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A quadratic free energy relationship (FER) between the kinetic activation free energy∆Gq and the
thermodynamic reaction asymmetry∆GRXN is derived for acid-base ionization proton-transfer reactions
AH‚‚‚Bf A-‚‚‚HB+ in a polar environment in the proton adiabatic regime, in which the proton is treated
quantum mechanically, but does not tunnel. The description differs from traditional treatments in both the
proton quantization and the identification of a solvent coordinate as the reaction coordinate. The key coefficients
in the FER are analyzed analytically for the simplified case, where the proton donor-acceptor distance is
held fixed (a restriction removed in the following paper). In particular, the intrinsic barrier is shown to be the
sum of an intrinsic solvent barrier, largely determined by solvent reorganization, and the zero point energy
difference of the proton between the reactant and the transition state in a solvent coordinate. The Brønsted
coefficient is related to the quantum proton-averaged solute electronic structure at, and the position of, this
transition state along this reaction coordinate. Similarities and differences of the FER with the well-known
Marcus relation are discussed.

1. Introduction

Proton transfer (PT) reactions are of obvious central impor-
tance in both chemistry and biology,1 and accordingly, there
has been intensive study of PT rates in solution and other polar
environments, e.g., proteins.1-4 Of particular importance in both
comprehending and characterizing PT reactions is understanding
rate, equilibrium free energy relations connecting the activation
free energy∆Gq of the reaction with the thermodynamic reaction
asymmetry∆GRXN. The quantitative nature of this trend has
been modeled by several workers;2,3,5-9 of special interest is
the nonlinear free energy relation (FER) introduced by Marcus5

where ∆Go
q is the “intrinsic” reaction barrier (∆Go

q ) ∆Gq-
(∆GRXN ) 0)), i.e., the activation free energy for the reference
thermodynamically symmetric reaction. This relation has had
impressive success in correlating solution phase and other PT
reaction data,2a-d,4,5 but it is important to appreciate that this
Marcus relation was never actually derived for PT reactions.10

An FER was initially derived by Marcus5 for a gas phase H
transfer situation using a bond energy-bond order (BEBO)
relationship, and independently the relation eq 1.1soriginally
derived by Marcus for outer sphere electron-transfer reactions
in solution11swas posited because it gave a FER similar to that
resulting from the BEBO analysis. However, neither of these
physical models individually is a plausible model for PT, which
simultaneously involves bond breaking and making as well as

strong electrostatic reacting solute-surrounding solvent interac-
tion. Several researchers3,6 have stressed the importance of
understanding how an equation whose structure is based on
electron transfer (ET) theory could be successful in the PT
context, where the assumptions of ET theory do not apply. For
example, ET theory generally assumes that the electronic
coupling between reactant and product states is small, say a
kcal/mol or even less,11 whereas for PT, a typical electronic
coupling value is of the order of an electronvolt,9,12,13a feature
reflecting the absence of bond breaking/making in outer sphere
ET but its essential presence in PT. (This aspect is appreciated
in some work5d but not in other efforts.14) One goal of the
present work is to show how a second-order FER similar to the
Marcus eq 1.1 emerges, using a simplified but realistic theoreti-
cal treatment of PT reactions in a polar medium. Beyond this,
the analysis also (a) characterizes the intrinsic reaction free
energy barrierswhich is typically (though not always15) re-
garded as a parameter in correlating PT rates and equilibrias
in terms of fundamental molecular and solvation features, and
(b) forms the basis for a nonconventional theoretical perspective
for kinetic isotope effects.16

The underlying picture of PT reactions7,8,12,17,18employed
within differs considerably from “standard” approaches.1,4,19For
example, the reaction is driven by configurational changes in
the surrounding polar environmentsa feature of much modern
work on PT reactions7-9,12,13,17,18,20-28sand the reaction activa-
tion free energy is largely determined by the reorganization of
this environment, rather than directly by the height of any
potential barrier in the transferring proton’s coordinate, the latter
being the focus of traditional approaches.29 In this picture, the
rapidly vibrating proton adiabatically follows the slower rear-
rangement of the environment,7,8,17,18and one focuses on the
instantaneous proton potential for different environmental
arrangements. Figure 1 illustrates this nonequilibrium solvent
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assisted PT view. Figure 1a-1c displays the system free energy
curves as a function of the proton coordinate with the ground
proton vibrational state indicated, for three values of the solvent
coordinate characterizing different environmental configurations.
As depicted, evolution in the solvent coordinate (defined
precisely within) leads to an evolving proton potential pattern,
in which the proton is initially bound to a donor in the reactant
state (Figure 1a), to a transition state with the proton delocalized
to a degree between donor and acceptor moieties (Figure 1b),
and finally to the product state with the proton bound to the
acceptor (Figure 1c). The evolving zero point vibrational energy
of the proton, which includes its interaction with the environ-
ment, defines a free energy as a function of the environment
rearrangement, shown in Figure 1d. The labels R,q, and P in
Figure 1d correspond to the reactant, product, and transition
states along the reaction coordinate, and correspond to the
ground proton vibrational energy levels displayed in Figure 1a-
1c. The reaction barrier is thus in the solvent coordinate, as
opposed to the proton coordinate in the “standard” picture. At
the transition state solvent configuration (for a thermodynami-
cally symmetric reaction), the proton potential is a symmetric
double well.

Figure 1 depicts what we term theproton adiabaticregime,
in which the quantized proton vibrational level lies above the
proton barrier at the environment’s transition state (TS) con-
figuration.22 This adiabatic PT regime picture has been supported
in electronic structure/simulation studies including acid ioniza-
tions in solution17 and elsewhere.18,24 The TS for adiabatic PT
situation described above corresponds to what has been termed
in the enzyme reaction literature a “low barrier hydrogen
bond”.30 As discussed below in more detail, the adiabatic proton
regime is expected to apply for proton donor/acceptor systems
in which there is a hydrogen bond (H-bond) of sufficient
strength. We stress that the proton motion is a bound quantized

vibration here, rather than a classical, over the barrier, motion
as in standard approaches. A separate and distinct quantum
regimesnonadiabaticPT or tunneling7,8,18,20,21,23,25-27soccurs
if the zero point vibrational energy in the TS proton potential
is below the central proton barrier top. FERs for nonadiabatic
PT in this picture have been presented in ref 7 (see also ref 8).

The above description has ignored, for simplicity, the
important influence of the separation between the heavy donor
and acceptor moieties between which the proton is transferred.
This H-bond coordinate’s most salient aspect is its influence
on the proton barrier (Figure 1b) at the environment’s TS
configuration: this barrier will increase as the donor-acceptor
separation is increased; a higher energetic price must be paid
in breaking the original bond before the energetic gain from
the new bond formation is realized. The PT reaction must thus
be considered not only in the presence of a barrier whose
asymmetry is fluctuating due to the environment, but one whose
height (and width) is also fluctuating. Figure 2 shows such a
barrier height increase as the donor-acceptor distance increases,
going from Figure 2a to 2b, with the proton adiabatic condition
maintained. For perspective, Figure 2c displays an extreme
case: the H-bond separation is sufficiently large that the ground-
state proton vibrational energy level is no longer above the
proton coordinate barrier; this is nonadiabatic PTstunnelings
and is excluded in the present work. Nonetheless, Figure 2c
emphasizes that attention must be paid that the system remains
adiabatic; in this work, we require sufficient H-bond strength
to ensure small equilibrium separations in the reactant H-bonded
complex.

The outline of the remainder of this paper is the following.
Section 2 discusses the theoretical formalism used to evaluate
the free energy surface from which barrier heights and reaction
free energies will be analyzed, whereas section 3 presents the
parametrization and specification of model potentials used to

Figure 1. Free energy curves versus proton positionq for fixed proton donor-acceptor separationQ ) 2.55 Å and at (a) the reactant, (b) transition
state and (c) product state solvent configurations. In each case, the ground-state proton vibrational energy level is indicated. (d) Free energy of the
PT system, with the proton quantized in its vibrational ground state, versus solvent reaction coordinate. The solvent coordinate critical points
corresponding to the proton potentials in panels (a)-(c) are indicated.
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illustrate the formalism of section 2. The free energy relationship
is analyzed in general terms in section 4, with detailed derivation
of its specifics described in section 5. Concluding remarks are
offered in section 6. Beginning with section 4, we restrict the
discussion to a fixed donor-acceptor separation, a restriction
removed in the following paper,31 hereafter labeled II; as will
be seen there, the basic structure remains the same.

2. Theoretical Formalism for the Reaction Free Energy
Surface

We introduce a simplified model system for an acid ionization
PT to calculate the free energy surface from which the free
energy barrier and reaction asymmetry can be extracted. The
model consists of PT between a donor, A, and acceptor, B,
separated by the H-bond distanceQ, with q the protonsdonor
separation, in short, the proton coordinate

We will be concerned only with the “chemical” aspect of the
PT reaction, i.e., that portion occurring within a hydrogen-
bonded complex to produce a contact ion pair product com-
plex.32 The system gas-phase electronic Hamiltonian is con-
structed in terms of a two valence bond (VB) state picture. These
two electronic VB states correspond to a neutral and an ion
pair, as suggested in eq 2.1, and are defined at each value of
theq andQ coordinates. This description has its foundation in
the Mulliken charge-transfer picture33 of PT, in which an
electron is transferred from a nonbonding orbital (e.g., lone pair)
on the (proton acceptor) base to the antibonding orbital of the
(proton donating) acid. The A-H bond accordingly weakens
and a hydrogenic species can move from A to B. This somewhat
nonconventional picture has now been supported by several ab
initio calculations for acid ionization17 and elsewhere,24 which
show that the transferring species actually carries a fraction of
the charge of a proton; we will nonetheless continue to refer to
“proton transfer” throughout.

The basic formulation of the PT system free energy surface
in this two VB state framework was developed in ref 12, where
discussion of its antecedents, including work of e.g., Coulson,
Bratos, and Warshel9,34 may be found. We summarize only the
essential features from that work here. First, the gas phase
Hamiltonian at each solute geometry is a two-dimensional matrix
for the neutral (N) and ionic (I) VB states with an off -diagonal
electronic coupling element mixing them to produce the
electronically adiabatic states

We will only be concerned with theground electronically
adiabatic state produced by the electronic, or resonance coupling
-â, and this choice will be taken in all that follows. In eq 2.2,
UN andUI are the two electronically diabatic VB state gas-phase
surfaces. It proves convenient to have the same zero of energy
for UN and UI, so that∆vac explicitly indicates the gas-phase
offset between the reactant and product diabatic states, and thus
represents the gas-phase transfer reaction asymmetry (without
any zero point energy effects, vide infra).

In the above two diabatic state representation, the ground
adiabatic electronic wave function is the linear combination

where the coefficientscN andcI describe the solute’s electronic
composition in terms of the neutral and ionic VB state wave
functions ΨN and ΨI. In this representation, the gas-phase
ground adiabatic electronic energy is the expectation value

After these gas-phase preliminaries, we turn to the situation of
interest, in which the solute system is immersed in a polar
solvent, mimicked as a dielectric continuum with static (εo) and
optical (ε∞) dielectric constants. As seen within, we will couch
our general final results in a form that should apply beyond
such a description. The solute-solvent interaction is modeled
in the point dipole approximation for the solute charge distribu-
tion; each diabatic state is characterized by its own dipole
moment (µN and µI), which together with a transition dipole
moment µNI, determine the expectation value of the dipole
momentµ̂ in the solute electronic stateΨ

In general, the solvent electronic polarization is equilibrated to
a certain mixture of VB states which must be self-consistently
determined.35 Here, we will consider for simplicity the Born-
Oppenheimer (BO) limit35 in which the fast solvent electronic
polarization is equilibrated to the individual VB states,36 and
in which the system nonequilibrium free energy is described
by12

with expectation values taken over the solute electronic wave
function. The first three terms in eq 2.6 are respectively the
solute’s gas-phase energy at the solute’s solution phase elec-

Figure 2. Variation of the reaction transition state proton potentials with increasing H-bond coordinate AB separation, going from (a) to (c). Both
the ground and the first excited proton vibrational levels are indicated.

|Ψ〉 ) cN|ΨN〉 + cI|ΨI〉 (2.3)

〈Ĥvac〉 ) 〈Ψ|Ĥvac|Ψ〉 ) cN
2UN + cI

2UI - 2cIcNâ (2.4)

〈µ〉 ) 〈Ψ|µ̂|Ψ〉 ) cN
2 µN + cI

2µI + 2cNcIµNI; µ̂ ) [µN µNI

µNI µI
]

(2.5)

Gq ) 〈Ĥvac〉 + K[-z〈µ̂〉 + 1/2z
2] - 1/2K∞〈µ̂2〉 (2.6)

AH‚‚‚B w A-‚‚‚HB+ (2.1)

Ĥvac ) [UN -â
-â UI + ∆vac] (2.2)
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tronic structure, the solute-solvent interaction energy, and the
solvent’s self-free energy. The last term is the stabilization free
energy due to the solvent electronic polarization. The notation
Gq indicates explicit dependence of the free energy on the proton
coordinateq, to distinguish it from a free energy subsequently
introduced, in which the proton motion is quantized.

In eq 2.6,z is a coordinate describing the solvent orientational
polarization, and corresponds to the solute dipole moment that
the solvent configuration would be equilibrated withif there
were equilibrium solvation. Becausez can in fact differ from
〈µ̂〉, the system can be out of equilibrium, an essential feature
of the description; the solvent polarization state is whatever it
happens to be, and is not necessarily that polarization which is
equilibrated to the PT solute system’s actual charge distribution.
The force constants for the orientational and electronic polariza-
tion of the solvent

depend on the static and optical dielectric constants, as well as
a structure factor,Ms, discussed later.

The quadratic dependence on the solvent coordinatez in eq
2.6 results from nonequilibrium fluctuation of the environment’s
polarization around its equilibrium position. A solvent polariza-
tion coordinate was first introduced in reaction dynamics for
outer sphere ET by Marcus,11 with a resulting quadratic
dependence of the free energy on the polarization of the medium.
(For more complex charge transfers in a polar environment,
theories have been developed which also include the solvent
polarizationssolute charge distribution interaction; examples
include PT7-9,12,13,17,18,20,22,23,27and other12,35,37reactions.) But
as will be seen, the quadratic dependence ofG in eq 2.6 for the
PT case does not at all guarantee a quadratic FER as in eq 1.1.

The solute’s electronic composition, defined by the co-
efficientscN andcI, is determined by solution of the generalized
Schrödinger equation

whereE is the ground adiabatic energy eigenvalue for the matrix

The off-diagonal term in the Hamiltonian contains the renor-
malized electronic coupling-â′, which includes the solvent
contribution to the resonance coupling,12,35-â′ ) -â - KµNIz
- 1/2K∞µNI(µN + µI).

It is convenient to replace the coordinatez with a different,
linearly related solvent coordinate,∆E, the offset between the
electronically diabatic states which is modulated by the solvent

∆E ) 0 corresponds to zero offset between the two diabatic
proton potentials, and to a symmetric proton potential inq. The
algebraic sign of∆E is defined such that∆E < 0 corresponds
to the reactant region, i.e., solvent configurations close to those
appropriate to equilibrium solvation of the solute in its reactant
configuration, and∆E > 0 corresponds to the product region.
∆E is similar to the solvent reaction coordinate typically used

for ET38 and more recently PT9,17,18,20,24,27reactions in which
simulation techniques are employed to calculate free energy
surfaces. For a given∆E and nuclear configuration, the
coefficientscN andcI can be obtained by solving the generalized
Schrödinger equation, eq 2.8. The free energy is calculated from
eq 2.6, with the expectation values evaluated withcI and cN,
and from eqs 2.6-2.9, the free energyGq is

and the VB coefficients are given by

We have also introduced in eq 2.10 the difference in free energy
between the equilibrium solvated ionic and the neutral diabatic
electronic states as the sum of the gas-phase offset and the
difference in solvation free energy between those states

Equation 2.10 defines the system free energy as a function of
the three coordinates, and illustrations of this surface versusq
for a fixed H-bond coordinateQ and at several different∆E
values were given in Figure 1a-1c. We now introduce the
quantization of the nuclear proton motion. Because this motion
is typically fast compared to that of the solvent and the AB
vibration (vide infra), a Born-Oppenheimer approximation is
made for the proton with respect to these two coordinates; proton
motion is quantized by solving the nuclear Schro¨dinger equation
for the proton Hamiltonian at eachQ and∆E

Here, K̂q is the proton’s kinetic energy operator andGq(q;Q,
∆E) is the effective potential seen by the proton at each∆E
and Q. The result is a set of proton vibrational energy levels
GV(Q, ∆E), together with the associated proton vibrational wave
functionsφq,V, with examples shown in Figures 1 and 2.39 With
some exceptions,7d,16,23adealt with elsewhere,16 the proton will
usually reside in its ground-state vibrational level, i.e., the proton
vibrational energy is then closely related to the zero point energy
(ZPE). Thus, the resultant free energy surface after proton
quantization,GV)0 (Q, ∆E), contains the proton ZPE in addition
to the solvent self-free energy and the solute-solvent interaction
free energy; hereafter, we suppress the notation “V)0”, for
convenience.

Then, following ref 24,G can be most revealingly decom-
posed into the two components

This key equation provides our basic picture. Here,Gmin is the
system free energy with the protonfixed at its classical
mechanical equilibrium position, located at the minimum of the

K ) 2MS( 1
ε∞

- 1
εo

); K∞ ) 2MS(1 - 1
ε∞) (2.7)

{Ĥvac - Kzµ̂ - 1/2K∞µ̂2 - E1}[cN

cI ]) 0

Ĥ )

(UN - KµNz - 1/2K∞µN
2 -â′

-â′ UI - KµIz - 1/2K∞µI
2 + ∆vac

)
(2.8)

∆E ) -∆vac - K(µN - µI)z - 1/2K∞(µN
2 - µI

2) (2.9)

Gq(q;∆E) ) 1

2K(µN - µI)
2
(∆Gd + ∆E)2 - K

2(µN + µI

2 )2

-

K∞

2 (µN
2 + µI

2

2 ) +
∆vac

2
+

UN + UI

2
-

1
2x(UN - UI + ∆E)2 + 4â′2 (2.10)

cI
2 ) 1

2
+ 1

2

(∆E + UN - UI)

x(∆E + UN - UI)
2 + 4â′2

; cN
2 + cI

2 ) 1

(2.11)

∆Gd ) ∆vac + 1/2(K + K∞)(µN
2 - µI

2) (2.12)

Ĥq|φq,V〉 ) {K̂q + Gq(q;Q,∆E)}|φq,V〉 ) GV(Q,∆E)|φq,V〉
(2.13)

G(Q,∆E) ) Gmin(Q,∆E) + ZPE(Q,∆E) (2.14)
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proton potential defined by a specificQ and∆E, e.g., the minima
in Figure 1a-1c, whereas ZPE is the quantum zero point energy
of proton vibration, defined at any givenQ and ∆E as the
difference in energy between the proton vibrational ground-
state energy and the proton potential minimum.

3. Model Parameters

In this section, we pause to describe the various model
specifications used subsequently to illustrate the formalism of
section 2.

3a. Valence Bond State Potentials.Each electronic diabatic
state potential energy,UN andUI, is assumed to have a simple
form

Here,VN andVI describe the bonding interaction between the
proton and donor or acceptor, respectively. Both are taken to
be Morse potentials ((VM(q) ) D{exp[-2am(q - qo)] - 2 exp[-
am(q - qo)]}) with identical interactions (the sameD, am, and
qo), except that different bonding partners for the proton are
described:VN(q) ) VM(q) andVI(Q - q) ) VM(Q - q).40 We
add to each valence bond potential an AB interaction potential,
VQ(Q), further specified below, which describes the A-B
repulsive and electrostatic interactions within the H-bond.

In the present work, we will take the majority of the numerical
parameters characterizing the reacting solute system as those
appropriate for PT between oxygen atoms. The Morse potential
dissociation energy,D, is taken to be that of a typical hydroxyl
O-H bond,D ) 5 eV ) 115.3 kcal/mol. The length parameter
am is determined by the OH stretch frequency appropriate for
an H-bond at a given O‚‚‚O separation.41 For an equilibrium
H-bond separationQ ) 2.55 Å, the OH frequency is∼2650
cm-1 with a corresponding equilibrium proton position∼ 1
Å;28,41 thenam ) 1.67 Å-1 andqo ) 1.02 Å. We take identical
Morse potentials for the proton donor -acceptor interactions,
and identical donor and acceptor nuclei, namely oxygen atoms.
One could instead use differing Morse potential parameters,
which would add a ZPE contribution to the reaction asymmetry,
an aspect which will be discussed elsewhere.42 In our model
treatment, the reaction asymmetry in solution arises only from
the gas-phase offset∆vac betweenUN andUI (See eq 2.2), and
the difference in solvation free energy between the solvated
reactant and product states. The variation of∆vac can be thought
of as e.g., changing the electron withdrawing capacity of
substituents on the donor or acceptor, leading to a∆pKa between
the donor and acceptor.

The vacuum electronic resonance coupling,â, is a function
of both nuclear coordinatesq andQ. The variation with respect
to the proton positionq is, however, generally small7a,12and is
ignored here. On the other hand,â varies stronglysapproximately
exponentially12,43swith the H-bond stretch,Q. For the present
model, we use an exponential form with a previous model PT
system’s parameters:12 â ) âo exp(-âQ(Q - Qo)) whereâo )
35 kcal/mol,bQ ) 1.5 Å-1, andQo ) 2.55 Å.

After proton quantization, the Hamiltonian defining the AB
motion is

where K̂Q is the Q vibrational mode kinetic energy operator
andG(Q,∆E) is the ground-state energy of the proton vibrational
mode at a givenQ and ∆E determined from eq 2.13. The
H-bond vibrational potentialVQ(Q) (cf. eq 3.1) includes repul-
sion and electrostatic attraction betweenA andB, resulting in a

weakly attractive potential, modeled here by a Morse potential,
VQ(Q) ) DQ(exp(-2aQ(Q - Qo)) - 2 exp(-aQ(Q - Qo))). The
parametersDQ ) 3.93 kcal/mol,aQ ) 2.33 Å-1, andQo ) 2.96
Å are chosen such that, after proton quantization, the H-bond
vibration in the reactant region, described byG(Q,∆E) at a
representative reactant solvent configuration, has a frequency
∼300 cm-1 and a dissociation energy∼10 kcal/mol, representa-
tive values for modest strength H-bonded complexes.41,45

3b. Solvent and Solvent Interaction Parameters.The
solute-solvent interaction is governed by the reacting solute
system diabatic dipole moments,µN, µI, andµNI, here chosen
to beµN ) 0, µI ) 12, andµNI ) 0 Debye, values similar to
those of previous studies modeling phenol-amine PT.17c,46,47A
zero transition moment,µNI ) 0, removes any solvent depen-
dence of the renormalized electronic couplingâ′; a finite µNI

causes the resonance coupling to depend on the solvent
coordinate∆E, and would only change the magnitude ofâ′ by
∼30%.12,35 Hereafter, we takeâ′ ) â, which considerably
simplifies the analysis without changing the physical picture.
The solvent dielectric constants are taken as those of an aqueous
environment,εo ) 80 andε∞ ) 2. (Static dielectric constant
variation toward less polar solvents, from 80 to 20, will not
drastically changeK in eq 2.10.) The structure factorMs in eq
2.7 is set to give an intrinsic barrier for solvent reorganization
(∼3 kcal/mol) consistent with PT reactions in an aqueous
solution with a similar AB fixed separation17c(Ms ) 0.7 kcal/
mol/Debye2). This solvent barrier and its relationship to the
‘intrinsic’ reaction barrier∆Go

q will be discussed in section 5.48

As noted above, we will vary the reaction asymmetry by
varying the gas-phase asymmetry∆vac. The reaction asymmetry
∆GRXN in solution then arises from both the gas-phase asym-
metry∆vac and the difference in solvation free energy between
the solvated reactant and product states, and is quantitatively
related to the free energy difference between the reactant and
the product diabatic states,∆Gd in eq 2.12. As will be shown
in section 5, the variation in∆vac has a simple (linear)
relationship with the change in∆GRXN, and thus provides a
simple and clear way to vary reaction asymmetry. This avoids
a detailed and somewhat arbitrary parametrizationse.g., varia-
tion of the valence bond state parameters (e.g., Morse potential
parameters and diabatic dipole moments) with∆vac, whereas
capturing the essential features of the asymmetry trends. It is
important to note, however, that although the two diabatic state
parameters are constant, the ZPEs and the dipole moments for
the reactant and product states willchange with reaction
asymmetry, as one would naturally expect, due to the variation
in theadiabaticelectronic structure of the reactant and product
states with that asymmetry.

4. PT System Free Energy Results. General Features

4a. General Perspective.Figure 3 is a contour plot of the
proton-quantized (ground vibrational state) free energy surface
G(Q, ∆E) for a symmetric reaction generated with the formalism
and parameters presented above. The surface exhibits both a
reactant and a product well, stable minima each with equilibrium
H-bond separationsQ ≈ 2.7 Å. The transition state displayed
in Figure 3 is at the surface’s saddle point, where∆E ) 0 and
Q ≈ 2.5 Å.

Hereafter, we discuss the PT free energy relations with the
simplification of restricting the H-bond AB separation to a fixed
valueQ ) 2.55 Å, which is a representative H-bond distance
for the PT in Figure 3; wesuppressthe Q notation in all that
follows. This simplified fixedQ situation allows discussion of
the essential issues without extraneous complications; the

UN ) VN(q) + VQ(Q); UI ) VI(Q - q) + VQ(Q) (3.1)

ĤQ ) K̂Q + G(Q,∆E) (3.2)
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treatment including the H-bond vibration will be given in the
companion paper II, where it will be seen that the same basic
picture results.

Figure 4a displays a cut of the 3D plot in Figure 3 atQ )
2.55 Å, and the solid curve there is the free energy curve for
an overall symmetric PT reaction,∆GRXN ) 0. The solid curve
in Figure 4b displays the free energy curve for an exothermic
reaction, and of course, an endothermic reaction can be viewed
as its reverse in Figure 4b. The minima in Figure 4a and 4b
define the positions of the reactant,∆ER, and product,∆EP,
states along the solvent coordinate. The reaction free energy is
thus ∆GRXN ) G(∆EP) - G(∆ER), with a corresponding
equilibrium constantKeq ) exp(-∆GRXN/RT). The position of
the free energy maximum defines the transition state location
for each reaction,∆Eq, e.g., the barrier for the forward reaction
is ∆Gq ) G(∆Eq) - G(∆ER).49

The activation barrier values in Figure 4 and elsewhere in
this work are low, of the order of several kcal/mol or less, values
typical for PT involving O donors and O/N acceptors (without
any significant reorganization effects inQ).1c,17,51,52This often
makes it difficult to experimentally extract rate information on
the chemical step for such reactions; but for example, a recent
excited electronic state PT study indicates how such difficulties
can be overcome, and nonlinear free energy relationships
examined.51

The solid curvesG in Figure 4a and 4b correspond to the
free energy curves with the proton in its ground vibrational state.
For the dashed free energy curves, denotedGmin and defined in
eq 2.14, the proton position is fixed at the proton potential
minimum for each solvent configuration. The proton ZPE is
the difference betweenG andGmin and is displayed in Figure
4c. The electronic adiabatic potential surfaces for the proton
from whichGmin, and the ZPE were extracted for Figure 4 are
shown in Figure 1 at the (a) reactant R, (b) transition TS, and
(c) product P state solvent configurations indicated in Figure
4a.

The cusp at∆E ) 0 in Gmin (see Figure 4a and 4b) is a result
of a switch inqmin, as now described. In the R region, the proton
potential minimum is consistently closer to the donor (atqmin

≈ 1 Å), whereas in the P region, it is closer to the acceptor
(qmin ≈ Q - 1 Å ∼1.5 Å). The proton potential absolute

minimum switches between such positions at the TS, as shown
in Figure 5, where for later reference the square ionic VB state
coefficient at the minumum is shown as well. Figure 5a shows
that there are two energetically degenerate proton potential
minima at∆E ) 0, which identifies the cause and location of
the qmin switch.

As noted above, the ZPE displayed in Figure 4c reflects the
change in the proton potential as a function of the solvent
coordinate∆E (Figure 1). The electronic adiabatic ground-state
energy as a function ofq gives the proton potential for a given
∆E. The modulation of the electronic structuresgenerally
involving a mixture of both diabatic statessby the solvent,
which differentially solvates the electronic diabatic neutral
reactant and ionic product states, shifts this proton potential from
favoring the donor-bound proton (Figure 1a) to favoring the
acceptor-bound proton (Figure 1c). Of course at any∆E value,
the solute electronic structure varies withq, illustrated in Figure
5c showing the ionic VB state populationcI

2 for the symmetric
reaction TS location∆E ) 0, for which the proton potential is
symmetric (Figure 1b). We emphasize that it is the ZPE that
carries the major information on the smooth electronically
adiabatic variation of the electronic structure through the proton
potential barrier region seen in Figure 1. As will be shown in
section 5, theproton-aVeragedsolute electronic structure in the
TS has equal contributions from both the neutral and ionic
electronic VB states. The proton quantum average ofcI

2 is
displayed in Figure 5b (solid line) and reflects the fact that the
proton nuclear wave function associated with the ground

Figure 3. Contour plot of the PT system free energyG(Q,∆E) with
the proton in its ground vibrational state versus the solvent coordinate,
∆E, and the AB separation,Q, for a symmetric reaction (See section
2 for discussion of the underlying ingredients for this free energy).
Contour spacings are set at 1 kcal/mol.

Figure 4. Free energy curves (solid lines) for the proton for fixed AB
separationQ ) 2.55 Å, (a) symmetric reaction and (b) asymmetric
reaction. Dashed lines show the free energy curvesGmin excluding the
proton zero point energy (ZPE). (c) ZPE for the proton vs∆E. The
addition of the dashed curvesGmin in (a) and (b) and the ZPE in (c)
give the solid curves in (a) and (b).∆ER, ∆EP, and ∆Eq denote the
reactant, product, and transition state solvent coordinate values,
respectively.
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vibrational state for the symmetric proton potential in Figure
1b has some delocalization between the donor and acceptor.
At this point (∆E ) 0), the ZPE has its minimum value due to
the proton potential’s symmetric double well character, and it
exhibits a cusp, with the ZPE increasing going away from∆E
) 0 as the solute structure and proton potential is dominated
by either the neutral or ionic state and the proton moves
accordingly in more confining R or P region potential wells.
By contrast,Gmin involves proton locations which remain largely
outside this central barrier region, so that the associated
electronic structure variation in each separate branch is fairly
muted, though not negligible (cf. Figure 5b, dotted line).

An important feature of the ZPE in Figure 4c is that it applies
for both the symmetric and the asymmetric cases Figure 4a and
4b; i.e., the ZPE is thesamefunction of ∆E independent of
∆GRXN. This property arises from the fact that changing∆GRXN

does not change the proton potential’s shape for a fixed∆E. A
change in∆GRXN does, however, shift the reference free energy
at its minimum,Gmin. Accordingly, the PT reaction thermo-
dynamics or reaction asymmetry in Figure 4a and 4b will be
dominated byGmin.

The activation free energy∆Gq versus reaction free energy
∆GRXN profile for PT is plotted in Figure 6. The reaction barrier
increases nonlinearly as the reaction goes from exothermic to
endothermic, and in particular, the line displayed in Figure 6s
a second-order fit to the calculated pointssshows that a second-
order free energy relationship is an excellent characterization
in the current description, a key result analyzed further in section
5. The displayed range of∆GRXN in Figure 6 represents the
relevant range for which an activation barrier exists, and thus
defines the range in which a reaction rate constant can be
defined.53

The R, P, and TS locations in Figure 4a and 4b are consistent
with the Hammond postulate:54,55 for an exothermic reaction,
the TS is closer to the reactant (Figure 4b), and for an
endothermic reaction, closer to the product (reverse of Figure
4b). Thus, the barrier in∆E for PT decreases going from
endothermic to exothermic, whereas the TS goes from being
closer to the P to closer to the R. For a symmetric reaction (see
Figure 4a and 4c), the proton ZPE, as well asGmin, is symmetric
about∆E ) 0, and thusG has this symmetry. When the reaction
asymmetry changes, however, as previously discussed,Gmin is
no longer symmetric about∆E ) 0, and the TS shifts toward
the well which variesleast near ∆E ) 0, toward R for
exothermic reactions and toward P for endothermic reactions.
Consequently, and this is an important point, the shift in the
TS location to being more R- or P-like results from the
quantizationof the proton, i.e., the addition of ZPE toGmin.
How the relative positions of the R, P, and transition states shift
with respect to reaction asymmetry is related to the Brønsted
coefficient, now discussed.

4b. Brønsted Coefficient.The first derivative of free energy
with respect to reaction free energy is the Brønsted coefficient

and has played a significant role in organic chemistry and
biochemistry in characterizing various chemical reaction transi-
tion states.55,4 For “normal” PT reactions, the Brønsted coef-
ficient R lies between 0 and 1, and is usually interpreted as a
measure of how similar the TS is to the product state (the larger,
the more similar).2,4,55,56 The explicit connection ofR to the
TS location will now be derived.

To begin, we recall that the variation of the reaction free
energy∆GRXN in Figure 6 is achieved by varying the vacuum
offset or asymmetry∆vac between the reactant and the product
electronic diabatic states. Because both∆GRXN and the activation

Figure 5. (a) Minimum location of the proton coordinateqmin versus
∆E for Q ) 2.55 Å. (b) The square coefficientcI

2 for the ionic VB
state versus∆E with q ) qmin (dashed line) and quantum averaged over
the proton vibration (solid line). (c) The ionic electronic VB state square
coefficient cI

2, eq 2.11, versus the proton coordinateq for the
symmetric reaction transition state value of the solvent coordinate
∆E ) 0.

Figure 6. Free energy relationship∆Gq vs.∆GRXN for fixed Q ) 2.55
Å for a series of proton-transfer asymmetries (+). The solid line
indicates a second-order numerical fit to the points. Points were
generated from several free energy surfaces with different values of
∆vac, as discussed in section 3.

R ) ∂∆Gq/∂∆GRXN (4.1)
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free energy∆Gq vary with reaction asymmetry, a simple view
of the Brønsted coefficient can be written as follows

Both the free energy differences∆GRXN ) G(∆EP) - G(∆ER)
and∆Gq ) G(∆Eq) - G(∆ER) are expressed as a difference in
free energy between the appropriate critical points on the free
energy curve (Figure 4). To proceed, we step back to the level
of the free energyGq before proton quantization was effected,
i.e., eq 2.10. The partial derivative of this with respect to∆vac

is given by

To incorporate proton quantization,cI
2 is averaged over the

ground-state proton vibrational wave function to give the
expectation value〈cI

2〉 at a given∆E. (Recall that the ZPE
dependence on∆E does not change as the reaction asymmetry
is changed, and thus, quantization of the proton is dependent
on ∆E but not on reaction asymmetry∆vac.) Evaluation in this
fashion of the quantum average ofcI

2 at the R, P, and TS
solvent configurations then gives the simple relation

which is the fractional change of the (proton vibration-averaged)
ionic character on going to the TS;R increases from 0 to 1 as
the TS goes from being similar to R to being similar to P. Figure
7 is an overlay of the calculated ratio in eq 4.4 (points) with
the Brønsted coefficient calculated from direct numerical
evaluation of the slope (second-order fit to points) in Figure 6
versus ∆GRXN (line); the excellent agreement supports the
validity of the approximate eq 4.4 connectingR to the TS
electronic structure, consistent with the Hammond postulate.
(We postpone the explicit connection to the TS location in the
solvent coordinate until section 5c.)R equals 0.5 for∆GRXN )
0, such that the proton-averaged electronic structure at the TS
is halfway between R and P for the symmetric reaction. Its
variation away from that condition for finite∆GRXN is consistent
with some,37 but not all,56a treatments of other charge-transfer
reactions.

5. Analytic Nonlinear Free Energy Relations

It has already been seen from Figures 6 and 7 that a second
order∆Gq - ∆GRXN relation is an accurate numerical charac-
terization for PT in the present description. In this section, we
derive an analytical form for the quadratic∆Gq vs ∆GRXN free
energy relation for PT, based on the fundamental decomposition
in eq 2.14 of the system free energyG into the two components
Gmin and ZPE. This derivation also allows the identification of
coefficients, e.g.,∆Go

q, in terms of the underlying fundamental
reaction features.

A second-order free energy relationship has three terms, the
zero-order term being the “intrinsic” reaction barrier. The
coefficient for the first-order term isRo, the activation free
energy derivative with respect to the reaction free energy, the
Brønsted coefficientR, eq 4.1, evaluated for the symmetric
reaction. The second-order coefficientR′o is the derivative ofR
with respect to reaction asymmetry, evaluated for the symmetric
reaction. Thus

In the following developments, to analyze eq 5.1, we begin with
an analysis ofGmin followed by that of the ZPE. These are then
combined to deal with∆Gq, with the final major analytic result
for ∆Gq obtained at eq 5.46.

5a. Gmin. In this subsection, we first discuss the general
features ofGmin, its behavior with changing reaction asymmetry,
and finally its barrier height for the reference symmetric reaction.

5a.1. OVerView.As discussed in section 4.a,Gmin is the system
free energy with the proton fixed at its classical positionqmin at
the proton potential minimum, whose values in the R and P
regions correspond to the equilibrium solvation energies of the
fixed proton R and P solute structures. The condition defining
qmin is, from eq 2.10

involving the state average force on the proton, with e.g., FN,q

) - ∂UN/∂q. As discussed in section 4a, the cusp at∆E ) 0 in
Gmin (see Figure 4) is a result of the switch between proton
minimum positionsqmin from being closer to the donor to being
closer to the acceptor (Figure 5a). (Note carefully that this
condition locates the equality of the free energies of the minima
of the two wells in an electronicallyadiabatic double-welled
proton potential.)

Figure 4 indicates the very important feature thatGmin is
evidently quite close to being double parabolic in nature, with
a systematic shifting of the approximate parabolas as the reaction
asymmetry changes. Certainly, neither this nearly parabolic
character or its systematic shifting ofGmin is immediately
obvious from its formal definition, which from eq 2.10 is

Figure 7. Plot of the Brønsted coefficientR ) ∂∆Gq/∂∆GRXN versus
the reaction free energy. Displayed are the numerical interpolations
from the free energy curve in Figure 6 (line) and the calculated
analytical expression eq 4.4 (+).

R ) ∂∆Gq/∂∆GRXN ) ∂∆Gq/∂∆vac/∂∆GRXN/∂∆vac (4.2)

∂Gq(q,Q,∆E)

∂∆vac
) cI

2 (4.3)

R ) ∂∆Gq/∂∆GRXN )
〈cI

2〉q - 〈cI
2〉R

〈cI
2〉P - 〈cI

2〉R
(4.4)

∆Gq ) ∆Go
q + Ro∆GRXN + R′o

(∆GRXN)2

2
(5.1)

∂Gq
∂q

) 0 ) -(cN
2FN,q + cI

2FI,q) (q ) qmin) (5.2)

Gmin(qmin;∆E) ) 1

2K(µN - µI)
2
(∆Gd + ∆E)2 -

K
2(µN + µI

2 )2

-
K∞

2 (µN
2 + µI

2

2 ) +
∆vac

2
+

UN(qmin) + UI(qmin)

2
-

1
2 x(UN(qmin) - UI(qmin) + ∆E)2 + 4â2 (5.3)
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where the electron diabatic potentialsUN andUI are evaluated
at q ) qmin. The first and last two terms in eq 5.3 carry the∆E
dependence (recall thatqmin depends on∆E). The first term is
quadratic, whereas the last two terms are not, switching the∆E
location of the minimum ofGmin from less than zero in the R
region to greater than zero in the P region. If we momentarily
consider for comparison the absence of significant electronic
couplingâ ≈ 0, the second to last term is constant and the last
term is linear in∆E with a positive slope in the R region and
a negative one in the P region.Gmin would thus be exactly
parabolic, as in the Marcus picture for weakly coupled ET
reactions.11 The PT reaction of interest here is, however, in the
electronicallyadiabaticregime, with strong electronic coupling,
and the significant electronic coupling present in eq 5.3 is the
main reason for nonparabolic behavior inGmin, especially near
∆E ) 0. We hasten to stress that the electronic coupling is
important over theentire∆E range of relevance forGmin, as is
illustrated in Figure 8, which comparesGmin to the valueGmin

diab

evaluated at zero electronic couplingâ ) 0. Even in the R and
P wells, the electronic coupling mixes the neutral and ionic VB
states to a significant degree, and at no point is it legitimate to
adopt a nonadiabatic perspective. Our remarks above emphasize
that the electronic coupling is always important, but it ismore
important near∆E ) 0.

In what follows, we will require both the first and second
derivatives ofGmin with respect to∆E. From eq 5.3, the first of
these is

where we have used theqmin condition eq 5.2 to arrive at the
second form; this is plotted in Figure 9 for later reference. From

eq 5.4, the second derivative ofGmin is

It should be noted that unlike the first derivative ofGmin, eq
5.4, the second derivative is independent of reaction asymmetry,
i.e., independent of∆Gd.

The positions of the critical points ofGmin are easily found
with eq 5.4. The maximum ofGmin is always located exactly at
∆E ) 0, independent of reaction asymmetry (∆Em

q ) 0, see
Figure 4); the classical proton positionqmin always switches
from R to P at∆E ) 0. The∆E positions of the R and P minima
can be found by setting the first derivative in eq 5.4 to zero

The vertical displacement in free energy of these minima defines
a reaction asymmetry associated withGmin

As a final item in these preliminaries, evaluation of eq 5.5 at
e.g., ∆Em

R

defines a harmonic force constantkm for Gmin; the first term is
the electronically diabatic force constant

modified in km by the second term, involving the electronic
structure variation. Due to the intrinsically symmetric nature
of the two valence bond potentials,km is the same for both the
R and P wells.42 Figure 9 indicates that the harmonic ap-
proximation with theGmin force constant defined in the R well,
eq 5.8, will deviate near the cusp. The dashed line in Figure 8
shows that the stretching of the proton, going from its R
minimum value to its value at the cusp∆E ) 0swhich one
might suspect to be responsiblesis only a minor contribution;
in section 5a.3, we show the deviation is largely due to the
influence of an electronic structure change.

Figure 8. Comparison ofGmin with (solid line) and without electronic
coupling (dotted line) for a symmetric reaction (∆Gd ) 0 kcal/mol,
∆vac ) 99.5 kcal/mol). Also shown isGmin calculated withqmin held
constant (dashed line);qmin ) 1.03 Å for ∆E < 0, andqmin ) 2.55-
1.03 ) 1.52 Å for ∆E > 0.

∂Gmin

∂∆E
) 1

K(µN - µI)
2
(∆Gd + ∆E) -

∂qmin

∂∆E(FN,qmin
+ FI,qmin

2 ) + (12 - cI
2(qmin;∆E))(1 -

∂qmin

∂∆E
(FN,qmin

- FI,qmin
)) ) 1

K(µN - µI)
2
(∆Gd + ∆E) +

(12 - cI
2(qmin;∆E)) (5.4)

Figure 9. Derivative of Gmin with respect to∆E versus∆E, for a
symmetric reaction (∆Gd ) 0 kcal/mol,∆vac ) 99.5 kcal/mol), showing
that the double parabolic description ofGmin has some deterioration
near∆E ) 0, as discussed in the text.

∂
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5a.2. Asymmetry Variation of Gmin. We now characterize the
asymmetry variation of the barrier height

in terms of its value∆Gm,o
q , for the symmetric reaction and the

asymmetry∆m, eq 5.7. Because the peak ofGmin occurs at
∆E ) 0 no matter what∆m is, this will entail the investigation
of Gmin(∆Em

R)’s behavior with∆m.

For this purpose, it will prove convenient to begin by
expandingGmin through second order in∆E about the equilib-
rium positions,∆Em,o

R,P ) -∆Eo, for the symmetric reaction
which as will be seen, is guaranteed by the condition∆Gd ) 0

in which Gm,o
R,P are the values ofGmin for the respective

equilibrium positions, andA andB are defined by the first and
second derivatives

involving the electronic structure.A andB are identical in the
R and P regions due to the symmetric nature of the electronically
diabatic states (e.g., VI(q)dVN(Q-q)).42

The first derivative ofGmin evaluated for∆Gd ) 0 identifies
∆Eo as

consistent with eq 5.6, and identifies theGmin R and P minima
locations for the general asymmetric case (∆Gd * 0) as

wherekm ) kd - B is the harmonic force constant forGmin

defined in eq 5.8, a result consistent with the expansion of eq
5.6. The distance between these minima

is independent of the reaction asymmetry.

Insertion of eq 5.14 into eq 5.11 gives

so that the reaction asymmetry eq 5.7 is

indicating that the reaction asymmetry forGmin scales linearly
with ∆Gd and, as stated above eq 5.11,∆Gd ) 0 defines a
symmetric reaction.

Finally, the forward and reverse barrier heights are, from eqs
5.16 and 5.17

related appropriately by∆Gm,f
q ) ∆Gm,r

q + ∆m.
5a.3. Intrinsic Barrier for Gmin. It remains to characterize

∆Gm,o
q in eq 5.18, the barrier height associated withGmin in the

symmetric case∆m ) 0. This turns out to be the most difficult
aspect of the entire treatment, and although we are not able to
derive a simple analytical expression for∆Gm,o

q that is very
highly accurate, we will be able to find an expression that, while
not complex, gives a reasonably numerically accurate description
while including the key features of∆Gm,o

q .
A first approach, motivated by the near double parabolic form

exhibited byGmin in Figure 4 would be to use a simple parabolic
form for the derivation of the free energy relationship

wherekm is the harmonic force constant eq 5.8. Then∆Gm,o
q

would equalλm ) 1/2km(∆Em,o
R )2, which one could use to

define a reorganization energy

such that the intrinsic barrier would be

This definition, although it captures signficant aspects of the
Gmin barrier height, is an overestimate by about 20% (∆Gm,o

q )
3.75 kcal/mol, whereas eq 5.21 gives 4.43 kcal/mol). This
shortcoming arises from the important feature that in a strongly
electronically adiabatic PT reaction, the electronic structure, e.g.,
cI

2, shifts between the minimum location∆ER
o and the barrier

location∆E ) 0, as exemplified by the curvature of the first
derivative ofGmin near∆E ) 0 displayed in Figure 9 (Note
that the ‘local’ force constant, the second derivative eq 5.5, will
vary between the two points.) We show in Appendix A that a
partial accounting of this anharmonic variation improves upon
eq 5.21 somewhat, giving

This approximation reduces the overestimate to only 5% (eq
5.22 gives∆Gm,o

q ) 3.85 kcal/mol compared to the correct
value 3.75 kcal/mol), which would be satisfactory for most
purposes.57 In effect, it is as if the reorganization energyλm is
reduced, because the solvent is in the presence of a solute charge

∆Gq
m ) Gmin(∆E ) 0) - Gmin(∆Em

R) (5.10)

Gmin
R,P ) Gm,o

R,P +
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2
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2] ( A(∆E (

∆Eo) - B
2

(∆E ( ∆Eo)
2 (5.11)
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2
km(∆E - ∆Em

P)2; ∆E > 0 (5.19)
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distribution which is not fixed on going from R to TS, as seen
in Figure 5b (dotted line).

In concluding this subsection, we should emphasize the
meaning of any reorganization energy in connection with
∆Gm,o

q . The reorganization involved is essentially that of the
solvent. Figure 8 shows the important point that the reorganiza-
tion energy is considerably less than would be predicted from
any electronically diabatic view (as in outer sphere ET). This
reduction has two basic sources. The first is that even in the R
well, the solute pair already has a mixed electronic structure
(finite cI

2), and the second issas just discussedsthat this
electronic structure continues to evolve with∆E; at the cusp
∆E ) 0, the solvent is in the presence of a reactant pair with
an even higher ionic character than in the reactant (Figure 5b).58

5b. Zero Point Energy (ZPE). The nonlinearity of the
Schrodinger eq 2.13 prevents a closed form analytical expression
for the ZPE, but it can be described by expanding through
second order around the three critical points for the R, P, and
TS regions. In particular, it is convenient to expand the ZPE,
as in eq 5.11, around the critical points ofGmin for a symmetric
reaction (∆Eq ) 0, ∆Em

R ) -∆Eo, ∆Em
P ) ∆Eo); note that

these are not the critical points for eitherGmin in general orG.
In the R and P regions, the ZPE is given by

whereZm,o
R,P ) ZPE(-∆Eo) and the coefficientsa andb describe

the first and second ZPE derivatives at∆E ) -∆Eo. In the TS
region∆E ≈ 0, the ZPE is given by

whereZm,o
q and the coefficients-aq and-bq are the first and

second ZPE derivatives at∆E ) 0. The sign of the first-order
term in eqs 5.23 and 5.24 reflects the equal but opposite slope
in the R and P regions.42 Both ZPE andGmin are discontinuous
at ∆E ) 0, but the sum gives a continuous full free energyG.
The condition bq > km for the free energy guarantees a
maximum.

The coefficients in the above expansions related to the
derivatives of the ZPE will now be shown to be related to the
difference between the electronic structure with the proton
quantized versus the proton classical. As a preliminary to this
demonstration, we need to return to eq 2.14 for the free energy
Gq prior to proton quantization. On taking its derivative with
respect to the reaction coordinate∆E and averaging over the
ground-state proton vibrational wave function for each value
of ∆E, one has

involving the expectation value〈cI
2〉.

With the use of eqs 2.14, 5.4, and 5.25, the first derivative is
given by

and the second derivative is

The first and second-order coefficients in the expansions 5.23
and 5.24 are thus given by eqs 5.26 and 5.27.

5c. PT System Free EnergyG. The desired full free energy
G is found by addition of the ZPE toGmin. In the R and P
regions,G is the sum of eqs 5.11 and 5.23. The positions of
G's critical points are easily found as

wherekR ) kd - B - b ) km- b is the force constant forG for
R (and P). This is the explicit implementation of the formal
result for the critical points∆Ec of G

which follows from eq 5.25, and comparison of eqs 5.29 and
5.25 with eqs 5.4 and 5.6 shows that the minima ofG andGmin

are shifted due to the difference in the proton quantum average
of cI

2 and its value at the classical proton postion.
With eq 5.28, the free energies at the R and P minima are

The PT reaction asymmetry is

which shows explicitly that∆GRXN is not just the asymmetry
∆m of Gmin: the shifts of the minima ofG from those ofGmin

occur in both the R and P regions due to the ZPE and lead to
the second term in eq 5.31.

In the TS region,G is the sum of the ZPE expansion in eq.
5.24 and an expansion ofGmin around∆E ) 0

whereAq andBq are the first and second derivatives ofGmin,
respectively, evaluated at∆E ) 0 (see eqs 5.4 and 5.5), where
the relationshipAq ) aq ensures thatG is continuous. The TS
position is

wherekq )Bq + bq - kd is the magnitude of the unstable force
constant forG at the TS. Comparison of this with eq 5.29 shows
that for the symmetric reaction,∆GRXN ∝ ∆m ∝ ∆Gd ) 0, the
proton-averaged electronic structure at the TS is an equal
mixture of the neutral and ionic structures,〈cN

2 〉 ) 〈cI
2〉 ) 0.5,

with a corresponding shift of the proton-averaged electronic

ZPE(∆E) ) Zm,o
R,P - a(∆E ( ∆Eo) - 1

2
b(∆E ( ∆Eo)

2 (5.23)

ZPE(∆E) ) Zm,o
q - aq∆E - 1

2
bq∆E2 (5.24)

∂G
∂∆E

) kd(∆Gd + ∆E) + 1
2

- 〈cI
2(∆E)〉 (5.25)

∂ZPE(∆E)
∂∆E

)
∂G(∆E)

∂∆E
-

∂Gmin(∆E)

∂∆E

) -〈cI
2(∆E)〉 + cI

2(qmin;∆E) (5.26)

∂ZPE(∆E)
∂∆E

) - ∂

∂∆E
(〈cI

2(∆E)〉 - cI
2(qmin;∆E)) (5.27)

∆ER,P ) -(∆Eo - a
kR

) -
kd∆Gd

kR
(5.28)

∆Ec ) -K(µN - µI)
2(12 - 〈cI

2(∆Ec)〉) - ∆Gd (5.29)

GR,P ) Gm,o
R,P + Zm,o

R,P + 1
2
kd(∆Gd - ∆Eo)

2 - 1
2
kd∆Eo

2 -

1
2

(kd∆Gd - a)2

kR
(5.30)

∆GRXN ) GP - GR ) ∆m(1 - a
kR∆Eo

) (5.31)

Gmin
q ) Gm,o

q +
kd

2
(∆Gd + ∆E)2 ( Aq∆E - Bq

2
∆E2 (5.32)

∆Eq )
kd∆Gd

kq
)

∆m

2kq∆Eo

(5.33)
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structure in the asymmetric case, depending on∆GRXN. The
free energy at the TS is thus

With these results, we have the full PT reaction barrier given
by

and eqs 5.31 and 5.35 give the desired second-order free energy
relation as

The interpretation, and some reformulation, of the three
contributions to this free energy relation corresponding to the
different powers of∆GRXN will now be discussed in turn.

5c.1. Intrinsic Reaction Barrier.The PT free energy barrier’s
first component is the intrinsic barrier∆Go

q for a symmetric PT
reaction (cf. Figure 4a); from eq 5.36, this is

which we now discuss and reformulate.
The addition of the ZPE toGmin has shifted the position of

the R minimum forG from the minimum∆Em
R in Gmin closer

to ∆E ) 0 (Figure 4a), with consequent shifts in energy for
both Gmin and ZPE in the R region. The last term in eq 5.37
contains these energy shifts, and in particular, contains the
difference between the ZPE evaluated at the R location forGmin,
∆E ) -∆Eo (Zm,o

R ) and the ZPEZo
R evaluated at the R location

∆ER for G for a symmetric reaction. The other shift in energy
included in the last term in eq 5.37 is that ofGmin and is smaller
than this. Because the magnitudes of these shifts are small
relative toZm,o

R , the sum of last two terms is approximately the
ZPE of the reactant stateZo

R. Thus, the intrinsic free energy
barrier is well approximated by the intrinsic barrier forGmin

plus the difference in ZPE between the reactant and transition
state for the symmetric reaction (note thatZq

o ) Zq
m,o)

with ∆Gm,o
q given by eq 5.22. The validity of this result can be

established by comparison with Figure 6, which gives∆Go
q )

1.76 kcal/mol, whereas eq 5.38 gives∆Go
q ) 1.73 kcal/mol.

Equation 5.38 explicitly expresses the physical perspective
presented in section 4a, here specialized to the symmetric
reaction case: the barrier for PT is determined by a barrier
dominated by environmental reorganization and the change in
the ZPE of the quantized proton. The effect of the latter is to
reduce the intrinsic barrier compared to the former: the ZPE

change in eq 5.38 is negative, reflecting the greater proton
delocalization and lower ZPE at the TS compared to the reactant.
This is definitely a nonnegligible effect: for the present model
system, from Figure 4,∆Gm,o

q ) 3.76 kcal/mol, whereas the
ZPE change contribution is-2.0 kcal/mol. It is important to
emphasize that any such effect would be absent in traditional
approaches, since for a symmetric reaction, the transverse
coordinate at the TS is considered independent of the proton
coordinate,1,4,19and no proton ZPE contribution can arise. But
in the present description, the transition state ZPE enters because
the proton coordinate istransVerse to the solvent reaction
coordinate, and is not itself the reaction coordinate.

5c.2. Brønsted Coefficient and its DeriVatiVe for the Sym-
metric PT Reaction.From the general expansion eq 5.1, the
terms linear and quadratic in∆GRXN in eq 5.36 are related to
the Brønsted coefficentR, eqs 4.1 and 4.4. To proceed, it is
useful to employ eq 5.29 to describe the electronic structure in
terms of the critical point solvent coordinate positions, such that
eq 4.4 forR now becomes

which incidentally provides further insight into the Brønsted
coefficient itself. In particular, it quantifies the reaction coor-
dinate analysis of the Hammond postulate, discussed qualita-
tively in section 4b: an endothermic (exothermic) reaction has
a late (early) transition state. Equation 5.39 is an important
expression for the present perspective: the quantum proton-
averaged solute electronic structure isdirectly correlatedwith
the differential solvation reaction coordinate. (See our remark
at the very end of section 4).

The coefficients for the first and second-order terms in eq
5.1 are determined byR and its derivative evaluated for the
symmetric reaction,∆GRXN ) 0. From eq 5.31,∆GRXN ) 0
occurs when∆m ) 0, giving ∆Eq ) 0 and ∆ER ) -∆EP.
Substitution of these into eq 5.39 gives the first-order term,Ro)
1/2. The second-order term is more complex, and we begin by
noting that the derivative of eq 5.39 is

The relative distance between theR and P minima is not
expected to change significantly as the reaction asymmetry is
changed, and indeed this follows from eq 5.28. ThusR′ can be
cast in the form

i.e., the relative change with respect to∆GRXN of the R to TS
distance along the reaction coordinate, normalized by the
distance between the R and P states.

The (numerically) linear Brønsted relationship displayed in
Figure 7 suggests that eq 5.41 is essentially constant near∆GRXN

) 0, and thus suggests that the critical point positions change
linearly with respect to reaction asymmetry, a behavior con-
sistent with eqs 5.28 and 5.33, which give

Gq ) Gm,o
q + Zm,o

q + 1
2

∆m
2

∆∆Em
2(1

kd
+ 1

kq) (5.34)

∆Gq ) Gq - GR

) Gm,o
q + Zm,o

q - Zm,o
R + 1

2
a2

kR
+

∆m

2 (1 - 2a
kR∆∆Em

) + 1
2

∆m
2

∆∆Em
2 (1

kq
+ 1

kR
) (5.35)

∆Gq ) Gm,o
q + Zm,o

q - Zm,o
R + 1

2
a2

kR
+

∆GRXN

2
+

1
2

∆GRXN
2

∆∆Em
2 (1

kq
+ 1

kR
)/(1 - 2a

kR∆∆Em
)2

(5.36)

∆Go
q ) ∆Gm,o

q + ∆Zm,o
q - Zm,o

R + 1
2

a2

kR
(5.37)

∆Go
q ) ∆Gm,o

q + Zo
q - Zo

R (5.38)

R ) ∂∆Gq

∂∆GRXN
)

〈cI
2〉q - 〈cI

2〉R

〈cI
2〉P - 〈cI

2〉R
) ∆Eq - ∆ER

∆EP - ∆ER
(5.39)

R′ ) ∂

∂∆GRXN
(∆Eq - ∆ER

∆EP - ∆ER) (5.40)

R′ ≈ 1

∆EP - ∆ER

∂(∆Eq - ∆ER)
∂∆GRXN

(5.41)

∆Eq - ∆ER ) 1
2
(∆EP - ∆ER) +

∆GRXN

∆EP - ∆ER(1

kq
+ 1

kR
)

(5.42)
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ThenR is

and its derivative is obviously

which is exactly the same as the detailed second derivative of
eq 5.36

We note for later reference that the ZPE curvature at the TS
and R enters these results in a fundamental way, e.g., via the
presence of theb terms in the force constantskq andkR. The
validity of eq 5.44 can be checked by noting that the observed
Brønsted plot slope is 0.06 mol/kcal in Figure 7, whereas eq
5.44 gives 0.056 mol/kcal.

In summary, from the above analysis, the free energy relation
governing the fixed proton donor-acceptor separation PT
system is

with ∆Gm,o
q given to within 5% by eq 5.22 and withR′o given

explicitly by eq 5.44. This is the main explicit analytic result
of the present paper, and the excellent agreement between eq
5.46 and the data in Figure 6 is shown in Figure 10a.

5d. Reaction Barrier Height versus Reaction Asymmetry
and the Marcus Free Energy Relation.Our basic result eq
5.46 is clearly similar to the Marcus relation eq 1.1 in several
aspects, e.g.,R ) 0.5 when∆GRXN ) 0 is common to both.
There is however, the obvious difference that in our result eq.
5.46 (and 5.44), the coefficient of the term quadratic in∆GRXN

differs from that (1/16∆Go
q) in the Marcus relation. From a

fundamental point of view, e.g., eq 5.40,R′o depends on how
the relative distance between the reactant and transition states
changes with reaction asymmetry in the neighborhood of∆GRXN

) 0, and for adiabatic PT this explicitly depends on how the
ZPEVarieswith ∆GRXN. By contrast, the intrinsic barrier only
depends on themagnitudeof the ZPE change on going from
the reactant to the symmetric transition state, and this has no
contribution from the variation of ZPE in the neighborhood of
∆GRXN ) 0. This featureswhich is reflected in the presence of
the R and TS force constants involving the ZPE derivative in
eq 5.44 forR′o, but not in eq 5.38 for the intrinsic barrier
∆Go

qsindicates thatR′o should not be, and is not, solely
expressible in terms of∆Go

q. On the other hand, thenumerical
consequences of this fundamental difference need not be at all
severe, and indeed Figure 10b shows that using eq 1.1 tofit the
free energy behavior does an excellent job of representing the
PT free energy variation. The reasons for this somewhat
accidental success can be assessed as follows. The ratio
R′o/(1/8∆Go

q ) between the correct coefficientR′o, and its
replacement (1/8∆Go

q) in eq 1.1 is close to unity for the model
systems presented here, a numerical similarity which can be
understood. We analyze eq 5.44 forR′o in Appendix B to
express it in theempirical form

so that our free energy relation eq 5.46, can be written as

and will numericallymatch the Marcus relation eq 1.1 iff ≈ 1.
In appendix B, it is indicated thatf ) 0.8, which is indeed close
to unity despite the strong conceptual distinctions betweenR′o
and∆Go

q we have emphasized above.
It should also be pointed out that the importance of the

quadratic term is somewhat muted by the feature that the limits
of the free energy relationship are restricted by the requirement
of a free energy barrier to define a rate. Qualitatively, the barrier
height∆Gq vanishes in our picture when the barrier height in
Gmin is canceled by the reactant-transition state ZPE difference.
Quantitatively, the limits are defined by setting eq. 5.46 equal
to zero, giving the limiting reaction asymmetries as

which are ∼(5 kcal/mol in Figure 6. In contrast to such
relatively modest asymmetries, much larger values are possible
for nonadiabatic tunneling PT reactions, which would thus
provide a more sensitive probe of quadratic terms in free energy
relations.

6. Concluding Remarks

In this paper, we have been able to find a nonlinear FER (eq
5.46) of the type widely successful in application to experimental

Figure 10. Free energy relationship∆Gq vs. ∆GRXN for fixed Q )
2.55 Å for a series of proton-transfer asymmetries (+). The solid line
in (a) corresponds to eq 5.46 using∆Go

q ) 1.73 kcal/mol andR′o )
0.056 mol/kcal, and the solid line in (b) indicates anumerical fit of
the data to eq 1.1 (∆Go

q )1.72 kcal/mol).

R ) 1
2

+
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+ 1
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) (5.43)

R′ ) R′o ) 1
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+ 1

kR
) (5.44)

R′ ) R′o ) 1

∆∆Em
2 (1 - 2a

kR∆∆Em
)-2(1

kq
+ 1

kR
) (5.45)

∆Gq ) ∆Go
q + Ro∆GRXN + 1

2
R′o∆GRXN

2

≈ ∆Gm,o
q + Zo

q - Zo
R +

∆GRXN

2
+ 1

2
R′o∆GRXN

2 (5.46)

R′o ) f

8∆Go
q

(5.47)

∆Gq ) ∆Go
q +

∆GRXN

2
+ f

16∆Go
q
∆GRXN

2 (5.48)

∆GRXN ) ( 1
2R′o

[1 - x1 - 8R′o∆Go
q] (5.49)
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results in solution for proton transfer reaction rates versus
reaction thermodynamics, based on a nonconventional quantum
adiabatic picture for the proton transfer, in which the reaction
coordinate and barrier involve the reorganization of the solvent,
rather than the proton itself. The ingredients in this nonlinear
FER have been analytically derived. In particular, the intrinsic
free energy barrier∆Go

q was explicitly related to (eq 5.38) the
reorganization of the solvent and the change of the zero point
energy of the quantum proton between the reactant and the
transition state configurations of the solvent coordinate. The
nonlinear FER was found to differ numerically in only a minor
fashion from the often-employed Marcus nonlinear free energy
equation, where for the latter the intrinsic free energy barrier is
simply regarded as a numerical parameter to be fit. It was shown
that this numerical agreement is a reflection of the feature that
often the range of thermodynamic reaction asymmetry is
sufficiently restricted that the quadratic term in a nonlinear FER
is not sensitively probed, such that the fundamentally different
identifications of this termsrelated to the variation of the
Bronsted coefficient with thermodynamic reaction asymmetrys
in the present treatment and in the Marcus equation will not
typically be apparent. Even in this circumstance, there remains
the important feature that the intrinsic free energy barrier has
been explicitly characterized in the present work.

The present treatment was restricted, for simplicity, to the
situation where the H-bond coordinatesthe distance between
the proton donor and acceptorsis held fixed. This restriction is
removed in the following paper, where it is shown that generally
the same fundamental results follow, with some differences in
interpretation, related to the important influence of the H-bond
vibration.
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Appendix A: Intrinsic Reaction Barrier for Gmin

To analyze the intrinsic barrier∆Gm,o
q for Gmin, it is conve-

nient to separate out the harmonic contribution in eq 5.22
(km/2)∆Eo

2, by writing the difference betweenGmin (∆E ) 0)
and its reactant minimum value for the symmetric reaction, in
an integral form. It is straightforward to show with eqs 5.6-
5.8 and 5.10, that∆Gm,o

q can be expressed as

With the second derivative expression in eq 5.5, eq. A.1 is
transformed to

We have employed a shorthand notation forcI
2(qmin,∆E),

bearing in mind thatqmin depends on∆E. We recall from eq
5.8 thatkm already depends on the electronic structure through

the first derivative ofcI
2. For later reference, we record the first

derivative, found from eq 2.11 evaluated atqmin(∆E), as

Equation A.2 shows that the anharmonic corrections are
exclusively determined by the electronic structure variation. The
leading order anharmonic correction amounts to assuming a
second-order expansion in∆E of cI

2 about the minimum-∆Eo

whereC is the second derivative evaluated at the minimumC
) ∂2cI

2(∆E)/∂∆E2|-∆Eo′, and we note for later reference that
from eq A.3, the full second derivative is

In the approximation eq A.4, eq A.2 including the first
anharmonic correction is

which is eq 5.22 of the text. As noted there, this approximation
is valid to within 5%: ∆Gm,o

q from Figure 4 is 3.76 kcal/mol,
whereas the first term in eq. A.6 is 4.43 kcal/mol, and the
anharmonic correction-0.58 kcal/mol gives∆Gm,o

q ) 3.85
kcal/mol.

Further approximations are possible by neglecting all terms
arising from the variation ofqmin with ∆E; as shown in Figure
5a, this is small away from the barrier peak region∆E ) 0.
Ignoring this variation reduces the derivatives A.3 and A.5
respectively to

With these approximations, the first term in eq A.6 is 4.55
(compared to 4.43) kcal/mol and the second is-0.37 (compared
with -0.58) kcal/mol, giving∆Gm,o

q ) 4.18 (compared to
3.85) kcal/mol. The variation ofqmin with ∆E has a very slight
effect on the harmonic force constant, and a more significant
effect on the first anharmonic correction to∆Gm,o

q . The overall
result in eq A.6 neglectingqmin variation results in only a %10
increase, consistent with our remarks in section 5a.3 concerning
the importance of the shift in the proton equilibrium position
qmin in connection with∆Gm,o

q .

Appendix B: Derivation of Eq 5.47

We wish to rewrite eq 5.44 in terms of the intrinsic barrier
∆Go

q. To proceed, we introduce an effective reorganization

∆Gm,o
q ) Gmin(0) - Gmin(-∆Eo) )

km

2
∆Eo

2 +

∫-∆Eo

0
d∆E′ ∫-∆Eo

∆E′
d∆E′′(∂2Gmin(∆E′′)

∂∆E′′2
- km) (A.1)

Gm,o
q )

km

2
∆Eo

2 - ∫-∆Eo

0
d∆E′ ∫-∆Eo

∆E′

d∆E′′(∂cI
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∂∆E′′ -

∂cI
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) (A.2)
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)
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3 cN
3
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2
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2 - C
6
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3 (A.6)

∂cI
2
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) 2

â
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3;

∂
2cI

2

∂∆E2
) 6
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energy

which is the analogue of the reorganization energyλm, eq 5.20,
for Gmin. The force constantkR ≡ km (1 - ú) and the difference
in minima positions∆EP - ∆ER ≡ (∆Em

P - ∆Em
R)(1 - γ) are

all slightly shifted from theirGmin analogueskm, ∆Em
R,P, from

eqs 5.28 (and just below forkR) and 5.14, which defineú and
γ. The λ andλm values are fairly close to each other

due to the modest shifts involved (ú ) 0.10,γ ) 0.08), and we
have with eq 5.44

We next use eqs 5.38 and 5.22 to rewrite the intrinsic barrier in
terms ofλm

in which δ ) (σ - ∆ZPE)/∆Go
q involves the ZPE changeZq -

ZR, and σ is the magnitude of the anharmonic correction to
∆Gm,o

q in eq 5.22. The combination of B.3 and B.4 thus gives

which is eq 5.47 of the text. WithkR/kq ) 0.5, (σ - ∆ZPE)/
∆Go

q ) (0.58 + 2.02)/1.76) 1.5, the numerical value of the
factor f is (1.5)/(0.76× 2.5) ) 0.8.
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