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Cross-Correlated Relaxation with Anisotropic Reorientation and Small Amplitude Local
Motions

Michagl Deschamps*

Département de Chimie, AssOce! CNRS,’EoIe Normale Supeure, 24 rue Lhomond,
F-75231 Paris Cedex 05, France

Receied: September 5, 2001

Numerous molecules are asymmetric in shape and diffuse anisotropically in solution. Moreover, many local
motions contribute to the nuclear magnetic relaxation process. Diggdele cross-correlations depend on

both geometrical (i.e., the average orientations of the dipolar vectors with respect to the principal axes of the
diffusion tensor) and dynamical parameters (i.e., the local motions of the same dipolar vectors). We derived
a new expression of the cross-correlation function that takes anisotropy of diffusion and local motions of
small amplitude into account. The local motion of a unit dipolar vector is expressed in terms of the projection
of the vector onto the plane that is perpendicular to its average position. Cross-correlations have been used
to study the influence of dynamics on the determination of the angle between the two dipolar vectors.

1. Introduction tions based on the knowledge (that may be unavailable) of the
) ) structure, and the uncertainties about the tensor cannot be
Nuclear magnetic resonance relaxation rates depend on the,ggjected A new expression of the cross-correlation function
geometry of the average structure of the molecule and on its j,cyding the effects of overall rotational anisotropy and local
dynamics. To extract reliable geometrical constraints, one must ., otion has been derived, using the method of Daragan and
take into account the fact that various dynamic processes MaY\ayo151632 With such an expression, one may be able to
modify the expected result of the experiment. USU"’}”V’ the lack determine the intervals of allowed cross-correlation rates,
of experimental data does not aIIo_w one 1o obtal_n a perfect provided one assumes a upper limit of the overall rotational
knowledge Qf geometry anq dynamlcs. An exhaus.tlve study of anisotropy and uses a specific model for local motions. We
a molecule is always possible but in most cases, its cost is toocompared these results with the dipolar-dipolg® *HE —

high. In fact, for each experimental result, the determination of .~ " "y . . .
geometrical data (such as distanéesngles between bond 39i+1_ _Hi+1 cross-correlathn rat?S in doub_ly enriched _human
ubiquitin measured by Chiarparin et #l.using 10 solution-

vectors, or the orientation of a bond vector with respect to the . )
axes of an alignement ten3of) is not straightforward. In fact, state structures determined by Cornilescu &t &r the angles
between the dipolar interactions. To limit the motions of the

there may be several associated pdgsometry, dynamigs ; ) ;
that may give the same experimental result. The effects of internuclear vectors, we considered rotations about the two
dynamics have been studied since the 60’s, the spectral densit€ighboring bond vectors characterized by a small amplitude

functions appropriate for anisotropic rotational diffusion are @nd ashort correlation time, when requiféd:For the overall
well-known5-° and several studies have taken internal motions otational diffusion tensor, we used a calculated value of the

into account®20 A more realistic approach would be to anis‘,otr(.)pyfi4 Using the same procedur.e, one may be able to
consider that a given experimental result (considered with its determine to what extent th& model is suitable for cross-
associated uncertainty) will only provide an interval in which correlations, or when overall rotational anisotropy has to be
the geometrical parameter, such as the angle between the twdaken into account for a given local motion.
considered interactions, should lie, rather than a unique value.
A method to determine such an interval is to start with an 2. Theory
average local structure, explore all possible dynamic processes
and record the predicted rates obtained. One thus obtains a map The Hamiltonian for the dipolar interaction between sghins
indicating the allowed connections between an experimental @ndl is given by®
result and the local structures. The analysis of the experimental ,
results is achieved by using this map to determine the possible N + .
local structures. Y P P Ha® = by z FPQAG (0 1) 1)

In our case, the use of dipetelipole cross-correlation =2
rateg1-30 to obtain geometrical constraints in proteins may be 3
hindered by rotational diffusion anisotropy and by local motions. With b = —uo yiyih/4zry and whereQyq corresponds to the

A suitable knowledge of the anisotropy tensor requires calcula- Oriéntation angles ofw: ©w(t), ®wu(t) with respect to the
laboratory frame. For cross-correlations, we have to consider
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Michael.Deschamps@ens.fr. Phonet33 1 44 32 33 44. Fax.  internuclear vectors andw. The behavior of the spin system
+33 144 3233 97. is described by the Liouville equation

10.1021/jp013407e CCC: $22.00 © 2002 American Chemical Society
Published on Web 02/12/2002




Cross-Correlations, Reorientation and Local Motion J. Phys. Chem. A, Vol. 106, No. 11, 2002439

do(t) . .
—— =il 60 = Y T,60 — 6.0 ()

DZZ
K8
dt Y

where

=byb, 2 [AATY dllifwg 3

q=-2

For dipole-dipole cross-correlated relaxation, the relaxation
superoperator contains contributions from autocorrelated relax-
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[F\C,,W + F\(,:\,,V]U = bvbWZ[A\(/ q), [A\(,;rq)y O]]]e,w(wq) + "S? with respect to the axes _'e-;
q T (x,y,z) for v or (xX',y",2") for w. \Ir
A—a) CA ) s " -
byb, Y [A,?, A, 81li, (@) (5) B2 g
a Vv , G
I ) o z z
Only the contribution foig = 0 (i.e.,wq = 0) is significant for ‘,_ ‘
the conversion of double-quanta terms into antiphase double- ; PAIS
. . L PV Lo | 7/
quanta term$® Thus, the interesting term of the cross-correlated 6,t) /¢ ‘ 0,
part of the relaxation superoperator can be written, knowing VAR V Fw ()
that 0 Y W) /Sy
79 (t) / ¢ (1)

[AD, TAD, a]] = [AD, [AD, &11:
e PO A(0) TA(Q) Aq1r:0 0 Figure 1. Scheme of the different rotations needed to describe the
[rv,w + FW,V]O = 2b,b, [A [AY 0]](Jv,w(0) + JW,V(O)) (6) motion of the dipolar vector.

We have to focus on the spe_ctral density function. Itis defined ¢, (7) = DDézg(Qv(t'))Dféo* (Q,(t+1))0
through the correlation function
. | = DZD&%’(@Da'»D@)(QA DE(Qu(t)) x
iGulwg = [y GrEOFSD (¢ + " (7) o o

_ ZD*‘“* (Q°(t + 7)DP* (DG (it + 1)
where the angular brackets correspond to a time average over
t. The correlation functiort,w(z) = EI(E)FED (1 + )0 _ @) D rans (s Dy
may be expressed in terms of Wigne\:r rotati(v)Vn elements o rSZ Dgr (@t ))Dq" (7t + 7))Dx

2 A 2

FU@() = FY ™ (20) D ()Drs (€2,
F(Q(t)DG* (2, + )T (10)
= DR(@(t), ©(t), 0) w
because overall and local motions are assumed to be indepen-
dent. Let us consider the overall rotational diffusion, and assume
that the rotational diffusion tensor is symmetric. T¥en

— d(2)(® (t ))e*qu%(t) (8)

To express the correlation function properly, we have to split
the motion into rotations about well-defined axes. Thus, we @D (s , _[6D+r2(Dy D]t
define different steps for the motion of a defined vector: First, [Dq, (€27(t'))Dyy (Q (t +o)=¢ 5 5rr e

the orientation of the diffusion tensor with respect to the (11)
magnetic field is defined bRP(t'). The average position of
with respect to the principal axes of the rotational diffusion
tensor is defined byQ). Second, the motion around the
average position may be representecﬂi;(t'), which charac-

Note that this part does not dependgrand consequently, the
same is true for the whole correlation function. Only terms
wherer = r' do not vanish. We can write the correlation function

terizes local fluctuations (See Figure 1). Then we can express 1 +2
R Q) Cu(r) == PRI,
r=—2
DR(Q,(t) = Y DP(Q"(t)) D) DY (QU(t)) (9) Z DA(Q") D@ (Q%) x
rs S,

Thus, the correlation functioa,,(7) may be calculated Eﬂ)g%)(Q\';(t'))ng* (Q\le(t' +17)0(12)
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If one looks carefully at the last terms, one notices that it is 77 (r) =
possible to make simplificatiori$.First o A o , 3
2 d2©"d2E)|1 + 20 S + wz.q] +
2 y

V6 [d2©e4 <2>(® YOG — we O+

<2>(®C‘)d‘2>(® B, — A+
Second, we define 6 dQ(O IO B ()W (t' + 1) + ,(t + DI (t)D

7 = mO0) O+ DD (A4 ) = 4 dYOLdHOf) cos@h — vf) x

DR(QUINDL (Quft + 7)) =
dB(0,(NARO + 7)e TN (13)

Assuming that the amplitudes of the fluctuations are small and 1-— 2’@5 ZD_ g’m\,f, + WZ,[]] +
symmetric with respect to the average position, we can 2

approximate the functions™®¥(z) with a second-order Taylor V6 d3(©))[sin(@}) cos@}) cos@) — P — Wi+
expansion (the angular brackets have been dropped to simplify 2 sm(@ ) Sm(q)A A) o, +

the expressions)
V6 dB(O))[sin(©)) cos@}) cos@] — @} — »20-
2 sin@Y) sin(@y — Py B2, 0+

W 3 2 3 2
Too@) =1 —Z05(t) — = Ot +
00 (@) > W) > Wt + 1) 3 cos@) — PN)[(1 — 2 co(O)) — 2 cod(O)) —

ey — oy [Bp2 0 4 cod(0)) cog(0Y)) x
702(0) = T o) \[89“”“ o (U)W (' + 7) + ot + D)W, () TH
THE=— TN = - T@ =T 1(r) cos@)) cos@y) @, (), (t +7) +
Eev(t')ew(t' +17) vyt + 1w, (1) + 3 sin@] — f) x
[cos©},) cos(BY) (1w, (t' + 1) +
Too(1) = T %5(1) ~ \/gei(t') v, (U + )W, (1) - cos@%) cos(2, ), (U)W, (' + 7) +
o (' + )W, (1)
Ton() = TUd0) = T (1) = T5u(0) = (1) =

7™ (1)~ 0 (15)

4 d3(@0)dB(©%) cos 2% — w1 — 357 + o0
These expression are valid for angular fluctuations smaller than

7/6. The correlation function §E)\/2, + qu] +J6 d(z)(QC)[(d(z)(G) ) +
le(r) = d(2)2(®A)) cos 2(b}) — L) — whCH-
zl%me 8D G (r)e BPTHPIT + o (7)e PRI (16) 2 cos(B}) sin 2@} — Pf)Iw, ] +

VedRON[(dR(©)) + dP,(07)) cos 2] — Bf) x

Where the detailed functiong(z) are shown in Appendix A
2 PP @2 — v50 2 cos(D)) sin 2@y — ) 3,2, +

Go(1) = Zd@)(@é)d Of) 7 () DTISPD 3sin©?") sin@%)[cos 2% — L) x
Ao o, [, ()W, (' + 7) + 2t + D)w, (1)
Gi(r) = ;[d(ls)(@v)d(ls)((a )e c0S@7) cosO) (W (t + 7) + ot + D ()] +
d? (@4d2(©%)e *“I’AJ”(DW] sin 2@y — })[cos@O}) B, (t ), (t' + 7) +
7 ()Pl vy (t + D)W, (1) O cos@f) By ()W, (t' + 7) +
(1) = Z[d (2) ) 2i00-2i0f v (t' + r)wy,(t')[j]] (19)

@) 1P (@) 2P 208 where some terms have been simplified: for example,
d2d0,)d%( )e "] x W) + VA(t)O= WAt + 7) + Vit + 1)0= N2 + V20
(T) ISq)V(t) is'Dy(t'+7) (17) . )
758 3. Results and Discussion
Now we must consider the sum of the two contributions 't may be interesting to calculate these functions in specific
stemming fromcw(t) and cw(r). This will give a new cases. First, one can easily verify that if none of the vectors
correlation function, with different internal (cross-)correlation undergo any local motion, the different parts of the correlation

functions function become
CVW(r) + a0 = Fo(r) = 2dF©5)dD(Oh)
—[ Tryr)e P + F(x)e PP g7 (r)e PP (18) F5(r) = 4d2(OdA(O) cos@: — dh)

where Tro() = 4dQ(O))dR(O) cos 2(0F — @f)  (20)
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One notices that in such a case, one finds the function previously It will be shown that the model-free analysis cannot really
calculated, i.e.cm(7) + Cw(r) = ¢199%r). The correlation  be applied to calculate the intervals of cross-correlation rates.
function ﬁcgvid(f) due to global motion can be separated from A more elaborate motional model should be used to derive such
the one induced by local motion, provided all terms in angular intervals. For correlated motions, one has to assume some model

brackets excepl; + v.Jandfv; + wiOvanish. In this case, 1o calculate average values such#s+ vf,D.E)vi + w;land
the local motions of andw are not correlated and these vectors xylJ [vewy [ For the terms that are functions ofwe used

satisfy the following relationshipsy? — v20= 2 — w2C= 0 the approach followed by Daragan ef&lhese functions may
and Wy 0= Wywy = 0). One can then obtain: Y be characterized by appropriate average values and a correlation
time 7, characteristic of local motions

0 — 2541 — 32 1 v 32 2

(1) = 20Q(@NdBO%)| 1 — 532 + viT- S + wy,ql W + 1) + WOt + 0= T B
T4(r) = 4d)Od2(OL) cos@s — dh) x [V, ()W (1 + 7) + W, (), (1 + 7)0= Tw, e

32, 2 352 2
[1 ZWX T vy ZNVX' + Wy'[}] O, (U)W, (1 + 7) + W, (U)v (1 + 7)C= [,w,, (@ "

Hy(r) = 4d?0MdB¥ e 2" — o~ Ny (4 1 ' —/7
Ir(1) = 4d35(04)d35(0,) cos 2@, — D) x W)W, (1 + 1) + W,/ ()t + )= Dw, &7 (24)

3.2, 2 3.2 2
[1 - ENX +vy= Emvx’ + Wy’q] (21) To simplify these expressions, we assumed that the motions of

v andw are not correlated. Then, we have
The correlation functiort,w(z) + cw(t) can be separated into
two factors that correspond to the anisotropic correlation N, w, = ¥, Mw, [= 0 (25)
function without local motionG’{,'\?v'd(r) for the first part and
to the correlation function accounting for local motions
1 — 3/20% + V20— 3/20W; + wiOfor the second part

because of the symmetry of the fluctuations (.=
Wy = 0). Thus, the parameterdoes not play any role, because
the correlation betweaenandw is not taken into account (Terms
_ ,origid such asi(t)wk(t' + 7) + wy(t)vi(t' + 7)0Owill also vanish,
Gl ) Gnl) = v (1) X3 3 and only the termé¥; & V] W5 & w5 Cand [, [) [v,wy )
1— Eﬁyi + vf,D— EEN’Z" + qu] (22) wherer; does not play any role- will remain). To calculate the
remaining terms, we made use of the method developped by
Daragan et al® We introduced two random rotations(t') and
o'(t") acting on the vectorg andw. As we said, if the motions
of v andw are not correlated, the random rotatiang') and
'(t") are not correlated. The average values of these rotations

be attenuated by a factor of 0.9. For two or three times larger vanish@(t’)[lz m"(t'),D: 0. First, We,Wi” COUS‘deF the Cross-
angles £30° or +45°), the attenuation factors will be 0.6 correlation between dipolafC* — IH* interactions in proteins.
or 0.07. ' ' To calculate the random rotatiodgt') ando'(t'), we supposed

that the main sources of motion are the rotations about the two
neighboring bonds. For each vector, one has to consider two
rotations of angleg andy around the'*C,*N and 3C,13C’
bonds. The resulting transformation may be approximated by
the sum of the two rotatioA3

Col®) = C9T)(1 — 3, + V2D (23) H=¢+y (26)

We notice that the parameter we calculated is the averageAccording to Daragan et af.

12 + S) = 1 — 31205 + v;0- 3/20v; + w5 Thus, if one L

assumes that the auto-correlation model-free order parameter w?= ¢+ +2p.y (27)
is typically between 0.8 and 1, local motions have approximately

the same effect in the cross-correlation case. The anisotropy ofand

rotational diffusion must be considered as the dominant factor - Py
if its effect on the cross-correlation rate is higher than the effect [p.y[= cy, W [P T
of the order parameter, i.e., 20%. As a consequence of eq 22, - .
the effect of local motions can be represented by a scaling factor.where —1 < ¢, < 1 and [p?0= 2||<i>max||_3/ 3 with —¢ma <

Thus, the anisotropy of rotational diffusion can be taken into ¢ = ¢ We will consider that the rotations andy are not
account separately, as described in ref 37 Bay = 0, if correlated, 1.0y = 0 to simplify the numerlcql calculations.
D/Dy = 1.45 orDy/Dy < 0.65 (in a symmetrical diffusion We considered the effects of these dynamical processes on
tensor), the error due to anisotropy is 20%. In these cases, itthe °CY* H* — 13C{; H, cross-correlation rate. For the
seems obvious to take anisotropy of rotational diffusion into generation of the map of the Figure 2, we usge= 0.14 ns,
account. However, for human ubiquitin, a 17% anisotropy will andD;/Dg = 1.27. Then, 180 values for the anglg, have

lead to an error of 9%. Associated with a maximum error of been used. Ten different values betweérafd 180 for each
20% due to internal dynamics, the overall error is equal to 27%. orientation angle of the pair of vector (as defined by Deschamps
This tends to show that even if internal motion is supposed to €t al*") have been taken. The axes of the small rotations were
be a decisive factor, one should be aware of the pernicioustaken to be the bond vector§'NC", Ni1;—Cf}; and G'—C,
effects of anisotropy. C’,,—C'i+1, and two relative orientations of these bond vectors

With this simplified expression, we have an easy access to the
influence of the amplitudes of local motions. Considering a

wobbling-in-a-cone motion, where each vector can oscillate in

acone {15° < 6,,, < +15°), the cross-correlation factor will

By settingv = w, one can find the autocorrelation case
discussed by Daragan et’8£2In the autocorrelation case, the
function 1-3[¥; + vi[lcorresponds to the so-called model-free
order parametef related to the vectov1®

(28)
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wldeg ) Figure 3. Plots of the areas covered by cross-correlation rates for the

b. rotational diffusion tensor calculated by Tjandra et‘akith D,/Dp =
1.24 andr. = 4.14 ns, for small rotations about the neighboring bond
vectors of maximal amplitudes equal to°ld dark gray or 15 in
light gray. The squares represent 54 experimental cross-correlation rates
\Il I measured by Chiarparin et #lfor dipolar 3C7* H and *3C7,; *H
interactions. The vertical bars correspond to the experimental &rrors
and the horizontal bars to the intervals covered by the arglen

@ V R' the 10 solution-state structures from Cornilescu &€ al.
N H ratg for two maximum amplitudes of small rotations about the
/ neighboring bond vectors, respectively equal t6 &ad 15,
R usingt. = 4.14 ns and;/Dy = 1.27 (obtained from Tjandra
et al3¥). With rotations of maximal amplitudes equal to°10
Figure 2. (a) Areas covered by the cross-correlation ra&é,) for one could explain most of the experimental results. Only three

7. = 4.14 ns and,/D = 1.24* The gray area represents the dispersion pairs of residues, 7472, 72-73, and 73-74, feature behaviors
of the rates arising from overall rotational anisotropy and local motions that cannot be explained by “LBotations. One could use these

due to small rotations about the neighboring bond vectors (b) with areas to determine structural constraints from cross-correlation
maximal amplitudes equal to 10The dotted area corresponds to the

area generated by rotational anisotBpyultiplied by a local order  ates. Knowing approximatively the rotational anisotropy of a
parameter 0.& S < 1.0. b. The vector = r(:C* *H%) in an amino protein from X-ray studies or relaxation rates analy8iand
acid may undergo small rotations about the two neighboring bond assuming 15 rotations, one can use the calculated map to
vectors. determine the intervals in which each anglg must lie from

the knowledge of the cross-correlation rates and of the associated
with respect tov or w were used. Three different maximum experimental errors.
amplitudes were used for each rotatipandy: 0°, ™72 and Another question can be addressed with this method. One
¢ or 0°, ™2 andy™@ For each value oy, 12960000  may be interested in knowing when anisotropy has to be taken
pairs{ orientation,dynamigswere explored and the correspond-  into account in the interpretation of cross-correlation rates. With
ing cross-correlation rates were recorded. The upper and lowerthis aim in view, we plotted in Figure 4, on the same graph,
bound of these rates were represented in Figure 2, for athe areas covered by allowed cross-correlation rates for different
maximum amplitude of all rotations about bonds set t6.10 values of the rotational anisotropy, looking for the limit above
This area was compared to the rates obtained by describing thexhich it is impossible to neglect it. ForSotations, the limit
local motion by a local order parameter OsBSfW < 1. The is Dy/Dp = 1.5. For 10 and 15 rotations, the anisotropy should
shapes of these two maps are rather different. One can noticebe considered iD,/Dn > 2.0.

that theS” method tends to minimize errors 6y, values that A simple example can be interesting. Let us consider the
are near to 547and maximize them neaf @r 18C°. Thus, it motion of two relatively fixed internuclear vectors. For example,
is shown that cross-correlation may be studied more efficiently two neighboring CH vectors belonging to an aromatic base of
by considering real local motions. an RNA molecule. The motions of the two vectors are totally

We applied this method to human ubiquitin. Knowing 10 concerted provided they belong to the same aromaric ring. In a
solution structures determined by Cornilescu ef%hnd the first approach, we can describe this motion as a single rotation
dipolar-dipolar3C* *H* — 13C,; H,, cross-correlation rates @ of the base in the plane perpendicular to the axis of the RNA
measured by Chiarparin et#lwe plotted in Figure 3 the cross-  helix (see Figure 5). For the vecteyrthe first three Euler angles
correlation rate against the average amglein the 10 structures.  that define the average orientation are:= 0°, f = 90° and
The vertical error bars correspond to the experimental errorsy = 0°. For vectorw, the three Euler angles aret. = 6y,
and the horizontal error bars, to the intervals covered by the 5 = 90° andy = 0°. Note thaty = 0° because the dipolar
angles6,y, in the 10 solution-state structures. We represented Hamiltonian is symmetric, and it is used as a reference for
two areas containing the allowed pair8,.,cross-correlation the choice of thexy,z) or (X,y',Z) coordinates. The rotation
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Figure 5. Scheme showing two internuclear vectors attached to a base
in an RNA double helix, which are both perpendiculabip The two
vectors undergo the same motional processes that may be described
by a random rotatiom.

of the cross-correlation rate as a function 6f, and
[W;0= W5 0= (20 The result is given by
1
KO(T) - 2

Ki(r)=0

Ky(7) = g cos(@,,,)[1 — 4(¥T+ )t + )0 (29)

One can assume that(t")y(t' + 7)[= y2[é "% wherer is the
local correlation time. Then

Cw(7) + G (7) =
e + 3005 ,,[1 — AL — & )OO
(30)
The value ofjd,(0) gives an idea of the dipotadipole cross-
correlation and can be written, according to eq 7

Jw(0) =

1] 1
E[G_DD +3cos 3,

1— 40 Y,

2D+ 4D, ' 1+ 17,(2D,+4D))
(31)

Note that, for a value o, = 45°, no effect of the local motion
may be observed. The only term that dependspis equal to
4@’23|/1+T|(2DD+4D||). If T << l/(ZDD + 4DH), this term is
equivalent tor; and the result is given by

1 4520
jf}W(O)wl—lo[iwL?;cosZ? 1- 430 (32)

6D, W2D_ + 4D,

The effect of the motion is approximately proportional to
—12 cos B[y2(2Dg + 4Dy). The motion will lower the cross-
correlation rate if§ € [0°, 45°] U [135°, 18C]. The cross-
correlation rate will be greater & € [45°, 135°]. Moreover, if

ratiosD,/Dy equal to 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0 (from light to dark 71 > 1/(2Do + 4Dy), this term is equivalent to 1[%:+4D, and
gray), considering small rotations about the neighboring bond vectors the result is
of amplitudes equal to the following: a?,5b. 10 and c. 18.

involved in the motional process is about ther X' axis, which
leads tolv,[1= Wy (= 0. It is now easy to calculate the value

. i/ 1 1
q ~ - PR
Jww(0) 10[6DD +3cos 3, 2D, + 4D, (33)
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As expected, this result does not depend on the amplitudg andﬁé(r) — 2d(220)(®ﬁ d‘ﬁ)’(@Q) cos 2@6 _ (I)@) «

is exactly equal to the result obtained without any motion. 3 3

Indeed, if such a motion is sufficiently slow and of sufficiently [1 — S(VAL) + Vi) — SWe(t + 1) + Wit +1)| +
small amplitude, it has no effect on the cross-correlation rate. 2 2

3

SEYOI(A(O]) + d2,(67)) cos 20 — @)
Wa(t +7) — Wi (t' + 1) +

2 cos(BY) sin 2@y — DLW, (1 + T)w,(t' + 7))] +

Conclusions

We were able to derive a rather complicated expression of
the cross-correlation function that can be simplified in many
cases, or implemented in a computer program to choose a 3

T . . @A @A (2) A A_ pA
projection in the multidimensional space of the parameters. We §d20(®w)[(d22(®v) + d32,(0y)) cos 2@, — D) x
used it to determine the possible cross-correlation rates for a 208 20Ny A - A ZA
given anglef,,, between two internuclear vectors, considering (vt Vy(t )) ~ 2 cos(B)) sin 2P, — P,,) x

a range of small amplitude mption_s ina protein: Wg compared (vx(t’)vy(t’))] + 3 sin(@é) sin(@@) x
the results with rates determined in human ubiquitin and saw 2
that two random rotations about two neighboring bond vectors [[1 + cos@.) cos@%)] cos 25 — dh) x
with maximum amplitudes™ = 15° are sufficient to explain ) ' , )

. - . . v, (t)w(t' + 7) + v ()w,.(t" + 7)) +
the experimental results. We determined the limit above which () Tl y(t) VA( )
anisotropy cannot be neglected for different amplitudes of local [cos©]) + cos@,)]

motion. An RNA molecule has been taken as an example to  g;jp 2@ — DYV ()W (1 + 7) — V()W (1 + 1)) —
explain the simplification of the cross-correlation function in v W YR oo

special cases. [1 — cos@)) cos@h)] cos 2@ — dL) x
(W EW(t +7) = vy (O (¢ + 7)) —
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