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Two simplified models of the hardness kernel,η(r ,r ′) = 1/|r - r ′| andη(r ,r ′) = δ(r - r ′), have been tested
to calculate the global hardness for a set of 18 molecules using the hybrid B3LYP functional. It is found that
the simplest model,η(r ,r ′) = δ(r - r ′), yields the best ordering of the systems by hardness when compared
to experimentally available hardnesses. However, it is worth noting that this approximation provides correct
estimates of global hardnesses only after empirical corrections. Finally, it is also shown that the B3LYP
method gives results close to conventional ab initio correlated methods.

I. Introduction

In recent years, density functional theory (DFT)1 has attracted
a great deal of attention because it provides accurate calculations
of large molecular systems incorporating electron correlation
effects at a much lower cost than conventional ab initio
correlated methods. Another important aspect of DFT, besides
computational advantages, is the fact that many common
chemical concepts, such as the electronegativity or the hardness
(and its counterpart, the softness), receive a precise mathematical
definition.1 In this respect, DFT provides a bridge that connects
some traditional empirical concepts with quantum mechanics.

Hardness2 is a measure of the resistance of a chemical species
to change its electronic configuration. Within the DFT formal-
ism, the hardness (η) is defined as the second-order partial
derivative of the total electronic energyE with respect to the
total number of electronsN at a fixed external potentialν(rb),3

This definition has been used to rationalize important chemical
reactivity principles such as the hard and soft acids and bases
principle (HSAB)2-4 and the maximum hardness principle
(MHP).2,5 By applying the finite difference approximation to
eq 1 and assuming that the energy varies quadratically with the
number of electrons, one gets the operational definition ofη:1,6-9

whereI andA are the vertical ionization energy and electron
affinity, respectively. Indeed, experimental hardnesses are not
derived from the exact eq 1 but from the approximate eq 2 and
using the available experimental values ofI and A. These
quantities can be approximated in molecular orbital calculations
by using the Koopmans’ theorem. For closed-shell species, one
obtains6

εHOMO and εLUMO being the energies of the highest occupied
molecular orbital and the lowest unoccupied molecular orbital,
respectively. For open-shell systems, an average of the HOMO-
LUMO gaps for theR andâ spins is usually taken.

Calculation of hardness from eqs 2 and 3 is subject to several
error sources,10 the most important being the fact that the finite
difference approximation in eq 1 has been used to derive eqs 2
and 3 and this approximation can only be strictly applied using
an integer number of electrons (∆N ) (1). For this reason, it
is very important to explore new ways to compute more accurate
hardness values. An alternative to eqs 2 and 3 is to use the
following expression first derived by Ghosh11 and later on
mathematically demonstrated by Chattaraj et al.:12

In this equation,f(rb) is the Fukui function andη(rb,rb′) is the
hardness kernel,13 from which most reactivity parameters in DFT
can be readily defined.14

The Fukui function1 is a reactivity index that connects the
frontier orbital concepts of Fukui15 with DFT. It was defined
in the 1980s by Yang and Parr16 as the partial derivative of the
electron density with respect to the total number of electrons at
constant external potential, that is,

The Fukui function describes the local changes in the electron
density of the system due to the perturbation in the global
number of electrons, so it reflects the character of a molecule
to accept (donate) electrons from (to) another system. For a
molecular or atomic system, the derivative in eq 5 is discontinu-
ous with the number of electrons. Because of that, Parr and
Yang16 associated different physical meanings to the left, right,
and central derivatives, corresponding to a reactivity index for
nucleophilic (f +(rb)), electrophilic (f -(rb)), and radical (f 0(rb))
attacks on the system, respectively. By applying a finite
difference approximation to eq 5, these three approximate Fukui
functions can be written as
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whereFN+1(rb), FN(rb), andFN-1(rb) are the electron densities of
the system withN + 1, N, andN - 1 electrons, respectively.
From eq 5, it can be easily demonstrated that the integration of
the Fukui function over all space equals one electron.

The other quantity required in eq 4 is the hardness kernel
that is defined as the second-order functional derivative of
Hohenberg-Kohn universal density functional (F[F]) with
respect to the density,

F[F] is an unknown and presumably very complicated functional
that contains the kinetic energy density functional, the classical
electron-electron Coulomb repulsion functional, and the ex-
change-correlation functional:

The lack of exact expressions forT[F] and Exc[F] is the main
impediment for obtaining accurate hardnesses from eq 4.
Because the leading term in the hardness kernel comes from
the Coulombic contribution,13b,17-22 the hardness kernel can be
approximated as

Introducing this approximation into eq 4, one obtains

Equation 12 was used by Liu, Proft, and Parr22 for the
calculation of the global hardness of the first 54 neutral atoms.
The authors showed that eq 12 generates reasonable atomic
global hardness values.

A more severe approximation to the hardness kernel could
be (see Appendix A for the connection of eq 13 with formal
DFT expressions):

leading to the following very simple and computationally cheap
form for the hardness:

The most important aim of this work is to examine the validity
of eq 14 to calculate the hardness. This research was motivated
by the particular properties of the so-called self-similarity value
or average electron density,23,24∫F2(rb)‚drb. We demonstrated that
this quantity is a precise indicator of charge concentration for
systems having the same number of electrons.23 Thus, in a series
of N electron molecules, we found that as the charge density
became more concentrated, the self-similarity measure became
larger.23 Given that the Fukui function is a difference of densities
that for all species integrates to one electron, the Fukui self-
similarity values (∫f 2(rb)‚drb) should tell us whether this electron

is more or less concentrated. In addition, one can assume
according to the definition of hard and soft species,2,5,25 that
soft systems have more diffuse Fukui functions and therefore
smaller Fukui self-similarity values than hard species. As a
simple example, Figure 1 compares the Fukui radicalf 0(rb)
function for F- and Cl-, for Li+, Na+, and K+, and for N2 and
F2.26 It is clearly seen in the figure that the Fukui functions for
the softer Cl-, K+, and N2 systems are more diffuse.

On the basis of such considerations, it follows that eq 14
may be a good approximation for the calculation of hardnesses,
despite the fact that the use of such an approximation produces
some inconsistencies (see Appendix A). The study of the validity
of this equation to calculate hardness values is the main goal
pursued in this paper. In addition, we aim to extend the use of
eq 12 to molecular systems and to compare the results of
hardness values derived from eqs 12 and 14 and those calculated
from eqs 2 and 3. Calculations are carried out with the B3LYP
method. However, MP2 and QCISD calculations will be also
performed to discuss the reliability of the B3LYP method in
this kind of computation.

II. Computational Details

Integrals involved in eqs 12 and 14 can be written in a general
form as

f +( rb) ) FN+1( rb) - FN( rb) (6)

f -( rb) ) FN( rb) - FN-1( rb) (7)

f 0( rb) ) 1
2
[FN+1( rb) - FN-1( rb)] (8)

η( rb,rb′) )
δ2F[F]

δF( rb)δF( rb′)
(9)

F[F] ) T[F] + J[F] + Exc[F] (10)

η( rb, rb′) = 1
| rb - rb′| (11)

η = ∫∫f( rb)‚ 1
| rb - rb′|‚f( rb′)‚drb‚drb′ (12)

η( rb,rb′) = δ( rb - rb′) (13)

η = ∫f 2( rb)‚drb (14)

Figure 1. Three-dimensional contour plot of the Fukui functionf 0 at
0.01 au for (a) the F- (black) and Cl- (grey) anions and (b) Li+ (light
gray), Na+ (black), and K+ (dark gray) cations and (c) countour plot
of the Fukui functionf 0 at 0.02 au for N2 (grey) and F2 (black) at a
fixed internuclear distance of 1.258 Å.

η = ∫∫f( rb)‚Θ( rb,rb′)‚f( rb′)‚drb‚drb′ (15)
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From this equation, three types of hardnesses for electrophilic,
nucleophilic, and radical attacks can be defined,12 corresponding
to the three definitions of Fukui functions, eqs 6-8. Considering
f-(rb) and using eqs 15 and 7, one gets

where·FAFB(Θ) is the so-called quantum molecular similarity
measure (QMSM) between two molecules A and B of densities
FA(rb) andFB(rb).27,28The QMSM gives a measure of how similar
one molecule is to another, and it is a useful parameter in studies
of charge density redistributions29 and QSAR analysis.30

Overlap-like QMSMs are obtained when theΘ(rb,rb′)operator in
·FAFB(Θ) is chosen as the Dirac delta function,δ(rb - rb′), while
use of the operator 1/|rb - rb′| gives rise to Coulomb-like
QMSMs. In the particular case thatFA(rb) ) FB(rb), one gets
·FAFA(Θ), which is the so-called self-QMSM.23 Equation 16
shows that evaluation of integrals such as those appearing in
eqs 12 and 14 involves the calculation of three Coulomb-like
and three overlap-like QMSM, respectively. Integrals such as
those appearing in eq 14 have been already used to evaluate
molecular similarity in a previous work.31

Likewise for f+(rb) and f 0(rb), we can write

In this work, we have used the Gaussian 98 program32 to
perform correlated calculations with the hybrid density func-
tional B3LYP,33 second-order Møller-Plesset (MP2),34 and
singles and doubles quadratic configuration interaction (QCISD)35

calculations of verticalI and A, HOMO and LUMO orbital
energies, and electron densities.

Including electron correlation effects is very important when
comparing results from species with different numbers of
electrons.36 Indeed, in the calculation ofI and A values, it is
highly advisable to go beyond the Hartree-Fock method.10,37

Less-relevant seems to be the effect of electron correlation in
calculated Fukui functions,38 and in particular, the B3LYP
method provides excellent Fukui functions according to De Proft
and co-workers.39 The 6-31++G** basis set40 has been used
throughout.

CalculatedA andI are always vertical values computed using
the B3LYP/6-31++G** geometry of the neutral forms. All
calculations have been done within the restricted formalism
except for open-shell systems that have been calculated using
the unrestricted approach. In some open-shell systems such as
HF+, CH3F+, HCl+, CH3Cl+, and CO-, the UB3LYP/6-
31++G** density loses the full molecular symmetry because
of frontier orbital degeneracy. These symmetry problems can
be solved by performing CASSCF calculations, although we

have preferred here to keep the B3LYP/6-31++G** level of
theory throughout. Further, the errors in B3LYP/6-31++G**
verticalA andI when compared to QCISD/6-31++G** values
are not larger for the abovementioned systems than for the rest
of the systems that do not present degeneracy problems.

QMSMs have been obtained from the Gaussian 98 electron
densities using the Messem program41 developed in our group.
MP2 and QCISD generalized densities42 and B3LYP electron
densities calculated from self-consistently converged Kohn-
Sham orbitals have been used for the calculation of QMSMs.

III. Results and Discussion

The methodology described in the previous section has been
applied to the ground state of a series of 18 Lewis bases. Table
1 collects the B3LYP hardness values of the different molecules
calculated with the operational expressions given by eqs 2 and
3 and with the alternative procedure represented by eqs 16 and
18 with Θ(rb,rb′) ) δ(rb - rb′) (overlap-like Fukui self-similarity,
OFSS) andΘ(rb,rb′) ) 1/|rb - rb′| (Coulomb-like Fukui self-
similarity, CFSS). Equation 17 has not been used here to
compute hardnesses given the fact that the molecules chosen
do not undergo nucleophilic attacks because of their inherent
basic character. We have included in our study the CH3SH and
(CH3)2NH molecules for which experimental values are not
available to discuss the effect of successive substitution of
hydrogen atoms in H2S and NH3 by methyl groups.

In contrast to what Liu and co-workers found using CFSS
measures for atoms,22 we find that hardnesses obtained from
eqs 16 and 18 using both OFSS and CFSS measures are clearly
underestimated as compared to experimental values based on
eq 2. In the case of the CFSS hardness values, we attribute the

ηf-f-(Θ) = ∫∫f-( rb)‚Θ( rb,rb′)‚f-( rb′)‚drb‚drb′

= ∫∫(FN( rb) - FN-1( rb))‚Θ( rb,rb′)‚(FN( rb′) -

FN-1( rb′))‚drb‚drb′

) ∫∫FN( rb)‚Θ( rb,rb′)‚FN( rb′)‚drb‚drb′ +

∫∫FN-1( rb)‚Θ( rb,rb′)‚FN-1( rb′)‚drb‚drb′ -

2‚∫∫FN( rb)‚Θ( rb,rb′)‚FN-1( rb′)‚drb‚drb′

) ·FNFN
(Θ) + ·FN-1FN-1

(Θ) - 2‚·FNFN-1
(Θ) (16)

ηf+f+(Θ) = ·FN+1FN+1
(Θ) + ·FNFN

(Θ) - 2‚·FN+1FN
(Θ) (17)

ηf 0f 0(Θ) = 1
4
[·FN+1FN+1

(Θ) + ·FN-1FN-1
(Θ) - 2‚·FN+1FN-1

(Θ)]

(18)

TABLE 1: Experimental and Calculated Hardness for the
18 Lewis Bases Studieda

Coulomb overlap

molecule η1 η2 ηf-f-(Θ) ηf 0f 0(Θ) ηf-f-(Θ) ηf 0f 0(Θ) expt

HF 10.77 17.04 24.66 24.08 25.61 25.49 22.0
CH3F 9.44 13.79 15.28 14.42 16.46 16.43 18.8
HCl 8.38 13.35 16.62 17.55 14.25 14.31 16.0
CH3Cl 7.76 11.94 13.53 13.22 13.64 13.54 15.0
H2O 8.07 13.41 20.43 20.39 19.33 19.13 19.0
CH3OH 7.32 11.55 14.93 14.20 16.37 16.32 17.0
CH3OCH3 6.95 10.62 12.64 11.74 15.96 15.94 16.0
H2S 6.66 10.99 14.53 14.94 13.11 13.04 12.4
CH3SH 6.06 10.01 12.63 12.64 12.97 12.87
CH3SCH3 5.80 9.34 11.36 10.84 12.92 12.82 12.0
NH3 6.84 11.55 17.68 17.36 15.49 15.39 16.4
NH2CH3 6.22 10.24 14.20 13.41 14.57 14.50 14.4
NH(CH3)2 5.87 9.46 12.35 11.43 14.32 14.28
N(CH3)3 5.64 8.95 11.03 10.22 14.16 14.16 12.6
PH3 7.20 11.20 13.39 13.25 12.55 12.47 12.0
AsH3 7.21 11.12 12.69 12.37 12.26 12.18 12.2
C2H4 7.31 11.41 13.24 12.90 13.11 13.05 12.4
CO 9.34 15.52 17.81 23.12 14.22 15.23 15.8

STDb 8.22 3.85 1.93 2.92 1.46 1.39

a η1 is obtained using eq 3,η2 is calculated from eq 2, whileηf -f -(Θ)
and ηf 0f 0(Θ) are derived from the Coulomb and overlap Fukui self-
similarities for the Fukui functionsf - and f 0, respectively (eq 19).
Experimental values are from ref 2 obtained using eq 2. Units are eV.
b STD is the standard deviation defined as

(∑
i)1

N (ηi - ηi
expt)2

N - 1 )1/2

,

where ηi and ηi
expt are the calculated and experimental hardness,

respectively, andN is the number of Lewis bases for whichηi
expt is

known (N ) 16).
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larger errors found for molecules to the fact that experimental
values of hardnesses are more reliable for atoms than for
molecules (vide infra). For the OFSS hardness values, it is
important to remark that the proposed model yields inaccurate
absolute values, as expected from the inconsistencies arising
from the approximation given by eq 13 (see Appendix A),
although it provides the correct relative ordering by hardness
of the series of molecules studied in this work. Given the large
errors in absolute hardnesses shown by the OFSS measures,
the values of hardness in Table 1 obtained from Fukui self-
similarity measures are not those obtained directly from the
calculation of integrals in eqs 16 and 18, but those calculated
from eq 19 that were derived from a linear regression using the
CFSS or the OFSS measures and the experimental values as
they andx components. The resulting equations are (in au) as
follows:

Because of the use of experimental hardnesses, the coefficients
present in eqs 19 are empirical and not necessarily transferable
to other sets of molecules. However, it is very important to have
methods that give the correct ordering by hardness for a series
of molecules. Indeed, application of the HSAB and the MHP
principles only requires knowing whether the hardness of some
species is greater or smaller than that of a certain system of
reference. We will show at this point that the use of OFSS
measures is a good method to order molecules by hardness.

Electronegativity is an old concept originally introduced by
Pauling43,44that describes the capacity of an atom or a molecule
to attract electrons. From arguments based on the electronega-
tivity concept, we can expect the following relations among
several Lewis bases analyzed here:

Alkyl groups45 are usually regarded as electron-donating (+I)
substituents. Thus, substitution of a hydrogen atom in water by
a methyl group to give methanol will increase the electron
density of the central atom. Because the oxygen atom will be
richer in electrons, it will more easily transfer these electrons,
and therefore, methanol will be softer than water. As a

consequence, one can expect the following ordering in hard-
nesses:

Experimental hardnesses in Table 1 have been obtained from
eq 2 using the experimental values ofI and A.2 With the
exception of the hardness for PH3 and AsH3, the qualitative
ordering predicted above is followed by the experimental values
of hardness. The difference in hardness between PH3 and AsH3

is only 0.2 eV, and given the approximate nature of eq 2, one
can only assert that the hardnesses of these two molecules are
very similar. This is in agreement with the fact that the Pauling
electronegativity of P and As differs by only 0.31 eV46 and with
previous calculations by Chattaraj and Schleyer who found that
the hardness of PH3 is larger than that of AsH3 by only 0.02
eV.47

Among the different theoretical methods used to compute
hardness, the use of eq 3 to computeη1 leads, not unexpectedly,
to two errors in the qualitative ordering shown in eqs 20 and
21: η1(NH3) < η1(PH3) and η1(H2S) < η1(PH3). Equation 2
reproduces also the erroneous order for H2S and PH3. The rest
of the theoretical methods yield the qualitative ordering predicted
by eqs 20 and 21. All methods also yield the expected larger
difference in hardness between water and methanol than between
methanol and dimethyl ether.

More difficult for the theoretical methods employed is to place
correctly the CO and C2H4 molecules as compared to the
experimental ordering of hardnesses. Experimentally, C2H4 is
a rather soft molecule, while CO has an intermediate character.
Values ofη1 obtained with eq 3 yield a CO molecule harder
than water and only softer than HF and CH3F, whereas C2H4 is
as hard as CH3OH. HOMO and LUMO energies in DFT do
not usually provide good estimates forI and A.48 Therefore,
the poor results obtained with eq 3 are not unexpected. The
values of hardness for CO and C2H4 calculated with eq 2, that
is, η2, are qualitatively similar and do not improve the overall
picture obtained withη1. This result is more surprising,
especially if one takes into account, first, that the experimental
values in Table 1 are obtained from the same eq 2 using
experimentalI andA and, second, that according to De Proft
and Geerlings10 the mean absolute deviation of B3LYP/6-
311++G(3df,2p) hardnesses is only 0.08 eV when compared
to experimental values for a set of atoms that have positive
electron affinities. As can be seen in Table 1, the deviations of
B3LYP/6-31++G** hardnesses in the molecules studied in this
work are much larger.

To analyze the origin of the large standard deviation in the
hardnesses computed using eq 2, which is as large as 3.85 eV,
we have compared the calculated and experimental ionization
potentials and electron affinities for the whole series of studied
systems. In previous works,10,49,50 it was found that B3LYP
ionization energies and positive or close to zero electron
affinities have relatively small average absolute deviations from
experiment. In line with these results, we found that the
maximum deviation in the B3LYP/6-31++G** ionization
potential of the molecules in Table 1 is 0.6 eV, the B3LYP
ionization potentials being of the same quality if not better than
MP2 or QCISD estimates. In contrast, calculated electron
affinities in systems with very negative electron affinities such

ηf -f -(1/| rb - rb′|) )

1.788∫∫f-( rb)‚ 1
| rb - rb′|‚f

-( rb′)‚drb‚drb′ - 0.071;

r2 ) 0.705

ηf 0f 0(1/| rb - rb′|) )

3.807∫∫f 0( rb)‚ 1
| rb - rb′|‚f

0( rb′)‚drb‚drb′ - 0.230;

r2 ) 0.509

ηf-f-(δ( rb - rb′)) )

5.712∫∫f-( rb)‚δ( rb - rb′)‚f-( rb′)‚drb‚drb′ + 0.403;

r2 ) 0.806

ηf 0f 0(δ( rb - rb′)) )

23.474∫∫f 0( rb)‚δ( rb - rb′)‚f 0( rb′)‚drb‚drb′ + 0.398;

r2 ) 0.822 (19)

η(HF) > η(HCl); η(H2O) > η(H2S);

η(NH3) > η(PH3) > η(AsH3);

η(HF) > η(H2O) > η(NH3);

η(HCl) > η(H2S) > η(PH3) (20)

η(HF) > η(CH3F); η(HCl) > η(CH3Cl);

η(H2O) > η(CH3OH) > η(CH3OCH3);

η(H2S) > η(CH3SH) > η(CH3SCH3);

η(NH3) > η(NH2CH3) > η(NH(CH3)2) > η(N(CH3)3)
(21)
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as H2O, NH3, CH3F, CH3OH, or HF are in error by about 5
eV, the experimental values being more negative than the
B3LYP/6-31++G** ones. For instance, the experimental verti-
cal electron affinity of water is-6.4 eV,51 while the theoretical
B3LYP/6-31++G** estimate is-0.67 eV and the QCISD/6-
31++G** result is -0.95 eV. Because the experimental
determination of negative electron affinities is complex and the
QCISD/6-31++G** results are quite reliable, one can assume
that the reason for this large discrepancy may be found in
experimental electron affinities. Despite the fact that different
experimental methods and solvents may lead to quite different
results of electron affinities,52 the large differences found
between experimental and theoretical electron affinities seems
to indicate that for the aforementioned systems the experimental
electron affinities should be revised. However, because the
experimental hardnesses values given by Pearson yield the
expected order for the systems considered, we have decided to
work with these values despite the fact that some experimental
hardness values in Table 1 can be overestimated.

To return to the discussion of the position of CO and C2H4

in the series, the use of equations based on CFSS measures
improves the results for C2H4 but not for CO. Remarkably, the
results from equations based on OFSS place the CO and C2H4

in the expected zone. Finally, from a quantitative point of view,
the hardness values calculated with eqs 2 and 3 systematically
underestimate the experimental hardness, whereas the theoretical
hardnesses calculated from eq 19 based on CFSS and OFSS
measures are much closer to the experimental results.

According to experimental values, the ordering of the
molecules by hardness is as follows:

The classification of the molecules given in eq 22 is not followed
precisely by any of the theoretical methods employed. As said
before, the experimental ordering is based on hardnesses
calculated with eq 2, which is an approximation to the exact
definition of hardness given by eq 1. For this reason, it is more
rational to discuss general trends than to analyze the exact
position of each molecule given by the different methods. It
seems reasonable to consider that we have three main groups
of molecules, the hardest being HF, H2O, CH3F, and CH3OH,
the softest being N(CH3)3, H2S, C2H4, AsH3, PH3, and CH3-
SCH3, and the rest can be considered as molecules with
intermediate hardnesses.

With this experimental grouping in mind, values from Table
1 indicate thatη1 hardnesses calculated with eq 3 have several
errors. For instance, the CO molecule, which belongs to the
group of molecules with intermediate hardness, is considered
as a hard molecule, whereas a hard molecule such as CH3OH
shows the same hardness as soft molecules such as C2H4, PH3,
and AsH3. The ordering obtained fromη2 hardnesses calculated
with eq 2 exhibits slight differences, but the main problems
observed withη1 remain. There is a minor improvement when
the CFSS measures,ηf-f-(1/rb - rb′|), are used to calculate
hardnesses, but still a number of errors are apparent. As an
example, with this method H2S is found to be almost as hard
as CH3OH. The results worsen when theηf 0f 0(1/|rb - rb′|) values
are used. Finally, when OFSS measures are used, most
molecules are positioned correctly with respect to the three
groups aforementioned, with the possible exception of the

CH3Cl, which is predicted to be softer than experimentally
found, despite the fact that the difference between experimental
and OFSS hardness for this molecule is rather small. Clearly,
the ordering obtained from OFSS measures is the closest to the
experimental sequence.

Not only hardnesses based on OFSS measures are ordered
better but also they are computationally cheaper than those
obtained from CFSS values. The reason for the excellent
behavior of OFSS measures is attributed to the fact that, as said
before, the self-similarity measure23 is an excellent indicator of
charge concentration. As a consequence, harder species with
more electronegative atoms lead to small and more compact
Fukui functions and have larger OFSS measures.

Standard deviations also show that the methods based on
OFSS measures are superior to both the traditional methods of
eqs 2 and 3 and the method based on CFSS measures. Both the
equation based on electrophilic OFSS measures,ηf-f-(δ(rb- rb′)),
and that using the radical OFFS values,ηf 0f 0(δ(rb- rb′)), provide
excellent results. According to the values of standard deviations
and the linear regression coefficients in eqs 19, the method
giving the best results isηf 0f 0(δ(rb - rb′)).

One may wonder whether the use of OFSS and CFSS
measures in a multilinear regression can improve the results
significantly. For the Fukui electrophilicf -(rb) function, we have
found the following equation (in au):

that leads to a standard deviation of 1.23 eV. If one compares
this standard deviation with those found using OFSS measures
(Table 1), it is seen that the results do not improve markedly
despite the fact that the computing time increases significantly
because of the need to calculate CFSS values.

Equation 19 and Table 1 show that OFSS calculations are
the best in terms of accuracy and computational cost. For this
reason, we have analyzed the reliability of the B3LYP method
in this kind of calculation by performing OFSS calculations
using the conventional correlated MP2 and QCISD methods.
Results in Table 2 show that all methods yield similar results,
the conclusions resulting from the MP2 and QCSID values being
the same as those derived from the B3LYP hardnesses. Not
surprisingly, QCISD results are better than B3LYP ones. More
unexpected are the excellent results obtained with the MP2
method.

Finally, it is worth noting that OFSS measures (eq 14) by
themselves do not provide accurate values of hardnesses, and
therefore, experimental values are needed to derive expressions
such as those in eq 19. However, it is important to remark that
for the application of the HSAB or the MHP principles one
only needs to know whether the hardness of some species is
greater or smaller than that of a certain system of reference. In
this sense, it is relevant to note that OFSS measures give the
most correct ordering among all expressions used in this work
to calculate the hardness.

IV. Conclusions

In this paper, we have tested two approximate hardness
kernels,η(r ,r ′) = 1/|r - r ′| and η(r ,r ′) = δ(r - r ′), for the
evaluation of the global hardness in a series of 18 Lewis bases.
The intuitive order of hardness supported by electronegativity

η(HF) > η(H2O) > η(CH3F) > η(CH3OH) > η(NH3) >
η(CH3OCH3) ) η(HCl) > η(CH3Cl) > η(NH2CH3) >

η(N(CH3)3) > η(H2S) ) η(C2H4) > η(AsH3) > η(PH3) )
η(CH3SCH3) (22)

ηf-f- ) 3.384∫∫f-( rb)‚δ( rb - rb′)‚f-( rb′)‚drb‚drb′ +

0.422∫∫f-( rb)‚ 1
| rb - rb′|‚f

-( rb′)‚drb‚drb′ + 0.318;

r2 ) 0.829 (23)
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arguments and given by eqs 20 and 21 is correctly reproduced
by the methods based on both OFSS and CFSS measures but
not by methods based on the common operational expressions
(eqs 2 and 3). A comparison with experimental hardnesses
shows that the simplest and computationally cheapest model,
η(r ,r ′) = δ(r - r ′), affords the most reasonable ordering of the
molecules.

Because the common operative expressions to calculate the
hardness of a system are quite approximate, it is very important
to explore new methods to calculate hardnesses. We have shown
here that eq 14 is a very good alternative to the operational
recipes, especially if one wants to know whether a system is
harder or softer than a molecule of reference, as required by
the MHP and HSAB principles. The success of OFSS measures
to order molecules by hardness has been attributed to the
particular properties of Fukui self-similarity measures, which
are smaller for soft systems having more diffuse Fukui functions.

However, it is important to remark that despite the success
of the simple η(r ,r ′) = δ(r - r ′) model in ordering the
molecules by hardness, this approximation does not provide
correct estimates of global hardnesses. Therefore, further work
should be devoted to find more refined models of the hardness
kernel that may yield accurate global hardness values from eq
4. In this direction, attempts such as that by Chattaraj, Cedillo,
and Parr53 are very promising and should be pursued. Additional
work on this issue is presently in progress in our laboratory.

Acknowledgment. We are indebted to the referees for
constructive criticisms and to Profs. Juvencio Robles and
Alejandro Toro-Labbe´ and Dr. Josep M. Luis for helpful
comments. Support for this work under Grant PB98-0457-C02-

01 from the Direccio´n General de Ensen˜anza Superior e
Investigacio´n Cientı́fica y Técnica (MEC-Spain) is acknowl-
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V. Appendix A

In this appendix, we show how theη(r ,r ′) = δ(r - r ′)
approximation can be formally derived from conceptual DFT
expressions and how this approximation leads to some incon-
sistencies.

Let us start considering a density functional composed by
the Thomas-Fermi form54 for the kinetic energy density
functional,

and the Dirac exchange energy functional55 for the exchange-
correlation functional,

Now, taking into account the well-known exact form of the
classical Coulomb repulsion functional,

one gets from eq 9 the following expression for the hardness
kernel:17

Equation A.4 reveals that the hardness kernel can be plausibly
approximated as14

From eq (A.5), one can derive eq 13 by just approximating the
Coulombic term, 1/|rb - rb′|, to a Dirac delta function,δ(rb - rb′),
and assuming thatg(rb) is a constant.

The use of such an approximation produces some inconsis-
tencies. For instance, only when the Fukui function is constant
and equal to the global hardness of the system, the approxima-
tion given by eq 13 conforms to the inverse relation between
the hardness and softness kernels (eq A.6).13a,19 This can be
easily demonstrated by inserting eq 13 into

which gives

However, taking into account that19

one finds from eq A.7 thats(rb) ) 1, which according to the
relationship between the local softness and the global softness19

TABLE 2: Experimental and Calculated Hardness Obtained
from the Overlap Fukui Self Similarities with the Fukui
Functions f - and f 0 at the B3LYP, MP2, and QCISD Levels
of Theorya

B3LYP MP2 QCSID

molecule ηf-f-(Θ) ηf 0f 0(Θ) ηf-f-(Θ) ηf 0f 0(Θ) ηf-f-(Θ) ηf 0f 0(Θ) expt

HF 25.61 25.49 23.95 23.91 24.59 24.55 22.0
CH3F 16.46 16.43 19.42 19.39 17.73 17.69 18.8
HCl 14.25 14.31 13.92 13.90 14.21 14.18 16.0
CH3Cl 13.64 13.54 13.73 13.59 13.97 13.82 15.0
H2O 19.33 19.13 18.22 18.08 18.75 18.62 19.0
CH3OH 16.37 16.32 17.07 17.05 17.00 16.97 17.0
CH3OCH3 15.96 15.94 16.59 16.58 16.77 16.77 16.0
H2S 13.11 13.04 12.85 12.73 13.12 13.01 12.4
CH3SH 12.97 12.87 12.82 12.67 13.10 12.95
CH3SCH3 12.92 12.82 12.79 12.68 13.09 12.95 12.0
NH3 15.49 15.39 14.93 14.81 15.35 15.24 16.4
NH2CH3 14.57 14.50 14.57 14.48 14.87 14.78 14.4
NH(CH3)2 14.32 14.28 14.35 14.29 14.71 14.66
N(CH3)3

b 14.16 14.16 14.11 14.10 12.6
PH3 12.55 12.47 12.37 12.23 12.64 12.51 12.0
AsH3 12.26 12.18 12.09 11.95 12.34 12.21 12.2
C2H4 13.11 13.05 12.63 12.99 12.95 13.30 12.4
CO 14.22 15.23 14.76 15.54 14.02 14.80 15.8

STDc 1.46 1.39 1.08 1.08 1.18 1.13

a Experimental values from ref 2 obtained using eq 2. Units are eV.
b QCISD calculations on N(CH3)3 were not performed due to compu-
tational limitations.c STD is the standard deviation defined as

(∑
i)1

N (ηi - ηi
expt)2

N - 1 )1/2

,

where ηi and ηi
expt are the calculated and experimental hardness,

respectively, andN is the number of Lewis bases for whichηi
expt is

known (B3LYP and MP2N ) 16, QCSIDN ) 15).

TTF[F] ) cT∫F5/3( rb) drb (A.1)

Exc[F] ) cX∫F4/3( rb) drb (A.2)

J[F] ) 1
2∫∫F( rb)F( rb′)

| rb - rb′| drb drb′ (A.3)

η( rb,rb′) ) 1
| rb - rb′| + 10

9
cTF-1/3( rb)δ( rb - rb′) +

4
9
cXF-2/3( rb)δ( rb - rb′) (A.4)

η( rb,rb′) = 1
| rb - rb′| + g( rb)δ( rb - rb′) (A.5)

∫s( rb,rb′′)η( rb′′,rb′) drb′′ ) δ( rb - rb′) (A.6)

s( rb,rb′) ) δ( rb - rb′) (A.7)

s( rb) ) ∫s( rb,rb′) drb′ (A.8)
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implies that the global softness cannot be defined, a result that
is contradictory with the inverse relationship between the global
hardness and the global softness. Remarkably, a similar ap-
proximation to that of eq A.7 for the softness kernel that satisfies
some of the basic properties of the static density linear response
function was proposed by Ga´zquez and Vela some years ago.56
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