
Nonlinear Free Energy Relations for Adiabatic Proton Transfer Reactions in a Polar
Environment. II. Inclusion of the Hydrogen Bond Vibration

Philip M. Kiefer † and James T. Hynes*,†,‡

Department of Chemistry and Biochemistry, UniVersity of Colorado, Boulder, Colorado 80309-0215 and
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A free energy relationship (FER) between the activation free energy∆Gq and the reaction asymmetry∆GRXN

was derived in the preceding paper for acid ionization proton transfer (PT) reactions in a polar environment,
in which the proton is treated quantum mechanically, but does not tunnel. In the present paper, the inclusion
of the proton donor-acceptor vibrationsthe vibration of the hydrogen (H-) bondsand its impact on the
FER are analyzed. The structure of the resulting FER, which includes quantization of both the proton and the
H-bond coordinates, is found to be identical to that for the fixed donor-acceptor case, but with a
re-interpretation for certain components, which reflects a significant coupling that exists between the H-bond
vibration and the solvent reaction coordinate. This coupling derives from the increased mixing of the reactant
and product valence bond electronic structures as the transition state is reached. Analytical expressions for
the FER ingredients including these features are obtained. The present description of PT in an H-bond is
compared with that of a bond energy-bond order characterization, which is sometimes employed in
characterizing condensed phase PT systems. A comparison of the derived FER for PT is also made with the
empirical Marcus FER and with other FERs in the literature.

1. Introduction

Rate-equilibrium free energy relations (FER) connecting the
reaction activation free energy∆Gq with the thermodynamic
reaction asymmetry∆GRXN play a key role in both compre-
hending and characterizing proton transfer (PT) reactions in
solution1-5 and enzymes.6,7 In the preceding paper,8 hereafter
labeled I, a FER was derived from an underlying picture of PT
reactions which differs considerably from “standard” views.1,2,9

For example, the acid ionization, or acid-base PT reaction
within a hydrogen (H-) bonded complex

is described as driven by configurational changes in the
surrounding polar environment; the reaction activation free
energy is largely determined by the reorganization of this
environment (such that the reaction coordinate is a solvent
coordinate), together with certain zero point energy (ZPE)
changes associated with the quantized proton motion. By
contrast, traditional approaches would instead focus on the
height of any potential barrier in the coordinate of the transfer-
ring proton. In the adiabatic PT picture described in I, the fast
vibration of the proton adiabatically follows the slower rear-
rangement of the environment, and one considers the instanta-
neous proton potential for different arrangements of the
environment. The underlying electronic description of the system
is a two Valence Bond (VB) state basis

involving neutral (N) and ionic (I) structures, along the lines of
the Mulliken picture of PT reactions.10-12 Strong electronic
coupling between these VB states produces the ground elec-
tronically adiabatic surface on which the reaction occurs.

The principal result of Isderived for the regime of quantum
adiabatic (nonclassical but nontunneling) PT described at length
there and for a fixed proton donor-acceptor separation, i.e.,
fixed H-bond coordinatesis the nonlinear FER connecting the
reaction barrier with the reaction asymmetry (eq 5.46 of I)

with molecular expressions given for its ingredients.∆Go
q is

the “intrinsic” reaction barrier,∆Go
q ) ∆Gq(∆GRXN ) 0), i.e.,

the activation free energy for the reference thermodynamically
symmetric reaction;Ro is the derivative of the reaction barrier
with respect to∆GRXN, i.e., the Brønsted coefficent, evaluated
at ∆GRXN ) 0; and finally,R′o is the Brønsted coefficent slope
evaluated at∆GRXN ) 0. The intrinsic free energy barrier is
composed of a contribution due to a certain solvent reorganiza-
tion ∆Gm,o

q and the difference in the ZPEZo
q-Zo

R of the proton
between the reactant and transition state for the symmetric
reaction (eq 5.38 of I)

The Brønsted coefficient for the symmetric reaction was found
to be Ro ) 0.5, a result arising from the feature that the
electronic structure of the transition state in the solvent
coordinate for the symmetric reaction contains equal contribu-
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tions from both electronic resonance structures representative
of the reactant and product states. The slope of the Brønsted
coefficient is (eq 5.44 of I)

where kR and kq are the force constants for the free energy
variation in the solvent reaction coordinate∆E, defined in I, at
the reactant and transition state, and∆EP - ∆ER is the separation
of the product and reactant states in that coordinate.

In the present paper, we extend this perspective and analytical
theory to include the H-bond vibration, i.e., that involving the
separation of the proton donor and acceptor A and B in eq 1.1.
As will be seen, a structure for∆Gq identical to that given above
results, with a re-interpretation of certain components to apply
to the variable H-bond coordinate case.

The importance of this H-bond vibration for an adiabatic PT
reaction is best shown by focusing on its influence on the proton
barrier at the transition state (TS) configuration of the environ-
ment (illustrated in Figure 2 of I): the barrier in the proton
coordinate will increase as the donor-acceptor separations
hereafterQsis increased because a higher energetic price must
be paid on the way to breaking the original bond before the
energetic gain from the new bond formation is realized. The
PT reaction must thus be considered not only in the presence
of a proton potential whose asymmetry is fluctuating due to
the environmentsas extensively described in Isbut whose
height is also fluctuating due to the H-bond coordinate motion.
There is little previous detailed analysis of the H-bond coor-
dinate’s influence in the proton adiabatic regime considered here.
Aspects of this have been analyzed by Staib et al.,13,14 and
signatures of its influence are visible in the surfaces presented
in ref 15, though not analyzed. In any event, its influence on
FERs has not been considered previously. The present paper
relies considerably on I, and we repeat a few of the most
important equations from I for the reader’s convenience. As in
I, we note that the particular proton adiabatic description we
employ (ground vibrational state of the proton) is appropriate
for relatively low barrier reactions. Further, we again restrict
our consideration to what we termed “intrinsically symmetric
reactions” (cf. section 3 of I), where any reaction asymmetry

arises solely from a finite reaction free energy. We will return
to both of these issues at the paper’s conclusion.

The outline of the remainder of this paper is the following.
Section 2 deals with the free energy surface’s overall charac-
teristics and the quantization of theQ vibration. A comparison
of the present perspective’s results with that of a bond energy-
bond order description16,17 is also given there. The activation
free energy-reaction free energy relationship is analyzed in
section 3, including a comparison of the derived FER with the
empirical Marcus FER,2 as well as with other FERs.4,7,13,18-20

Concluding remarks are offered in section 4.

2. General Perspectives for PT Reaction with H-bond
Vibration Included

2a. Features of the PT Free Energy Surface.Although we
will ultimately quantize the H-bondQ motion, it proves useful
to first discuss the PT free energy surface as an explicit function
of Q, to appreciate the essential aspects of itsQ dependence
and in particular, aspects related to the coupling ofQ and the
solvent coordinate. Figure 1 is a contour plot of theproton-
quantized(ground vibrational state) free energy surfaceG(Q,
∆E) for a thermodynamically symmetric reaction, generated with
the formalism and parameters presented in I for PT, eq 1.1,
between an oxygen donor and acceptor. (For clarity and
discussion, Figure 3 in I is reproduced here as Figure 1).∆E is
the collective solvent coordinate extensively described in I (cf.
eq 2.9). The surface exhibits both a reactant (R) and a product
(P) well, stable minima each with equilibrium donor-acceptor
separationsQ ≈ 2.7 Å. The floors of the valleys in the solvent
coordinate are more narrowly separated asQ decreases leading
to the surface’s saddle point. This saddle point, located at∆E
) 0 andQ ≈ 2.5 Å, a value ofQ compressed compared to that
for R and P, would define a TS surface in the perspective that
Q is classical. Figure 1 also shows the important feature that
the H-bond vibration frequency varies with the reaction
coordinate∆E, increasing as the saddle point region is ap-
proached from either the R or P side.

These aspects indicating a strong coupling between the
H-bond coordinate features of the surface and the solvent
coordinate are further highlighted via Figure 2 (solid lines),
which shows two cross-sections of the Figure 1 surface, i.e.,

Figure 1. Contour plot of the PT system free energy versus the solvent
coordinate,∆E, and the H-bond coordinate separation,Q, for a
symmetric reaction. Contour spacings are set at 1 kcal/mol.

R′ ) R′o ) 1

(∆EP - ∆ER)2(1

kq
+ 1

kR
) (1.5)

Figure 2. Cuts of the two-dimensional surface in Figure 1, at two
different solvent coordinate values∆E ) 0 (q) and∆E ) -40 kcal/
mol (R) (solid lines). Also shown for later reference areGmin cuts (dotted
lines) for the same solvent values∆E ) 0 and∆E ) -40 kcal/mol.
Gmin is the free energy of the system at the minimum of the proton
potential, the classical equilibrium position of the proton. The difference
betweenG andGmin is the ZPE of the proton (cf. eq 2.14 of I).
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the H-bond vibrational potential for the TS and reactant,∆E )
0 and-40 kcal/mol, respectively. For the former, the curve
has an equilibrium separationQ ≈ 2.5 Å and a frequency 550
cm-1, whereas the latter curve has a larger equilibrium separa-
tion, Q ≈ 2.7 Å, with a much lower frequency, 290 cm-1.
Although these features are of course consistent with the general
expectation that H-bonds are stronger at smaller bond lengths,21

a deeper analysis is useful.
We first focus on the variation withQ of the equilibrium

positions of the R and P solvent configurations apparent in
Figure 1, which we label as∆ER and∆EP. At very largeQ, the
separation of the minima is relatively constant. AsQ is
decreased, the relative distance between∆ER (∆EP) and∆E )
0 decreases. This behavior arises from the changing electronic
character of the reactants and products, and has its ultimate
source in a significant electronic coupling, which mixes the R
and P diabatic states to give the electronically adiabatic state.
The critical positions∆Ec for G(Q, ∆E) are given by (cf. eq
5.29 of I)

whereK is a solvent force constant and∆Gd is the free energy
difference between the reactant and product electronic diabatic
states, whose dipole moments areµN andµI, respectively. Here,
the ionic character, i.e., (cf. eq 2.11 of I)

is averaged over the ground state of the proton vibration〈cI
2〉.

The Q dependence in eq 2.2 is contained in the electronic
couplingâsdescribed in section 3 of I, and which exponentially
increases asQ decreases (-â ) -35 exp(-1.5(Q - 2.55 Å))
kcal/mol)sas well as in the difference between the energies of
the vacuum R and P diabatic statesUN - UI, which decreases
with decreasingQ. Both trends tend to make the R and P states
less and less like the pure VB states asQ is decreased, due to
a stronger coupling between states with a smaller gap, and the
separation of their locations in∆E diminishes, as we now
describe in more detail.

The detailed discussion of the above qualitative point can be
effected in terms of〈cI

2〉 because eq 2.1 shows that the
variation in the R and P minima in the solvent coordinate arises
from its Q dependence. Figure 3a displays〈cI

2〉 versus∆E for
various fixedQ values. It is useful for reference to note that at
∆E ) 0, the protonsquantum averaged over its motionsis
always equally shared between donor and acceptor, and〈cI

2〉 )
0.5 is independent ofQ, a feature characteristic of the saddle
point region. To understand the variation of∆EP - ∆ER with
Q, we need to focus on the behavior of〈cI

2〉 in the R and P
“wings” of Figure 3a as a function ofQ. For largeQ values the
electronic couplingâ is negligible compared to the gap|∆Ec +
UN - UI| in eq 2.2, so that the R and P states are nearly the
pure VB states at eachQ value in this range:〈cI

2〉 ≈ 0 for the
reactant and〈cI

2〉 ≈ 1 for the product, and both the R and P
locations∆ER,P and the distance between them∆EP - ∆ER are
independent ofQ. As Q decreases,â increases and the gap|∆Ec

+ UN - UI| decreases, so that the mixing of the VB electronic
states for R and P states increases; thus the electronically
adiabatic R state has somewhat more ionic character,〈cI

2〉 > 0,
and the P state has somewhat less,〈cI

2〉 < 1. Consequently, the
R and P states become more electronically similar, and the
distance between them in the solvent coordinate∆E decreases,
thus accounting for the first feature, we noted in Figure 1.22

We next focus on the difference in H-bond frequency between
R (P) and TS. As shown in Figure 2, the increase in this
frequency going from R to TS for the full free energyG is
mimicked by that forGmin, the free energy when the proton is
at its classical position for a givenQ and∆E. G minusGmin is
thus the quantum zero point energy for the proton. The
frequency difference can then be understood by focusing on
that forGmin at R and TS. To this end, we rewriteGmin ignoring
Q independent terms (cf. eq 5.3 in I)

whereVN andVI are evaluated atq ) qmin. The first termVQ,
which is independent of∆E, is a primarily repulsive donor
-acceptor potential, and dominates the repulsive branch ofGmin

in Figure 2, whereas the last two terms containing the electronic
diabatic proton potentials for the ionic stateVI and neutral state
VN (cf. eq 3.1 of I) describe the attractive branch ofGmin. As
∆E goes toward zero, the electronic coupling’sQ dependence
contributes more (negatively) to the attractive branch; accord-
ingly, the frequency ofGmin increases as the attractive branch
steepens going from R to TS.23

Figure 3. (a) Proton ground state vibrationally averaged ionic electronic
structure composition〈cI

2〉 vs the solvent coordinate∆E at three
different values of the donor-acceptor separationQ, 2.5, 2.7, and 2.9
Å. (b) Ground-state vibrational (proton and H-bond vibrational mode)
average〈cI

2〉 vs.∆E (solid line), andcI
2(qmin, Qmin, ∆E) (dotted line) vs

∆E .

∆Ec ) -K(µN - µI)
2(12 -〈cI

2(∆Ec)〉) - ∆Gd (2.1)

cI
2 ) 1

2
+ 1

2

(∆E + UN - UI)

x(∆E + UN - UI)
2 + 4â2

; cN
2 + cI

2 ) 1 (2.2)

Gmin(Q,∆E) ≈ VQ(Q) +
VN + VI

2
-

1
2 x(VN - VI + ∆E)2 + 4â2 (2.3)
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In summary, the H-bond-solvent coordinate coupling arises
from the increased mixing of the electronic character between
the reactant ionic and the product neutral states asQ decreases.
This mixing’s impact is most important near the TS, where it
is quite sensitive to the H-bond separation. The result is a higher
H-bond vibrational frequency near the TS compared with the
reactant and product states. TheQ-∆E coupling and increase
in Q vibrational frequency near the TS combine to explain
another behavior exhibited in Figure 1, namely, the increase in
the solvent barrier asQ increases: the difference in electronic
structure 〈cI

2〉 between the reactant and transition states in-
creases and the free energetic cost for solvent rearrangement is
correspondingly larger. We will return to this issue in section
3c.

2b. Quantization of the H-Bond Vibration. The H-bond
frequencies are sufficiently high, particularly near∆E ) 0, such
that the H-bondQ vibration should be quantized. Here, we
follow Staib et al.13 and quantizeQ for each fixed solvent
configuration ∆E in an adiabatic Born-Oppenheimer (BO)
description. In principle, this assumes an H-bond vibration time
scale short compared to the important characteristic time scales
associated with the solvent coordinate, a condition really only
fairly necessary near the reaction TS, where solvent dynamical
effects which would cause transitions between the differentQ
vibrational states in the passage through the transition state are
excluded;13 away from the TS, such transitions will in fact be
common, and indeed are required13 in order to have an
equilibrium distribution of theQ vibrational states so that one
can discuss a well-defined overall PT rate constant in terms of
a thermally weighted contribution of the PT rate constants in
each of theQ vibrational states, as defined below.24

The Hamiltonian defining the H-bond vibrational motion is

where K̂Q is the Q mode’s kinetic energy operator. TheQ
coordinate Schro¨dinger equation is solved in the BO approxima-
tion to generate the system free energy levelsGi(∆E) and
H-bond vibrational wave functionsΦi(Q; ∆E)

Gi(∆E) represents the system free energy, at fixed solvent
coordinate ∆E, with the quantized proton in its ground
vibrational state and the H-bondA-B vibration in its ith
vibrational state.

Figure 4 displays the resulting calculatedGi(∆E), as a
function of the solvent coordinate, for the ground, first, and
second excited states for the H-bond vibration. The reaction
barrier height is larger for excitations of the latter. In a simplified
harmonic description, this is due to the higher H-bond frequency
at the TS∆E ) 0 compared to that in the R well, so that the
effective barrier height approximately doubles fori ) 1
compared toi ) 0; the anharmonicity apparent in theQ
potentials in Figure 2 reduces this somewhat.

Thermal activation of the H-bond vibration would then result
in a higher effective barrier than for the ground-state curve, and
except for the special case where the H-bond vibrational
frequency is small compared with the thermal energyRT, the
effective reaction barrier will typically be well represented by
the solvent barrier on the ground H-bond vibrational curve, a
feature to be confirmed presently.

Within the assumption that thermal equilibrium is maintained
over the distribution of reactant region H-bond vibrational states,

the overall rate constant is just an appropriate thermal average
of the individual rate constants

Hereωi
s is the solvent frequencysthe frequency of∆E motion

in the ith reactant wellsand theith state free energy barrier
height is∆Gi

q ) Gi(∆Ei
q) - Gi(∆Ei

R) for which the free energy
for each reactant H-bond vibrational state is defined at the
minimum in the reactant region∆ER

i. The solvent reactant well
frequency does not differ significantly in different populated
states, so that the thermal rate constant can be written as

in which the thermal probability for being in each reactant
H-bond vibrational state isPi ) exp(-Gi/(∆Ei

R)/RT)/∑i

exp(-Gi(∆Ei
R)/RT).

We anticipated above that the average rate constant will be
dominated by the ground H-bond-vibrational state rate constant,
and that the effective barrier height and reaction thermicity will
be similar to that in this ground state. We examine this issue
by plotting the free energy relation in a manner similar to that
for fixed Q (see Figure 6 of I). In particular, the effective
activation free energyswhich includes the thermally weighted
contributions of the ground and excited H-bond vibrational
statessis obtained via the natural logarithm of the sum in eq
2.7

The expression for the effective reaction asymmetry is similar;
it is proportional to the natural logarithm of the ratio of the
partition functions for the product and reactant

Figure 5 displays the calculated∆Gq
eff vs. ∆GRXN profile at T

) 300 K, as well as the comparison value of∆Gq vs. ∆GRXN

for PT exclusively in the ground H-bond vibrational statei)0.
Both display nonlinear FER relationships qualitatitively similar

Figure 4. Free energy curves with the quantized proton in its ground
vibrational state and the quantized H-bond vibrational mode in the
ground, first excited, and second excited energy states, versus the solvent
coordinate∆E for a symmetric PT reaction.

ĤQ ) K̂Q + G(Q,∆E) (2.4)

ĤQ|Φi(Q;∆E)〉 ) Gi(∆E)|Φi(Q;∆E)〉 (2.5)

ki )
ωs

i

2π
exp(-∆Gi

q/RT) (2.6)

kPT ) ∑
i)0

∞

PiKi )
ωs

2π
∑
i)0

∞

Pi exp(-∆Gi
q/RT) (2.7)

∆Geff
q ) -RT ln(∑

i

Pi exp(-∆Gq,i/RT)) (2.8)

∆GRXN ) -RT ln(∑
i

exp(-∆Gi
P/RT)/∑

i

exp(-∆Gi
R/RT))

(2.9)
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to the behavior displayed in Figure 6 of I. The close agreement
between the ground H-bond vibrational state result and that
including all H-bond vibrational states shows that the PT rate
is dominated by reaction in the ground state, and we will restrict
all of our further analysis to this state. Finally, the line in Figure
5 shows that for the ground vibrational state, the FER eq 1.3,
provides an excellent description. We will discuss this success
further in section 3.

2c. Comparison with Bond Energy-Bond Order Perspec-
tive. It is important to note that the coupling between the proton
potential asymmetry, determined by the solvent coordinate∆E,
and the H-bond distance discussed in section 2a is consistent
with experimental neutron diffraction16 and NMR17 measure-
ments for the geometries of hydrogen bond systems with
different equilibrium symmetries, as opposed to our focus on
geometric evolutionduring a PT reaction. In connection with
these experiments, this correlation has been characterized in a
different way, via the bond-energy bond order (BEBO) perspec-
tive,25 in which the sum of the order of the proton-donor and
proton-acceptor bonds is set equal to unity, resulting in the
relation

with ro ) 0.93 Å andb ) 0.39 Å for OH..O systems andro )
0.99 Å andb ) 0.40 Å for NH‚‚‚N systems.16,17 Ordinarily,
this relation is written16,17,25in terms of the proton and H-bond
coordinates themselves, i.e., in a completely classical perspec-
tive, and within the “standard” perspective, it would describe
the contributions ofQ andq to the classical reaction path. The
barrier for this classical path is the energetic cost of breaking
and forming a bond with the proton. At the classical transition
state in theq andQ coordinates for a symmetric reaction, the
bond order is 0.5 for each bond, so that the proton is equally
attracted to the donor and acceptor, compressing the donor-
acceptor distance. One might think that there would be no
remnant of such a pathway in the present fully quantum
approach, but we now show that this is not the case.

To examine the situation in the present perspective, where
those vibrations are quantized, we instead will consider a
generalization of eq 2.10, in which the quantum nuclear averages
for Q andq are inserted in eq 2.10

Figure 6 displays the curve, calculated for the present system,
of the quantum averages〈Q - q〉 vs 〈q〉, where the quantum
averages are taken over the ground states of both the H-bond
Q and protonq vibrations; each point, i.e., each pair of〈Q -
q〉 and〈q〉 values, represents those values evaluated for a specific
value of the solvent coordinate∆E. A PT reaction proceeds
with 〈Q - q〉 > 〈q〉 (top left of Figure 6) to the TS with〈Q -
q〉 ≈ 〈q〉, and then on to products where〈Q - q〉 < 〈q〉. The
points in Figure 6 are then fit to the BEBO-based eq 2.11. The
result (solid line) is similar to that obtained experimentally, with
ro ) 0.97 Å and b ) 0.40 Å, and indeed the general
correspondence between points and eq 2.11 is rather striking.

From the present perspective, the constructed BEBO plot
describes the quantum average of the nuclear vibrations
throughout the course of the reaction. The compression in〈Q〉
is a result of the electronic structure shift between the neutral
and ionic states at the TS. A distinct difference between eq 2.11
and the data occurs in the TS region, where the points portray
a more flat trend compared to the curved BEBO behavior. The
difference arises from the delocalized quantum character of the
proton wave function. To illustrate this point, Figure 7 displays
the proton ground vibrational wave function for the TS for three
possibilities. It is convenient to discuss first the most familiar
quantum limit, tunneling (Figure 7a). In nonadiabatic tunneling,
the proton potential at the transition state in the solvent
coordinate is a symmetric double well potential, with the proton
ground vibrational state below the proton barrier. The proton
thus must tunnel to get from the reactant proton well to the
product proton well. The shift in localization of the proton from
the R to the P via tunneling, with a double lobe character of
the wave function at the TS, would lead to an abrupt corner-
cutting behavior26,27 in a 〈Q - q〉 vs 〈q〉 plot. As the reaction
becomes adiabatic, with the ground vibrational state of the
proton now above the barrier of the double well potential at
the TS, the proton wave function still contains a dual lobe
character caused by a double well potential (Figure 7b).
Consequently, the corner-cutting aspect is still present but is
softened. This contrasts with the extreme adiabatic case where
the proton potential at the TS is a single well (Figure 7c). The
proton wave function is single lobed, and〈q〉 would thus shift
more slowly at the TS, resulting in a more curved plot.

Figure 5. PT activation- reaction free energy relationship∆Gq
eff vs.

∆GRXN, including thermally excited H-bond vibrational states(+). The
free energy behavior for the ground H-bond vibrational state is also
shown(o). The line is eq 1.3, with∆Go

q ) 3.17 kcal/mol,Ro ) 0.5, and
R′o ) 0.032 mol/kcal.

Figure 6. Comparison with a BEBO perspective. Calculated quantum
averages〈Q - q〉 vs 〈q〉 for the O‚‚‚O systems discussed in section 2.
Each point represents a specific value of∆E. The line is the fit to eq
2.11: ro ) 0.97 Å andb ) 0.40 Å.

exp[-(Q - q - ro)/b] + exp[-(q - ro)/b] ) 1 (2.10)

exp[-(〈Q - q〉 - ro)/b] + exp[-(〈q〉 - ro)/b] ) 1 (2.11)
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3. Activation-Reaction Free Energy Relation Analysis

The dominance of the ground H-bond vibrational state
contribution in the rate expression eq 2.7 allows us to focus on
only this level, and to derive a∆Gq - ∆GRXN relation in a
manner completely analogous to that given for the fixedQ case
in I. Our orienting discussion in section 2 was presented via
two successive BO approximations, quantizing first the proton
coordinateqswhich provided the free energyG(Q,∆E) dis-
cussed at length in Isand then quantizingQ. To proceed in a
fashion which is most efficient and convenient in exploiting
the previous results of I, we will now instead quantize these
two coordinatessimultaneouslyin a BO approximation with
respect to the slow solvent coordinate by solving the two-
dimensional Schro¨dinger equation, parametric on∆E

where it is understood thatG(∆E) is the system free energy, as
a function of the solvent coordinate, for the quantized proton
and H-bond vibrations in their ground vibrational states. Here
K̂(q,Q) is the full quantum kinetic energy operator which
includesq-Q coupling.28

The points calculated via eq 3.1 reproduce those already
displayed in Figure 5 for the ground state. Further, the line

through those points is just the FER eq 1.3, calculated as
indicated in the Figure 5 caption. The validity of eq 1.3 having
been established, the remaining task is to analyze and provide
analytical expressions for its ingredients∆Gq

o, Ro, and R′o,
taken up in the next subsections.

3a. Analysis of ∆Gq Components.The ground-state free
energy resulting from eq 3.1 can be decomposed in a fashion
similiar to that described in I for the fixedQ case (section 5 of
I)

Here, Gmin(∆E) is the full system free energyGq(q,Q;∆E)
evaluated at the protonqmin and H-bond coordinateQmin values
that simultaneously minimizeGq at a given∆E value

The ZPE is that of the protonplusthat of the H-bond vibration,
i.e., the quantized ground-state vibrational energy in both
coordinates with respect to the minimum, atqmin andQmin, at
any given∆E.

Figure 8 shows the ground-state free energy curve for the
symmetric (a) and an exothermic reaction (b); an endothermic
reaction is obviously described by the reverse of Figure 8b. As
per eq 3.3, the free energy is decomposed intoGmin (lower
curves in Figure 8a and 8b) and ZPE (Figure 8c). As in the
fixed Q case,Gmin varies with the reaction asymmetry, i.e., finite
∆GRXN, whereas ZPE remains independent of asymmetry. The
positions of the critical points in Figure 8 are again described
by eq 2.1, except that〈cI

2〉 is now to be interpreted as quantum-
averaged over the ground-state wave function describing both
the H-bond and proton zero-point vibrations (cf. Figure 3b (solid
line)).

From this point forward, the analytic analysis ofG(∆E)
including the quantized H-bond vibrational motion parallels
preciselythat given in section 5 of I for the fixedQ case, and
thus, the results are exactly those recounted in the Introduction
of the present paper (eqs 1.3-1.5). Accordingly, we limit our
discussion to the altered meaning of the quantities appearing in
those equations, and in particular to how the properties ofGmin

and ZPE and ultimatelyG are affected by the H-bond vibration’s
inclusion.

3b. Brønsted Coefficient and its Derivative.As in I, the
expression for the Bronsted coefficientR ultimately derives from
the change of the quantum-averaged ionic character〈cI

2〉
between the TS and R compared to the full change between P
and R (cf. eq 4.4. of I)

Here, the quantum average is taken over the ground vibrational
stateq, Q wave function. The validity of eq 3.4 is shown in
Figure 9, where the line is the numerical derivative of the FER
for the ground H-bond vibrational state in Figure 5, and the
points are eq 3.4 evaluated for the ground H-bond state of the
systems used in Figure 5. This validity reemphasizes the physical
correlation made in I thatR is related to the similarity in
electronic structure between R and TS. As in I, the quantum-
averaged electronic structure for the TS of a symmetric reaction
is halfway between R and P,Ro ) 0.5, andR increases starting
with R < 0.5 for exothermic reactions going toward endothermic

Figure 7. Proton wave functions for TS proton potential for (a)
nonadiabatic PT (i.e., tunneling), (b) adiabatic PT, with dual lobe
character, and (c) deep adiabatic PT, with single lobe character. Dotted
lines indicate the proton ground vibrational energy level.

G(∆E) ) Gmin(∆E) + ZPE(∆E) (3.2)

∂Gq(q,Q;∆E)

∂q
) 0;

∂Gq(q,Q;∆E)

∂Q
) 0 (3.3)

R ) ∂∆Gq/∂∆GRXN )
〈cI

2〉q - 〈cI
2〉R

〈cI
2〉P - 〈cI

2〉R
(3.4)

Ĥq,Q|æq,Q〉 ) [K̂(q,Q) + Ĝ(q,Q;∆E)]|æq,Q〉 ) G(∆E)|æq,Q〉;

G(∆E) ) 〈æq,Q|K̂(q,Q) + Ĝ(q,Q;∆E)|æq,Q〉 (3.1)
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reactions whereR > 0.5. In particular, the structure of eq 3.4
is consistent with the Hammond postulate29 applied to the
electronic structure, indicating that the TS electronic structure
becomes more similar to that in the reactant (product) state as
the reaction becomes more exothermic (endothermic).

The derivative of the Brønsted coefficient for the symmetric
reactionR′o in eq 1.5, repeated here for convenience

is determined by several ingredients. The first is the sum of the
inverses ofkq, the magnitude of the force constant ofG at the
TS ∆Eq, andkR, the force constant forG in the stable reactant
well ∆ER. The remaining factor inR′o is the inverse square of
∆∆E ) ∆EP - ∆ER, the distance in the solvent coordinate
between the product and reactant minima inG. From Figure 9,
R′o ) 0.03 mol/kcal, which is one-half of the value with the
H-bond mode fixed (R′o ) 0.06 mol/kcal). This reduction is

predominantly due to the larger solvent rearrangement distance
(∆EP - ∆ER) involved when the H-bond vibration is included,
as discussed in section 2a.

3c. Intrinsic Barrier ∆Gq
o. The two ingredients of the

intrinsic barrier eq 1.4, repeated here for convenience

are a ZPE change and a contribution∆Gm,o
q arising fromGmin,

which are now discussed in turn.
3c.1. ZPE Contribution.The ZPE contribution to the intrinsic

free energy barrier∆Go
q is the difference in ZPE between the

TS and R: ∆ZPE ) Zq - ZR . Its numerical impact of∆ZPE
on ∆Go

q is quite significant: ∆Go
q ) 3.16 kcal/mol) ∆Gm,o

q

+∆ZPE )5.26 kcal/mol-2.1 kcal/mol. This reduction arising
from the overall decrease of the total ZPE (proton plus H-bond
coordinate) on going from R to TS is mitigated by the feature
that the H-bond frequency is highersapproximately doubles
at the TS than for R, as discussed in section 2b, with a positive
H-bond contribution to∆ZPE ≈ 0.4 kcal/mol.

It is perhaps a bit surprising that the numerical value of∆ZPE
with bothq andQ quantized (-2.1 kcal/mol) hardly differs from
that (-2.0 kcal/mol) calculated in I, where only the proton
motion is quantized. This results from a near compensation of
the H-bond’s effect discussed above, involving a higher ZPE
for Q in the TS compared to R, with a certain increase of the
ZPE in R. The latter arises from the feature that in the present
case, the R H-bond coordinate isQ ≈ 2.7 Å, compared to the
fixed Q ) 2.55 Å value in I. At the largerQ value, the R region
is characterized by less ionic character (cf. Figure 3b), with a
smaller red shift of the AH proton vibrational frequency, and
thus, there is a larger proton ZPE contribution compared to the
Q ) 2.55 Å situation.

3c.2. ∆Gq
m,o. It remains to describe∆Gm,o

q , the barrier height
of Gmin for the symmetric reaction (Figure 8a, dotted line) (recall
thatGmin is G(qmin,Qmin,∆E)). We first deal with its magnitude,
and then pass to an analytic description. The numerical value
is ∆Gm,o

q ) 5.26 kcal/mol, compared to the corresponding
result 3.76 kcal/mol for fixedQ ) 2.55 Å. As will be seen in
more detail below, the larger value when the H-bond vibration
is included has its ultimate source in the fact that the distance
in the solvent coordinate from the reactant minimum to the TS

Figure 8. Ground-state free energy curves (solid lines) with both the
proton and H-bond vibrations quantized: (a) symmetric reaction and
(b) exothermic reaction. Dashed lines show the free energy curvesGmin

excluding the zero point energy (ZPE). (c) ZPE for the proton plus
H-bond vibration vs∆E. The dashed curves in (a) and (b) plus the
ZPE in (c) give the full free energyG, solid curves in (a) and (b).
∆ER, ∆EP, and∆Eq denote the reactant, product, and transition state
solvent configurations, respectively.

R′o ) (1

kq
+ 1

kR
) 1

(∆EP - ∆ER)2
(3.5)

Figure 9. Brønsted coefficientR versus reaction asymmetry. Displayed
are the numerical interpolation from the H-bond ground vibrational
state FER in Figure 5 (line) and the calculated analytical expression
eq 3.4 (+).

∆Go
q ) ∆Gm,o

q + Zo
q - Zo

R (3.6)
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∆E ) 0, is larger 0- (-42 kcal/mol)) 42 kcal/mol compared
with 0 - (-35 kcal/mol)) 35 kcal/mol for fixedQ ) 2.55 Å,
and thus more solvent reorganization is required. This larger
distance arises from the fact that for the reactantQ value here,
Q ) 2.7 Å (at∆E ) -42 kcal/mol) the ionic character is smaller
cI

2 ) 0.07 (Figure 3b) than in the fixedQ ) 2.55 Å case, where
the corresponding value (at∆E ) -35kcal/mol) is 0.15 (cf.
Figure 5b of I). At the largerQ value, the resonance coupling
mixing the two VB states is smaller and less ionic character is
produced. (As will be seen, the above discussion must be
qualified by a consideration of the ionic character at∆E ) 0,
but nonetheless it contains the key points.)

Just as was the case in I,∆Gm,o
q is the most difficult

ingredient to characterize accurately in an analytical fashion.
By following exactly the analogous procedures in section 5a.3
of I, it can be analytically approximated by

in which the first contribution involves the reorganization energy

wherekm is the force constant in the reactantGmin well (eq 5.8
of I). The second, anharmonic correction in eq 3.7 will be
discussed below.

A key aspect ofλm, just as was discussed in section 5a.3 of
I, is that the solvent reorganization it reflects occurs in the
presence of thefixed ionic character present at∆ER

m. The value
of λm/4 is 6.98 kcal/mol, which is noticeably larger than the
fixed Q ) 2.55 Å value in I, 4.4 kcal/mol. This increase is
completely dominated by the differing distances∆E()0)
-∆ER

m ) (∆EP
m - ∆ER

m)/2, completely consistent with our
discussion above. Butλm/4 ) 6.98 kcal/mol is significantly
higher (∼33%) than the numerical value∆Gm,o

q ) 5.26 kcal/
mol, and this difference reflects important anharmonic correc-
tions, evident in Figure 8a, where the double parabolic character
of Gmin is seen to be approximate. This anharmonicity arises,
as in I, from the feature that in the presence of strong electronic
coupling, the ionic character increases from that at the reactant
value at∆ER

m to a higher value at∆E ) 0; Figure 3b shows
this is a substantial increase (dotted line). Because at∆E ) 0,
cI

2 has increased,lesssolvent reorganization is involved, and
so∆Gm,o

q will be less thanλm/4. The most important source of
this cI

2 increase is revealed by Figure 10, which compares
cI

2(qmin,Qmin) from Figure 3b withcI
2 holding eitherqmin, Qmin,

or qmin andQmin fixed going from R to TS. In particular, Figure
10 shows that the increasingcI

2 is mainly associated with the
H-bond coordinate, rather than with the proton coordinate, a
behavior consistent with the electronic coupling’s exponential
increase as (here)Qmin decreases fromQmin ) 2.7 Å toQmin )
2.5 Å.

The derivation of the analytic anharmonic correction given
in eq 3.7, which is only the leading order correction, is detailed
in Appendix A. Its value,) -1.12 kcal/mol, reduces∆Gm,o

q to
a predicted 5.86 kcal/mol, which is an overestimate of only
∼11%, rather than the 33% overestimate provided solely by
λm/4.

In summary, eq 3.7 provides a reasonably accurate expression
for the intrinsic barrier component∆Gm,o

q in eq 3.6 for∆Gq
o,

which incorporates a variety of effects described above related
to the strong electronic coupling in the system and the H-bond

-solvent coupling. It is worth stressing that the H-bond
coordinate’s influence described above is quite different from
what could be termed an H-bond reorganization energy,
analogous to outer sphere vibrational coordinate contributions
in electron transfer theory;30 in the model system treated, the
equilibrium separations and frequencies of the H-bond in the
reactant and product are taken to be the same, and no such
contribution can arise.31

3d. Free Energy Relationship.We have already seen in
Figure 5 that the FER eq 1.3 is an excellent description for the
ground H-bond vibrational state PT reaction (which itself
accounts for almost all of the free energy behavior). We now
examine how the analytic representations discussed in sections
3b and 3c for the intrinsic barrier∆Go

q, eq 1.4, and the
Bronsted coefficient derivativeR′o, eq 1.5, fare numerically in
describing the FER, always within the context of eq 1.3.32 (The
symmetric reaction Bronsted coefficient value is alwaysRo )
0.5 for the systems considered here).

We examine this in two steps in Figure 11a in comparing
with eq 1.3, repeated here

whose numerical ingredients were already determined in Figure
5 via a fit; ∆Go

q ) 3.16 kcal/mol, andR′o ) 0.032 mol/kcal.
First (solid line), we employ the analytical results eqs 3.6 and
3.7, and eq 3.5 for both∆Go

q andR′o, respectively:∆Go
q ) 3.76

kcal/mol andR′o ) 0.03 mol/kcal. Second (dotted line), we
instead use the numerical fit value for∆Go

q and the analytical
value forR′o, namely∆Go

q ) 3.16 kcal/mol andR′o ) 0.03 mol/
kcal. In the first case, the completely analytic treatment correctly
gives the shape of the FER curve, but is uniformly high, an
error due almost exclusively to the analytical overestimate of
the intrinsic barrier by about 20%. As discussed in section 3c,
this is due to the error in the analytic approximation eq 3.7 for
the intrinsic barrier component∆Gm,o

q , which could be reduced
as the expense of much more complex calculations. In the
second case, this shortcoming is repaired by simply using the
numerical fit value for∆Go

q, and it is seen that the agreement
with the full FER curve is excellent.

∆Gm,o
q )

λm

4
- 1

6

(∆Em
P - ∆Em

R)3

8

∂
2cI

2

∂∆E2|∆Em
R

(3.7)

λm ) 1
2
km(∆Em

P - ∆Em
R)2 (3.8)

Figure 10. cI
2(qmin,Qmin;∆E) versus solvent coordinate going from

∆E) -∆Eo ) -42 kcal/mol to∆E ) 0 (solid line). For comparison,
cI

2 is plotted forqmin, fixed (small dash),Qmin fixed (dotted line), and
both Qmin andqmin, fixed (large dash). See text for discussion.

∆Gq ) ∆Go
q + Ro∆GRXN + R′o

(∆GRXN)2

2
(3.9)
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A similar excellent agreement with the full FER is shown in
Figure 11b (solid line) for the empirical Marcus FER2

which involves a numerical fit for∆Go
q () 3.12 kcal/mol) in

this equation. Within the context of a quadratic FER, this success
occurs for precisely the same reasons discussed at length in
section 5d of I. In particular,∆Go

q is numerically fit to give the
correct symmetric reaction barrier, the Brønsted coefficient is
0.5 for the symmetric reaction, and the influence of the FER
curvature determined byR′o, eq 3.5, is not pronounced in the
present systems, so that the relationR′o ) 1/8∆Go

q enforced by
the Marcus relation is a good enough numerical estimate when
compared to the numerically fit valueR′o ) 0.8/8∆Go

q for the
full FER. We remind the reader that, as described in appendix
B of I, R′o can be empirically represented by the numerical
relation R′o ) f/8∆Go

q, where f is a numerical factor, though
there isno fundamental relation connectingR′o and∆Go

q.
To reinforce the main point concerning the insensitivity to

the FER curvature, we briefly discuss another FER which also
has∆Go

q as its only parameter

which was derived for gas-phase PT from the BEBO perspective
by Marcus2 and further analyzed by Agmon and Levine,33 and
recently employed for excited-state PT in solution.5 Herenq is
the bond order at the TS

Figure 11b shows that the numerical fit (dotted line, with∆Go
q

) 3.02 kcal/mol) of eq 3.11 is in quite good agreement with
the full FER. The numerical agreement is not as good as with
the Marcus eq 3.10 because eq 3.11 contains a more sensitive
second order dependenceR′o ) 2 ln 2/8∆Go

q) ) 1.4/(8∆Go
q)

compared toR′o ) 1/(8∆Go
q) in eq 3.10. However, both are

comparable with the empirical valueR′o ) 0.8/(8∆Go
q) numeri-

cally found from the full FER. Despite the numerical overes-
timation (20% by the Marcus FER and 75% by the BEBO FER),
and the quite differential conceptual basis ofR′o in these
descriptions compared to our eq 3.5, both FERs present
reasonable fits because the curvature of the full FER is not
pronounced, only becoming visible for the extreme values of
reaction asymmetry. It is however worth stressing in this
connection that, in contrast to the present development, the
underlying contributions to the intrinsic barrier are not given
in either the Marcus or the Agmon-Levine BEBO relations.

An experimental distinction between eq 3.10 and eq 1.3 would
obviously be desirable. On the basis of the discussion above,
this distinction would depend strongly on the accuracy of the
curvature in FER plots, and unfortunately not enough data of
sufficient precision currently exists. This possible distinction
will be discussed further in future work34 in connection with
kinetic isotope effect behavior versus reaction asymmetry for
PT reactions.

3e. Other PT Free Energy Relationships.There are several
other FERs in the literature as applied to PT: the first4,7,19 is
based on an underlying electronically diabatic perspective,
whereas the second13,18,20 is expressed in a proton diabatic
description. We now discuss these in turn.

As discussed in the Introduction of I, the Marcus relation eq
3.10 originally arose in connection with weak electronic
coupling electron transfer (ET) reactions,30 and in that context,
the intrinsic reaction barrier∆Go

q is given by 1/4 of a
reorganization energy, based on an underlying electronically
diabaticpicture. This reorganization energy is defined30 by the
free energy difference associated with a Franck-Condon
excitation from the equilibrium reactant position for the reactant
electronic diabatic state to the product electronic diabatic state,
followed by the relaxation, in a solvent coordinate along the
product diabatic curve, to the equilibrium product position.

The modified FER appropriate for the electronically adiabatic
ET limitsand still framed in terms of a reorganization energy
rather than an intrinsic reaction barriershas been devel-
oped,4,19,35 and has been used to describe the free energy
behavior not only for ET, but also for a variety of charge-transfer
reactions in a polar environment involving bond-making and
-breaking, including PT4,7,19

Here,λ is an electronically diabatic reorganization energy, now
including both solvent and nuclear rearrangement contributions,
whereasâR andâq are the electronic resonance coupling values

Figure 11. (a) Points are the free energy behavior for the ground
H-bond vibrational state taken from Figure 5. Solid line is eq 3.9 with
∆Go

q ) 3.76 kcal/mol,Ro ) 0.5, andR′o ) 0.03 mol/kcal. Dotted line
is eq 3.9 with∆Go

q ) 3.16 kcal/mol,Ro ) 0.5, andR′o ) 0.03 mol/
kcal. (b) Same points as in (a), and the solid line is the fit to the Marcus
FER (eq 3.10,∆Go

q ) 3.12 kcal/mol), whereas dotted line is the fit to
the BEBO FER (eq 3.11,∆Go

q ) 3.02 kcal/mol).

∆Gq ) ∆Go
q +

∆GRXN

2
+

(∆GRXN)2

16∆Go
q

(3.10)

∆Gq ) ∆GRXN - ∆Go
qln(nq)/ln(2) (3.11)

nq ) 1/[1 + exp(-∆GRXN ln 2/∆Go
q)] (3.12)

∆Gq ≈ (λ + ∆GRXN)2

4λ
- âq +

(âR)2

(λ + ∆GRXN)
(3.13)
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evaluated at the reactant and transition state, respectively. The
last two terms in eq 3.13 are the leading order corrections to
the barrier height due to a finite electronic coupling at TS and
R.4,19,35 In the PT context, eq 3.13 has been employed under
conditions whereλ far exceeds both∆GRXN and any relevant
electronic coupling, such that only linear∆Gq - ∆GRXN

behavior is found.4,7,19In this regime, the issue of the Brønsted
coefficient variation with reaction asymmetry and the associated
Hammond postulate behavior which it quantifies does not arise.
More generally, however, eq 3.13 has not been tested to our
knowledge and involves some difficulties and complexities. For
example, eq 3.13 does not predict a Brønsted coefficient equal
to 0.5 for a symmetric reaction.36 Further, the simple subtraction
of the TS value of the coupling to account for resonance
lowering of the TS barrier top applies only for a symmetric
reaction. In addition, there are hidden dependencies on∆GRXN

in eq 3.13: as∆GRXN changes, the location of the nuclear
coordinates, including the H-bond coordinateQ, for R and TS
will shift, and because the electronic coupling is exponentially
sensitive toQ variations, there is a strong implicit∆GRXN

dependence in the electronic coupling terms in eq 3.13. All these
issues deserve exploration.

A final point regarding eq 3.13 as applied to PT is that the
proton is not quantized, i.e., it enters as a classical coordinate,
and in that sense corresponds more to the “standard” picture of
PT described in I. Although a quantum correction to eq 3.13
exists,37 the underlying adherence to a “standard” picture
formulates all quantum corrections based on a reference classical
path,38 and in such a description, the transition state of a
symmetric PT reaction contains no proton quantum correction;37a

there is no involvement of any proton motion in the ZPE at the
transition state,; this strongly contrasts with the present descrip-
tion, where the proton motion is orthogonal to the reaction
coordinate, a key difference between the present perspective
and the “standard” picture.39

Equation 3.13 was derived4,19,35via a curve-crossing approach
defined by two electronic VB states and their resonance
coupling. One can take an alternate curve-crossing approach to
proton transfer.13,18,20In this approach, the diabatic states in the
Hamiltonian are insteadprotondiabatic states, defined as proton
eigenstates localized near the donor or acceptor nuclei, and the
electronic resonance coupling is replaced by the proton coupling,
which is defined as half of the difference in energy between
the proton ground and first excited vibrational states at the TS
for the symmetric reaction. A reorganization energy is then
defined via proton diabatic states on the ground electronically
adiabatic surface. The free energy relationship for the curve-
crossing picture in the adiabatic PT limit has been de-
scribed,13,18,40and the corrections due to the shift in the position
of both the reactant and transition state (necessary for∆GRXN

* 0) are explicitly taken into account.18a,41In the curve crossing
model, however, the ZPE contributions to the free energy surface
vital to understanding adiabatic PT are only implicitly present,
and their influence is not at all clearly revealed, in contrast to
the description here and in I.

4. Concluding Remarks

Here, we have extended the analysis of the previous paper
(I) to analyze the nonlinear FER for proton transfer reactions
in solution in the quantum proton adiabatic regime to include
the important influence of the H-bond coordinate gauging the
separation of the proton-donor and -acceptor species. In addition
to the proton, the H-bond vibration was quantized in the
treatment. In this proton adiabatic regime, the quantum proton

vibration adiabatically follows the slower coordinates, including
that of the solvent, the latter essentially determining the reaction
path and making a significant contribution to the activation free
energy. Despite the quite different conceptual basis of the
treatment compared to more traditional approaches, we showed
that the “path” for the reaction characterized by the values of
the quantum-averaged proton and hydrogen bond coordinatess
at each value of the solvent coordinatesis very similar to that
resulting from a Bond Energy-Bond Order pathway, related to
a mode of analysis currently in use for examining the charac-
teristics of the state of hydrogen bonds within potential proton-
transfer complexes.

As in I, we could find a quadratic FER (eq 3.9) of the general
form often applied in characterizing experimental connections
between reaction rates and reaction thermodynamics of proton
transfers in polar environments. We have derived approximate
analytic expressions for the ingredients of this FER, including
the intrinsic reaction barrier (eq 3.6)sthe activation free energy
for the thermodynamically symmetric reaction, and the quadratic
coefficient, related to the variation of the Bronsted coefficient
with respect to the thermodynamic reaction asymmetry (eq 3.5).
For example, the former is governed by the solvent reorganiza-
tion, modulated by certain electronic structure changes, and the
change in the combined ZPE of the proton and the hydrogen
bond vibrations to reach the transition state in the solvent
coordinate. The involvement of the proton ZPE in the intrinsic
barrier is just one reflection of the strong difference of the
present view and the more traditional microscopic conceptions
of PT.1,2,9 In the latter, no such contribution will enter because
the proton coordinate is the reaction coordinate, whereas in the
present approach, it is instead transverse to the reaction
coordinate.

We compared and contrasted our FER with assorted other
relations in the literature, and pointed out the limitations of some
of the latter. In connection with the most widely applied FER
among thesesthe empirical Marcus equation, we showed that,
due to the typically limited accessible range of thermodynamic
reaction asymmetries, the numerical differences between our
FER and the latter are not pronounced (for the latter, the intrinsic
barrier is regarded simply as a parameter to be fit), largely due
to the modest numerical impact of the identity of the quadratic
coefficient, whose expressions differ fundamentally in the two
descriptions. In view of this, the most important result of the
present worksbeyond the FER itselfsis probably the explicit
analytic expression for the intrinsic barrier in terms of its
microscopic ingredients (cf. eqs 3.6 and 3.7).

There are several restrictions for our treatment within, even
within the proton adiabatic regime. One is that we have not
included what we have termed “intrinsic asymmetry”, which
would include for example the feature that even for a thermo-
dynamically symmetric reaction, the H-bond length and fre-
quency may differ for the reactant and the product. This type
of restriction will be removed in future work, but our preliminary
results indicate that although the analysis is more complicated,
the essential character of the results remains unaltered, although
new details will appearssuch as a hydrogen bond reorganization
energy component for the intrinsic barrier. A second restriction
is that the underlying electronic structure variations associated
with the PT should be approximately describable in terms of
two dominant valence bond structures. This kind of description
is unlikely to apply for certain proton transfers, notably for those
involving carbon acids,42 whose analysis is reserved for the
future. In addition, we have considered only fairly low proton
barrier reactions, consistent with relatively fast PT reactions.1c,5,12,13
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This is an essential requirement for the proton adiabatic regime
considered herein, where the ZPE of the proton lies above the
proton barrier when the transition state in the solvent coordinate
is reached. For reactions where this proton barrier is sufficiently
high that this is no longer the case, then nonadiabatic PT, i.e.,
tunneling (cf. refs 15, 18, and 20), obviously must be included.
In one extreme, such as a large proton barrier arising from large
hydrogen bond coordinate values (cf. Figure 2 of I), the reaction
can be completely tunneling. But more generally, reaction via
nonadiabatic PT pathways will be in competition with proton
adiabatic pathways, now involving excited proton vibrational
levels (as opposed to being in competition with classical, “over
the barrier” proton motion; See ref 19 of I). This general
situation is the subject of current research.

Finally, we emphasize that we have been able to show that
a FER of the type often found to well describe experimental
proton transfer reactions follows from a proton adiabatic picture
which differs quite fundamentally from the traditional view1,2,9

of proton-transfer reactions. In a subsequent paper,34 we will
show that the kinetic isotope effect behavior predicted by the
proton adiabatic picture is just the behavior often experimentally
observed and thought to unequivocally support the traditional
picture.
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Appendix A: Intrinsic Reaction Barrier for Gmin

Because the derivation of eq 3.7 for∆Gm,o
q closely parallels

that in appendix A in I, we only highlight the important results.
The intrinsic barrier forGmin can be written as (eq A.2 in I)

where ∆Eo ) -∆ER
m and 2∆Eo ) ∆EP

m - ∆ER
m for the

symmetric reaction. Here, we have employed a shorthand
notation forcI

2(qmin,Qmin,∆E), bearing in mind that bothQmin,
and qmin depend on∆E. Using an expansion ofcI

2 about the
minimum of R, eq A.1 can be rewritten as

whereC is the second derivative evaluated at the minimum

andkm depends on the first derivative ofcI
2 and the electroni-

cally diabatic force constantkd (cf. eq 5.8 of I)

The first derivative ofcI
2 is

which includes variation in the electronic coupling due to the
Qmin change with∆E. The derivatives with respect to∆E can
be written in terms of forces due to nuclear gradients multiplied
by the nuclear coordinate variation with respect to∆E

with the notation in eq A.6 for the proton-proton acceptor
distance (H‚‚‚B) q̃ ) Q - q (q̃min ) Qmin - qmin). The second
derivative ofcI

2 is

There are two types of contribution to the derivatives ofcI
2:

mixing of electronic diabatic states and nuclear coordinate shifts.
Neglecting nuclear gradient terms, eqs. A.5 and A.8 become

The harmonic term in eq A.2, with eqs. A.4 and A.5, is 6.98
kcal/mol, and the anharmonic term in A.2, using eqs. A.3 and
A.8, is-1.12 kcal/mol, resulting in∆Gm,o

q ) 5.86 kcal/mol. For
comparison, use of the approximations for the ionic character
derivatives eq. A.9, the harmonic term is 7.76 kcal/mol, and
the anharmonic term is-0.4 kcal/mol, giving∆Gm,o

q ) 7.76-
0.4) 7.36 kcal/mol. This indicates that the nuclear shifts reduce
∆Gm,o

q by ∼25%.
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