Acyclic N₁₀ Fails as a High Energy Density Material

Douglas L. Strout

Department of Physical Sciences, Alabama State University, Montgomery, Alabama 36101 Received: August 17, 2001; In Final Form: October 12, 2001

A molecule is a good candidate for a high energy density material (HEDM) if it reacts to release large amounts of energy but resists dissociation and/or isomerization well enough to serve as a stable fuel. Recent theoretical studies have suggested that acyclic N₈ is not a good candidate for HEDM but acyclic N₉ is. To determine a possible trend among acyclic all-nitrogen molecules, theoretical calculations are carried out on an acyclic isomer of N₁₀. The potential energy surface has been calculated for the dissociation reaction N₁₀ \rightarrow N₈ + N₂, and barriers to that reaction have been calculated using Hartree–Fock theory, perturbation theory, and coupledcluster theory (CCSD and CCSD(T)). The Dunning correlation-consistent basis sets are employed, and basis set effects on the N₁₀ dissociation barrier are discussed. The CCSD(T) results indicate a barrier of approximately 17–18 kcal/mol, which is too low for an HEDM. The acyclic N₁₀ would dissociate easily, resulting in an N₈ molecule that would also dissociate easily. Acyclic N₁₀ fails as a candidate for high energy density material.

Introduction

Molecules containing only nitrogen atoms have come under recent scrutiny as candidates for high energy density materials (HEDM). The idea is a simple one: any all-nitrogen molecule N_x could dissociate to very stable N_2 molecules, a process that would be expected to be very highly exothermic. Such a reaction, with N_x molecules as a starting material, would release more than 50x kcal/mol of energy.^{1,2} The difficulty lies in finding all-nitrogen molecules that are metastable enough to serve as stable fuels. It has been suggested that a molecule should have barriers to decomposition and isomerization of at least 30 kcal/mol in order to be considered a viable candidate for HEDM.³

Tetrahedral N₄ and cubic N₈ have been examined^{4–7} through theoretical calculations and have been found to have reaction barriers that are too low for these molecules to be considered as HEDM. Other N₈ isomers with rings and linear chains have been studied³ and have also been found to decompose and/or isomerize below the 30 kcal/mol threshold. Also, a study¹ has been carried out on N₈ isomers that are likely reaction products of an addition reaction between the well-known azide ion N₃⁻ and the recently synthesized N₅⁺ cation.⁸ None of those reaction products was found to hold any promise as viable HEDM, again due to low reaction barriers. However, a recent study⁹ of neutral and cationic N₉ linear chains indicated that neutral, acyclic N₉ may be a promising candidate for HEDM.

In the current study, acyclic N_{10} is examined through the use of theoretical calculations to determine the barrier to the dissociation reaction $N_{10} \rightarrow N_8 + N_2$. In light of the previous results that acyclic N_8 fails as HEDM but N_9 may be a candidate, it becomes necessary to determine if a trend exists among the acyclic N_x molecules. Do the large acyclic N_x have promise as HEDM? Is N_9 a sort of threshold molecule that opens the door to viable N_x HEDM? These questions are addressed by the current study. The $N_{10} \rightarrow N_8 + N_2$ is chosen specifically as a focus of study because it is the dissociation process likely to have the lowest barrier, owing to the special stability of the N_2 molecule. Therefore, this reaction is the most stringent test of the metastability of acyclic N_{10} .

Computational Methods

Geometries have been optimized at the Hartree–Fock (HF) level of theory and also with second-order perturbation theory (MP2).¹⁰ Energy points have been calculated using fourth-order perturbation theory (MP4(SDQ))¹⁰ and coupled-cluster theory (CCSD and CCSD(T)).^{11,12} All geometries are optimized as closed-shell singlets, and all energy points are carried out in the closed-shell singlet electronic state. The basis sets are the correlation-consistent basis sets¹³ of Dunning, specifically the polarized valence double- ζ (CC-PVDZ) and triple- ζ sets (CC-PVTZ) as well as the double- ζ set with diffuse functions (AUG-CC-PVDZ). All calculations in this study have been performed using the Gaussian 98 quantum chemistry package.¹⁴

Results and Discussion

CC-PVDZ Barrier Heights. The structure of the N₁₀ acyclic molecule is shown in Figure 1 and has been confirmed as a minimum at the HF/CC-PVDZ level of theory. The structure has C_{2h} point group symmetry. The structure of the N₁₀ molecule has been optimized at the HF/CC-PVDZ and MP2/CC-PVDZ levels of theory, and the geometric parameters for both optimizations are shown in Figure 1. The $N_{10} \rightarrow N_8 + N_2$ dissociation transition state has also been optimized with HF/ CC-PVDZ and MP2/CC-PVDZ, and the structure of the transition state is shown in Figure 2, along with the geometric parameters from both optimizations. Single-point energies with MP4, CCSD, and CCSD(T) have been carried out for both the HF geometries and the MP2 geometries. The results with the CC-PVDZ basis set are tabulated in Table 1. The MP4//HF, CCSD//HF, and CCSD(T)//HF barriers are 16.3, 15.3, and 15.9 kcal/mol, respectively, with the HF barrier significantly lower at 10.4 kcal/mol. With the MP2 geometries, the MP4, CCSD, and CCSD(T) barriers are somewhat higher: 18.5, 17.4, and 17.6 kcal/mol, respectively. The MP2 barrier itself is substantially higher at 24.9 kcal/mol. The CC-PVDZ calculations with the MP4, CCSD, and CCSD(T) methods strongly agree on a barrier of less than 20 kcal/mol with either HF or MP2 geometries, which would indicate that the acyclic N10 does not meet the metastability criterion for a HEDM.

Figure 1. Optimized geometry for acyclic N_{10} (C_{2h} point group symmetry). HF/CC-PVDZ geometric values are indicated, with MP2/CC-PVDZ values in parentheses.

Figure 2. Optimized geometry for the $N_{10} \rightarrow N_8 + N_2$ dissociation transition state (*C_s* point group symmetry). HF/CC-PVDZ geometric values are indicated, with MP2/CC-PVDZ values in parentheses.

TABLE 1:	Reaction Bar	riers and Tran	sition State Bond
Lengths fo	$r N_{10} \rightarrow N_8 +$	N ₂ (Energies in	kcal/mol) with the
CC-PVDZ	Basis Set	- 0	

method	barrier (kcal/mol)	TS bond length (Å)	method	barrier (kcal/mol)
HF MP2	10.4 24.0	1.599	CCSD(T)//HF	15.9
MP2 MP4//HF	16.3	1.015	CCSD//MP2	17.4
CCSD//HF	15.3		CCSD(T)//MP2	17.6

TABLE 2: Reaction Barriers and Transition State Bond Lengths for $N_{10} \rightarrow N_8 + N_2$ (Energies in kcal/mol) with the CC-PVTZ Basis Set

method	barrier (kcal/mol)	TS bond length (Å)	method	barrier (kcal/mol)
HF	11.2	1.611	MP4//HF	17.4
MP2	26.2	1.614	MP4//MP2	19.2

Basis Set Effects. HF and MP2 geometry optimizations have been carried out with the Dunning triple- ζ set (CC-PVTZ). Geometries for the minimum and transition state have been optimized at the HF/CC-PVTZ and MP2/CC-PVTZ levels of theory. Energy points are only calculated with the MP4 method, since the DZ results indicate that MP4 agrees well with CCSD and CCSD(T). The CC-PVTZ results are tabulated in Table 2. Across the board, the barrier is about 1 kcal/mol higher with the TZ basis set than with the DZ set. The CC-PVTZ barrier energies may therefore be considered well-converged with respect to the basis set. If the Dunning quadruple- ζ set (CC-PVQZ) were used for similar calculations, it is likely that the energy changes between QZ and TZ would be much smaller than the tabulated changes between TZ and DZ. MP4/CC-PVTZ with HF and MP2 geometries indicates that the barrier is 17.4 and 19.2 kcal/mol, respectively, still too low for a HEDM.

The effect of additional diffuse basis functions on the barrier height is examined through the use of the Dunning augmented double- ζ basis set (AUG-CC-PVDZ). As with the other basis sets, HF and MP2 geometry optimizations are carried out with the AUG-CC-PVDZ set. The AUG-CC-PVDZ results are tabulated in Table 3. Relative to the CC-PVDZ results, the diffuse functions have the effect of slightly (less than 0.02 Å) lengthening the transition state bond length at the HF and MP2

TABLE 3: Reaction Barriers and Transition State Bond Lengths for $N_{10} \rightarrow N_8 + N_2$ (Energies in kcal/mol) with the AUG-CC-PVDZ Basis Set

method	barrier (kcal/mol)	TS bond length (Å)	method	barrier (kcal/mol)
HF	10.9	1.616	MP4//HF	15.9
MP2	24.8	1.631	MP4//MP2	17.9

levels of theory, but the MP4/AUG-CC-PVDZ barrier heights are not substantially different from the corresponding CC-PVDZ barriers.

Conclusion

The calculated energetic barriers for the $N_{10} \rightarrow N_8 + N_2$ are less than 20 kcal/mol with both MP4 and CCSD and CCSD(T), and basis set effects are relatively small. The N₁₀ linear chain is therefore not a viable candidate for a HEDM, a result that follows the previous conclusion that acyclic N₈ is not an HEDM. Linear chains larger than N₁₀ are also not likely to have high barriers because those molecules can also dissociate an N₂ molecule from the end of the chain, probably with a low dissociation barrier. Why, then, does N₉ stand as a candidate for HEDM, as previously suggested? It should be noted that the N₉ study⁹ cites the barrier for N₉ dissociation as the N₉ \rightarrow $N_6 + N_3$ barrier, with the chain losing N_3 rather than N_2 . The barrier for N₂ loss from N₉ is likely lower than the barrier for N_3 loss. If, in fact, acyclic N_9 loses N_2 with a high barrier, then there may be an odd-even alternation in the N₂ loss barriers of N_x linear chains. From the N_{10} results and the previous N_8 results, it may be supposed than any even-numbered chain could easily lose an N₂ molecule from the end of the chain, although further calculations would be required to verify this.

Acknowledgment. The Alabama Supercomputer Authority is acknowledged for a grant of computer time on the Cray SV1 in Huntsville, Alabama. The taxpayers of the state of Alabama are also gratefully acknowledged.

References and Notes

(1) Fau, S.; Bartlett, R. J. J. Phys. Chem. A 2001, 105, 4096.

(2) Tian, A.; Ding, F.; Zhang, L.; Xie, Y.; Schaefer, H. F., III. J. Phys. Chem. A **1997**, 101, 1946.

- (3) Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A 2000, 104, 5647.
 - (4) Yarkony, D. R. J. Am. Chem. Soc. 1992, 114, 5406.
- (5) Gagliardi, L.; Evangelisti, S.; Widmark, P. O.; Roos, B. O. *Theor. Chem. Acc.* **1997**, *97*, 136.
- (6) Gagliardi, L.; Evangelisti, S.; Bernhardsson, A.; Lindh, R.; Roos, B. O. Int. J. Quantum Chem. 2000, 77, 311.
- (7) Schmidt, M. W.; Gordon, M. S.; Boatz, J. A. Int. J. Quantum Chem. 2000, 76, 434.
- (8) Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem., Int. Ed. 1999, 38, 2004.
 - (9) Li, Q. S.; Wang, L. J. J. Phys. Chem. A 2001, 105, 1203.
 - (10) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
 - (11) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.

(12) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F., III. J. Chem. Phys. 1988, 89, 7382.

(13) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.

(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.