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A quadratic free energy relationship (FER) between the kinetic activation free eme®jyand the
thermodynamic reaction asymmettyGgrxn iS derived for acid-base ionization proton-transfer reactions
AH---B— A~---HB™" in a polar environment in the proton adiabatic regime, in which the proton is treated
quantum mechanically, but does not tunnel. The description differs from traditional treatments in both the
proton quantization and the identification of a solvent coordinate as the reaction coordinate. The key coefficients
in the FER are analyzed analytically for the simplified case, where the proton-daocceptor distance is

held fixed (a restriction removed in the following paper). In particular, the intrinsic barrier is shown to be the
sum of an intrinsic solvent barrier, largely determined by solvent reorganization, and the zero point energy
difference of the proton between the reactant and the transition state in a solvent coordinate. The Brgnsted
coefficient is related to the quantum proton-averaged solute electronic structure at, and the position of, this
transition state along this reaction coordinate. Similarities and differences of the FER with the well-known
Marcus relation are discussed.

1. Introduction strong electrostatic reacting solute-surrounding solvent interac-
tion. Several researchéfshave stressed the importance of
understanding how an equation whose structure is based on
electron transfer (ET) theory could be successful in the PT
context, where the assumptions of ET theory do not apply. For
xample, ET theory generally assumes that the electronic
oupling between reactant and product states is small, say a
kcal/mol or even les! whereas for PT, a typical electronic
coupling value is of the order of an electronvbit13a feature
reflecting the absence of bond breaking/making in outer sphere
ET but its essential presence in PT. (This aspect is appreciated
in some workd but not in other effortd?) One goal of the

Proton transfer (PT) reactions are of obvious central impor-
tance in both chemistry and biolodyand accordingly, there
has been intensive study of PT rates in solution and other polar
environments, e.g., proteifs? Of particular importance in both
comprehending and characterizing PT reactions is understandingi3
rate, equilibrium free energy relations connecting the activation
free energyAG* of the reaction with the thermodynamic reaction
asymmetryAGgrxn. The quantitative nature of this trend has
been modeled by several workérs>° of special interest is
the nonlinear free energy relation (FER) introduced by M&rcus

AG (AG )2 present work is to show how a second-order FER similar to the
AG" = AG! + RXN 4 RXN (1.1) Marcus eq 1.1 emerges, using a simplified but realistic theoreti-
2 16AGﬁ cal treatment of PT reactions in a polar medium. Beyond this,
the analysis also (a) characterizes the intrinsic reaction free
where AGi is the “intrinsic” reaction barrier[(Gz = AG*- energy barrierwhich is typically (though not alway® re-

(AGrxn = 0)), i.e., the activation free energy for the reference garded as a parameter in correlating PT rates and equitibria
thermodynamically symmetric reaction. This relation has had in terms of fundamental molecular and solvation features, and
impressive success in correlating solution phase and other PT(b) forms the basis for a nonconventional theoretical perspective
reaction dat&2 945 put it is important to appreciate that this  for kinetic isotope effect$®

Marcus relation was never actually derived for PT reacti@ns. The underlying picture of PT reactiotfs!217-188employed

An FER was initially derived by Marcddor a gas phase H  within differs considerably from “standard” approachéd®For
transfer situation using a bond energy-bond order (BEBO) example, the reaction is driven by configurational changes in
relationship, and independently the relation eg-Jofiginally the surrounding polar environmera feature of much modern
derived by Marcus for outer sphere electron-transfer reactionswork on PT reactioris9.12.13.17.18.2628_gnd the reaction activa-

in solutiort—was posited because it gave a FER similar to that tion free energy is largely determined by the reorganization of
resulting from the BEBO analysis. However, neither of these this environment, rather than directly by the height of any
physical models individually is a plausible model for PT, which  potential barrier in the transferring proton’s coordinate, the latter
simultaneously involves bond breaking and making as well as being the focus of traditional approact&sn this picture, the
rapidly vibrating proton adiabatically follows the slower rear-

*To whom correspondence should be sent. i 17,18
T Department of Chemistry and Biochemistry, University of Colorado. rangement of the environmef, and one focuses on the

* Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale INstantaneous proton potential for different environmental
Supeieure. arrangements. Figure 1 illustrates this nonequilibrium solvent
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Figure 1. Free energy curves versus proton positidor fixed proton donoracceptor separatio@ = 2.55 A and at (a) the reactant, (b) transition

state and (c) product state solvent configurations. In each case, the ground-state proton vibrational energy level is indicated. (d) Fre@energy of t
PT system, with the proton quantized in its vibrational ground state, versus solvent reaction coordinate. The solvent coordinate critical points
corresponding to the proton potentials in panels-(a) are indicated.

assisted PT view. Figure #d.c displays the system free energy vibration here, rather than a classical, over the barrier, motion
curves as a function of the proton coordinate with the ground as in standard approaches. A separate and distinct quantum
proton vibrational state indicated, for three values of the solvent regime—nonadiabaticPT or tunneling®18.20.21.23.2527—gccurs
coordinate characterizing different environmental configurations. if the zero point vibrational energy in the TS proton potential
As depicted, evolution in the solvent coordinate (defined is below the central proton barrier top. FERs for nonadiabatic
precisely within) leads to an evolving proton potential pattern, PT in this picture have been presented in ref 7 (see also ref 8).
in which the proton is initially bound to a donor in the reactant ~ The above description has ignored, for simplicity, the
state (Figure 1a), to a transition state with the proton delocalized important influence of the separation between the heavy donor
to a degree between donor and acceptor moieties (Figure 1b)and acceptor moieties between which the proton is transferred.
and finally to the product state with the proton bound to the This H-bond coordinate’s most salient aspect is its influence
acceptor (Figure 1c). The evolving zero point vibrational energy on the proton barrier (Figure 1b) at the environment's TS
of the proton, which includes its interaction with the environ- configuration: this barrier will increase as the doracceptor
ment, defines a free energy as a function of the environment separation is increased; a higher energetic price must be paid
rearrangement, shown in Figure 1d. The labelgRnd P in in breaking the original bond before the energetic gain from
Figure 1d correspond to the reactant, product, and transitionthe new bond formation is realized. The PT reaction must thus
states along the reaction coordinate, and correspond to thebe considered not only in the presence of a barrier whose
ground proton vibrational energy levels displayed in Figure 1a asymmetry is fluctuating due to the environment, but one whose
1c. The reaction barrier is thus in the solvent coordinate, as height (and width) is also fluctuating. Figure 2 shows such a
opposed to the proton coordinate in the “standard” picture. At barrier height increase as the doracceptor distance increases,
the transition state solvent configuration (for a thermodynami- going from Figure 2a to 2b, with the proton adiabatic condition
cally symmetric reaction), the proton potential is a symmetric maintained. For perspective, Figure 2c displays an extreme
double well. case: the H-bond separation is sufficiently large that the ground-
Figure 1 depicts what we term thpeoton adiabaticregime, state proton vibrational energy level is no longer above the
in which the quantized proton vibrational level lies above the proton coordinate barrier; this is nonadiabatic-Riinneling—
proton barrier at the environment’s transition state (TS) con- and is excluded in the present work. Nonetheless, Figure 2c
figuration22 This adiabatic PT regime picture has been supported emphasizes that attention must be paid that the system remains
in electronic structure/simulation studies including acid ioniza- adiabatic; in this work, we require sufficient H-bond strength
tions in solutioA” and elsewheré24The TS for adiabatic PT  to ensure small equilibrium separations in the reactant H-bonded
situation described above corresponds to what has been termedomplex.
in the enzyme reaction literature a “low barrier hydrogen  The outline of the remainder of this paper is the following.
bond”3° As discussed below in more detail, the adiabatic proton Section 2 discusses the theoretical formalism used to evaluate
regime is expected to apply for proton donor/acceptor systemsthe free energy surface from which barrier heights and reaction
in which there is a hydrogen bond (H-bond) of sufficient free energies will be analyzed, whereas section 3 presents the
strength. We stress that the proton motion is a bound quantizedparametrization and specification of model potentials used to
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Figure 2. Variation of the reaction transition state proton potentials with increasing H-bond coordinate AB separation, going from (a) to (c). Both
the ground and the first excited proton vibrational levels are indicated.

illustrate the formalism of section 2. The free energy relationship We will only be concerned with thground electronically

is analyzed in general terms in section 4, with detailed derivation adiabatic state produced by the electronic, or resonance coupling
of its specifics described in section 5. Concluding remarks are -3, and this choice will be taken in all that follows. In eq 2.2
offered in section 6. Beginning with section 4, we restrict the Uy andU, are the two electronically diabatic VB state gas-phase
discussion to a fixed donefcceptor separation, a restriction surfaces. It proves convenient to have the same zero of energy

removed in the following papét, hereafter labeled Il; as will ~ for Uy and U,, so thatAyac explicitly indicates the gas-phase

be seen there, the basic structure remains the same. offset between the reactant and product diabatic states, and thus
represents the gas-phase transfer reaction asymmetry (without

2. Theoretical Formalism for the Reaction Free Energy any zero point energy effects, vide infra).

Surface In the above two diabatic state representation, the ground

We introduce a simplified model system for an acid ionization adiabatic electronic wave function is the linear combination

PT to calculate the free energy surface from which the free

energy barrier and reaction asymmetry can be extracted. The WE= 6w 60 (2.3)
model consists of PT between a donor, A, and acceptor, B
separated by the H-bond distar@ewith g the protor-donor
separation, in short, the proton coordinate

" where the coefficientsy andc, describe the solute’s electronic
composition in terms of the neutral and ionic VB state wave
functions Wy and W,. In this representation, the gas-phase

_ " ground adiabatic electronic energy is the expectation value

AH:--B=A"---HB (2.2)
7 a 2 2

We will be concerned only with the “chemical” aspect of the o= [WIHod W= QU + GV, — 2668 (24)
PT reaction, i.e., that portion occurring within a hydrogen-

bonded complex to produce a contact ion pair product com-

plex32 The system gas-phase electronic Hamiltonian is con-
structed in terms of a two valence bond (VB) state picture. These
two electronic VB states correspond to a neutral and an ion

pair, as suggested in eq 2.1, and are defined at each value o

the g andQ coordinates. This description has its foundation in

the Mulliken charge-transfer picti@eof PT, in which an
electron is transferred from a nonbonding orbital (e.g., lone pair)
on the (proton acceptor) base to the antibonding orbital of the

(proton donating) acid. The AH bond accordingly weakens

and a hydrogenic species can move from A to B. This somewhat

After these gas-phase preliminaries, we turn to the situation of
interest, in which the solute system is immersed in a polar
solvent, mimicked as a dielectric continuum with statig) énd
optical () dielectric constants. As seen within, we will couch
ur general final results in a form that should apply beyond
uch a description. The solutsolvent interaction is modeled
in the point dipole approximation for the solute charge distribu-
tion; each diabatic state is characterized by its own dipole
moment (i and u;), which together with a transition dipole
momentuy;, determine the expectation value of the dipole
momentg in the solute electronic stal®

nonconventional picture has now been supported by several ab R 5 5 - Tun s

initio calculations for acid ionizatid and elsewher& which A= (W WO= cuuy t Gy + 20\Ctyy; 4= [u u ]

show that the transferring species actually carries a fraction of N '(2 5)

the charge of a proton; we will nonetheless continue to refer to )
“proton transfer” throughout. In general, the solvent electronic polarization is equilibrated to

~ The basic formulation of the PT system free energy surface 5 certain mixture of VB states which must be self-consistently
in this two VB state framework was developed in ref 12, where getermined® Here, we will consider for simplicity the Born
discussion of its antecedents, including work of e.g., Coulson, oppenheimer (BO) lim# in which the fast solvent electronic
Bratos, and Warsh®#*may be found. We summarize only the  pojarization is equilibrated to the individual VB stafésnd

essential features from that work here. First, the gas phasejn which the system nonequilibrium free energy is described
Hamiltonian at each solute geometry is a two-dimensional matrix p, 12

for the neutral (N) and ionic (1) VB states with an off -diagonal
electronic coupling element mixing them to produce the G, = M, [H K[—ZA&H ,7] — LK F*0  (2.6)
electronically adiabatic states a v ”
with expectation values taken over the solute electronic wave
A= Uy -8B 2.2) function. The first three terms in eq 2.6 are respectively the
vae =B Uit A, solute’s gas-phase energy at the solute’s solution phase elec-
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tronic structure, the solutesolvent interaction energy, and the for ET38 and more recently PT17:18.20.24.2%eactions in which
solvent’s self-free energy. The last term is the stabilization free simulation techniques are employed to calculate free energy
energy due to the solvent electronic polarization. The notation surfaces. For a givemM\E and nuclear configuration, the
Gy indicates explicit dependence of the free energy on the proton coefficientscy andc, can be obtained by solving the generalized
coordinateg, to distinguish it from a free energy subsequently Schrainger equation, eq 2.8. The free energy is calculated from
introduced, in which the proton motion is quantized. eq 2.6, with the expectation values evaluated wejtland cy,

In eq 2.6,zis a coordinate describing the solvent orientational and from eqs 2.62.9, the free energ® is
polarization, and corresponds to the solute dipole moment that

the solvent configuration would be equilibrated withthere 1 > Klun tu 2
were equilibrium solvation. Becausgecan in fact differ from  Go(hAE) = Z—Z(AGd tAR) -5 -
[(AL) the system can be out of equilibrium, an essential feature (un = )
of the description; the solvent polarization state is whatever it K [2+2 A Uo 4+ U
happens to be, and is not necessarily that polarization which is _W(“N ”') vac N b
equilibrated to the PT solute system’s actual charge distribution. 2 2 2 2
The force constants for the orientational and electronic polariza- 1
tion of the solvent E‘/(UN — U, + AE)® + 4p'* (2.10)
_ 1 1), _ 1 - .
K= ZMQ(E— - —), K, = ZMS(l - 6—) (2.7) and the VB coefficients are given by
00 0, 00,
. . . . 2_1 1 (AE+UN_UI) L2 2
depend on the static and optical dielectric constants, as wellas ¢ = > + 5 Nt =1

a structure factonMs, discussed later. \/(AE + Uy — U,)2 + 4ﬁ'2

The quadratic dependence on the solvent coordinatesq (2.112)
2.6 results from nonequilibrium fluctuation of the environment’s ] ) ) )
polarization around its equilibrium position. A solvent polariza- W€ have also introduced in eq 2.10 the difference in free energy
tion coordinate was first introduced in reaction dynamics for betweer! the equilibrium solvated ionic and the neutral diabatic
outer sphere ET by Marcud, with a resulting quadratic e!ectronlc ;tates as the sum of the gas-phase offset and the
dependence of the free energy on the polarization of the medium difference in solvation free energy between those states
(For more complex charge transfers in a polar environment, 1 2 2
theories have been developed which also include the solvent AGy = Ayt 1K+ Ko)(uy — i) (2.12)

polarization—solute charge distribution interaction; examples . . .
include PT-9:12.13.17.18.2022.23.23nd othel?23537reactions.) But Equation 2.10 defines the system free energy as a function of

as will be seen, the quadratic dependence of eq 2.6 for the the three coordinates, and illustrations of this surface vegsus

PT case does not at all guarantee a quadratic FER as in eq 1.1f.°rI a fixed H-bpnd 900;d|naté2};nd 3\; severa] ?'ﬁgremfh
The solute’s electronic composition, defined by the co- Valués were given In Figureé rac. vwe now introguce the

efficientscy andc, is determined by solution of the generalized quantization of the nuclear proton motion. Because this motion
Schralinger equation is typically fast compared to that of the solvent and the AB

vibration (vide infra), a Borr-Oppenheimer approximation is
N 1 a2 Cy made for the proton with respect to these two coordinates; proton
{Hyac — Kzit — 1K 4" — E1} [c ]= 0 motion is quantized by solving the nuclear Salinger equation
' for the proton Hamiltonian at ead@ and AE

whereE is the ground adiabatic energy eigenvalue for the matrix N A
g el Fyldq,0= {K, + G{GQAE} ¢g,0= G,(QAB) |,

0= (2.13)

Uy — Kz — LK ui  —p . e _
' N ) Here_, Kq is the proton’s kmeuc energy operator a@g(q;Q,
—B U, = Kz = 1 Kaui + Ay AE) is the effective potential seen by the proton at eAh
(2.8) and Q. The result is a set of proton vibrational energy levels
G.(Q, AE), together with the associated proton vibrational wave
The. off-diagonal.term in.the Hamil.tonign contains the renor- functionseg,,, with examples shown in Figures 1 an@®Vith
malized electronic coupling-5’, which includes the solvent  some exception&!16-23adealt with elsewher& the proton will

contribution to the resonance couplifg®> —f' = —f — Kuniz usually reside in its ground-state vibrational level, i.e., the proton
- l/z_KooMm(uN _+ ). _ _ ) vibrational energy is then closely related to the zero point energy
It is convenient to replace the coordina®ith a different, (ZPE). Thus, the resultant free energy surface after proton

linearly related solvent coordinatAE, the offset between the  quantizationG,—o (Q, AE), contains the proton ZPE in addition
e|ectr0niCa”y diabatic states which is modulated by the solvent to the solvent self-free energy and the solgelvent interaction

N ) ) free energy; hereafter, we suppress the notatigr(”, for

AE= —A o — Kluy — w)z = 1K (uy — ) (2.9) convenience.
Then, following ref 24,G can be most revealingly decom-

AE = 0 corresponds to zero offset between the two diabatic posed into the two components
proton potentials, and to a symmetric proton potentia).imhe
algebraic sign oAAE is defined such thaAE < O corresponds G(Q,AE) = G,;(Q,AE) + ZPHQ,AE)  (2.14)
to the reactant region, i.e., solvent configurations close to those
appropriate to equilibrium solvation of the solute in its reactant This key equation provides our basic picture. H&gj, is the
configuration, andAE > 0 corresponds to the product region. system free energy with the protofixed at its classical
AE is similar to the solvent reaction coordinate typically used mechanical equilibrium position, located at the minimum of the
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proton potential defined by a speciftandAE, eg., the minima weakly attractive potential, modeled here by a Morse potential,
in Figure 1a-1c, whereas ZPE is the quantum zero point energy Vo(Q) = Do(exp(—2ag(Q — Qo)) — 2 exp—ag(Q — Qo))). The
of proton vibration, defined at any giveQ and AE as the parameter®q = 3.93 kcal/molag = 2.33 A1, andQ, = 2.96
difference in energy between the proton vibrational ground- A are chosen such that, after proton quantization, the H-bond

state energy and the proton potential minimum. vibration in the reactant region, described BYQAE) at a
representative reactant solvent configuration, has a frequency
3. Model Parameters ~300 cnt! and a dissociation energyl0 kcal/mol, representa-

In this section, we pause to describe the various model tivé values for modest strength H-bonded compleXes.

specifications used subsequently to illustrate the formalism of ~3b- Solvent and Solvent Interaction Parameters.The
section 2. solute-solvent interaction is governed by the reacting solute
3a. Valence Bond State Potential€€ach electronic diabatic ~ SyStem diabatic dipole momentsy, i, anduni, here chosen

state potential energyly andU,, is assumed to have a simple {0 beun = 0, i = 12, andun = 0 Debye, values similar to
form those of previous studies modeling phenol-amine*P¥647A

zero transition momengy = 0, removes any solvent depen-
Uy = V(@) + VQ(Q); U=V@Q-9g+ VQ(Q) (3.1) dence of the renormalized elegtronic couplifig a finite un
causes the resonance coupling to depend on the solvent

Here,Vy andV, describe the bonding interaction between the coordinateAE, and would only change the magnitudefoty
proton and donor or acceptor, respectively. Both are taken to ~30%123% Hereafter, we takgs' = f, which considerably
be Morse potentials Yiu(q) = D{exp[—2am(q — 0o)] — 2 expF simplifies the analysis without changing the physical picture.
am(q — Qo)]}) with identical interactions (the sani® am, and The solvent dielectric constants are taken as those of an agueous
Uo), except that different bonding partners for the proton are environmente, = 80 ande, = 2. (Static dielectric constant
described:Vn(g) = Vu(g) andVi(Q — q) = Vm(Q — g).*° We variation toward less polar solvents, from 80 to 20, will not
add to each valence bond potential an AB interaction potential, drastically changé in eq 2.10.) The structure facttMs in eq
Vo(Q), further specified below, which describes the-B 2.7 is set to give an intrinsic barrier for solvent reorganization
repulsive and electrostatic interactions within the H-bond. (~3 kcal/mol) consistent with PT reactions in an aqueous

In the present work, we will take the majority of the numerical solution with a similar AB fixed separatiéff{Ms = 0.7 kcal/
parameters characterizing the reacting solute system as thosenol/Debyé). This solvent barrier and its relationship to the
appropriate for PT between oxygen atoms. The Morse potential ‘intrinsic’ reaction barrierAGz will be discussed in section“s.
dissociation energyp, is taken to be that of a typical hydroxyl As noted above, we will vary the reaction asymmetry by
O—H bond,D =5 eV = 115.3 kcal/mol. The length parameter varying the gas-phase asymmefxy. The reaction asymmetry
am is determined by the OH stretch frequency appropriate for AGgxy in solution then arises from both the gas-phase asym-
an H-bond at a given @O separatiod! For an equilibrium metry Avac and the difference in solvation free energy between
H-bond separatio® = 2.55 A, the OH frequency is-2650 the solvated reactant and product states, and is quantitatively
cm~1 with a corresponding equilibrium proton position 1 related to the free energy difference between the reactant and
A;?841thenay, = 1.67 At andg, = 1.02 A. We take identical  the product diabatic stateAGq in eq 2.12. As will be shown
Morse potentials for the proton donor -acceptor interactions, in section 5, the variation inAyac has a simple (linear)
and identical donor and acceptor nuclei, namely oxygen atoms.relationship with the change iNGgxn, and thus provides a
One could instead use differing Morse potential parameters, simple and clear way to vary reaction asymmetry. This avoids
which would add a ZPE contribution to the reaction asymmetry, a detailed and somewhat arbitrary parametrizatieny., varia-
an aspect which will be discussed elsewH&rn our model tion of the valence bond state parameters (e.g., Morse potential
treatment, the reaction asymmetry in solution arises only from parameters and diabatic dipole moments) with, whereas
the gas-phase offs@t,ac betweenUy andU, (See eq 2.2), and  capturing the essential features of the asymmetry trends. It is
the difference in solvation free energy between the solvated important to note, however, that although the two diabatic state
reactant and product states. The variatiohgf can be thought ~ parameters are constant, the ZPEs and the dipole moments for
of as e.g., changing the electron withdrawing capacity of the reactant and product states wihange with reaction
substituents on the donor or acceptor, leadingApK, between  asymmetry, as one would naturally expect, due to the variation
the donor and acceptor. in theadiabaticelectronic structure of the reactant and product

The vacuum electronic resonance couplifigis a function states with that asymmetry.
of both nuclear coordinategandQ. The variation with respect
to the proton positiom is, however, generally sm&i*2and is 4. PT System Free Energy Results. General Features
ignored here. On the other haritlyaries strongly-approximately

exponentially243-with the H-bond stretchQ. For the present 4a. Genergl Perspectivel.:igure 3 is a contour plot of the
model, we use an exponential form with a previous model PT proton-quantized (grou.nd V|br§t|onal state) frge energy surface
system’s parametet8;8 = B, exp(—Bo(Q — Qo)) whereB, = G(Q, AE) for a symmetric reaction generated with the fpr_mahsm
35 kcal/mol,bo = 1.5 A1, andQ, = 2.55 A. and parameters presented above. _The surface _exhlblt_g b_oth a

After proton quantization, the Hamiltonian defining the AB reactant and a product well, stable minima each with equilibrium
motion is H-bond separation® ~ 2.7 A. The transition state displayed

in Figure 3 is at the surface’s saddle point, whAf= 0 and
Ao =Ko+ G(QAE) (32) Q=~25A

Hereafter, we discuss the PT free energy relations with the
where RQ is the Q vibrational mode kinetic energy operator simplification of restricting the H-bond AB separation to a fixed
andG(QAE) is the ground-state energy of the proton vibrational valueQ = 2.55 A, which is a representative H-bond distance
mode at a giverQ and AE determined from eq 2.13. The for the PT in Figure 3; wesuppresghe Q notation in all that
H-bond vibrational potentiaVo(Q) (cf. eq 3.1) includes repul-  follows. This simplified fixedQ situation allows discussion of
sion and electrostatic attraction betwe®andB, resulting in a the essential issues without extraneous complications; the
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Figure 3. Contour plot of the PT system free ener@yQAE) with

the proton in its ground vibrational state versus the solvent coordinate,
AE, and the AB separatio, for a symmetric reaction (See section

2 for discussion of the underlying ingredients for this free energy).
Contour spacings are set at 1 kcal/mol.
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treatment including the H-bond vibration will be given in the
companion paper Il, where it will be seen that the same basic
picture results.

Figure 4a displays a cut of the 3D plot in Figure 3@t
2.55 A, and the solid curve there is the free energy curve for
an overall symmetric PT reactioAGgrxn = 0. The solid curve
in Figure 4b displays the free energy curve for an exothermic
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Figure 4. Free energy curves (solid lines) for the proton for fixed AB
separationQ = 2.55 A, (a) symmetric reaction and (b) asymmetric
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reaction, and Of course, an endothel’mlc reaCtion can be VieWedreaction. Dashed lines show the free energy Cu%&exduding the

as its reverse in Figure 4b. The minima in Figure 4a and 4b
define the positions of the reacta’¥ER, and productAEP,

proton zero point energy (ZPE). (c) ZPE for the protonAis. The
addition of the dashed curvé&,, in (a) and (b) and the ZPE in (c)

states along the solvent coordinate. The reaction free energy isgive the solid curves in (a) and (bAER, AE?, and AE* denote the

thus AGgrxn G(AEP) — G(AER), with a corresponding
equilibrium constanKeq = exp(—AGrxn/RT). The position of
the free energy maximum defines the transition state location
for each reactionAE*, e.g., the barrier for the forward reaction
is AGF = G(AE") — G(AER).#°

The activation barrier values in Figure 4 and elsewhere in
this work are low, of the order of several kcal/mol or less, values
typical for PT involving O donors and O/N acceptors (without
any significant reorganization effects @).1¢:17.51.52This often
makes it difficult to experimentally extract rate information on

reactant, product, and transition state solvent coordinate values,
respectively.

minimum switches between such positions at the TS, as shown
in Figure 5, where for later reference the square ionic VB state
coefficient at the minumum is shown as well. Figure 5a shows
that there are two energetically degenerate proton potential
minima atAE = 0, which identifies the cause and location of
the gmin Switch.

As noted above, the ZPE displayed in Figure 4c reflects the
change in the proton potential as a function of the solvent

the chemical step for such reactions; but for example, a recentcoordinateAE (Figure 1). The electronic adiabatic ground-state

excited electronic state PT study indicates how such difficulties
can be overcome, and nonlinear free energy relationships
examinedh!

The solid curvess in Figure 4a and 4b correspond to the
free energy curves with the proton in its ground vibrational state.
For the dashed free energy curves, den@gg and defined in
eq 2.14, the proton position is fixed at the proton potential
minimum for each solvent configuration. The proton ZPE is
the difference betwee@® and Gn,i, and is displayed in Figure
4c. The electronic adiabatic potential surfaces for the proton
from which Gnin, and the ZPE were extracted for Figure 4 are
shown in Figure 1 at the (a) reactant R, (b) transition TS, and
(c) product P state solvent configurations indicated in Figure
4a.

The cusp aAE = 0 in Gnin (See Figure 4a and 4b) is a result
of a switch ingmin, @s Now described. In the R region, the proton
potential minimum is consistently closer to the donordgah
~ 1 A), whereas in the P region, it is closer to the acceptor
(@, # Q — 1 A ~1.5 A). The proton potential absolute

energy as a function af gives the proton potential for a given
AE. The modulation of the electronic structargenerally
involving a mixture of both diabatic stateby the solvent,
which differentially solvates the electronic diabatic neutral
reactant and ionic product states, shifts this proton potential from
favoring the donor-bound proton (Figure 1a) to favoring the
acceptor-bound proton (Figure 1c). Of course at ARwvalue,

the solute electronic structure varies wighllustrated in Figure

5c showing the ionic VB state populati«xﬁfor the symmetric
reaction TS locatiod\E = 0, for which the proton potential is
symmetric (Figure 1b). We emphasize that it is the ZPE that
carries the major information on the smooth electronically
adiabatic variation of the electronic structure through the proton
potential barrier region seen in Figure 1. As will be shown in
section 5, theproton-averagedsolute electronic structure in the
TS has equal contributions from both the neutral and ionic
electronic VB states. The proton guantum averagec,zofs
displayed in Figure 5b (solid line) and reflects the fact that the
proton nuclear wave function associated with the ground
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Figure 5. (a) Minimum location of the proton coordinatg,, versus
AE for Q = 2.55 A. (b) The square coefﬁciermf for the ionic VB
state versuaE with g = gmin (dashed line) and quantum averaged over
the proton vibration (solid line). (c) The ionic electronic VB state square
coefficient c,z, eq 2.11, versus the proton coordinatefor the
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Figure 6. Free energy relationshinG* vs. AGgrxn for fixed Q = 2.55

A for a series of proton-transfer asymmetries).( The solid line
indicates a second-order numerical fit to the points. Points were
generated from several free energy surfaces with different values of
Avac, as discussed in section 3.

The activation free energikG* versus reaction free energy
AGrxn profile for PT is plotted in Figure 6. The reaction barrier
increases nonlinearly as the reaction goes from exothermic to
endothermic, and in particular, the line displayed in Figure 6
a second-order fit to the calculated pointhows that a second-
order free energy relationship is an excellent characterization
in the current description, a key result analyzed further in section
5. The displayed range akGgrxn in Figure 6 represents the
relevant range for which an activation barrier exists, and thus
defines the range in which a reaction rate constant can be
defined>?

The R, P, and TS locations in Figure 4a and 4b are consistent
with the Hammond postulafé:>® for an exothermic reaction,
the TS is closer to the reactant (Figure 4b), and for an
endothermic reaction, closer to the product (reverse of Figure
4b). Thus, the barrier iME for PT decreases going from
endothermic to exothermic, whereas the TS goes from being
closer to the P to closer to the R. For a symmetric reaction (see
Figure 4a and 4c), the proton ZPE, as welGag,, is symmetric
aboutAE = 0, and thuss has this symmetry. When the reaction
asymmetry changes, however, as previously discusagds
no longer symmetric aboutE = 0, and the TS shifts toward
the well which variesleast near AE = 0, toward R for

symmetric reaction transition state value of the solvent coordinate exothermic reactions and toward P for endothermic reactions.

AE =0.

vibrational state for the symmetric proton potential in Figure

1b has some delocalization between the donor and accepto

At this point (AE = 0), the ZPE has its minimum value due to

the proton potential’'s symmetric double well character, and it

exhibits a cusp, with the ZPE increasing going away fraEn

= 0 as the solute structure and proton potential is dominated

Consequently, and this is an important point, the shift in the
TS location to being more R- or P-like results from the

r_quamtizationof the proton, i.e., the addition of ZPE B,

How the relative positions of the R, P, and transition states shift

with respect to reaction asymmetry is related to the Bragnsted

coefficient, now discussed.
4b. Brgnsted Coefficient.The first derivative of free energy

by either the neutral or ionic state and the proton moves with respect to reaction free energy is the Brgnsted coefficient

accordingly in more confining R or P region potential wells.
By contrastGmi, involves proton locations which remain largely
outside this central barrier region, so that the associated
electronic structure variation in each separate branch is fairly and has played a significant role in organic chemistry and
muted, though not negligible (cFigure 5b, dotted line). biochemistry in characterizing various chemical reaction transi-
An important feature of the ZPE in Figure 4c is that it applies tion state$>* For “normal” PT reactions, the Bragnsted coef-
for both the symmetric and the asymmetric cases Figure 4a andficient a lies between 0 and 1, and is usually interpreted as a

o = JAG'/0AGryy (4.1)

4b; i.e., the ZPE is theamefunction of AE independent of
AGgrxn. This property arises from the fact that changix@grxn
does not change the proton potential’s shape for a fixBdA
change iM\Grxn does, however, shift the reference free energy
at its minimum, Gp,in. Accordingly, the PT reaction thermo-

measure of how similar the TS is to the product state (the larger,

the more similarf:45556The explicit connection ofx to the
TS location will now be derived.

To begin, we recall that the variation of the reaction free

energyAGryxn in Figure 6 is achieved by varying the vacuum

dynamics or reaction asymmetry in Figure 4a and 4b will be offset or asymmetry,,c between the reactant and the product

dominated byGmin.

electronic diabatic states. Because @rxn and the activation
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Figure 7. Plot of the Brgnsted coefficiemt = dAG*9AGrxy VeErsus

the reaction free energy. Displayed are the numerical interpolations
from the free energy curve in Figure 6 (line) and the calculated
analytical expression eq 4.4.

free energyAG* vary with reaction asymmetry, a simple view
of the Brgnsted coefficient can be written as follows

o = IAG'/0AGryy = IAG0A o JIAGryn /DA . (4.2)

ac

Both the free energy differencésGrxn = G(AE®) — G(AER)
andAG* = G(AEY) — G(AER) are expressed as a difference in

free energy between the appropriate critical points on the free

J. Phys. Chem. A, Vol. 106, No. 9, 2002841

5. Analytic Nonlinear Free Energy Relations

It has already been seen from Figures 6 and 7 that a second
order AG* — AGgxy relation is an accurate numerical charac-
terization for PT in the present description. In this section, we
derive an analytical form for the quadratds* vs AGgryxy free
energy relation for PT, based on the fundamental decomposition
in eq 2.14 of the system free ener@yinto the two components
Gmin and ZPE. This derivation also allows the identification of
coefficients, e.g.AGz, in terms of the underlying fundamental
reaction features.

A second-order free energy relationship has three terms, the
zero-order term being the “intrinsic” reaction barrier. The
coefficient for the first-order term is,, the activation free
energy derivative with respect to the reaction free energy, the
Brgnsted coefficientt, eq 4.1, evaluated for the symmetric
reaction. The second-order coefficiertis the derivative ofx
with respect to reaction asymmetry, evaluated for the symmetric
reaction. Thus

(AGgyy)’®

AG* = AG} + 0, AGgyy + O 5

(]

(5.1)

In the following developments, to analyze eq 5.1, we begin with
an analysis oG, followed by that of the ZPE. These are then
combined to deal wittAG*, with the final major analytic result
for AG* obtained at eq 5.46.

5a. Gmin. In this subsection, we first discuss the general

energy curve (Figure 4). To proceed, we step back to the level features of3min, its behavior with changing reaction asymmetry,

of the free energys, before proton quantization was effected,
i.e., eq 2.10. The partial derivative of this with respeci\t@c
is given by

IG4(d,.QAE) o2
A -

vac

(4.3)

To incorporate proton quantization,2 is averaged over the
ground-state proton vibrational wave function to give the
expectation valudﬁ,z[Iat a givenAE. (Recall that the ZPE
dependence oAE does not change as the reaction asymmetry

and finally its barrier height for the reference symmetric reaction.
5a.1. Qerview.As discussed in section 4@y, is the system

free energy with the proton fixed at its classical positip at

the proton potential minimum, whose values in the R and P

regions correspond to the equilibrium solvation energies of the

fixed proton R and P solute structures. The condition defining

Omin IS, from eq 2.10

9Gq_

aq 0= _(Clz\lFN,q + CIZFI,q) (q = qmin)

(5.2)

is changed, and thus, quantization of the proton is dependentinvolving the state average force on the proton, with, & .q

on AE but not on reaction asymmetty,a.) Evaluation in this
fashion of the quantum average qu at the R, P, and TS
solvent configurations then gives the simple relation

(@20 — [t

o= IAGIAGy = —————
A R i

(4.4)

which is the fractional change of the (proton vibration-averaged)
ionic character on going to the T8&;increases from 0 to 1 as
the TS goes from being similar to R to being similar to P. Figure
7 is an overlay of the calculated ratio in eq 4.4 (points) with
the Brgnsted coefficient calculated from direct numerical
evaluation of the slope (second-order fit to points) in Figure 6
versus AGgrxn (line); the excellent agreement supports the
validity of the approximate eq 4.4 connectingto the TS
electronic structure, consistent with the Hammond postulate.
(We postpone the explicit connection to the TS location in the
solvent coordinate until section 5ax)equals 0.5 foAGrxn =

0, such that the proton-averaged electronic structure at the TS

is halfway between R and P for the symmetric reaction. Its
variation away from that condition for finitAGrxy is consistent
with some3” but not all>2treatments of other charge-transfer
reactions.

= — 9U\/0g. As discussed in section 4a, the cusp\&= 0 in

Gmin (see Figure 4) is a result of the switch between proton
minimum positiongymin from being closer to the donor to being
closer to the acceptor (Figure 5a). (Note carefully that this
condition locates the equality of the free energies of the minima
of the two wells in an electronicallpdiabatic double-welled
proton potential.)

Figure 4 indicates the very important feature ti&tin is
evidently quite close to being double parabolic in nature, with
a systematic shifting of the approximate parabolas as the reaction
asymmetry changes. Certainly, neither this nearly parabolic
character or its systematic shifting &mi, is immediately
obvious from its formal definition, which from eq 2.10 is

1 2
G itAE) = ——————(AG, + AE)” —
mln(qmm ) 2K(,uN - ﬂ|)2( d )
E(/uN + /"I)2 _ &(‘uﬁ + lulz) Avac
2 2 2 2 2
UN(qmin) + Ul(qmin) N
2

AV Un(n) = U (G) + AEF + 4% (5.3)



1842 J. Phys. Chem. A, Vol. 106, No. 9, 2002 Kiefer and Hynes

E 0.2
-115 /3
-120 4 0.1
B
& 195 -
£-125 g
(o] = 0
& E
=-130 &)
B =
13
O 35 -0.1
-140—\ /\ /
7t T T V21T T 7T T T T T T T
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
AE (kcal/mol) AE (kcal/mol)

Figure 9. Derivative of Gnin with respect toAE versusAE, for a
Figure 8. Comparison omi, with (solid line) and without electronic ~ Symmetric reactionGy = 0 kcal/mol,Avac = 99.5 kcal/mol), showing

coupling (dotted line) for a symmetric reactioAGyq = 0 kcal/mol, that the double pf_;lrabolic d_escription Gfin has some deterioration
Avac = 99.5 kcal/mol). Also shown i€, calculated withgmin held nearAE = 0, as discussed in the text.
constant (dashed linegjnn = 1.03 A for AE < 0, andgin = 2.55— o .
1.03= 1.52 A for AE > 0. eq 5.4, the second derivative G, is

. . . 2 2
where the electron diabatic potentialg andU, are evaluated IGpin 1 3¢ (Oin AE) (5.5)
atq = gmin- The first and last two terms in eq 5.3 carry the IAE? Ky — ﬂl)z OAE '

dependence (recall thagi, depends orAE). The first term is

quadratic, whereas the last two terms are not, switching\ie |t should be noted that unlike the first derivative @f,n, €q
location of the minimum oGy, from less than zero in the R 5.4, the second derivative is independent of reaction asymmetry,
region to greater than zero in the P region. If we momentarily i.e., independent oAGg.
consider for comparison the absence of significant electronic  The positions of the critical points &mi, are easily found
couplingfs ~ 0, the second to last term is constant and the last with eq 5.4. The maximum dBmi, is always located exactly at
term is linear inAE with a positive slope in the R region and AE = 0, independent of reaction asymmetyg,* = 0, see
a negative one in the P regiomn would thus be exactly Figure 4); the classical proton positiap,n always switches
parabolic, as in the Marcus picture for weakly coupled ET from Rto P atAE = 0. TheAE positions of the R and P minima
reactionst! The PT reaction of interest here is, however, in the can be found by setting the first derivative in eq 5.4 to zero
electronicallyadiabaticregime, with strong electronic coupling, 1
and the significant electronic coupling present in eq 5.3 is the AE,, = —K(uy — yl)z 5~ clz(qmm;AEm) —AG; (5.6)
main reason for nonparabolic behaviorGain, especially near
AE = 0. We hasten to stress that the electronic coupling is The vertical displacement in free energy of these minima defines
important over theentire AE range of relevance fd&nn, as is a reaction asymmetry associated Wi,
illustrated in Figure 8, which compar&, to the valueG;diab
evaluated at zero electronic couplifig= 0. Even in the R and AL,=G
P wells, the electronic coupling mixes the neutral and ionic VB
states to a significant degree, and at no point is it legitimate to As a final item in these preliminaries, evaluation of eq 5.5 at
adopt a nonadiabatic perspective. Our remarks above emphasize.g., AER
that the electronic coupling is always important, but itrisre
. 2
important near\E = 0. (= 1 _ 9C(QminAE)

In what follows, we will require both the first and second K(uy — M|)2 0AE AE R
derivatives ofGnin with respect toAE. From eq 5.3, the first of
these is defines a harmonic force constadqt for Gnin; the first term is

the electronically diabatic force constant

min(AErl')n) - Gmin(AEmR) (5.7)

(5.8)

3G
o= L —(AG,+ AF) - e = UKty — 0 (5.9)
9AE Kluy — w)
aqmin(Fqumin +Fq.. 1 modified in ky, by the second term, involving the electronic
9AE\ > + 5 G AminAB) 11— structure variation. Due to the intrinsically symmetric nature
3q,. of the two valence bond potentials, is the same for both the
aAmg(FN,qmm ~Fig.) :;Z(AGM‘ AE) + R and P wells?? Figure 9 indicates that the harmonic ap-

K(uy — ) proximation with theGmi, force constant defined in the R well,
eq 5.8, will deviate near the cusp. The dashed line in Figure 8
(1_ Clz(qmin;AE)) (5.4) shoyvs that the str.etching of the proton, going from its R
2 minimum value to its value at the cuggE = O0—which one
might suspect to be responsiblis only a minor contribution;
where we have used thg,i, condition eq 5.2 to arrive at the  in section 5a.3, we show the deviation is largely due to the
second form; this is plotted in Figure 9 for later reference. From influence of an electronic structure change.
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5a.2. Asymmetry Variation of . We now characterize the Finally, the forward and reverse barrier heights are, from eqs
asymmetry variation of the barrier height 5.16 and 5.17
AG' = G AE=0) — G A, (5.10) AGh, = G = G = AGH,, + J4AG) — G

in terms of its valueAGm » for the symmetric reaction and the
asymmetryAn,, eq 5.7. Because the peak Gfy, occurs at
AE = 0 no matter what\n, is, this will entail the investigation

of Gmi"(AlEmR) s behav!or VY'thAm' . . related appropriately bAG!, . = AGL  + Ap.

For this purpose, it will prove convenient to begin by 5a.3. Intrinsic Barrier for Guin, It remains to characterize
expandingGmin through second order iAE about the equilib- AGm ,in eq 5.18, the barrier height associated V@, in the
rium positions, AEy", = FAE,, for the symmetric reaction  symmetric case\n = 0. This turns out to be the most difficult
which as will be seen, is guaranteed by the conditi@y = 0 aspect of the entire treatment, and although we are not able to

K, derive a simple analytical expression fAleo that is very

RP Rp 2 2 highly accurate, we will be able to find an expression that, while

Grmin = G, E[(AGd +AB)" - (AE)] = AAE+ nc?t c)c;mplex gives a reasonably numerlcally%ccurate description
while including the key features oijo

A first approach, motivated by the near double parabolic form
exhibited byGnn in Figure 4 would be to use a simple parabolic
in which GmRP are the values oG, for the respective  form for the derivation of the free energy relationship
equilibrium positions, ané andB are defined by the first and
second derivatives Ghin 2km(AE AER)% AE <0

A 1
=AG  + — +———A% (5.18)
2 2k AAEZ

AE) — %‘(AE + AE)? (5.11)

1 IC (s AE)
sh =[5 COuiAB)frse B= " ey (512) = Ayt (A~ AT AE> 0 (519

whereky, is the harmonic force constant eq 5.8. Th&ﬁﬁw

involving the electronic structuré andB are identical in the R _
would equalin = 1/2kn(AEy, )% which one could use to

R and P regions due to the symmetric nature of the electronically

diabatic states (g., Vi(q)=Vn(Q—q)).%2 define a reorganization energy
The first derivative ofGn,, evaluated foAGq = 0 identifies 1 P )
AE, as A = SKn(AER = AEL) (5.20)
AE, = Ak, (5.13) such that the intrinsic barrier would be
consistent with eq 5.6, and identifies t@gi, R and P minima AG; o~ ’1_’“ (5.21)
locations for the general asymmetric cagesf = 0) as ' 4
K, This definition, although it captures signficant aspects of the
AES;P = FAE, — —AG, (5.14) Gnmin barrier height, is an overestimate by about 20%‘:11'0 =
K 3.75 kcal/mol, whereas eq 5.21 gives 4.43 kcal/mol). This
shortcoming arises from the important feature that in a strongly
wherekyn, = kg — B is the harmonic force constant f@min electronically adiabatic PT reaction, the electronic structure, e.g.,
defined in eq 5.8, a result consistent with the expansion of eq c|2, shifts between the minimum locatiokER, and the barrier
5.6. The distance between these minima location AE = 0, as exemplified by the curvature of the first
derivative of Gmin near AE = 0 displayed in Figure 9 (Note
AAE, = AEP AE, R_ = 2AE, (5.15) that the ‘local’ force constant, the second derivative eq 5.5, will

vary between the two points.) We show in Appendix A that a
partial accounting of this anharmonic variation improves upon

is independent of the reaction asymmetry. eq 5.21 somewhat, giving

Insertion of eq 5.14 into eq 5.11 gives

A 1 820,2
AGl =+ — ZAE——|_
GRP = GRP + kzd(l - E)Aeﬁ K,AE,AG, (5.16) me 4 6 A R
c' c4
_'m 3~
so that the reaction asymmetry eq 5.7 is =7 AR I)l—AEO (5.22)
m = 2KAEAG (5.17) This approximation reduces the overestimate to only 5% (eq

5.22 glvesAGmO = 3.85 kcal/mol compared to the correct
indicating that the reaction asymmetry 8, scales linearly value 3.75 kcal/mol), which would be satisfactory for most
with AG4 and, as stated above eq 5.14Gy = 0 defines a purposes? In effect, it is as if the reorganization energy is
symmetric reaction. reduced, because the solvent is in the presence of a solute charge
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distribution which is not fixed on going from R to TS, as seen
in Figure 5b (dotted line).

In concluding this subsection, we should emphasize the

meaning of any reorganization energy in connection with
Aan’O. The reorganization involved is essentially that of the

Kiefer and Hynes

and the second derivative is

IZPEAE)
OAE

3 (
OAE"

(G (AE) O~ (G AE))

(5.27)

solvent. Figure 8 shows the important point that the reorganiza- The first and second-order coefficients in the expansions 5.23

tion energy is considerably less than would be predicted from
any electronically diabatic view (as in outer sphere ET). This

and 5.24 are thus given by eqs 5.26 and 5.27.
5c. PT System Free Energys. The desired full free energy

reduction has two basic sources. The first is that even in the RG is found by addition of the ZPE tGmin. In the R and P
well, the solute pair already has a mixed electronic structure regions,G is the sum of eqs 5.11 and 5.23. The positions of

(finite clz), and the second -sas just discussetthat this
electronic structure continues to evolve witlc; at the cusp
AE = 0, the solvent is in the presence of a reactant pair with
an even higher ionic character than in the reactant (Figurésb).

5b. Zero Point Energy (ZPE). The nonlinearity of the

G's critical points are easily found as

o

ke

AERP = :F(AEO - (5.28)

Schrodinger eq 2.13 prevents a closed form analytical expressionyherekg = kg — B — b = k- b is the force constant fdB for

for the ZPE, but it can be described by expanding through

R (and P). This is the explicit implementation of the formal

second order around the three critical points for the R, P, and result for the critical pointsAE; of G

TS regions. In particular, it is convenient to expand the ZPE,
asin eq5.11, around the critical points@#, for a symmetric
reaction AE¥ = 0, AE.R = —AE,, AE, = AE,); note that
these are not the critical points for eith®g,, in general oiG.

In the R and P regions, the ZPE is given by

ZPEAE) = ZR" F a(AE + AE,) — %b(AE + AE,)® (5.23)

whereZy! = ZPEFAE,) and the coefficienta andb describe
the first and second ZPE derivativesf = FAE,. In the TS
region AE ~ 0, the ZPE is given by

1
ZPEAE) =Z, ,F a'AE - étf‘AE2 (5.24)

whereZ, , and the coefficientsra* and —b* are the first and
second ZPE derivatives &E = 0. The sign of the first-order

term in eqgs 5.23 and 5.24 reflects the equal but opposite slope

in the R and P regior8.Both ZPE andGy, are discontinuous
at AE = 0, but the sum gives a continuous full free ene@y
The conditionb® > k, for the free energy guarantees a
maximum.

The coefficients in the above expansions related to the
derivatives of the ZPE will now be shown to be related to the
difference between the electronic structure with the proton
quantized versus the proton classical. As a preliminary to this

demonstration, we need to return to eq 2.14 for the free energy

Gq prior to proton quantization. On taking its derivative with
respect to the reaction coordinakE and averaging over the
ground-state proton vibrational wave function for each value
of AE, one has

% = k(AG, + AE) + % ~ BHAE)D  (5.25)
involving the expectation vaIu@:,ZD

With the use of eqgs 2.14, 5.4, and 5.25, the first derivative is
given by

9ZPEAE) _ 0G(AE)  9Gy(AE)
0AE OAE OAE

(€ (AE) T+ ¢{(0yinAE) (5.26)

1
AE, = —K(uy — M)Z(E -

mﬁ(AEC)E) — AG, (5.29)
which follows from eq 5.25, and comparison of egs 5.29 and
5.25 with eqs 5.4 and 5.6 shows that the minim&a&nd G,
are shifted due to the difference in the proton quantum average
of c|2 and its value at the classical proton postion.

With eq 5.28, the free energies at the R and P minima are

1 1
G™ =GRl + Zno T Ski(AGy F AE,)” — ZKAE," —
1 (kAG, F a)°

s (5.30)

The PT reaction asymmetry is

a

- AEO) (5.31)

which shows explicitly thal\Ggrxn is not just the asymmetry
Am Of Gmin: the shifts of the minima o5 from those ofGnin
occur in both the R and P regions due to the ZPE and lead to
the second term in eq 5.31.

In the TS regionG is the sum of the ZPE expansion in eq.
5.24 and an expansion @min aroundAE =0

K
2

AGryy =G — G = Am(l -

+
Gl = Gfy o+ —(AGy + AE) + APAE — %AEZ (5.32)

where A* and B* are the first and second derivatives Gfn,
respectively, evaluated aE = 0 (see eqs 5.4 and 5.5), where
the relationshipA* = a* ensures tha is continuous. The TS
position is
KiAGy Ay
K 2K'AE,

AE* (5.33)

wherekf =B* 4+ b* — kq is the magnitude of the unstable force
constant foiG at the TS. Comparison of this with eq 5.29 shows
that for the symmetric reactiodGgrxn [ Am 0 AGy = 0, the
proton-averaged electronic structure at the TS is an equal
mixture of the neutral and ionic structurés; (= 6= 0.5,

with a corresponding shift of the proton-averaged electronic
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structure in the asymmetric case, dependingA@rxn. The
free energy at the TS is thus
1 A (1
G = G ot Z ot 35 +
&

ZAAE

%) (5.34)

With these results, we have the full PT reaction barrier given
by

AGF =G - &R
_Gmo+Z:n _ZR _kR
Ap 2a An ll )
1 — + 5.35
2( kRAAEm) ZAAEZ\k* kg ©3°)
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change in eq 5.38 is negative, reflecting the greater proton
delocalization and lower ZPE at the TS compared to the reactant.
This is definitely a nonnegligible effect: for the present model
system, from Figure 4AGmO = 3.76 kcal/mol, whereas the
ZPE change contribution is2.0 kcal/mol. It is important to
emphasize that any such effect would be absent in traditional
approaches, since for a symmetric reaction, the transverse
coordinate at the TS is considered independent of the proton
coordinaté,*1°and no proton ZPE contribution can arise. But
in the present description, the transition state ZPE enters because
the proton coordinate isransverse to the solvent reaction
coordinate, and is not itself the reaction coordinate.

5c.2. Brgnsted Coefficient and its Deative for the Sym-
metric PT ReactionFrom the general expansion eq 5.1, the
terms linear and quadratic NGrxn in €q 5.36 are related to
the Brgnsted coefficert, eqs 4.1 and 4.4. To proceed, it is
useful to employ eq 5.29 to describe the electronic structure in

and egs 5.31 and 5.35 give the desired second-order free energyerms of the critical point solvent coordinate positions, such that

relation as
AG
AG =G + 7 -} +%E—R+ —
2
1 AGRXN(l 1) ( 2a )2
= =+ =21-—2 | (5.36)
2 AAB2\K ke KrAAE,

The interpretation, and some reformulation, of the three
contributions to this free energy relation corresponding to the
different powers 0fAGgrxn Will now be discussed in turn.

5c¢.1. Intrinsic Reaction BarrieiThe PT free energy barrier's
first component is the intrinsic barrie{Gf) for a symmetric PT
reaction (cf Figure 4a); from eq 5.36, this is

1

_R
Zy 2k

AG, = AG},,+ AZ, , (5.37)

which we now discuss and reformulate.

The addition of the ZPE t&nmin has shifted the position of
the R minimum forG from the minimumAE?1 in Gmin closer
to AE = 0 (Figure 4a), with consequent shifts in energy for
both Gmin and ZPE in the R region. The last term in eq 5.37

contains these energy shifts, and in particular, contains the

difference between the ZPE evaluated at the R locatio®f;
AE = —AE, (Zﬁw) and the ZPEZY evaluated at the R location
AER for G for a symmetric reaction. The other shift in energy
included in the last term in eq 5.37 is that@f;, and is smaller

than this. Because the magnitudes of these shifts are small

relative toZm » the sum of last two terms is approximately the
ZPE of the reactant sta@{f Thus, the intrinsic free energy
barrier is well approximated by the intrinsic barrier fGrin

plus the difference in ZPE between the reactant and transition

state for the symmetric reaction (note t&s = Z*1,0)

AG{=AGh ,+Z -2} (5.38)

with AGm ,given by eq 5.22. The validity of this result can be

established by comparison with Flgure 6, which gmﬁ

1.76 kcal/mol, whereas eq 5.38 g|vA§5 = 1.73 kcal/mol.
Equation 5.38 explicitly expresses the physical perspective

presented in section 4a, here specialized to the symmetric

reaction case: the barrier for PT is determined by a barrier

dominated by environmental reorganization and the change in

the ZPE of the quantized proton. The effect of the latter is to
reduce the intrinsic barrier compared to the former: the ZPE

eq 4.4 foro. now becomes

IAG

B0 A - ARR
dAGryy

@00 — 025 AE” — AER

o= (5.39)

which incidentally provides further insight into the Brgnsted
coefficient itself. In particular, it quantifies the reaction coor-
dinate analysis of the Hammond postulate, discussed qualita-
tively in section 4b: an endothermic (exothermic) reaction has
a late (early) transition state. Equation 5.39 is an important
expression for the present perspective: the quantum proton-
averaged solute electronic structuralieectly correlatedwith

the differential solvation reaction coordinate. (See our remark
at the very end of section 4).

The coefficients for the first and second-order terms in eq
5.1 are determined by and its derivative evaluated for the
symmetric reactionAGgrxny = 0. From eq 5.31AGgrxny = 0
occurs whenA, = 0, giving AEF = 0 and AER = —AEP.
Substitution of these into eq 5.39 gives the first-order texgs
1/2. The second-order term is more complex, and we begin by
noting that the derivative of eq 5.39 is

oy [AEF — AER
aAGRXN\AEP — AER

The relative distance between tlie and P minima is not
expected to change significantly as the reaction asymmetry is
changed, and indeed this follows from eq 5.28. Thusan be
cast in the form

(5.40)

I(AEF — AED)
IAGryuy

1
AEF —

o A (5.41)

AER

i.e, the relative change with respect Ad>gxn Of the Rto TS
distance along the reaction coordinate, normalized by the
distance between the R and P states.
The (numerically) linear Brgnsted relationship displayed in

Figure 7 suggests that eq 5.41 is essentially constan?\@agin
= 0, and thus suggests that the critical point positions change
linearly with respect to reaction asymmetry, a behavior con-
sistent with egs 5.28 and 5.33, which give

1

+ _
)

(5.42)

AGgyy 1

— AER= (
AE” — AER\K

AE %(AEP — AER) +
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6 5d. Reaction Barrier Height versus Reaction Asymmetry
(@) and the Marcus Free Energy Relation.Our basic result eq
5.46 is clearly similar to the Marcus relation eq 1.1 in several
aspects, e.gq = 0.5 whenAGgrxn = 0 is common to both.
There is however, the obvious difference that in our result eq
5.46 (and 5.44), the coefficient of the term quadratiAiBrxn
differs from that (1/1&G§) in the Marcus relation. From a
fundamental point of view, e.g., eq 5.4, depends on how
the relative distance between the reactant and transition states
changes with reaction asymmetry in the neighborhooti@g#xy
0 T T 7 T T = 0, and for adiabatic PT this explicitly depends on how the
' ZPE varieswith AGgrxn. By contrast, the intrinsic barrier only
(b) depends on thenagnitudeof the ZPE change on going from
the reactant to the symmetric transition state, and this has no

&~
1

{Gi (kcal/mol)

=

B contribution from the variation of ZPE in the neighborhood of
g AGgrxn = 0. This feature-which is reflected in the presence of
B the R and TS force constants involving the ZPE derivative in
_S_s eq 5.44 forag, but not in eq 5.38 for the intrinsic barrier
22' AG}—indicates thata, should not be, and is not, solely

expressible in terms oin,. On the other hand, theumerical
consequences of this fundamental difference need not be at all
0- T T T T T severe, and indeed Figure 10b shows that using eq Titlthe

6 4 2 0 2 4 6 free energy behavior does an excellent job of representing the

AG gy (keal/mol) PT free energy variation. The reasons for this somewhat
Figure 10. Free energy relationshinG* vs. AGrxy for fixed Q = accidental success can be assessed as follows. The ratio
2.55 A for a series of proton-transfer asymmetri¢$. (The solid line (x;,/(ll8AGz ) between the correct coefficiert;, and its
. : + [ . . .
in (a) corresponds to eq 5.46 usings, = 1.73 kcal/mol andx, = replacement (1/8G;) in eq 1.1 is close to unity for the model

0.056 mol/kcal, and the solid line in (b) indicatesiamericalfit of

" systems presented here, a numerical similarity which can be
the data to eq 1.1AG; =1.72 kcal/mol).

understood. We analyze eq 5.44 faf in Appendix B to

Thenao is express it in theempirical form
f
1 AGpyn (1, 1 o, = (5.47)
=4 "  [— 4 = +
2" (AE" — AER)Z(k* - kR) (5.43) 8AG!
and its derivative is obviously so that our free energy relation eq 5.46, can be written as
1 1.1 + + | AGgxy f 2
o=y =———| 5+ (5.44) AG" = AG, + + ——AG 5.48
° (AEP — AER)Z(kjF kR) 0 2 16AG§ RXN ( )
whigh?)ig: exactly the same as the detailed second derivative of 5,4 will numericallymatch the Marcus relation eq 1.1fif 1.
eq 5.

In appendix B, it is indicated thét= 0.8, which is indeed close

5 to unity despite the strong conceptual distinctions betw#en
=L ;-2 ) (l + l) (5.45) and AG, we have emphasized above
°TAAEZT KRAAE |k kg o '

It should also be pointed out that the importance of the
We note for later reference that the ZPE curvature at the TS guadratic term is somewhat muted by the feature that the limits
and R enters these results in a fundamental way, e.g., via the

of the free energy relationship are restricted by the requirement
presence of thé terms in the force constanké andke, The of a free energy barrier to define a rate. Qualitatively, the barrier

= . height AG* vanishes in our picture when the barrier height in
I f 44 heck that th ) L .
é?zliigec()j S%E slopfeair; bOe.OCG ?r?ol?l?cz?/ i?]OIE%?Jrea; V\?hZE::;V:g Gmin is canceled by the reactartransition state ZPE difference.

) Quantitatively, the limits are defined by setting. &46 equal
5.44 gives 0.056 mol/kcal. . . to zero, giving the limiting reaction asymmetries as
In summary, from the above analysis, the free energy relation

= Q

governing the fixed proton donelcceptor separation PT 1 —
system is AGgyy = :|:2—a,[1 — /1 — 80 ,AG] (5.49)

(0]
AG*ZAGT)—FQOAGRXN—F%QL,AGﬁm which are ~+5 kcal/mol in Figure 6. In contrast to such

relatively modest asymmetries, much larger values are possible

AGryny 1 for nonadiabatic tunneling PT reactions, which would thus
R~ AG;0 +Z -2+ 5 + EagAGﬁ)(N (5.46) pr:)vi_de amore sensitive probe of quadratic terms in free energy
relations.

with AG}, , given to within 5% by eq 5.22 and witl', given

explicitly by eq 5.44. This is the main explicit analytic result
of the present paper, and the excellent agreement between eq In this paper, we have been able to find a nonlinear FER (eq
5.46 and the data in Figure 6 is shown in Figure 10a. 5.46) of the type widely successful in application to experimental

6. Concluding Remarks
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results in solution for proton transfer reaction rates versus the first derivative ok?. For later reference, we record the first
reaction thermodynamics, based on a nonconventional quantunderivative, found from eq 2.11 evaluatedgf(AE), as
adiabatic picture for the proton transfer, in which the reaction
coordinate and barrier involve the reorganization of the solvent, 9S _ 1(1 T

rather than the proton itself. The ingredients in this nonlinear JAE 2

FER have been anal;itically derived. In particular, the intrinsic F . \8qmin\ 4,62

free energy barrieAG, was explicitly related to (eq 5.38) the la~ FNng/ 2 2302
reorganization of theosolvent and the change of the zero point BAEI((UN(qmi“) = Ui(Gmin) + AE)" + 45°)
energy of the quantum proton between the reactant and the 3 3

transition state configurations of the solvent coordinate. The _ 26 CN(1+ (F . —F )quin) (A.3)
nonlinear FER was found to differ numerically in only a minor B ha N& IAE '
fashiqn from the often-employed Ma_rcu_s nonlinear free energy Equation A.2 shows that the anharmonic corrections are
equation, where for the latter the intrinsic free energy barrieris o, sjvely determined by the electronic structure variation. The
simply regarded as a numerical parameter to be fit. It was shown leading order anharmonic correction amounts to assuming a

that this numerical agreement is a r_eflchoq of the feature th_at second-order expansion iE of C|2 about the minimum-AE,
often the range of thermodynamic reaction asymmetry is

sufficiently restricted that the quadratic term in a nonlinear FER > _ 2 1 2
is not sensitively probed, such that the fundamentally different G(AE) = Ci(—AEy) + B(AE + AE) + 2C(AE +AE)
identifications of this termrelated to the variation of the (A4)

Bronsted coefficient with thermodynamic reaction asymmetry  hereC is the second derivative evaluated at the minimdm
in the present treatment and in the Marcus equation will N0t — 42 AE)/9AE?|_,e,;, and we note for later reference that

typically be apparent. Even in this circumstance, there remainsfrom eq A.3, the full second derivative is
the important feature that the intrinsic free energy barrier has
been explicitly characterized in the present work. ¥ 2 cﬁj (BF,Yq 9F .\ 3Chmin

The present treatment was restricted, for simplicity, to the ;g2 7 l 9AE  9AE)9AE +B(Fq—

situation where the H-bond coordinatthe distance between 2 2

the proton donor and accepteis held fixed. This restriction is = )3 Gmin —3cc (02 _ 02) 1+ (F,,—F )%
removed in the following paper, where it is shown that generally Naaag2 ~ PN N ha TN HAE

the same fundamental results follow, with some differences in (A.5)
interpretation, related to the important influence of the H-bond o ) ) )
vibration. In the approximation eq A.4, eq A.2 including the first

anharmonic correction is
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Grants CHE-9700419 and CHE-0108314. PK acknowledges the AGp =5 AR = AR, (A.6)
support of an NIH Postdoctoral Fellowship.
which is eq 5.22 of the text. As noted there, this approximation

Appendix A: Intrinsic Reaction Barrier for Gin is valid to within 5%: AG;,O from Figure 4 is 3.76 kcal/mol,
whereas the first term in eq. A.6 is 4.43 kcal/mol, and the
To analyze the intrinsic barrieﬂ;an,O for Gmin, it is conve- anharmonic correctior-0.58 kcal/mol givesAGﬁm0 = 3.85
nient to separate out the harmonic contribution in eq 5.22 kcal/mol.
(km/2)AE2, by writing the difference betwee@Gnmin (AE = 0) Further approximations are possible by neglecting all terms

and its reactant minimum value for the symmetric reaction, in arising from the variation ofjnin with AE; as shown in Figure
an integral form. It is straightforward to show with eqs 5.6  5a, this is small away from the barrier peak regitE = 0.
5.8 and 5.10, thaAG,, , can be expressed as Ignoring this variation reduces the derivatives A.3 and A.5
' respectively to
Ko

f G (0)—G.. (— — "AE 2 ac? ¥c?
AGio= Cnin(0) = Crin(~AE) = 5 A5, AES SR~ =Sl - ) (A7)
2 " dAE S IAE* B
O AR [ dAE" I Gpin(AE")
f—AEO AE ~AE, AE JAE""2 —kn] (A1) With these approximations, the first term in eq A.6 is 4.55

(compared to 4.43) kcal/mol and the seconég @37 (compared
with —0.58) kcal/mol, givingAGi‘n’0 = 4.18 (compared to
3.85) kcal/mol. The variation aimin with AE has a very slight
effect on the harmonic force constant, and a more significant

With the second derivative expression in eq 5.5, eq. A.1 is
transformed to

K, , effect on the first anharmonic correctionm.“u;'o. The overall
GH = TAE2 - ffA dAE' fAE result in eq A.6 neglectingmin variation results in only a %10
' 2 Eo Eo increase, consistent with our remarks in section 5a.3 concerning
[3cHAE")  dci(AE) the importance of the shift in the proton equilibrium position
dAE IAE"  AE" |TAE (A-2) Omin in connection withAGﬁw

We have employed a shorthand notation tcf(qmin,AE), Appendix B: Derivation of Eq 5.47

bearing in mind thati,in depends omAE. We recall from eq We wish to rewrite eq 5.44 in terms of the intrinsic barrier
5.8 thatk, already depends on the electronic structure through AGz. To proceed, we introduce an effective reorganization
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energy

A= kER(AEP — AER)? (B.1)
which is the analogue of the reorganization energyeq 5.20,
for Gmin. The force constarkz = ky, (1 — ) and the difference
in minima positionsAEP — AER = (AE,, — AER)(1 — y) are
all slightly shifted from theirGp, analogues,, AER", from
egs 5.28 (and just below fdg) and 5.14, which definé and
y. Thel and Ay, values are fairly close to each other
A=1,1-9@—y)?=0.76L, (B.2)
due to the modest shifts involved € 0.10,y = 0.08), and we
have with eq 5.44
kR
+4)

We next use egs 5.38 and 5.22 to rewrite the intrinsic barrier in
terms ofin

, 1

%= z,lm(o.76)(1

(B.3)

A =4AGL1 + 0) (B.4)
in whichd = (o — AZPE)/AGz involves the ZPE changé —
ZR ando is the magnitude of the anharmonic correction to
AG*m,o in eq 5.22. The combination of B.3 and B.4 thus gives

1 (14 KK

T f —
~(0.76) 1+

° B8AG!

Q. (B.5)

which is eq 5.47 of the text. Witk¥k¥f = 0.5, ¢ — AZPB)/
AGfJ = (0.58 + 2.02)/1.76= 1.5, the numerical value of the
factorf is (1.5)/(0.76x 2.5)= 0.8.
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(35) Kim, H. J.; Hynes, J. TJ. Chem. Phys1992 96, 5088. to the neutral stateAyac = 99.5 kcal/mol forAGq = 0, cf. eq 2.12). The

(36) Although the full solution is tractable and important in detailed reaction asymmetry range used within is obtained wAth. = 91-108
applications’® it adds complexity in the present context without changing  kcal/mol values bracketing the symmetric reaction.

any (;oncluslépnslf'nad.e;hroughout tms pa;%er. 1141 (49) TheAGs used in both the activation free energy and reaction free
(7 (@) |m,. - yne§, J. U. Am. Chem. S0d.992 h 10 508. energy definitions in the text are defined at assorted points on the free energy

(b) Mathis, J. R.; Bianco, R.; Hynes, J. J.Mol. Liquids1994 61, 81. (c) curves in e.g., Figure 4, i.e., at fixe§E values. ForAG¥, this choice is
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(39) The eigenstates and eigenenergies in eq 2.13 are obtained uSing &ese issues, which are discussed for other reactions in refs 37a and 37b,

discrete variable representation basis. See for example (a) Light, J. C.; . "~ } h v
Hamilton, 1. P.: Lill, J. V.J. Chem. Phys1985 82, 1400. (b) Choi, S. E.. 2{;seexrr:ecrgrzmectlon with what we term intrinsic asymmetry, and are treated
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considered. For example, each diabatic potential curve could have been (51) Pines, E.; Magnes, B.-Z.; Lang, M. J.; Fleming, GORem. Phys.
formed from two Morse potentidd%or from two Lippencott-Schroeder Lett 1997 281, 413.
potentialst?> However, the extra parameters so introduced would add  (52) We will return to the issue of the small activation barrier in II,
unnecessary complexity to the model without changing its basic structure. where we will discuss certain difficulties found in some treatméhts.
Sample calculations have shown that the single Morse model gives results (53 Here, the rate of PT is defined as the interconversion of the reactant
similar to those of the composite two potential models. and product H-bond complexes which are separated by a barrier (See Figure
(41) Novack, A.Structure and Bondind974 18, 177. ) 3), and thus, no diffusional rate of formation of these complexes is included
(42) The relationVi(q)=Vn(Q—q) as well as equal/q functions for  in'the PT rate. For extreme asymmetric reactions the barrier is wiped out,
both the neutral and ionic electronic diabatic states leads to an intrinsic 504 pT is then limited by diffusion. Hence, no inverted regime is expected
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expansions ofGmin and ZPE in Sec. 5. Nonetheless, our preliminary Chemistry,3rd ed.; Harper Collins Publishers: New York, 1987.
investigations including intrinsic asymmetry indicate that the FER and its (56) For “abnormal” or “anomalous” PT Brgnsted behavior, see the
underlying physical picture are not significantly altered. The inclusion of following, and references therein: (a) Pross,Axy. Phys. Org. Chem.
intrinsic asymmetry will be presented in future work. 1985 21, 166. (b) Baksic, D.; Bertran, J.; Lluch, J. M.; Hynes, J.JT.
(43) The electronic coupling is proportional to the orbital overlap in a Phys. Chem. A998 102, 3977. This behavior likely involves the necessity
simple Huckel-type approximation and an exponential dependence can beof more than two VB states in the description, and so is not governed by
phenomenologically derived from calculating the overlap between two the present theory.
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(44) McGlynn, S. P.; Vanquickenborne, L. G.; Kinoshita, M.; Carroll, ; : b : it
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Winston: New York 1972 A = U2e(AE], — AER)? by adopting the double parabolic form and
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(47) Although the latter PT is in an“©N hydrogen bond, the dipole in the nonadiabatic regime (tunneling), where there are negligible shifts in
moments for PT within an ©-O hydrogen bond are not expected to differ  the solute pair electronic structure in the analogue;@.7



