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Numerous molecules are asymmetric in shape and diffuse anisotropically in solution. Moreover, many local
motions contribute to the nuclear magnetic relaxation process. Dipole-dipole cross-correlations depend on
both geometrical (i.e., the average orientations of the dipolar vectors with respect to the principal axes of the
diffusion tensor) and dynamical parameters (i.e., the local motions of the same dipolar vectors). We derived
a new expression of the cross-correlation function that takes anisotropy of diffusion and local motions of
small amplitude into account. The local motion of a unit dipolar vector is expressed in terms of the projection
of the vector onto the plane that is perpendicular to its average position. Cross-correlations have been used
to study the influence of dynamics on the determination of the angle between the two dipolar vectors.

1. Introduction

Nuclear magnetic resonance relaxation rates depend on the
geometry of the average structure of the molecule and on its
dynamics. To extract reliable geometrical constraints, one must
take into account the fact that various dynamic processes may
modify the expected result of the experiment. Usually, the lack
of experimental data does not allow one to obtain a perfect
knowledge of geometry and dynamics. An exhaustive study of
a molecule is always possible but in most cases, its cost is too
high. In fact, for each experimental result, the determination of
geometrical data (such as distances,1 angles between bond
vectors, or the orientation of a bond vector with respect to the
axes of an alignement tensor2-4) is not straightforward. In fact,
there may be several associated pairs{geometry, dynamics}
that may give the same experimental result. The effects of
dynamics have been studied since the 60’s, the spectral density
functions appropriate for anisotropic rotational diffusion are
well-known,5-9 and several studies have taken internal motions
into account.10-20 A more realistic approach would be to
consider that a given experimental result (considered with its
associated uncertainty) will only provide an interval in which
the geometrical parameter, such as the angle between the two
considered interactions, should lie, rather than a unique value.
A method to determine such an interval is to start with an
average local structure, explore all possible dynamic processes
and record the predicted rates obtained. One thus obtains a map
indicating the allowed connections between an experimental
result and the local structures. The analysis of the experimental
results is achieved by using this map to determine the possible
local structures.

In our case, the use of dipole-dipole cross-correlation
rates21-30 to obtain geometrical constraints in proteins may be
hindered by rotational diffusion anisotropy and by local motions.
A suitable knowledge of the anisotropy tensor requires calcula-

tions based on the knowledge (that may be unavailable) of the
structure, and the uncertainties about the tensor cannot be
neglected.31 A new expression of the cross-correlation function
including the effects of overall rotational anisotropy and local
motion has been derived, using the method of Daragan and
Mayo.15,16,32 With such an expression, one may be able to
determine the intervals of allowed cross-correlation rates,
provided one assumes a upper limit of the overall rotational
anisotropy and uses a specific model for local motions. We
compared these results with the dipolar-dipolar13Ci

R 1Hi
R -

13Ci+1
R 1Hi+1

R cross-correlation rates in doubly enriched human
ubiquitin measured by Chiarparin et al.,28 using 10 solution-
state structures determined by Cornilescu et al.33 for the angles
between the dipolar interactions. To limit the motions of the
internuclear vectors, we considered rotations about the two
neighboring bond vectors characterized by a small amplitude
and a short correlation time, when required.16,34For the overall
rotational diffusion tensor, we used a calculated value of the
anisotropy.34 Using the same procedure, one may be able to
determine to what extent theS2 model is suitable for cross-
correlations, or when overall rotational anisotropy has to be
taken into account for a given local motion.

2. Theory

The Hamiltonian for the dipolar interaction between spinsk
and l is given by35

with bkl ) -µ0 γkγlp/4πrkl
3 and whereΩkl corresponds to the

orientation angles ofrkl: Θkl(t), Φkl(t) with respect to the
laboratory frame. For cross-correlations, we have to consider
two pairs of spins (k,l) and (k′,l′) and the corresponding
internuclear vectorsv andw. The behavior of the spin system
is described by the Liouville equation
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(-q)(Ik, I l) (1)

2438 J. Phys. Chem. A2002,106,2438-2445

10.1021/jp013407e CCC: $22.00 © 2002 American Chemical Society
Published on Web 02/12/2002



where

For dipole-dipole cross-correlated relaxation, the relaxation
superoperator contains contributions from autocorrelated relax-
ation (v ) w)

and from cross-correlated relaxation (v * w)

Only the contribution forq ) 0 (i.e.,ωq ) 0) is significant for
the conversion of double-quanta terms into antiphase double-
quanta terms.29 Thus, the interesting term of the cross-correlated
part of the relaxation superoperator can be written, knowing
that

We have to focus on the spectral density function. It is defined
through the correlation function

where the angular brackets correspond to a time average over
t′. The correlation functioncvw(τ) ) 〈Fv

(+q)(t′)Fw
(+q)* ( t′ + τ)〉

may be expressed in terms of Wigner rotation elements

To express the correlation function properly, we have to split
the motion into rotations about well-defined axes. Thus, we
define different steps for the motion of a defined vector: First,
the orientation of the diffusion tensor with respect to the
magnetic field is defined byΩD(t′). The average position ofv
with respect to the principal axes of the rotational diffusion
tensor is defined byΩv

A. Second, the motion around the
average position may be represented byΩv

L(t′), which charac-
terizes local fluctuations (See Figure 1). Then we can express
Fv

(+q)(Ωv(t′))

Thus, the correlation functioncvw(τ) may be calculated

because overall and local motions are assumed to be indepen-
dent. Let us consider the overall rotational diffusion, and assume
that the rotational diffusion tensor is symmetric. Then36

Note that this part does not depend onq, and consequently, the
same is true for the whole correlation function. Only terms
wherer ) r′ do not vanish. We can write the correlation function

dσ̂(t)

dt
) -i[Ĥ(0), σ̂(t)] - ∑

v,w

Γ̂v,w(σ̂(t) - σ̂eq) (2)

Γ̂v,wσ̂ ) bvbw ∑
q)-2

+2

[Âv
(-q)[Âw

(+q), σ̂]] jvw
q (ωq) (3)

[Γ̂v,v
a + Γ̂w,w

a ]σ̂ ) b2
v∑

q

[Âv
(-q), [Âv

(+q), σ̂]] jv,v
q (ωq) +

bw
2∑

q

[Âw
(-q), [Âw

(+q), σ̂]] jw,w
q (ωq) (4)

[Γ̂v,w
c + Γ̂w,v

c ]σ̂ ) bvbw∑
q

[Âv
(-q), [Âw

(+q), σ̂]] jv,w
q (ωq) +

bvbw∑
q

[Âw
(-q), [Âv

(+q), σ̂]] jw,v
q (ωq) (5)

[Âw
(0), [Âv

(0), σ̂]] ) [Âv
(0), [Âw

(0), σ̂]]:

[Γ̂v,w
c + Γ̂w,v

c ]σ̂ ) 2bvbw[Âv
(0), [Âw

(0), σ̂]]( jv,w
0 (0) + jw,v

0 (0)) (6)

jv,w
q (ωq) ) ∫0

∞
dτ〈Fv

(+q)(t′)Fw
(+q)* ( t′ + τ)〉e(-iωqτ) (7)

Fv
(+q)(Ωv(t′)) ) Fv

(-q)* (Ωv(t′))

) Dq0
(2)(Φv(t′), Θv(t′), 0)

) dq0
(2)(Θv(t′))e

-iqΦv(t′) (8)

Dq0
(2)(Ωv(t′)) ) ∑

r,s

Dqr
(2)(ΩD(t′)) Drs

(2)(ΩA
v) Ds0

(2) (Ωv
L(t′)) (9)

Figure 1. Scheme of the different rotations needed to describe the
motion of the dipolar vector.

cvw(τ) ) 〈Dq0
(2)(Ωv(t′))D+q0

(2) * (Ωw(t′+τ))〉

) 〈∑
r,s

Dqr
(2)(ΩD(t′))Drs

(2)(Ωv
A)Ds0

(2)(Ωv
L(t′)) ×

∑
r′s′

D+qr′
(2) * (ΩD(t′ + τ))Dr′s′

(2)* (Ωw
A)Ds′0

(2)* (Ωw
L (t′ + τ))〉

) ∑
r,s,r′,s′

〈Dqr
(2)(ΩD(t′))Dqr′

(2)* (ΩD(t′ + τ))〉 ×

Drs
(2)(Ωv

A)Dr′s′
(2)* (Ωw

A) ×
〈Ds0

(2)(Ωv
L(t′))Ds′0

(2)* (Ωw
L(t′ + τ))〉 (10)

〈Dqr
(2)(ΩD(t′))Dqr′

(2)* (ΩD(t′ + τ))〉 ) 1
5

δrr′ e-[6D⊥+r2(D|-D⊥)]τ

(11)

cvw(τ) )
1

5
∑

r)-2

+2

e[6D⊥+r2(D|-D⊥)]τ ×

∑
s,s′

Drs
(2)(Ωv

A) Drs′
(2)* (Ωw

A) ×

〈Ds0
(2)(Ωv

L(t′))Ds′0
(2)* (Ωw

L (t′ + τ))〉 (12)
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If one looks carefully at the last terms, one notices that it is
possible to make simplifications.16 First

Second, we define

Assuming that the amplitudes of the fluctuations are small and
symmetric with respect to the average position, we can
approximate the functionsF ss′

vw(τ) with a second-order Taylor
expansion (the angular brackets have been dropped to simplify
the expressions)

These expression are valid for angular fluctuations smaller than
π/6. The correlation function

Where the detailed functionsGi(τ) are shown in Appendix A

Now we must consider the sum of the two contributions
stemming from cvw(τ) and cwv(τ). This will give a new
correlation function, with different internal (cross-)correlation
functions

where

where some terms have been simplified: for example,
〈vx

2(t′) + vy
2(t′)〉 ) 〈vx

2(t′ + τ) + vy
2(t′ + τ)〉 ) 〈vx

2 + vy
2〉.

3. Results and Discussion
It may be interesting to calculate these functions in specific

cases. First, one can easily verify that if none of the vectors
undergo any local motion, the different parts of the correlation
function become

Ds0
(2)(Ωv

L(t′))Ds′0
(2)* (Ωw

L (t′ + τ)) )

ds0
(2)(θv(t′))ds′0

(2)(θw(t′ + τ))e-isφv(t′)+is′φw(t′+τ) (13)

F ss′
vw(τ) ) 〈ds0

(2)(θv(t′)) ds′0
(2)(θw(t′ + τ))〉 (14)

F 00
vw(τ) ≈ 1 - 3

2
θv

2(t′) - 3
2

θw
2 (t′ + τ)

F 02
vw(τ) ) F 0-2

vw (τ) ≈ x3
8
θw

2 (t′ + τ)

F 11
vw(τ) ) - F -11

vw (τ) ) - F 1-1
vw (τ) ) F -1-1

vw (τ) ≈
3
2
θv(t′)θw(t′ + τ)

F 20
vw(τ) ) F -20

vw (τ) ≈ x3
8
θv

2(t′)

F 0(1
vw (τ) ) F (10

vw (τ) ) F (1(2
vw (τ) ) F (2(1

vw (τ) )

F (2(2
vw (τ) ≈ 0 (15)

cvw(τ) )
1
5
[G0(τ)e-6D⊥τ + G1(τ)e-(5D⊥+D|)τ + G2(τ)e-(2D⊥+4D|)τ] (16)

G0(τ) ) ∑
ss′

d0s
(2)(Θv

A)d0s′
(2)(Θw

A)F ss′
vw(τ)eisΦv(t′)-is′Φw(t′+τ)

G1(τ) ) ∑
ss′

[d1s
(2)(Θv

A)d1s′
(2)(Θw

A)eiΦv
A-iΦw

A
+

d-1s
(2) (Θv

A)d-1s′
(2) (Θw

A)e-iΦv
A+iΦw

A
] ×

F ss′
vw(τ)eisΦv(t′)-is′Φw(t′+τ)

G2(τ) ) ∑
ss′

[d2s
(2)(Θv

A)d2s′
(2)(Θw

A)e2iΦv
A-2iΦw

A
+

d-2s
(2) (Θv

A)d-2s′
(2) (Θw

A)e-2iΦv
A+2iΦw

A
] ×

F ss′
vw(τ)eisΦv(t′)-is′Φw(t′+τ) (17)

cvw(τ) + cwv(τ) )
1
5
[K0(τ)e-6D⊥τ + K1(τ)e-(5D⊥+D|)τ + K2(τ)e-(2D⊥+4D|)τ] (18)

K0(τ) )

2 d00
(2)(Θv

A)d00
(2)(Θw

A)[1 - 3
2

〈Wx
2 + Wy

2〉 - 3
2

〈wx′
2 + wy′

2 〉] +

x6 [d00
(2)(Θv

A)d02
(2)(Θw

A)〈wx′
2 - wy′

2 〉 +

d02
(2)(Θv

A)d00
(2)(Θw

A)〈Wx
2 - Wy

2〉] +

6 d01
(2)(Θv

A)d01
(2)(Θw

A)〈Wx(t′)wx′(t′ + τ) + Wx(t′ + τ)wx′(t′)〉

K1(τ) ) 4 d10
(2)(Θv

A)d10
(2)(Θw

A) cos(Φv
A - Φw

A) ×

[1 - 3
2

〈Wx
2 + Wy

2〉 - 3
2

〈wx′
2 + wy′

2 〉] +

x6 d10
(2)(Θv

A)[sin(Θw
A) cos(Θw

A) cos(Φv
A - Φw

A)〈wx′
2 - wy′

2 〉 +

2 sin(Θw
A) sin(Φv

A - Φw
A)〈wx′wy′〉] +

x6 d10
(2)(Θw

A)[sin(Θv
A) cos(Θv

A) cos(Φv
A - Φw

A)〈Wx
2 - Wy

2〉 -

2 sin(Θv
A) sin(Φv

A - Φw
A)〈WxWy〉] +

3 cos(Φv
A - Φw

A)[(1 - 2 cos2(Θv
A) - 2 cos2(Θw

A) -

4 cos2(Θv
A) cos2(Θw

A)) ×
〈Wx(t′)wx′(t′ + τ) + Wx(t′ + τ)wx′(t′)〉 +

cos(Θv
A) cos(Θw

A)〈Wy(t′)wy′(t′ + τ) +

Wy(t′ + τ)wy′(t′)〉] + 3 sin(Φv
A - Φw

A) ×
[cos(Θw

A) cos(2Θv
A) 〈Wx(t′)wy′(t′ + τ) +

Wx(t′ + τ)wy′(t′)〉 - cos(Θv
A) cos(2Θw

A)〈Wy(t′)wx′(t′ + τ) +
Wy(t′ + τ)wx′(t′)〉]

K2(τ) )

4 d20
(2)(Θv

A)d20
(2)(Θw

A) cos 2(Φv
A - Φw

A)[1 - 3
2

〈Wx
2 + Wy

2〉 -

3
2

〈wx′
2 + wy′

2 〉] + x6 d20
(2)(Θv

A)[(d22
(2)(Θw

A) +

d2-2
(2) (Θw

A)) cos 2(Φv
A - Φw

A)〈wx′
2 - wy′

2 〉 +

2 cos(2Θw
A) sin 2(Φv

A - Φw
A)〈wx′wy′〉] +

x6d20
(2)(Θw

A)[(d22
(2)(Θv

A) + d2-2
(2) (Θv

A)) cos 2(Φv
A - Φw

A) ×
〈Wx

2 - Wy
2〉 - 2 cos(2Θv

A) sin 2(Φv
A - Φw

A)〈WxWy〉] +

3 sin(Θv
A) sin(Θw

A)[cos 2(Φv
A - Φw

A) ×
[〈Wy(t′)wy′(t′ + τ) + Wy(t′ + τ)wy′(t′)〉 +

cos(Θv
A) cos(Θw

A)〈Wx(t′)wx′(t′ + τ) + Wx(t′ + τ)wx′(t′)〉] +

sin 2(Φv
A - Φw

A)[cos(Θv
A)〈Wy(t′)wy′(t′ + τ) +

Wy(t′ + τ)wy′(t′)〉 - cos(Θw
A)〈Wx(t′)wy′(t′ + τ) +

Wx(t′ + τ)wy′(t′)〉]] (19)

K0(τ) ) 2d00
(2)(Θv

A)d00
(2)(Θw

A)

K1(τ) ) 4d10
(2)(Θv

A)d10
(2)(Θw

A) cos(Φv
A - Φw

A)

K2(τ) ) 4d20
(2)(Θv

A)d20
(2)(Θw

A) cos 2(Φv
A - Φw

A) (20)
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One notices that in such a case, one finds the function previously
calculated, i.e.,cvw(τ) + cwv(τ) ) C vw

rigid(τ). The correlation
function C vw

rigid(τ) due to global motion can be separated from
the one induced by local motion, provided all terms in angular
brackets except〈vx

2 + vy
2〉 and〈wx′

2 + wy′
2〉 vanish. In this case,

the local motions ofv andw are not correlated and these vectors
satisfy the following relationships:〈vx

2 - vy
2〉 ) 〈wx′

2 - wy′
2〉 ) 0

and 〈vxvy〉 ) 〈wx′wy′〉 ) 0). One can then obtain:

The correlation functioncvw(τ) + cwv(τ) can be separated into
two factors that correspond to the anisotropic correlation
function without local motionC vw

rigid(τ) for the first part and
to the correlation function accounting for local motions
1 - 3/2〈vx

2 + vy
2〉 - 3/2〈wx′

2 + wy′
2〉 for the second part

With this simplified expression, we have an easy access to the
influence of the amplitudes of local motions. Considering a
wobbling-in-a-cone motion, where each vector can oscillate in
a cone (-15° e θv,w e +15°), the cross-correlation factor will
be attenuated by a factor of 0.9. For two or three times larger
angles ((30° or (45°), the attenuation factors will be 0.6
or 0.07.

By setting v ) w, one can find the autocorrelation case
discussed by Daragan et al.16,32 In the autocorrelation case, the
function 1-3〈vx

2 + vy
2〉 corresponds to the so-called model-free

order parameterSv
2 related to the vectorv16

We notice that the parameter we calculated is the average
1/2(Sv

2 + Sw
2 ) ) 1 - 3/2〈vx

2 + vy
2〉 - 3/2〈wx′

2 + wy′
2〉. Thus, if one

assumes that the auto-correlation model-free order parameter
is typically between 0.8 and 1, local motions have approximately
the same effect in the cross-correlation case. The anisotropy of
rotational diffusion must be considered as the dominant factor
if its effect on the cross-correlation rate is higher than the effect
of the order parameter, i.e., 20%. As a consequence of eq 22,
the effect of local motions can be represented by a scaling factor.
Thus, the anisotropy of rotational diffusion can be taken into
account separately, as described in ref 37 Forθvw ) 0, if
D|/D⊥ g 1.45 or D|/D⊥ e 0.65 (in a symmetrical diffusion
tensor), the error due to anisotropy is 20%. In these cases, it
seems obvious to take anisotropy of rotational diffusion into
account. However, for human ubiquitin, a 17% anisotropy will
lead to an error of 9%. Associated with a maximum error of
20% due to internal dynamics, the overall error is equal to 27%.
This tends to show that even if internal motion is supposed to
be a decisive factor, one should be aware of the pernicious
effects of anisotropy.

It will be shown that the model-free analysis cannot really
be applied to calculate the intervals of cross-correlation rates.
A more elaborate motional model should be used to derive such
intervals. For correlated motions, one has to assume some model
to calculate average values such as〈vx

2 ( vy
2〉, 〈wx′

2 ( wy′
2〉 and

〈vxvy〉, 〈wx′wy′〉. For the terms that are functions ofτ, we used
the approach followed by Daragan et al.16 These functions may
be characterized by appropriate average values and a correlation
time τl characteristic of local motions

To simplify these expressions, we assumed that the motions of
v andw are not correlated. Then, we have

because of the symmetry of the fluctuations (i.e.,〈vx〉 )
〈wx′〉 ) 0). Thus, the parameterτl does not play any role, because
the correlation betweenv andw is not taken into account (Terms
such as〈vx(t′)wx′(t′ + τ) + wx′(t′)vx(t′ + τ)〉 will also vanish,
and only the terms〈vx

2 ( vy
2〉, 〈wx′

2 ( wy′
2〉 and 〈vxvy〉, 〈wx′wy′〉,

whereτl does not play any role- will remain). To calculate the
remaining terms, we made use of the method developped by
Daragan et al.16 We introduced two random rotations,ωb(t′) and
ωb′(t′) acting on the vectorsv andw. As we said, if the motions
of v andw are not correlated, the random rotationsωb(t′) and
ωb′(t′) are not correlated. The average values of these rotations
vanish〈ω(t′)〉 ) 〈ω′(t′)〉 ) 0. First, we will consider the cross-
correlation between dipolar13CR - 1HR interactions in proteins.
To calculate the random rotationsωb(t′) andωb′(t′), we supposed
that the main sources of motion are the rotations about the two
neighboring bonds. For each vector, one has to consider two
rotations of anglesφ and ψ around the13CR

15N and 13CR
13C′

bonds. The resulting transformation may be approximated by
the sum of the two rotations15

According to Daragan et al.16

and

where-1 e cφψ e 1 and 〈φ2〉 ) 2||φBmax||3/3 with -φmax e
φ e φmax. We will consider that the rotationsφB andψB are not
correlated, i.e.,cφψ ) 0 to simplify the numerical calculations.

We considered the effects of these dynamical processes on
the 13Ci

R 1Hi
R - 13Ci+1

R 1Hi+1
R cross-correlation rate. For the

generation of the map of the Figure 2, we usedτc ) 0.14 ns,
and D///D⊥ ) 1.27. Then, 180 values for the angleθvw have
been used. Ten different values between 0° and 180° for each
orientation angle of the pair of vector (as defined by Deschamps
et al.37) have been taken. The axes of the small rotations were
taken to be the bond vectors Ni

H-Ci
R, Ni+1

H -Ci+1
R and Ci

R-C′i,
Ci+1

R -C′i+1, and two relative orientations of these bond vectors

K0(τ) ) 2d00
(2)(Θv

A)d00
(2)(Θw

A)[1 - 3
2
〈vx

2 + vy
2〉 - 3

2
〈wx′

2 + wy′
2 〉]

K1(τ) ) 4d10
(2)(Θv

A)d10
(2)(Θw

A) cos(Φv
A - Φw

A) ×

[1 - 3
2
〈vx

2 + vy
2〉 - 3

2
〈wx′

2 + wy′
2 〉]

K2(τ) ) 4d20
(2)(Θv

A)d20
(2)(Θw

A) cos 2(Φv
A - Φw

A) ×

[1 - 3
2
〈vx

2 + vy
2〉 - 3

2
〈wx′

2 + wy′
2 〉] (21)

cvw(τ) + cwv(τ) ) C vw
rigid(τ) ×

[1 - 3
2
〈vx

2 + vy
2〉 - 3

2
〈wx′

2 + wy′
2 〉] (22)

Cvv(τ) ) C vv
rigid(τ)(1 - 3〈vx

2 + vy
2〉) (23)

〈vx(t′)wx′(t′ + τ) + wx′(t′)vx(t′ + τ)〉 ) 〈vxwx′〉e
-τ/τl

〈vx(t′)wy′(t′ + τ) + wy′(t′)vx(t′ + τ)〉 ) 〈vxwy′〉e
-τ/τl

〈vy(t′)wy′(t′ + τ) + wy′(t′)vy(t′ + τ)〉 ) 〈vywy′〉e
-τ/τl

〈vy(t′)wx′(t′ + τ) + wx′(t′)vy(t′ + τ)〉 ) 〈vywx′〉e
-τ/τl (24)

〈vxwx′〉 ) 〈vx〉〈wx′〉 ) 0 (25)

ωb ) φB + ψB (26)

ω2 ) φ
2 + ψ2 + 2φB.ψB (27)

〈φB.ψB〉 ) cφψx〈φ2〉〈ψ2〉 (28)
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with respect tov or w were used. Three different maximum
amplitudes were used for each rotationφB andψB: 0°, φmax/2 and
φmax or 0°, ψmax/2 andψmax. For each value ofθvw, 12 960 000
pairs{orientation,dynamics} were explored and the correspond-
ing cross-correlation rates were recorded. The upper and lower
bound of these rates were represented in Figure 2, for a
maximum amplitude of all rotations about bonds set to 10°.
This area was compared to the rates obtained by describing the
local motion by a local order parameter 0.8e Svw

2 e 1. The
shapes of these two maps are rather different. One can notice
that theS2 method tends to minimize errors forθvw values that
are near to 54.7° and maximize them near 0° or 180°. Thus, it
is shown that cross-correlation may be studied more efficiently
by considering real local motions.

We applied this method to human ubiquitin. Knowing 10
solution structures determined by Cornilescu et al.,33 and the
dipolar-dipolar13Ci

R 1Hi
R - 13Ci+1

R 1Hi+1
R cross-correlation rates

measured by Chiarparin et al.28 we plotted in Figure 3 the cross-
correlation rate against the average angleθvw in the 10 structures.
The vertical error bars correspond to the experimental errors
and the horizontal error bars, to the intervals covered by the
anglesθvw in the 10 solution-state structures. We represented
two areas containing the allowed pairs{θvw,cross-correlation

rate} for two maximum amplitudes of small rotations about the
neighboring bond vectors, respectively equal to 10° and 15°,
usingτc ) 4.14 ns andD///D⊥ ) 1.27 (obtained from Tjandra
et al.34). With rotations of maximal amplitudes equal to 10°,
one could explain most of the experimental results. Only three
pairs of residues, 71-72, 72-73, and 73-74, feature behaviors
that cannot be explained by 15° rotations. One could use these
areas to determine structural constraints from cross-correlation
rates. Knowing approximatively the rotational anisotropy of a
protein from X-ray studies or relaxation rates analysis,38 and
assuming 15° rotations, one can use the calculated map to
determine the intervals in which each angleθvw must lie from
the knowledge of the cross-correlation rates and of the associated
experimental errors.

Another question can be addressed with this method. One
may be interested in knowing when anisotropy has to be taken
into account in the interpretation of cross-correlation rates. With
this aim in view, we plotted in Figure 4, on the same graph,
the areas covered by allowed cross-correlation rates for different
values of the rotational anisotropy, looking for the limit above
which it is impossible to neglect it. For 5° rotations, the limit
is D///D⊥ ) 1.5. For 10° and 15° rotations, the anisotropy should
be considered ifD///D⊥ g 2.0.

A simple example can be interesting. Let us consider the
motion of two relatively fixed internuclear vectors. For example,
two neighboring CH vectors belonging to an aromatic base of
an RNA molecule. The motions of the two vectors are totally
concerted provided they belong to the same aromaric ring. In a
first approach, we can describe this motion as a single rotation
ωb of the base in the plane perpendicular to the axis of the RNA
helix (see Figure 5). For the vectorv, the first three Euler angles
that define the average orientation are:R ) 0°, â ) 90° and
γ ) 0°. For vectorw, the three Euler angles are:R ) θvw,
â ) 90° and γ ) 0°. Note thatγ ) 0° because the dipolar
Hamiltonian is symmetric, and it is used as a reference for
the choice of the (x,y,z) or (x′,y′,z′) coordinates. The rotation

Figure 2. (a) Areas covered by the cross-correlation ratesR(θvw) for
τc ) 4.14 ns andD///D⊥ ) 1.24:34 The gray area represents the dispersion
of the rates arising from overall rotational anisotropy and local motions
due to small rotations about the neighboring bond vectors (b) with
maximal amplitudes equal to 10°. The dotted area corresponds to the
area generated by rotational anisotropy37 multiplied by a local order
parameter 0.8e S2 e 1.0. b. The vectorW ) r(13Ci

R 1Hi
R) in an amino

acid may undergo small rotations about the two neighboring bond
vectors.

Figure 3. Plots of the areas covered by cross-correlation rates for the
rotational diffusion tensor calculated by Tjandra et al.34 with D///D⊥ )
1.24 andτc ) 4.14 ns, for small rotations about the neighboring bond
vectors of maximal amplitudes equal to 10° in dark gray or 15° in
light gray. The squares represent 54 experimental cross-correlation rates
measured by Chiarparin et al.28 for dipolar 13Ci

R 1Hi
R and13Ci+1

R 1Hi+1
R

interactions. The vertical bars correspond to the experimental errors28

and the horizontal bars to the intervals covered by the anglesθvw in
the 10 solution-state structures from Cornilescu et al.33
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involved in the motional process is about thex or x′ axis, which
leads to〈vx〉 ) 〈wx′〉 ) 0. It is now easy to calculate the value

of the cross-correlation rate as a function ofθvw and
〈vy

2〉 ) 〈wy′
2〉 ) 〈y2〉. The result is given by

One can assume that〈y(t′)y(t′ + τ)〉 ) 〈y2〉e-τ/τl whereτl is the
local correlation time. Then

The value ofjvw
q (0) gives an idea of the dipole-dipole cross-

correlation and can be written, according to eq 7

Note that, for a value ofθvw ) 45°, no effect of the local motion
may be observed. The only term that depends onτl, is equal to
4〈y2〉τl/1+τl(2D⊥+4D|). If τl , 1/(2D⊥ + 4D|), this term is
equivalent toτl and the result is given by

The effect of the motion is approximately proportional to
-12 cos 2θvw〈y2〉/(2D⊥ + 4D|). The motion will lower the cross-
correlation rate ifθ ∈ [0°, 45°] ∪ [135°, 180°]. The cross-
correlation rate will be greater ifθ ∈ [45°, 135°]. Moreover, if
τl . 1/(2D⊥ + 4D|), this term is equivalent to 1/2D⊥+4D| and
the result is

Figure 4. Plots of the areas obtained for different rotational anisotropy
ratiosD///D⊥ equal to 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0 (from light to dark
gray), considering small rotations about the neighboring bond vectors
of amplitudes equal to the following: a. 5°, b. 10° and c. 15°.

Figure 5. Scheme showing two internuclear vectors attached to a base
in an RNA double helix, which are both perpendicular toD//. The two
vectors undergo the same motional processes that may be described
by a random rotationωb.

K0(τ) ) 1
2

K1(τ) ) 0

K2(τ) ) 3
2

cos(2θvw)[1 - 4(〈y2〉 - 〈y(t′)y(t′ + τ)〉)] (29)

cvw(τ) + cwv(τ) )
1
10

[e-6D⊥τ + 3 cos 2θvw[1 - 4〈y2〉(1 - e-τ/τl)]e-(2D⊥+4D|)τ]

(30)

jvw
q (0) )

1
10[ 1

6D⊥
+ 3 cos 2θvw( 1 - 4〈y2〉

2D⊥ + 4D|

+
4〈y2〉τl

1 + τl(2D⊥ + 4D|))]
(31)

jvw
q (0) ≈ 1

10[ 1
6D⊥

+ 3 cos 2θvw

1 - 4〈y2〉
2D⊥ + 4D|

] (32)

jvw
q (0) ≈ 1

10[ 1
6D⊥

+ 3 cos 2θvw
1

2D⊥ + 4D|
] (33)
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As expected, this result does not depend on the amplitude and
is exactly equal to the result obtained without any motion.
Indeed, if such a motion is sufficiently slow and of sufficiently
small amplitude, it has no effect on the cross-correlation rate.

Conclusions

We were able to derive a rather complicated expression of
the cross-correlation function that can be simplified in many
cases, or implemented in a computer program to choose a
projection in the multidimensional space of the parameters. We
used it to determine the possible cross-correlation rates for a
given angleθvw between two internuclear vectors, considering
a range of small amplitude motions in a protein. We compared
the results with rates determined in human ubiquitin and saw
that two random rotations about two neighboring bond vectors
with maximum amplitudesωmax ) 15° are sufficient to explain
the experimental results. We determined the limit above which
anisotropy cannot be neglected for different amplitudes of local
motion. An RNA molecule has been taken as an example to
explain the simplification of the cross-correlation function in
special cases.
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