful computers and efficient ab initio
example, an almost pure bend normal mode can acquire aelectronic structure methods,it has become possible to
substantial stretch character as energy increases. Thereforeconstruct potential energy surfaces (PESs) for real molecules,
assigning a set of quantum numbers is not sufficient to which areglobal, that is, which encompass the equilibrium as
characterize a quantum state; one also has to identify the typewell as configurations far away from equilibrium, including the
of vibration associated with each particular mode. More critical, breaking of one or several bonds. The PES of ozone in the
however, is the frequent observation that some normal modesground electronic state is an illustrative recent exarmpWiith
can be destroyed while new ones appear. Within classical these PES at hand, an expansion of the potential up to low order
mechanics, this happens at discontinuities of the classical phases dispensable.
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Figure 1. Calculated energy-level spectrum of HCP in two energy regimes,, andv; are the HC stretch, the bend, and the CP stretch quantum
numbers, respectively. The isomerization states born at the saddle-node bifurcation are indicated by the dotted lines. Reprinted, withgbermission

Annual Reiew of Physical Chemistryfrom ref 19 (copyright 1999).

The achievements in constructing accurate PES are paralleleccompact and well separated, at higher energies they become
by advances in calculating hundreds of energy levels by solving considerably wider and strongly overlap, which makes the
exactly the Schidinger equation for the motion of the atoms assignment more difficult. The qualitative change of the
on these PE$16 For a triatomic molecule it is nowadays spectrum is partly related to a saddle-node bifurcation. It is not
possible to calculatall bound states and their wave functions difficult to surmise how complex the spectrum becomes at even
up to the dissociation limit® Inspecting the wave functions higher energies. Experimentafi{ states up to~25 000 cnr?
shows whether a meaningful assignment is possible and whathave been analyzed!
kind of motion is connected with the quantum numbers or  The principal aim of this Feature Article is to give an
whether the nodal structure is so complex that an assignmentoverview of the basic results of these studies and to emphasize
is not obvious'’ the common framework of the spectra, with the hope that

Such complete studies (accurate PES, exact level calculationsexperimental and theoretical spectroscopists understand better
and assignment for hundreds of states) have been performedhe high-energy portions of spectra of other molecules. It must
for HCP'8.1% and DCP2° HOCI 2123 HOBr 2425 HC(0?%27 and be noted that due to modern spectroscopic methods such as
DCO 2829 and HCN3%31 These studies allow us to investigate stimulated emission pumpify(SEP), it is possible today to
for real molecules how the vibrational motion, encoded in the record at least parts of spectra at high enertiddecause of
spectrum, develops from the bottom of the potential well all lack of space we will concentrate on saddle-node bifurcations
the way to the dissociation threshold. Except for the dynamics here. They have been much less studied than the normal-to-
of HCN, which looks deceptively simple, it turns out, as local mode bifurcation$?7-2° and they are much less familiar
expected, that bifurcations profoundly affect the spectra. In to the spectroscopic community, although both types of bifurca-
particular, the spectra of HCP, HOCI, HOBr, and DCO are tions have several properties in common, especially the more
governed bysaddle-nodéor tangenj bifurcations, whereas that  or less abrupt birth of new types of modes in a narrow energy
of DCP is governed by severpkriod-doubling(or pitchfork) regime.
bifurcations32:33 The most thorough picture about the vibrational dynamics

To illustrate the complexity of a spectrum at high excitation and how it shows up in the spectrum is obtained when we look
energies, we compare in Figure 1 for HCP the spectrum in the from different perspectives. The foundation is the global ab initio
low-energy region (left panel) with the spectrum at considerably PES and the exact vibrational eigenstates obtained from the
higher energies (right panel). In both cases, the spectrum consistsolution of the Schidinger equation (section Il). Viewing each
of clusters of levels, so-callggblyads(see below), which are  wave function, which in practice needs a lot of patience, reveals
organized according to the HC stretch quantum number how the basic structure of the spectrum changes when energy
0, 1, .... While in the low-energy portion all polyads are quite increases. Additional insight is gained from analyzing the
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classical phase space and how its construction reorganizes with ' ' ' ' ' '
energy (section Ill). Effective (or resonance or spectroscopic)
Hamiltonians, frequently used by spectroscopists to fit experi-
mental data, provide yet supplementary information (section 1V).
They uncover the primary cause for the bifurcations, namely
the nonlinear resonance between two normal modes. Further-
more, they effectively allow a reduction of the number of  _
degrees of freedom by introducing approximate quantum 5%
numbers and are a convenient basis for semiclassical treatments. — 9
Sufficient experimental data, which beyond doubt confirm o
the existence of saddle-node bifurcations, to our knowledge,
are available only for HCE2 A thorough comparison between —=
the substantial set of spectroscopic data for HCP and the
theoretical results can be found in refs 18, 19, and 41.

Spectroscopic information for HOCI, the other cornerstone of -4 8
this article, is much sparsé&t#3For technical reasons only states , , , , , ‘

with large excitations of the OH stretch have been analyzed _8 4 _2 0 2 4
experimentally; although these states are very interesting for T [ao]

investigating the dissociation of HOEY,46 they exhibit a clear
local-mode behavior and therefore are not relevant for the topic Figure 2. Contour plot of the HCP ground-state potential energy
of this article. Although HOBr behaves much like HOCI, there Surface. The CP bond distance is fixdel.r, andy are the Jacobi
are distinct differences. Because this study is not completely coordinates used in the dynamics calculations. Reprinted, with permis-
- . - - sion of Annual Reiew of Physical Chemistyyfrom ref 19 (copyright
finished yet, we will concentrate the discussion on HCP and 1999).
HOCI.

the HCP/CPH system has been investigated as a prototype for
Il. Quantum Mechanical Point of View: The Genesis of an isomerization reaction. Large-angle H-atom bending motion
“Isomerization” and “Dissociation” States would be a better characterization.
In contrast to HCP, both HOCI and HOBr have a bent

The purpose of this section is 3'f°|¢ (@) outl|n|.ng the general equilibrium geometry and their isomers, OCIH and OBrH, are
approach of exact quantum mechanical calculations on a global - 450.53
true minima of the energy surfac&s?* However, except

PES, (2.) summarizing the characteristic features of the mOIeCUIeSfor three states of HCIO, all of the levels belonging to the HCIO
the article is basically centered ofICP, on one hand, and and HBrO wells are located above the lowest dissociation
HOCI and HOBr, on the other, and (3) presenting the essential

: . : ; . threshold. Moreover, the dissociation energies for the HOX
observations made in the quantum mechanical studies, which . .
. HO + X reactions (Table 1) are much smaller than the energies
actuated our combined efforts.

. o N of the isomerization barriers and therefore the OCIH and OBrH
The cornerstone of any realistic dynamical investigation of

. ! 4 . isomers will be disregarded throughout.

intramolecular motion and the resulting spectrum is a global Although  their intramolecular dynamics and hence their
PES, V(g), whereq comprises a complete set of coordinates spectra are quite different, HCP, HOCI, and HOBr have
necessary for describing the molecule. The ab initio construction something important in corr;mon \;vhich ailows us to discuss
of a PES is a two-step process. First, the potential energies haVefhem together: The reaction coo;dinate is involved in a Fermi
to be calculated from first principles by using high-level resonance:ss With another mode. For the HCP> CPH
electronic structure theory at many nuclear geometries. All j

; . ) . isomerization the reaction coordinate is obviously the bending
regions of the coordinate space that are energetically accessml%ngle while for the HOX— HO + X (X = Cl and Br)

must be covered. This includes, of course, geometries far away gissociation the reactive coordinate is the OX stretch. The Fermi

from the equilibrium. Usual_ly, for a triatomic mplgcule W'th.OUt resonance plays a central role in molecular dynamics whenever
symmetry a thousand points or so are sufficient. Particular there exist two modes. such that twice the fundamental

regions such as, e.g., isomerization or dissociation barriers mayfrequency of one mode (which hereafter will be called the

require a higher density of points. “slow” mode) is approximately equal to the frequency of the
The second step is the fitting of the calculated energies to an yihar mode )(to bgpcalled thg “fgst” mode) i.gws%wa-

analytical expression to be used in the dynamics calculatiofis.  pocayse of this resonance condition, all states that share the

It must be stressed that a power series expansion in many caseg, o polyad number

is not appropriate, because it is not likely to reproduce all the

dynamically relevant features with sufficient precision. Fitting P = 2u + v 1)

a PES over broad coordinate and energy ranges is probably the

most tedious, though necessary, task in constructing a PES. where s and s denote respectively the number of quanta in
The calculatet? PES of HCP is depicted in Figure 2. It has the fast and slow mode, remain close in energy over broad

an interesting “peanut’™like shape with the waist occurring energy ranges. As a result of this the Fermi resonance, which

where the HC bond is broken and a PH bond begins to be couples states with the same valuePphas a very pronounced

formed?#°® Needless to say, representing such a shape by a poweinfluence on the spectrum. In triatomic molecules there exists

series expansion around the equilibrium is bound to fail. only one additional mode, which in all three cases, however,
The main properties of the PES of HCP, HOCI, and HOBr remains fairly decoupled from the other two modes over the
are summarized in Table 1. HCP is linear at equilibrit¥? entire range of energies studied and therefore will be labeled

However, the other linear configuration, CPH, is not a local with a “u” (for “uncoupled”). In the remainder of this article, a
minimum but a saddle, which is about 27 000¢mabove the polyad vy, P] will denote the set of states coupled by the Fermi
HCP well. Although CPH is not a real minimum of the PES, resonance.
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TABLE 1: Spectroscopic and Computational Information for the Three Molecules Discussed

HCP HOCI HOBr
lowest feature of PES isomerization saddle dissociation dissociation
HCP< CPH HOCI— HO + ClI HOBr— HO + Br
27 360 cnt Do =19 290 cntt Do=17 227 cmt
exact quantum 1000 calculated states 827 calculated states 706 calculated states
~750 assigned states ~500 assigned states ~650 assigned states
resonance Hamiltonian first 370 states first 702 states first 592 states
E < Jooo + 18 750 cnm?t E < Jooo + 18 650 cnm?t E < Jooo 1+ 16 400 cnt?
77% of the saddle energy 97% bf 95% ofDg
30 quanta in mode s 38 quanta in mode s 37 quanta in mode s
Ams= 7.7 cm, N, = 15 Ams= 5.3 cnl, N, = 28 Ams= 7.3 cm, N, = 34
mode s bendd, = 698 cnr?l) OCl (w3 = 754 cm}) OBr (w3 =633 cn?)
mode f CP (3= 1301 cn1?) bend (v, = 1259 cn1?) bend ., = 1183 cn?)
mode u CH (1 = 3343 cnm?) OH (w1 = 3777 cm?) OH (w1 = 3755 cnT?)
SN bifurcation E = Qooo + 7744 cmt E = gooo+ 13 135 cni? E = Qooo + 5663 cn1t
for vy = (0 PSN =12.30 PSN =21.76 PSN =9.78

2 Arms = root-mean-square erroN, =number of parameter8Psy = polyad number at which the saddle-node bifurcation occurs.

The data in Table 1 confirm that for HCP twice the frequency In any case, to represent highly excited states, a very large
of the bend (&, = 1396 cnT?) is close to the frequency of the  number of such primitive basis functions are required, typically
CP stretch ¢3 = 1301 cn1l), whereas for HOCI and HOBr,  several hundred thousand of them for triatomic molecules. This

twice the frequency of the OX stretchaf2 = 1508 cntt and is by far too large for direct diagonalization of the Hamiltonian.
2w3 = 1266 cnTl, respectively) is not too far from the frequency The problem can be circumvented by using methods such as
of the bend @, = 1259 cm?! and w, = 1183 cm?, filter diagonalizatiorf®>°which are devised for performing very

respectively). These coincidences strongly hint to possible accurate calculations in narrow energy windows, or by reducing
couplings due to Fermi resonances and must be taken intothe basis sets to a manageable size (less than 10 000 or so)
consideration early on. As the reader will see below, the Fermi through several steps of contraction/truncation schéffé&oth
resonance between the reactive coordinate and one of the othemethods have been applied in the studies presented below.
coordinates (and therefore the possibility for energy to flow  As indicated in Table 1, many hundreds of states have been
between them) ithe principal cause of interesting observations computed for each molecule. The wave functiondachstate
in the spectra. Conversely, no special effects associated withhas been visually examined in order to check whether it makes
large-amplitude motion in the reactive coordinate are expected sense to assign quantum numbers to them. It turned out that
or observed, when the reaction coordinate remains decoupledeven close to the isomerization saddle in HCP or the dissociation
from the other degrees of freedom up to the reaction threshold threshold of HOCI and HOB- still many states can be rigorously
(this is the case, for example, for the bend degree of freedom assigned®22:2325n the case of HOCI (and probably HOBr as
in the HCN<> CNH3! and DCP<> CPDX isomerizations). well) a large number of states located even above the threshold
The comparison between the three molecules can be carriedfor dissociation (so-called “resonance states”, ref 61) can be
even further. First, the normal mode built on the reactive assigned? This has, of course, important consequences for the
coordinate is the slow mode in the Fermi resonance. Second,dissociation rates and the applicability of statistical mo&els.
in all three casesds > ws such that, up to moderate energies, Assigning hundreds of states by analyzing the wave function
the overtone states corresponding to the slow mode are expectedtructure is a tedious undertaking. However, if one wants to
at the top of the polyads, whereas those corresponding to theunderstand how the spectrum develops from low to high
fast mode are expected at the bottom. However, the PESenergies, it is absolutely essential.
naturally is most anharmonic in the reaction coordinate (slow  After completing the assignment, all the states belonging to
mode) so that at high energies, closer to the isomerization saddlehe same polyady[, P] are collected and their wave functions
or the dissociation limit, the ordering of the overtone states must are plotted in the plane spanned by the slow and the fast
be reversed, that is, the states corresponding to the reactive modeoordinates, because this is the plane in which the dynamically
must be at the bottom of the polyads. It is this interplay of the interesting developments as the energy increases can be seen
Fermi resonance and the drastic change of the anharmonicitymost clearly. Examples at intermediate energies are displayed
of the PES along the reaction coordinate that leads to thein Figure 3 for HOCI. Shown are the/2 + 1 (seven) wave
interesting features in the quantum mechanical spectra to befunctions belonging to polyad [0, 12] centered at about 7500
discussed next. cm~! above the lowest vibrational state. They evolve in a regular
Once the PES is known, it is used, together with an exact manner from a wave function with/2 nodes along the (vertical)
expression for the kinetic energy operator, to calculate the axis for the fast coordinate at the bottom of the polyad, state
rovibrational spectrum by solving the ScHioger equatiof?-16 (0,6,0), to a wave function witR nodes along the (horizontal)
Usually, Jacobi coordinaté® r, andy are employed (see Figure axis for the slow coordinate at the top of the polyad, state (O,
2 for HCP). The main difficulty is to find an appropriate basis 0, 12). The latter one is slightly curved, which manifests
set for expanding the wave function. One usually starts with noticeable energy flow between the slow and the fast coordinate
products of one-dimensional basis functiéh¥3-56for example, caused by the Fermi resonance even at these moderate energies.
spherical harmonics for angular motions and oscillator wave At higher energies, the backbones of these curved wave
functions for the stretches. Alternatively, one can exploit more functions will develop a horseshoe-type structure characteristic
general basis sets, which are defined by discrete points onfor the 2:1 resonance (see below). Despite the curvature, all
multidimensional grids (discrete variable representation, B/R  wave functions unambiguously can be assigned three quantum
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of many of the HOCI states appears mysterious at the first
glance. However, systematically following the states from the

low-energy part of the spectrum confirms the quoted assign-
ments. For HCP one sees already perturbations from other
polyads, e.g., states (0, 32, 0) and (0, 22, 5). The perturbations
obviously become more pronounced with energy.

More striking, however, are the following observations: (i)
The overtones of the fast mode, which were located at the
bottom of the polyads (see Figure 3 for HOCI), have now moved
inside the polyads [(O, 15, 0) for HOCI and (0, 0, 16) for HCP];
(i) several members of the regular progression are missing [(O,
13, 4), (0, 12, 6), ..., (0, 9, 12) for HOCI and (0, 10, 11), ..., (O,
4, 14) for HCP], and (iii) the missing states are replaced, close
to the bottom of the polyad, by states with new kinds of wave
functions [e.g. (0, 0X)p(oy for HOCI and (0, 32, Q)for HCP].
Because the latter follow very closely the reaction pathway, they
have been termed “isomerization” states for HCP and “dis-
sociation” states for HOCI and HOBr in refs 18, 19, 23, 41,
and 63 in order to emphasize their role as precursors of the
isomerization and dissociation reactions. It must be emphasized
that the new states do not exist in the low-energy regime; they
come into existence rather abruptly at intermediate energies.

The existence of the isomerization states for HCP had been
first predicted by calculations employing a PES of limited
accuracy?*%5Inspired by this prediction, Ishikawa et‘@lhave
searched for these states and indeed found a series of states,
which could not be assigned in the way the other levels were
assigned. Moreover, these states showed a large anharmonicity
and had unusually large rotatiorg) constants, just the criteria
typical for the isomerization staté%The subsequent calculations

with the more accurate PES unambiguously confirmed that the

Figure 3. Wave functions of HOCI at low energies,, v>, andus are levels found by the experimentalists are the predicted isomer-

the HO stretch, the bend, and the OCI stretch quantum numbers,. fi tateds
respectively. State (0, 6, 0) is at the bottom and state (0, 0, 12) marks'Zation sta e, : . .
the top of the polyad [0, 12]. Energy normalization is such thatrigO( Systematically analyzing the wave functions from the bottom

+ Cl corresponds t& = 0. For orientation, the potential energy surface  Of the well up to high energies clearly shoWwsw the polyad
is shown in the upper left panel. Reprinted, with permission of the structure changes. However, it does not give a elhg these
American Institute of Physics, from ref 23 (copyright 2000). changes happen. Explanations are provided by classical periodic
orbits (PO) and their bifurcations in the classical phase space,
numbers, with thecaveatthat the overtones of the slow mode  which will be the topic of the next section.
(the top state in each polyad) are no longer associated with  Before concluding this section, it is, however, worth mention-
motion exclusively along the reactive coordinate but have ing that the existence of the horseshoe-type and the isomeriza-
acquired a nonnegligible contribution from the fast mode. [The tion/dissociation-type states in the same polyad create a problem
quantum numbers for HOCI and HOBr avg = OH stretch of assigning these states. For the polyad [0, 30] shown in Figure
(coordinater), v2 = bend {), andvs = OCI/OBr stretch R).] 4, for example, one is tempted to describe two different states
Although the coordinates involved in the Fermi resonance are g5 the 30th overtone of the reactive mode, two states as the
different for HCP, the wave functions of HCP at intermediate combination with 28 quanta in the reactive mode and 1 quantum
energies are very similar to the wave functions shown in Figure in the fast one, and so on. To solve this ambiguity, we could
3, with the difference that is the fast coordinate ang the have chosen, as for the distinction of normal and local states,
slow one. In contrast to HOCI, the HCP wave functions are to use square brackets [...] for assigning the isomerization/
symmetric with respect to the origin of the angular axis. [The dissociation states and parentheses (...) for assigning the states
quantum numbers for HCP arg = HC stretch (coordinat®), belonging to the normal progressions, which evolve in a regular
v2 = bend ), andvs = CP stretch(.] manner from the low-energy regirf&.58 We instead add either
Continuing to considerably higher energies, severe changesan “I” (for “isomerization”) or a “D” (for “dissociation”) as an
of the wave function structures become apparent. Figures 4 andindex in order to specify that this state belongs to the new
5 depict the complete sets of wave functions for polyadP] progression, which follows the reaction pathway.
= [0, 30] of HOCI and [Q 32] of HCP, respectively. They are . . . . o .
centered at about 17 200 ciifor HOCI and 19 500 cmt for . Classical Mechamcs P_omt of View: Periodic Orbits
HCP. The state at the top of the polyad for HOCI, (0, 0, 30), and Saddle-Node Bifurcations
still displays the horseshoe-shaped wave function discussed The purposes of this section are (1) to emphasize the role of
above, the horseshoe being, however, more pronounced andtable periodic orbits (POs) as backbones of quantum mechanical
narrower than in Figure 3. This means that o= 30 the fast wave functions, (2) to emphasize their role in assigning quantum
coordinate contributes more to the underlying motion than the states, and (3) to demonstrate that the birth of the new quantum
reactive one, although a naive progression-type assignmentstates, phenomenologically described in section 2, is related to
would still describe this state as the 30th overtone of the slow the existence of saddle-node bifurcations in the classical phase
reactive mode. The same holds for HCP, too. The assignmentspace.
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Figure 4. Wave functions for HOCI in polyad [0, 30]. Energy normalization is such thatri)&{ Cl corresponds t& = 0. The upper left panel
is the bottom of the polyad and the lower right panel marks the top of the polyad. Reprinted, with permission of American Institute of Physics, from
ref 23 (copyright 2000).

Periodic orbits, i.e., closed classical trajectories on which the tempted to identify POs with normal modes. However, because
molecule remains for an infinite tin¥#%"1 are essential for  of the increasing coupling the dynamics rapidly becomes more
understanding the structure of the classical phase $pat@ne complex as the energy increases. Consequently, if one puts more
distinguishes between stable POs and unstable ones. If aenergy in one mode, then part of it is transferred to the other
trajectory is started close to a stable PO, it remains close to itmodes and the resulting trajectory is usually not a PO.
for all times, even if the trajectory is not periodic. In contrast, Nevertheless, in integrable systems or systems close to an
trajectories launched in the vicinity of an unstable PO depart integrable one, the fundamental POs, i.e., those found at lower
exponentially from it. Loosely speaking, each stable PO is at energies, persist to higher energies, even though they may
the center of an independent subspace of the total phase spacgradually change their shapes as a consequence of the energy
that defines a distinct type of motion, whereas unstable POstransfer between the modes.
separate different subspaces. Finding POs for a system with The major difference between normal modes and POs
more than two degrees of freedom is not simple, principally concerns their numbers as energy is increased: While, for a
because the strong coupling among the degrees of freedom undetriatomic molecule, there are always three normal modes, the
normal circumstances introduces large instabilities. Several number of stable POs can be, as a consequence of bifurcations
numerical methods have been proposed for solving this in particular saddle-node (SN) bifurcations, larger. Saddle-node
problem?3-75 In our work we use shooting methods, which (or tangent) bifurcations are discontinuities of the classical phase
convert the problem of finding POs to an initial value space, where a stable and an unstable PO are created simulta-
problem: One chooses initial values for a trajectory, integrates neously?332:33.69.7T'hjs is illustrated in Figure 6, which shows
Hamilton’s equations of motion for a given time, and compares the Poincaresurfaces of section of a two-dimensional model
the initial and final positions in the phase space. If the difference for HOCI at different energies (measured with respect to the
is unacceptably large, the initial coordinates and momenta andenergy of the quantum mechanical ground stétéjere, only
additionally the integration time are modified. the two lowest energies are relevant. In these representations

Just above the minimum of the PES the normal modes and POs appear as single points, because the PO crosses the surface
the stable POs coincid&7 This means that if one puts a small  only one time during each period. At 12 500 chni.e., just
amount of energy in a particular normal mode and lets the below the first SN bifurcation, there are only three POs, labeled
system evolve, the energy remains in this mode forever and[R], [y], and [r] (the latter one cannot be seen in this surface).
the trajectory, which the system follows, is a stable PO. However, at the slightly higher energy of 13 000 ¢inabove
Moreover, there exist no other POs beside those obtained bythe first SN bifurcation, the structure of the phase space has
depositing the energy successively in each normal mode. In view qualitatively changed and there exists now one extra PO, which
of this one-to-one correspondence at very low energies, one isis labeled [D]. The SN bifurcation and therefore the birth of
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Figure 5. Wave functions for HCP in polyad [0, 32]. State (0, 32, 0) is at the top of the polyad and state (0, B#&rk3 the bottom. For
orientation, the potential energy surface is shown in the first row.

the new type of PO occurs at a particular energy. As energy is ¢ depict, in two different representations, the wave function for
increased, the stability area around the [D] PO first becomes state (0, 24, 0). This state belongs to the progression, which at
larger. low excitations is aligned along the reaction coordinate, i.e.,
At this point, it is necessary to strongly emphasize that, when the angley. Due to the mixing with the fast mode, [r] in HCP,
normal modes and POs begin to deviate, the quantum mechanit becomes significantly curved at higher energies and avoids
ical dynamics follows the POs. This applies to the principal the isomerization path. The corresponding PO, termed [B],
families of POs as well as to those created at SN bifurcations. shows exactly the same behavior. The quantum nunaber
Normal modes eventually cease to influence the quantum wavesimply counts the number of nodes along the [B] PO. Panels b
functions, simply because their definition becomes unrealistic and d depict an example of an isomerization state, i.e., those
with increasing energy. Periodic orbits, on the other hand, states that do not exist at low energies and that are born at
continue to be the building blocks of quantum dynamics up to intermediate energies. It stretches along the isomerization path
high energies. Within classical mechanics they are exact objects;and so does the PO, called [SN1] here, which belongs to the
their calculation does not require any approximation of either family that is born at the first saddle-node bifurcation. The same
the kinetic energy or the potential. Formulated in the language general picture holds for HOCI and HOBr; examples for HOCI
of spectroscopy, this means that a set of quantum numbersare given in Figure 11 of ref 23.
assigned to a given state does not indicate the amount of energy Thus, the “new” quantum states born at intermediate energies,
put in each normal mode, as it is sometimes understood, butwhich we called isomerization states for HCP and dissociation
instead indicates the amount of energy traveling along the setstates for HOCI/HOBY, are scarred by the saddle-node POs. The
of stable POs. In order for assignments to be meaningful, it is birth of the SN trajectories occurs at a specific energy. In
not sufficient to just quote the quantum numbers; it is equally quantum mechanics, on the other hand, the new type of wave
important to visualize the POs, which structure the classical functions comes into existence in a more gradual manner, as

phase space. illustrated in Figure 8 of ref 23 for HOCI and Figure 10 of ref
The “scarring” of quantum mechanical wave functions by 19 for HCP.
stable POs has been amply demonstrated in the liter&tre80 The close correspondence between quantum mechanical states

Some examples for HCP are shown in Figure 7. Panels a andand POs is further illustrated in Figure 8 by showing for HCP
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Figure 6. (y, p,) Poincafesurfaces of sections at different energies & 4.0
for a two-dimensional model of HOCI; the HO bond distance is fixed '

at the equilibrium value of the dissociated OH fragment. The black 3.0

dots indicate the various stable periodic orbits (PO). [R] gridafe . . . . . .

the two fundamental POs associated with the slow and the fast degrees 25 3.0 35 40 25 3.0 3.5 4.0
of freedom, respectively. [D] is the stable PO born at the first saddle- r [ao] r [ao]

node (SN) bifurcation, which scars the dissociation states at intermediate
energies. [DD] is another stable PO born at a second SN hifurcation, Figure 7. Examples of wave functions and classical periodic orbits
which takes place close to the dissociation thresholg] &hd [4y] for HCP. Reprinted, with permission &nnual Reiew of Physical
are the stable POs obtained fropj ffter one and two period doubling ~ Chemistry from ref 19 (copyright 1999).
bifurcations, respectively; they are not discussed in this article. See ref
63 for more details.

isomerization states. The same feature has also been observed
the classical continuation/bifurcation (CB) diagram (lower panel) in a two-dimensional model of HOCI (see Figures 1 and 4 of
and its quantum mechanical analogue (upper panel). Plotted argef 63). One might surmise that, at still higher energies, more
the frequencies of the POs for the slow, [B], and the fast, [r], and more saddle-node bifurcations occur, which give birth to
mode as well as the SN mode, [SN1], [SN2], etc., as functions an increasing number of stable POs, which stretch further and
of energy. Such a CB diagrd#$2is quite convenient for getting  further along the reaction pathw&yHowever, these successors
an overview of the structure of the phase space and the differentof the SN POs are very difficult to find, because the classical
families of periodic orbits and how they behave as a function phase space becomes more and more chaotic with increasing
of energy. In the quantum mechanical part of the figure, the energy.
energy separations between the neighboring states of a given
progression are depicted. The isomerization POs and the|v. The Semiclassical Mechanics Point of View: Analysis
corresponding quantum states advance along the reactionof an Effective Hamiltonian
coordinate, i.e., the coordinate with the largest anharmonicity.
As a consequence, the corresponding frequency curves exhibit The goal of this section is to demonstrate that (1) effective
the largest negative gradient. The large anharmonicity of the (or resonance) Hamiltonians, often used by spectroscopists to
isomerization states is the primary cause for the complexity of fit spectra, are able to reproduce the results of exact quantum
the energy-level spectrum at intermediate and higher energiescalculations over very broad energy ranges (including SN
in Figure 1; the polyads fos, = v1 = 0 begin to overlap, and  bifurcations) and (2) that the semiclassical analysis of these
this overlap becomes more and more severe with energy. AHamiltonians provides elegant interpretations of even the most
plot similar to Figure 8 exists also for HO&. subtle features observed in the quantum mechanical spectra in

In the same manner as the Fermi resonance deflects the slowterms of classical quantities.

mode POs and wave functions away from the reaction pathway, In contrast to the exact quantum and classical mechanics
higher-order resonances, whose importance increases withapproaches, which are based on global PESs, the resonance
energy, might deflect the saddle-node POs and prevent themHamiltonian incorporates severe assumptions regarding the
from further advancing along the reaction coordinate. An intramolecular energy flow: It assumes that all of the couplings
illustration thereof is indicated in Figure 7, panel d. This are negligible, except for the Fermi resonance between the fast
deflection away from the reaction path, however, is again (f) and the slow (s) modes, whose fundamental frequencies are
balanced by the appearance of another stable PO named [SN2jn near 1:2 degeneracy. For a triatomic molecule with a third,
at a second saddle-node bifurcation (Figure 8). The [SN2] PO almost uncoupled mode (u), the resonance Hamiltonian in its
replaces the [SN1] PO as the backbone for the quantum classical version is written in the form
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harmonic oscillator basis, each block corresponding to a different
polyad [, P]. Stated in other wordsy, andP are exact quantum

1300 ¢ @ @ .
Ceely . ®e ©((;’P’O) (a) | numbers in the resonance Hamiltonian approach, in contrast to
(0,0P/2) " * Lt ®e0 the exact quantum approach, where, because of the nonnegligible
= 1100 ® : 0w, coupling between polyads, they are only approximately good
= ® guantum numbers.
S g00b (0,P,0); o The resonance Hamiltonian satisfactorily reproduces the exact
guantum mechanical energies within a fewéraver very broad
Lé' o energy ranges (for example, up to more than 97% of the
700 | ) - dissociation thresholB®, for HOCI), several hundreds of states,
: . and tens of quanta in the slow mode (see Tabi#434'Even
500 \ . ‘ more important is the fact that the wave functions and all their
0 0 0 30 10 subtleties are also qualitatively reproduced by the Fermi

1300

resonance Hamiltonian. Examples for HOCI are depicted in
Figure 9. In particular, the wave functions of the dissociation
states and their ordering inside the polyads are correctly
described. This is also true for HOBr and HCP (see, for example,
Figure 1 of ref 41). The good qualitative agreement underlines
that the Fermi resonance, the only coupling term in the

—- 1100 7 resonance Hamiltonian, is the principal cause for the saddle-
T node bifurcations and therefore of the complexity of the quantum
g 000 i mechanical spectrum.
s There is, however, one little problem associated with the
A resonance Hamiltonian approach: Since the resonance Hamil-
~00 tonian cannot be decomposed into a kinetic energy term and a
potential, the relation between the generalized coordinates (
500 . J Os ) and the real coordinates of the molecule, e.g., the Jacobi

E [eV]

coordinates R, r, v) is not unambiguous. Nevertheless, for
HOCI, for example, the slow-mode coordinagchas predomi-
nantly OCI stretch character. It should not be overlooked that

Figure 8. (a) Energy differences between neighboring states of the the wave functions from the effective Hamiltonian have, by
threet progreszgs%@,b(l)), IE%' ?’P/Z)'tr?”d (0"?' O) Verﬁus.pol'yad X construction, a symmetry, which is not real. However, these
quantum numbeP. The black dots are the quantum mechanical results, . . :
whereas the open circles indicate the experimental values. (b) Theshortcomlngs do r.wt restraln the usefulngss of this approach.
frequencies of the various families of periodic orbits as functions of VW€ shall now briefly describe the dynamics of the resonance
the energy. Reprinted, with permissionAfinual Reiew of Physical Hamiltonian, before showing how this knowledge leads to an
Chemistry from ref 19 (copyright 1999). understanding of the details of the quantum mechanical observa-
tions. It is convenient to make a linear transformation from the
H=Hp+ He sets of conjugate coordinatek, (p;) defined in eq 3 to new

sets §, ), such that
HD:.Z wi|i+zxiililj+Zyijkliljlk+--- 0i, )
i=fs,u B &

=1, =2+ Jy=2 4
He = 21" cos@; — 299(k+ $ kI, +..) (2
i=Ts.u for the generalized momenta and
where the K, ¢;) are action-angle-like sets of conjugate @5
coordinates built on dimensionless normal coordinapgsg() V=@ ¥Yp=%s  Yo= @s— 2 (5)

according to
for the generalized coordinates. With these new variables the

| = l(q? + p~2) resonance Hamiltonian of eq 2 is rewritten in the form
I 2 | I
g = (21)" cosg, Hp= ZO Q3+ X3+ ZYUkJiJij+
p,=—(2)"sing, ®) o v

He= Jollz(JP — Jp) €0s(2po)(K + ZD KJ+..) (6)
Hp is known as the Dunham expansion, while is the Fermi i=P0u
coupling, which describes the flow of energy between the slow o ) )
and fast degrees of freedom. The spectroscopic consiants v_w;h trivial linear relations between the spectroscopic coef-
Xij, k, ki, etc. are obtained by fitting the eigenvalues of exact ficients wi, X, Vi, k,.andk; of eq 2 and the. coefficient@;, X;,
quantum mechanical calculations (see refs 22, 25, and 41; noteYik, K, Ki of eq 6. Since eq 6 depends neitheryannor onyp,
that in Table 2 of ref 22 the numerical value fprs should ~ their conjugate momenta, and Jp are classical constants of
read 0.2503 cmi instead 0f—0.2503 cnt! and the parameter ~ Motion, which according to the EBK (Einsteirillouin—
yi23 = —0.4304 cmt has been omitted.). Alternatively, they ~Keller) semiclassical quantization rufés®® can be set to
can be determined by fitting experimental transition energies,
if available. The essential point is that the quantum mechanical
resonance Hamiltonian is block diagonal in a (direct product)

=u Y and =P+ )
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Figure 9. Wave functions for polyad [0, 30] of HOCI as obtained from the effective Hamiltonian. The coordinedages from—9.5 to+9.5,
andg, ranges from-6.7 to+6.7. Note that the underlying Hamiltonian was fitted to the quantum mechanical calculations of Peterséhwehaal.,
used a slightly different potential energy surface than the one employed by Wei$8 €hatefore, the order of the states at high energies slightly
differs from the order in Figure 4. The continuous lines in four of the panels indicate the corresponding periodic orbits (see Figure 10).

respectively, withy, and P being positive integersy, and7p

The fixed points in theJp, ¥o) space define POs in the space

depend on the degree of degeneracy of the three normalof the dimensionless coordinates, which are coupled by the

modes: 5, is equal to 1 for the three molecules HCP, HOCI,
and HOBr, whilerp is equal to 4 for HCP and to 3 for HOCI
and HOBr. The only nontrivial equations of motion are those
concerning Jo, ¥0). The corresponding quantization condition
reads

1

1
=5 Joeppen 0 W0 =N+ ®)

2

whereng can be any positive or negative integer number. Stated

Fermi resonance, that igx( ps, O, gs). As long as the third
mode, u, remains essentially decoupled from the modes involved
in the Fermi resonance, these POs with reduced dimensionality
are sufficient for understanding the properties of the quantum
wave functions. In comparison with the six-dimensional POs
obtained from the exact classical mechanics study using the full
PES, the semiclassical POs are determined for a particular pair
of quantum numbers, andP, i.e., for a particular polyad,

P], instead of just the energy. Examples for the polyag P]

= [0, 30] of HOCI are plotted in Figure 9 on top of the wave

in other words, the classical resonance Hamiltonian in eq 6 canfunctions obtained from the effective Hamiltonian.
be considered as an effective one-dimensional problem in the  \yhy are the isomerization and dissociation states found at

variables {o, ¥0), with coefficients depending parametrically,
through eq 7, on the particular polyad.

The cornerstones of the subsequent analysis ardixbd
pointsof this Hamiltonian, that is, according to the Hamilton’s
equations of motion, those points which satisfy

OH_ oH _

0y vy 0

(9)

the low-energy ends of the polyads? Plotting, for given values
of u,, the energies of the POs as a function of the polyad number
P, which in principle can be any real number, provides an

immediate answer (Figure 10). The energies of the quantum
states for a particuld® (30 for HOCI in the figure), aligned on

a vertical line, are always confined to the region between the
two stable POs with the lowest and the highest energy. For low
values of P, there exist only two stable POs, which are
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(a) HCP There are further essential observations explained by the
——— . semiclassical approach. For example, how can one understand
that the increase of the number of SN states is counterbalanced
500 B] 1 by a decrease of the number of states belonging to the normal
-~ E— L I— progression? A plot of the action integrahs function of energy
5 o T 1 E as well as polyad numbéd? provides an answer. In Figure
o e A ———_ (SN] 11 we depict for HOCI a sequence ¢{E) for four different
g 500 - 8 values ofP; v, = 0 in all cases. The action integral for the
@ 19 lowest polyad, located below the value®fvhere the saddle-
1000 F . . node bifurcation occur®sy, consists of a single branch, which
e extends between the two stable POs found at this energy.
0 s 0 15 20 25 30 According to the semiclassical quantization rule in eq 8, the
polyad number P quantum states correspond to half-integer valueg ahd are
indicated by the black dots. This single branch supports the states
(b) HOCI tF))eIonging to the normal progressions, which are found below
SN-
1000 T ' As P increases and approacts, from below, a point with
G sNe.[D increasingly larger derivative develops in the ploti¢E) (see
= 500 \ P =21 in Figure 11). Just at the bifurcation, two developments
"g of i PDg > are observed. First, the derivative becomes infinite and the single
w sool e @) branch splits into two, which further and further separat® as
? } increases. This discontinuity arises at the energy ofitigtable
$ -1000F 9 PO (labeled by [D*]), which is born at the bifurcation
simultaneously with the new stable PO (labeled by [D]). Most
s s L importantly, these two branches still support only states belong-
20006 . oL ing to the normal progression, and the semiclassical quantization
0 5 10 15 20 25 30 35

rule in eq 8 applies to each branch separately. As the ggp in
between the two branches becomes larger, it encompasses an
increasing number of half-integer values, with the result that
more and more members of the normal progression disappear,
absolute energies. The heavy dots marked SN indicate the saddle-nodglmply because eq 8 has no rea.l solution for these Val.ua@ Of,
bifurcations, and PD for HOCI marks a period doubling bifurcation.  The second phenomenon, which takes place at the bifurcation,
Stable periodic orbits are indicated by the solid lines, while unstable is the appearance of a new branch with positive valugg [,
periodic orbits created at the saddle-node bifurcation or emerging from which extends between the energies of the two POs born at the
the period doubling bifurcation are indicated by the dashed curves and pjfyrcation, the stable PO and the unstable one Bsee24 in
by the asterisks, e.g., [D*]. The vertically arranged dots for HOCland pi e 11). In contrast to the two other branches, this one
P = 30 indicate the quantum mechanical energy levels. In both cases,supports the members of the new progression of d}ssociation
w=un=0 states, indicated by the open diamonds. FAsncreases, this

. ) . branch extends further and further and the semiclassical
associated with the slow (highest energy) and fast (lowest q,antization rule ensures that a member of the new progression
energy) modes, respectively. However, above the first SN g created each time the new branch encompasses an additional
bifurcation (the corresponding values Bfare listed in Table half-integer value of7 At last, it should be noted that there
1) there exists a third stable PO, which scars the isomerization/qyists a given ener(:jy range where the two branches coexist at
dissocia_tion states_and is named, according to the classicakhe same energy. This energy range extends from the unstable
mechanics calculations, [SN] for HCP and [D] for HOCl and - pg o at the bifurcation down to either the stable PO born at
HOBr. Although the stable PO appearing at the saddle-node e pifurcation or the stable PO associated with the fast degree
bifurcation is born inside the classically accessible range, ¢ freedom, depending on which one is higher in energy. Since
because of the large anharmonicity its energy quickly drops gne pranch supports members of the normal progression and
below the energy of the PO, which is associated with the fast {he other branch members of the new progression, the two
degree of freedom. The same development occurs in theyroqressions overlap at the bottom of the polyad. There are even
quantum mechanical spectrum, i.e., the isomerization/ dissocia-finer details revealed by the semiclassical approach, which are
tion states, which are also born inside the polyad, rapidly move 5159 seen in the exact quantum wave functions; they are partly
to the lower end of the polyad (a clear illustration thereof is 5,5ed by the occurrence of a period doubling bifurcation
provided in Figure 10 of ref 19). The net result is that states slightly above the SN bifurcation (Figure 10 afd= 30 in

stretching mainly along the reaction pathway, which due to the Figure 11). However, because of lack of space the reader is
mixing with the fast mode have disappeared from the top of \sferred to the original literaturg:41

the polyads, reappear at the bottom as a consequence of the

SN b|fur_cat|0n_s. Alth(_)ugh_th|s m_|ght seem, _from the quantum V. Some Notes on Vibrational Chaos

mechanical point of view, like a simple crossing due to the very

different anharmonicities, the classical and semiclassical pictures The purpose of this section is to discuss briefly the question

illustrate that, because of the Fermi resonance, this is a quiteof vibrational chaos and particularly to emphasize that for highly

involved process; it requires, first, a saddle-node bifurcation to excited small molecules classical and quantum mechanics do
take place and, second, that the stable PO born at this bifurcatiomot necessarily agree when describing a system as “regular” or
advances along the reaction pathway and thus becomes the low*chaotic”. A more thorough discussion of chaos, concerning

energy boundary of the classically accessible phase space. HOCI, can be found in ref 63 and the references therein.

polyad number P

Figure 10. Energies of the periodic orbits (PO) as functions of the
polyad numbelP with respect to the energy of the PO corresponding
to the fast mode ([r] for HCP ang/] for HOCI). The insets show the
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Chaos in classical mechanics is well-defined: A region of  Alternatively, one can examine the nodal lines of quantum
the phase space is chaotic if two neighboring trajectories wave functions. Indeed, when increasing the energy, one usually
launched in this region separate exponentially. There exist observes a change in the nodal structure, from a regular pattern
several reliable methods for checking and visualizing chaos, of intersecting nodal lines to an irregular structure with
for example, the computation of Lyapunov exponents and the apparently no crossing of nodal lines. However, PecHitkes
plot of Poincafesurfaces of section. The notion of “quantum shown that one cannot decide on the basis of this observation
chaos” is less well-defined. It relies on the proposition made alone, whether the change is due to the underlying chaotic
by Percivat’88that the bound-state energy spectrum might be classical dynamics or due to an increase of the nonseparability
divided into two parts, a regular and an irregular one, which of the system, which is not at all related to chaos. On the other
would correspond, respectively, to classical regimes of integrable hand, the opposite observation that most wave functions have
and chaotic motions. The notion of an irregular (or chaotic) a sufficiently clear nodal pattern should be considered as an

spectrum indicates that the underlying classical chaotic motion jngication for the underlying classical dynamics to be principally

has a hallmark in the quantum mechanical properties of the reqy|ar.

system. . . .
It has been suggested that the distributions of the level . Let us test this idea by a two-dimensional model for HOCI

. . . . n which the HO bond length is frozen. As discussed in ref 63,
spacings, like the nearest-neighbor level spacing or the spectra’[he quantum spectrum and wave functions closely resemble
rigidity3-69.89.9%for example, distinguishes regular and irregular

spectra. These tests are, however, of little help for the systemsthose of the full three-dimensional calculation for= v; = 0.

studied in this article because of three reasons. First, the numberThe structure of the classical phase space for the 2D model is

of states is still too small, so that most distributions are obscured!"us.trated by Pomcareurfacgs of section (SQS’.S) displayed
by noise. Second, all the tests rely on the assumption that the!l Figure 6 for several energies. If the dynamics is regular, the
density of states remains nearly constant in the investigatedMotion is confined to a torus and the trajectory cuts the section
energy window, whereas this is not the case when an isomer-I" One or several closed curves. In contrast, areas filled with
ization saddle or a dissociation limit is approached. As a randomly.dlstrlbuted points |nd|caFe that tori no Ionger. existin
consequence, the results depend sensitively on the particularthese regions and that the dynamics is chaotic. Examination of
procedure for unfolding the spectra. However, even if one would the SOS'’s aE = 13 000 and 14 000 cm shows that the saddle-
find numerical tricks for solving these problems, a major Node bifurcation, where the dissociation PO ([D]) is born, plays
objection would still hold: The degree of (quantum) chaos of @ fundamental role in the onset of chaotic motion; the first
a system can be estimated by how its spectrum evolves from aextended region filled with chaotic trajectories clearly develops
Poisson to a Wigner distribution as energy increases. The around the unstable PO created at this bifurcation together with
spectrum of a triatomic molecule with a hydrogen atom (and the stable PO [D]. AE = 17 000 cm?, the largest part of the
consequently one fundamental frequency much larger and fairly phase space is already chaotic an&at 18 500 cn*, which
decoupled from the two other ones) is, however, neither Poissonis about 800 cm! below the dissociation threshold, all of the
at low energies nor Wigner at high energies, so that no firm regular regions have disappeared, except for a very thin crescent
conclusions can be drawn from the examination of level-spacing around [R] and an even smaller, almost indistinguishable island
distributions. Thus, statistical arguments fail to give a clear-cut around [DD]. Also this last pocket of regularity eventually
indication regarding the (ir)regularity of a spectrum, especially vanishes, around 18 800 ci#y and the SOS’s henceforth look
for the systems discussed in this overview. totally chaotic.
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The finding that close to the dissociation threshold the entire resonance leads to a period-doubling bifurcation at low energies,
classical phase space is chaotic, which is intuitively expected, whereas a weaker resonance leads to a SN bifurcation only at
is in contrast with three observations made in the quantum higher energies. Since the older stud®&¥% 117 were based on
mechanical analysis of the 2D model. First, the nodal lines of model Hamiltonians fitted to a relatively small number of
nearly all the wave functions up to the dissociation threshold experimentally observed transitions, it is not surprising that
are sufficiently regular to allow an unambiguous assignment. systems with a strong, and therefore easy to detect, resonance
Second, the quantal SOS’s based on Husimi distribution were focused on. Our ability to clearly identify SN bifurcations
functions are much more regular than the classical ones (seen the vibrational dynamics of HCP, HOCI, and HOBr, for which
Figures 6 and 7 of ref 63). The Husimi functions are constructed the Fermi resonance is much weaker than for, QC&, and
with the help of the exact quantum wave functions. Last, but the substituted methanes, relies on the fact that we were able to
not least, the ability to reproduce the ab initio quantum energies compute and investigate very large sets of quantum states, up
and wave functions with a fully integrable Hamiltonian up to to extremely high energies.

400 cn1! below the dissociation threshold with an error of only The only molecule up to now, for which an SN bifurcation

a few cntt clearly suggests that, from the quantum point of has been unambiguously detected, is HE&.Another mol-
view, the nonintegrable part of the Hamiltonian is merely a small ecule, which shows a SN bifurcati®i and for which a large
perturbation around a basically integrable system, even in the nymber of states have been meastirad well as calculate?,

case where classical chaos is fully developed and occupies allis DCO. The progression born at the SN bifurcation is the DC
the available phase space (see also ref 92). The same discussiogtretch mode, i.e., the dissociation mode. Since the dissociation
and conclusions also hold for HCP and HOBr (see Table 1) energy is unusually small, this progression is very short and
and HCN/CNH3! From the mathematical point of view, this  therefore the effect of the SN bifurcation on the spectrum is
disagreement between classical dynamics (chaos) and quanturot pronounced.

dynamics (regularity) indicates that these triatomic molecules , yis article we only discussed the spectra with no excitation
are not “semiclassical” or, in other words, that the system sitill in the uncoupled mode, i.ghe CP stretch in HCP and the HO
does not approach the mathematical lifait> O, despite the  getch in HOCI and HOBr. Although these modes are only
fact phat nearly forty quanta of energy are deposited in the weakly coupled to the Fermi resonance modes, they do have a
reactive mode. noticeable influence on the spectra and the appearance of the

] ] SN states. For more details see refs 41 and 65 for HCP and for
VI. Discussion HOCI.

That changes in the classical phase space structure may leave There are a few recent studies that generalize the results
a clear fingerprint in the corresponding quantum mechanical presented here. First of all, some systems, like wéteféthe
spectrum is certainly not new. Many previous studies have bending vibrations of acetylert€?*30or DCO/3! require that
indeed focused on the changes in spectra induced by the normalat least two resonances be taken into account for a correct
to-local bifurcatior?37.:3893106 As emphasized earlier in this description. Although somewhat more tedious than for molecules
article, the condition for a bifurcation to take place is that at With a single prominent resonance, the dynamical investigation
least two modes are coupled by a systematic nonlinear off- of such systems is still possible, as shown by Sibert and
diagonal resonance. It must be emphasized that an accidentaMcCoy*3? and Jacobson et & for the bending vibrations of
near degeneracy of some pairs of states, which is absolutelyacetylene and Jung et & for CHBrCIF. Moreover, the
unavoidable, does not lead to systematic changes of the spectrunqlescription of the reactive mode in terms of harmonic oscillators
over wide regions of energy (see, e.g., HCO and refs 27 andbecomes insufficient for energies substantially higher than those
107). discussed here. Jacobson and CH#éP® have solved this

The most frequently encountered couplings are the 1:1 diﬁicullty in the case of HCP by describing the bgnding mqtion
Darling-Denniso#® and the 1:2 Ferrf#55 resonances. The @S an internal rotor. Th_ey have sh_own that Fhe investigation of
dynamics induced by these two generic resonances has bee,t,he_quantum and classical dynamics of the interaction betvx_/een
studied in detail by Kellman and co-workers in a long series of @ hindered internal rotor mode and a stretch mode provides
articles?:8.109-113\where the connection with mathematical tools additional and original information on the bond-breaking internal
such as the catastrophe map and the theory of elementaryotation of HCP.
bifurcations is nicely discussed and illustrated, and more recently At last, it is interesting to note that SN bifurcations are not
by Joyeuxt4-117 A nonexhaustive list of the molecules for only observed in systems with few degrees of freedom but also
which the 1:1 Darling-Dennison coupling plays a fundamental in infinite one-dimensional systems. Sievers and Tak&no
role includes wate® ozone®” the CH stretches of acetylefie,  originally noticed and MacKay and Aub¥f and Aubry=°
hydrogen sulfidé® DCO282°and SQ.118 While the dynamics proved that spatially localized motion periodic in time, called
of DCO is governed by a SN bifurcatidfy all of the other discrete breathersexists in infinite periodic lattices with
molecules experience a normal-to-local bifurcation at low nonlinear terms and with conditions close to the decoupled limit.
energies. These results have been recently extended to one-dimensional

Prior to our analysis of phosphaethyne (HCP), hypochlorous chains of random anharmonic oscillators by Kopidakis and
acid (HOCI), and hypobromous acid (HOBr), the Fermi Aubry4141They have constructed CB diagrams and showed
resonance was shown to have a fundamental influence on thehat the discrete breathers are associated with POs originating
spectra of carbon dioxidf&t?119-121 carbone disulfidd22-125and from SN bifurcations.
the CH chromophore in substituted methanes (HCXr a
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