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Recent work suggests that confluences, intersections between a symmetry-allowed branch and a same-symmetry
branch of a seam of conical intersections are not rare occurrences. Therefore, with the goal of obtaining
generalizable insights, confluences for th/\'1— 22A' seam of conical intersection in BHand for the

1*A — 2'A seam in HNCO are examined in detail using a perturbative representation of that region. The
perturbative expressions for the energy and derivative couplings in the adiabatic representation provide a
means for locating confluences and evince the significant effect a confluence has on the local topography
and the derivative coupling. The perturbative representation enables the derivative coupling and energy to be
determined from data for either. The results obtained from the more common energy-based description are
compared with those obtained from a derivative-coupling-based description.

1. Introduction A gy
€

When the Hamiltonian for two conically intersecting states
is extended beyond the essential linear terms to quadratic order, 0.15
additional conical intersections may emerge which can lead to 010
confluences, intersecting seams, of conical intersection. Recent ﬁ'gg -
work! suggests that confluences, intersections between a sym- s |
metry-allowed branch and a same-symmetry branch of a seam .o.10 |
of conical intersection, rather than theoretical oddities, will have  -0.15
to be considered whenever a symmetry-allowed conical inter-
section exists. The region of the confluence requires special
scrutiny p_ecal_Jse the conlc_al topography and interstate Cou_pllngs : e
are modified in an essential manner by the confluence. Figure
1 (explained in detail below) illustrates how the topography near
this point changes, depicting a point of confluence and compar-
ing it with a standard point of conical intersection. These b E (eV)
changes can have important consequences in the dynamics along
that surface. Motivated by the potential impact of these
confluences, here we consider their location, topography, and
analytic representation.

Confluences are a subspace of a symmetry-allowed seam with
dimension one less than the dimension of this seam. In a
triatomic molecule, the confluence is a point. This point can be
located by using a previously introduced method, which searches
along the symmetry-allowed seam which is a line. In larger
molecules, the confluence is a multidimensional subspace and 2.9
such a search becomes cumbersome. An iterative method
discussed here is based on analytic representations of the
potential energy surfaces and derivative couplings, and canFrigure 1. (a) Energie€2x, E2 of the two intersecting states in BH
locate multidimensional subspaces of confluences systematically,along r (approximately the seam coordinate in tle, seam) and
unlike the previous]y noted approach which locates points of interse_ction_ adapteq coordineya:lose to the confluence. For points
confluence one at a time. The analytic representations are©f conical intersection along the seam the first and second-order

: . . . parameters were used to calculate the energies on-theptane. The
derived using a previously introduced approach based on secondtWO black lines correspond to the degenerate energies alonGsihe

order (_jege_nerate pgrturbation theory. o seam and the degenerate energies alon@ttseam. The confluence
Conical intersections are often thought of as difficult to s where the two lines cross. (b) The enerdis., E2a Vs (r,X). The
describe in the adiabatic representation because the derivativezero of the energy is along the seanmxat 0 ory = 0.

couplings become singular. An advantage of the present

-0 =W

b,
w2

. _representation is that the singularities in the adiabatic basis
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2. Theory

Conical intersections do not exist as isolated points but as
continuous seams of dimensidift — 2 for the nonrelativistic
Coulomb Hamiltonian, wheréi"t is the number of internal
coordinates. Degenerate perturbation theory, originally devel-

HO e NGO oped by Mead to describegXystems>16can be used for the
R(NM*%)O analysis of the vicinity of conical intersections where symmetry
R(C-N) plays no role. Details of this approach have been reported
N C previously*>17 Here, it is reviewed and extended.
Figure 2. Jacobi and internal coordinates for the systems &l cis 2.1 g-h Plane and Intersection Adapted CoordinatesThe
HNCO, respectively. degeneracy of a conical intersection of staiek atR* is lifted

in a linear manner in the-gh or branching plané&1°a plane
to be described. Although first order terms are generally perpendicular to the seam defined by the axesgV/g (tuning
predominant near a conical intersection, second order terms maymode) andy = h¥/h (coupling mode¥ whereg = ||g¥||, h=
significantly modify the topography as the distance from the |hV||
conical intersection increases. However, near a confluence the
first-order terms become small so the second-order terms mayz¢(R) = ¢'(R*)[VH (R)]¢'(R*) — (R)[VH(R)]C(RY) (1)
be preeminent. The perturbative representation is related to a
common method for describing interacting potential energy h”(R) = ¢(RY[VH(R)]c(RY) 2)
surfaces and derivative couplings, the Double Many Body
Expansion (DMBE} ¢ In this approach, the ab initio energy Here,c' are the expansion coefficients of the adiabatic wave
data are used to determine the DMBE parameters which in turnfunctionsW¥, = Z;::S'lzc:i 14 in the configuration state function
are used to calculate derivative couplings. There is little (CSF) basi& and satisfy the equatiom[R) — Ei(R)]c'(R) =
information on the reliability of the derivative couplings obtained 0, whereH(R) is the electronic Hamiltonian in the CSF basis.

in this way. Some comparisons have been made drIH the The degenerate electronic wave functions have been chosen such

present representation, we can both determine, and assess th@aat x - y = 0. It is particularly convenient to describe the

reliability of, the representation. vicinity of a conical intersection in terms of the orthogonal
This work will be used to consider the!A, 2°A’ states in intersection adapted coordinatedefined as the cylindrical polar

BH,” and 2A, 2'A states in cis HNC®for which confluences  coordinates, 0, z wherex = p cod), y = p sind, andz are

are known. These systems are shown in Figure 2. Fos BH displacements in the directions y, andz, respectively. The

continuous parametrizations of the potential energy, and the N™ — 2 mutually orthogonal internal coordinate’sdescribe

interstate coupling, surfaces in both the adiabatic and diabaticthe seam, the orthogonal complement of thehgplane. In the

representations will be determined and the topography of the following discussion, a point given either i, y, Z) or (o, 0,

intersecting seams will be carefully analyzed. This analysis Z) coordinates will be denoted as

forms part of an ongoing project to provide potential energy, 2.2 Adiabatic Energies.The diagonal adiabatic Hamiltonian

and derivative coupling, surfaces of the 3A2and 2A" states. is given through second order in perturbation theor§2by

It will be shown that both first and second order parameters

can be chosen continuous along the branches of the seam and-|adv(2)(R) = (El(RX) + s”(R) «OR + N(R))I + [—pq(0) +

join smoqthly at the confluence. Contlnuny isan |mportant issue. A(R)cosl — B(R) sint]a, (3)

Non-continuous parameters would only give analytic representa- z

tions at discrete points of the surface with no way of interpolat-

ing between them. Two methods of obtaining the parameters,

the energy-based (e-method) and the derivative-coupling-based

(f-method), will be compared. In the e-method (f-method) energy

gzﬁgm(ggrl\s/-atwe coupling data) is used to determine the ZS,J(R) _ c'(RX)[VH(R)]c'(RX) i CJ(RX)[VH(R)]CJ(RX) )
For BH, (cis-HNCO) the confluence (points on the subspace A(6) is given by

of the confluence) will be located using an iterative approach

wherel is the 2x 2 unit matrix,o, a Pauli matrix and

q(6)> = g? co 6 + h*sir 6 (4)

based on the derivative coupling-based parametrization. The g cod = q(b) cosl ()
potential power in this method is evinced in the treatment of
HNCO where the high dimensionality makes the location of h sing = q(0) sin (0) (6)

confluences impossible using the pointwise algorithm. _ _
In addition to being valuable tools in the study of intersecting andsy =s”+w, w=Xx,y,z. N, A, B, which define the second-
seams, the above molecules are of practical importance. Theofder energy, are given by
1,2A" and BA" potential energy surfaces of Bhre relevant
to the stability of the van der Waals complex-Bi, formed N(R) =n(p, 0.z:n) + n§¥zz, (@)
when B is used as a dopant in a cryogenicadd the ultimate ]
fate of the H upon combustiod1%-14 The portion of the
11A—21A seam of HNCO in a cis configuration is relevant to Where
the vibronic stability of cis HNCO on Swhich has yet to be o) @
observed. n(p, 0,z,n) = p"N*(0) + p z ZN“(0)
Section 2 reviews the theoretical approach, whereas section '

3 presents the results of the numerical study. Section 4 concludes ®) ®) O ®) )
and discusses directions for future research. N?(6) = nfcogt + nPsir’0 + nPcod) sin
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N(Zi)(e) — n(lzi)cosg + n(zzi)sing present perturbative analysis but the first two effects are present

in most common energy based approaches for describing

AR) = 5(p, 6, z; @), B(R) = n(p, 0, z; b) and potential energy surfaces. Thus, their study is of general interest.
n= (n(lp)' ”(zz')) To address these issues, here we consider Ahand B

determined from both energies and derivative couplifs.
bi(p) can be determined from the energy data whereas, dll
can be determined from the derivative coupling data.

2.4 Diabatic Representation.From egs 11 and 13 and the
commutation of the partial derivative operators we haW&o|
f2>(p, 0, 2) = (300)(F2(0)) and /6z)I(p, 0, 2) = (9/0)

(f )(0)) so that the derlvatlve coupling in egs 11, 12, 13 is

Using the above Hamiltonian the energy differerde; = E;

— E/ at a pointx, y, z away fromRX, the point of conical
intersection of statelsandJ, is given in first and second order
respectively by

(1) — @) _ (1) —
AE; = Ey" — B = 200(0) (®) removable by a rotation by the angle
AEP =EY —EP=—2(Acos. —Bsinl)  (9) ZME)6) oM@ (6)
O(p, 6, 2) = A(O)12 + z + (15)
In the following discussion, the subscriptsin AE; will be ™ 2q(0) 29(6)

omitted. Note thaAE = O for all z with x =y = 0. This is
referred to as the linear seam approximation and leads to a
piecewise linear approximation to the seam.

2.3 Derivative Couplings. The derivative couplings are

Rotating the adiabatic Hamiltoniat?®®@in eq 3 gives to second
order?

HY®(R) = (E(R) + s(R)- R + N(R))I +

defined as
G(x, Y, 2)0, + V(X Y, 7)o, (16)
AW(r; R
R = e r| R g where
G(x, Y, 2) = —gp cod + #5(p, 0, z; Q) a7
They consist of two parts, the configuration interaction (CI) B . _
contribution E'f:i) and the much smaller CSF contribution V(X Y, 2) = hp sind + 7(p,0, Z; b) (18)

(°SHr).2* A and B, which are related tAE® by eq 9 are als0 4 is in turn diagonalized by a rotation by ti@ which

related toC'f(R) as follows satisfies
©)(g) M@ (9) ,_V(xy,2)
Clt (9) ~ f D(g) = _M*¥(6) 2y = —+ g tan 0" = ———— (19)
o(0) ~ £,7(0) 2q0)" 7 (0) 24(0) (11) G(x, Y, 2)

: Expanding eq 19 to second ordergdrandz
(0. 0.2) ~ £,2(p, 0, 2) = 1(60) — 1(p. 6,2) (12) panding ed Arandz

tan ' ~ —tanl —
where 7 (p, 0,2, @) . 1(p, 0, z; b)
——Fsinl + cosl 20
a00) a0) 5 @

() = (8100)A(0)/2,
Using the approximation for smad| tan¢. + ¢€) ~ taml + (e/
(2) (2) (2)
fy (o, 0, 2) = (8/60)(pf,"(0) + Z zf;(0))  (13) cogl), one get® = —O', to first order inp andz as expected,
since, as discussed elsewhere, the basis ds quasidiabatié*
From eq 16 the energy difference is given by

and
AE = 2[p’q? + A%+ B? — 2pq(A cost — Bsinl)]¥? (21)
MO(6) = AY(B)sini(0) + BYcosi(), t=p,z (14) _
which becomes to second order
Below the superscript$) and Cl will be omitted when no AE ~ 2(pq — Acosl + B sind) (22)

confusion will arise. The advantage of using the orthogonal
intersection adapted coordinates is that the only singular partidentical to the adiabatic expression (egs 8, 9).
of the derivative coupling is (RJfS. 2.5 Determining A and B. As noted aboveA\(p, 6, z) and

The first order energy difference and derivative coupling can B(p, 6, 2) can be determined from either the second-order energy
be obtained from information only &, using egs 1, 2, 3. difference or the derivative coupling. F& in the g—h plane
Perturbation theory provides explicit expressions for the com-
putation ofA(R), B(R), andN(R).22 However, these expressions _q(0) (AEIQ(6) — 2p) ~ (A®) cosi(6) — BY sini(6)) (23)
are very costly computationally and simpler, less costly, methods (—2p )
are desirableN can be determined only from the energy. On
the other handA andB determine, and hence can be determined, —2f, q(6) ~ (A™)(6) sinl(6) + B™ cosi(6)), w = p, z (24)
from the energies and derivative couplings. However, identical
results are not expected becausé%ﬁ"gg is not included in the The results of the previous section show that eqs 23 and 24 for
A and B, (ii) the second order energy is only known ap- w = p are equivalent through terms of orde? in the
proximately, and (iii) seam curvature is only included in a perturbation expansion. Howeverg(#) andf, can be sharply
piecewise linear manner. The final effect is specific to the peaked and eqs 23 and 24 need not give equivalent results in
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practical situations. In this work, the second-order coefficients
are obtained from the solution of the linear least squares problem

ad
oo 2 [F2RIAO — (A™(0,) sim(6,) +
B“(0,) cost(0,))]° = 0, = a", b, w= p, 7 (25)

or the equivalent expression arising from eq 23, along loops in
the g—h plane.n is the number of points collected along the
loop, defined byp = p°% 6 = 61, 02, ..0, In order for
perturbation theory to be valio® should be small; if it is too
small, however, numerical problems may result. Becauslk 1/
is singular, wherea, is not, thep direction must be known
with sufficient precision so that contaminationfgioy 1/ofy is
negligible. Thus a balanced value is desired. Hefes= 0.05
ap was used. The parameters depend also.ddsingn = 17,
at equal intervals for® of 22.5, provides results that are
converged with respect to

2.6 Confluences2.6.1 Defining EquationgJsing the Hamil-
tonian in eq 16 the seam of conical intersections satiigs
y, 2) = V(x, Yy, z) = 0. However, ifV is factorable = VAV@),
then the seam conditions yield two pairs of equati@s; V)
= 0 andG = V@ = 0, defining two branches of the seam. A
confluence occurs when

G=VW=V?=0

We consider the case described in the Introduction in which
there is a different symmetry branch and consider the least
restrictive case, which is the spatial point gro@g with
electronic states carrying irreducible representatrendA’.
Then on the different symmetry seam we can require, without
loss of generalityx ~ A" andy ~ A", where ~ denotes
“transforms as”. Similarly, the internal coordinates can be
partitioned intoNs A’ or symmetry preserving modes aNd =

NNt — Ns A" or symmetry breaking modes. It then follows that
af) = bl = b = 0 and alla®, b® for which z ~ A" must
vanish, so thaV becomes

(26)

Na—1 Nlnt
V(X Y, 2) = hy + b xy + Z bxz + Z b(zzi)yq (27)
i= j=NE1

This is clearly not factorable unless th§’ vanish. In aN
atom molecule constrained to planamiy= 2N — 3. Thus, for
a tetra atomicN@ = 1, there are ncb{® terms, andV is
factorable. A similar situation occurs in a tri atomic molecule
for Cy, symmetry wherd\? = 1 andNs = 2. For a penta atomic
molecule however there is ovhézi), so thatV is only factorable
in the subspace whem = 0.

WhenV is factorable the solution to eq 26 using eq 27 is

Nint

, Aot Spine) WitH Z d=1 (28)

i=N+1

Z = (dyatr Enatas -

where

&= —hibg
Becausez is an N® — 1-dimensional vector subject to one
constraint the maximum dimension of the confluencélis-

2. It can be shown thdt¥(r% — 7°) - h¥(r** — 1) = 0 where

79 is a point of conical intersection on the different symmetry
seamg*is a point of conical intersection on the same symmetry

(29)
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Figure 3. Function from eq 3%(0) = (1 — b sind(a + cogh)) for b
= 1.1 (crosses) and 0.9 (circles). Also for HNCi@along a circle of
radius 0.05, centered aR* = (R(H—N), 2.67, 2.271, 107, 106, 0.015)
is shown, in a plane tilted with respect to the lyfRX).

seam and* is a point of confluence. Further, becauSe= 0

on both branches of the seam avi@ = gV, at the confluence
gh@E™— 1°) - gN(r>*— 1°) — g4(r°). Thus, the limiting direction

of gV at R¢ is the same in the two branches. However, the
limiting directionsh¥(z*) andhM(z%) are orthogonal. Because
all directions orthogonal tb", apart fromg¥, areZ directions

it follows thathM(z%) approaches @ direction in the different-
symmetry branch antV(z%) approaches @ direction in the
same-symmetry branch. Because the maximum dimension of
the branching space is twh"(r®* — )| = |h¥(r*— )| =

0. Equivalently,h¥ = vAOvW@ + V@AVyVD = 0 whenV =
VOV@ andv® = V@ = 0. W andV V@ here aren" for the

two different branches of the seam. For a triatomic molecule,
as BH, there is only onez direction sohV and z are
interchanged in the two branches.

It is the vanishing oh that leads to the unique topography
observed in Figure 1 and discussed further below. Note too that
in the hM direction the linear contributions are necessarily
subordinate to the quadratic terms. The implications of this are
discussed in Section 3.

2.6.2 Geometric Phase EffecAn important aspect of a
confluence is its suppression of the geometric phase effect.
Consider a point of conical intersection on the symmetry-
allowed seamz®X In general, the circulation of the derivative
coupling along an infinitesimal loop containing that point is
equal tor. However, wherr®*is near a confluence this need
not be the case. A loop in a plane tilted with respect to tha g
plane, centered at™X can, even for small loops, contain two
points of conical intersection, one on the same symmetry branch
and one on the different symmetry branch (See Figure 3). For
such a loop there is no net geometric phase effect. This can be
understood using the simplifigdd, with al) = b() = al@ =
b@ = 0 for all a@ and for all but onéb®@, so that

G = gxandV = hy + b®z (30)

Consider a loop in thex(y') plane, a plane rotated about the
x-axis of the g-h plane by an angle, that is
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(y’)z(COSOL —Sin(x)(y) (31) a 80000 [ ,/@3

z sino. cosa. J\z

25000 |
Then, in terms of §, ), wherex = p co9), y = p sinf eq 30 L
becomes

20000 |
G = (gp)cod¥ and I

V = (h cos) p sind(1 — (b9/h) sina p sinb) (32) T 15000 |
From eq 190 satisfies > 5
i o 5 10000 r
2 9 0 = 2f; :
K(Q) (33) 5000 !
gco<h | hcosu sinfd ( @ . . )2 I
+ 1— p=—sina sing i
h cosx g h or
where
-5000
b2 )
Kk(0) = (1 — = sina p sind(1 + co§9)) (34)
As noted previoushf ~ f, = W3 (0/00)| WL For p — 0
(see loop 1 in Figure 3)(6) — 1, f is strictly positive, its b 60000
circulatiort?:25(fP) = 2" {Pdp = ©(27) — ©(0) = 7. This
infinitesimal circle encloses exactly one point of conical 50000 -
intersection at the origin,p( 6) = (0, #). However, for g
pb@ sina/h > 1 the circle encloses two conical intersections
(see loop 2 in Figure 3), at (@) and (/(b@ sina), 7/2); k() 40000 |-
has two zeros (see Figure 3) so tl‘fﬁtchanges sign twice. As r
a consequenc&)(2r) = ©(0), and there is no net geometric -
phase effect. This point will be illustrated with ab initio £ 55040 | e
calculations below. & i <
2.7 Locating ConfluencesThere are two ways the perturba- s
tion theory expressions above can be used to locate confluences. 54400 I
The first approach uses the fact that the coupling matrix element r
h becomes zero when the two different branches intersect. For
a tri atomic molecule by plotting along the symmetry-allowed 10000 -
seam one can determine whether a confluence exists. The i
principal limitation to this approach is that it becomes cumber- F X
some to use wheN" > 3 owing to the increased dimension P P O T SR S AR P

of the symmetry-allowed seam.

An alternative, potentially more powerful, approach for
determining the locus of confluences is based on eqgs 28,29._. . .
Although this approach, unlike that based bn requires ;:r:tg]eligic‘tli.or:lgx iﬂé gﬁ()e ?Wingv\t,gi ,e,nsetg':: E?:A'F?Ezi ?Zrlr:)r?gf f Oi?]'cal
knowledge of the second-order parameters, it can determine theg, symmetry ()R, r, and the energies of the seam of conical
locus of confluences in its fulN®s — 2 dimensionality rather intersectiorE, and the two lowefA’" statesE;2a-, Ea- alongy, in Cs
than a point at a time. However, because eqs 28 and 29 aresymmetry.
based on perturbation theory their validity is limited to a
neighborhood of the conical intersecti®f used as the origin
of the perturbation expansion. Wh&h¢; are small eqs 28 and
29 yield a locus of confluences of dimensibh— 1. ForM <

90 100 110 120 130 140
¥ (deg)

The multireference configuration interaction descriptions for
BH, and HNCO have been reported previoushGeometries
for BH, are given in terms of Jacobi coordinaRs= (R, r, v)

INS _t%]’ tr?\lz Er;di_?_::?d dimensionfof the IOCIUS of conﬂﬁlnces ist whereR is the distance between B and the center of mass of
ess tha - 1TIS can occur for several reasons. 1h€ most iy 5, 1 js the H distance inao, andy is the acute angle

obvious reason is that along some directions we are far from apoveen the two line segments in degrees (see Figure 2). For

confluence. In this situation, egs 28 and 29 can be used in anHNCO, the reported geometries are given in internal coordinates

iterative manner as outlined in section 3. On the other hand, 5 — (R(N—H), R(C—N), R(C—0), JHNC, ONCO, IHNCO):
the inadequacy of perturbation theory might reflect a seam that ;| gistances are iBg (s:ee Figuré 2). ’ ’ '

o_loes not achieve it_s fuI_I dimensiona_lity or the failure of the 3.1 Description of the 1,2A" and 1,2A" States of BH.
linear seam approximation (see section 3). The Seam of Conical Intersection.The three states of BH
that correlate with the asymptotic limit Bf) + H, are the
12A', 22A', and BA" in Cs symmetry orPAy, 2B,, and?B; in Cy,
In this section, the ideas and methods discussed above aresymmetry. The ground state of BHas2A; symmetry with a
used to study in detail the vicinity dR°¢ for BH, and HNCO. minimum atR9 = (3.206, 4.059, 99 and the van der Waals

3. Results and Discussion
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Figure 5. (r, R, y) for the two branches of the seam near the confluence :;::;:(:G\(
in BH,. Points on theC,, branch are squares and on tbgbranch are -0.02 ‘
diamonds.x and+ represent points predicted using the linear-seam 2.5 3 35
approximation. O represents the predicted point of confluence from r(H-H)(a.)
the nearby point (3.15, 2.61, 90) of ti&, branch. 0

complex has symmetr3B, with a minimum atR"® = (6.082, L
1.405, 90).7 Thus, for C,, symmetry a?A; — 2B, seam of [000umey S, C, Seam
conical intersection is expected and indeed has been found, for I
the A’ and ZA' states. Quite unexpected was a seam of conical
intersection of these same two states@isymmetries which
intersects theC,, seam. Figure 4a and 4b reports for BGg
and C; branches of the seam respectively the geom@try2
andR*Cs together with energf«(R*) = Ez2a(R¥) = Exa(RY).
The energie&;2a(R), Ex2a(RY) are also plotted in these figures
for a more complete picture of the energetics in this region. In
C,, symmetry for smaller the PA" state hagA, symmetry,
and the 2A" state hagB; symmetry but the ordering switches
afterr = 3.8a. Here and below, the superscript identifying the
seam branch will be suppressed when the branch is irrelevant
or clear from the context. Figure 5 shows both branches and
the confluence in a 3D plot (R, y). TheCy, branch is in the
(r, R) plane ¢ = 90), whereas th€s branch seam coordinate
is dominated byy.

3.2 Representing the Vicinity of the Seam3.2.1 General

. . 90 95 100 105 110 115 120 125 130

Features of a Confluenc€&igure 1 shows the potential energy
surfaces for the crossing states in Bid the vicinity of the ) ) ¥ (deg) )
conical intersections and the confluence, based on the analyticFigure 6. First-order parameters, h, s, s, s, of the seam in B
representations of the adiabatic energies given in eq 3 usingalong (@ in Gz, symmetry (b)y in C; symmetry.
parameters described below. This plot demonstrates the ability
to represent continuously the surfaces along the seam and the 3.2.2 First-Order ParametersThe energy and derivative
confluence. For the first time, the unique shape of the surfacescouplings near a point of conical intersection are well described
due to the confluence is revealed. Figure lais a plot of the two by the first and second-order parameters. These parameters in
surfaces along (approximately, the seam coordinaén the general will not be continuous along the seam. This lack of
C,, seam) and the intersection adapted coordigatethe C,, continuity, which is attributable to the invariance of the
seam. These two coordinates switch roles for Geseam degenerate electronic states with respect to a rotation, compli-
facilitating the depiction of the confluence. Figure 1b is a plot cates their use for a global representation of the seam. As
of the same two surfaces alongand the intersection adapted described elsewhere the use of orthogagtahndh" circum-
coordinatex. In this coordinates the confluence does not appear vents this difficulty. These are derived from the “nascegit”
in contrast to the previous plot where it is obvious. In Figure and hV by a rotation of the degenerate wave functions that
1b, the two surfaces are always separated fer0, whereas in orthogonalizes ther#f. This procedure should be distinguished
Figure 1a, the surfaces flatten and at the confluence becomefrom one which merely orthogonalizgs andhV. In that case,
degenerate even fgr= 0. Another important observation that the energy in eqs 3 necessarily changes form. Figure 6a and 6b
emerges from these figures and will be discussed further belowreports the first-order parameteysh, ands,,(w = x, y, z) along
is that the second-order effects become preeminent near thehe C,, and Cs branches of the seam. FGp,, symmetrys, =
confluence. Thus, the cone in Figure 1a is curved, whereas in0. From eq 3, these parameters determine the conical shape of
Figure 1b, the linear terms are dominant. A detailed discussion the energy surface moving away from the seam along thie g
of the first and second-order parameters follows. plane. The topography of the cone is characterized by the
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Figure 7. Second-order parametaig), bi(”) obtained by fittingf, (denoted by superscript f) antE (denoted by superscript e) along an Ca,
symmetry (b)y in Cs symmetry. Second-order parametef, b, obtained by fittingf, along (c)r in Cz, symmetry (d)y in Cs symmetry.

magnitude of these parametéfdn order for the energy to be  branches respectively are shown in Figure 7a,b. The parameters

continuous along the seam including the confluence, theseg® b®, obtained by fitting the derivative couplings are shown

parameters have to b.e continuous also. This is seen in Figurep, Figure 7c,d. The®, b® parameters play an important role
6a and 6b. Approaching the confluence the parameters deter-

- LR : in the existence and location of confluences as described in
mining the individual branches approach each other. Notice that .
. ; section 2.6.1.
the y and z coordinates switch roles at the confluence as

discussed in section 2. Then at the conflueg(es©) = g(<%9), To examine the differences between the two fitting procedures
S(TVC2) = §(1%C9), h(¥C%) = h(z%C9) = 0, but s,(T*C%) = two points along theC;, branch were chosen and studied in
SA7C9) and s,(1%C2) = §,(1%C9). detail. The energy differences and derivative couplings were

3.2.3 Second-Order Parametetswas seen in Section 2 that ~ plotted using () the ab initio values, denotedAds22, f(b);
the second order terms are readily described in analytic form (b) the perturbation theory expressions using parameters ob-
by subtracting out the first-order contributions in the expressions tained by fitting the derivative couplinfy, denoted as\E®@",
for the energy and the derivative coupling. Thus, the second- f; and (c) the perturbation theory expressions using parameters
order parameters are obtained from eqs 23,24 as described irbtained by fitting the second-order energy differetdg?),
section 2.5. denoted asAE®#), £, These three methods will be denoted
The parameters®, b, obtained by fitting the energy  ab, f, e respectively. Note that whenever the methgdswill
differences or the derivative couplings along tBg and Cs be specified, the superscripts 2,v@ll be droped fromf.
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Figure 8. At R¥(2.4) forp = 0.05 and 0< 6 < 27: (a) AE@G™), m= ab, f, e, ed (b) f,(™, m= ab, f, e, fd, (c) fs™, m= ab, f, e, (d) fo™, m=
ab, f, e.

It should be mentioned that Figures 8 and 9 below can be unexpected because the two representations are identical to
misleading suggesting large discrepancies between the calculatedecond order as shown in eq 22.
and fitted energies and derivative coupling because the scale in Figure 8b reportsf™, m = ab, f, e Here, a diabatic

these figures is _smaII.Thus, even when differences appear Iargeexpressionf(fd) is given by the derivative of the angle of
the absolute differences are small on the order of tens of . P o o (fd)
wavenumbers. rotation ® from adiabatic to diabatic representatir,” =

o
) o . ) 90/3p whereO® is gi b 15.Th t btained
The first point is close to the minimum energy point of the p WHETE®3 IS given by eq > paramelers are obtaine
Cy, branch, aR*(2.4) = (2.30, 2.4, 90). For this point, a large

by fitting f,. The difference betweefﬁe) and fff‘b) is relatively
i) ; i ps(ab)
number of6 values were used to confirm convergence with |279€ Wh?n compa.red witf) which agrees well witff™. The
respect tof) integrals. Figure 8a reportSEC™, m = ab, f, e. largest discrepancies occurat= 90°, 270°. f{”, m= ab, f, e
In addition, the second-order energy differensE®@ed was are plotted in Figure 8c where good agreement is evinced. The
calculated using the diabatic representation (by subtracting thereason for this is that the largest termfinis the first-order
first-order energy (eq 8 from eq 21), but with parameters contribution which is independent af”), bi(”). A more precise

obtained from fitting the adiabatic energ&E®?") and AEZ® comparison can be made if this term is subtracted from the
agree withAE®@2aD, althoughAE®?® gives better agreement as  derivative coupling and only the second order terms are left.
expected. The largest discrepancies A& occur atf = 0, This is shown in Figure 8d. Here, the differences appear again,

180°. AE2® and AE@#9 are virtually identical which is not  although not so strikingly as ify. This should be expected
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becausé” andf{’ depend on the same parameters, as seen in 0 (deg)
egs 11,13. In some partéf’f) agrees better witmgz'ab) but in Figure 10. At RX(2.4) forp = 0.05 and 0< 6 < 2z: (a) AE@™, m

— b) f b)
other partsf?® works better. = ab, °, f (b) f*, {0, @ cfl)

The other point studied is chosen close to the confluence and
is R¥(3.0) = (2.55,3.0,90). For this point only the energy and perturbation theory expressions describe only the Cl part. If the
f, plots will be shown since thi plots do not include additional ~ CSF part is non negligible, the perturbation theory will be
information. The corresponding plots fB¥ (3.0) are shown in inadequate to describe the derivative coupling. This could cause
Figures 9a,b. The fits are quite different than befak&®29 the observed discrepancy between the parameters obtained from
differs from AE22 substantially. The derivative couplings are fitting the derivative coupling or the energy difference. At
described well independently of the origin of the parameters. R42.4)a andb were determined usirfgf,. Figure 10a,b shows
The second-order contributions to the derivative coupling at this AE® andf, from the calculations and the fitting. In Figure 10a
point, measured bfy, are much larger than those at the previous AE?C calculated using parameters from fittiifef, agrees
point R* (2.4). This is a consequence of being near the much better witAE2aD, thanAE®". There is no improvement
confluence and will be discussed further in Section 3.4. The however in the agreement betwegf®, and C¥,@. To the
larger magnitude of these terms, however, makes them easieicontrary, it becomes worse, indicating that higher order effects
to describe as the good agreement in Figure 9b shows. contribute to the energy that cannot be eliminated here.

Although the differences discussed above are small, it is It is interesting to note that in general the discrepancies are
useful to try to understand their origin. As was discussed in larger at the point® = 0, 90, 180, 270 In this regard, note
Section 2, the derivative coupling consists of two terms but the that the energy difference becomes zer@ at 90°, 270 and
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TABLE 1: For a Point on the Seam R, r*, 90) gh, AE, the TABLE 2: Points R} on the 22 A" — 22 A’ Seam of Conical
Slope of the Seam Expressed &'(ri) = (Ris1 — R)/(riv1 — Intersection of BH, Using the Iterative Method to Locate the
ri), and the Change in the Sloped(R'(ri))/dr = R'(ri41) — Confluence. Energies are Given in cm! and Distances inag
R'(r)/(ri+1 — r;) are Given. Energies are Given in cm?® and
Distances inag R r gh AE z
R rx gh AE R dR(r)/dr RE 2.434 270 0.8655¢3) 0.012 0.524
24769 2.8 0.6837%3) 0.01 0.402 0.16 RZ 2721 3364 0.2647(3) 810
25171 2.9 0.495K3)  0.04 0.386 0.16 R?: 2695 3399 0.3169(3) 4.1 0.151
2.5557 3.0 0.3205¢3) 0.22 0.370 0.12 RS 2630 3.199 0.2732(4) 62.17
2.5927 3.1 0.1333(3) 0.44 0.358 0.12 i
2.6106 3.15 0.5264(4) 0.006  0.352 0.34 RP: 2629 3202 0.31844) 0014 0.0154
2.6282 3.2 —0.2805¢4) 0.88 0.335 0.03 R% 2622 31815 0.6015¢5) 0.56
2.6618 3.3 —0.1740¢3) 6.58 0.332 0.17
26950 34  —0.3175(-3) 0.04 0.315 0.12 cm~L Here, the superscriptwill be added to indicate that a
27265 35  —0.4666¢3) 0.006  0.303 point has been relaxed to come closer to the seam. Starting from
2.7568 3.6 0.553%3) 0.01 or ; -
R}” eq 29 is used to predid®;” which givesgh an order of
has the value oAE® = 2a(1”) at6 = 0°, 180. f, vanishes ap magnitude s_maller. One more iteration gives a pﬁﬁf‘t that
= 0°, 180 and is given byf, = —a,?)/2q at § = 9C°, 270. can be considered as the confluence. Comparing Tables 1 and

These expressions show thsE® andf, depend on only one 2 illustrates the potential utility of the iterative method.
parameter at these extreme points, so they will be particularly HNCO being a larger system benefits more from this method.
sensitive to the fitting procedura‘f’) obtained from the two Confluences for cis nuclear configurations of HNCO were

N e idered starting fronRy* = (1.936, 2.67, 2.27, 117.3,
fits differ the most aRX(3.0), and this will lead to the energy consi ) '
difference being worst described R¥(3.0); & andb differ 111.40, 180), which based on the results of Ref. 26 is expected

the most between the two fits &{(2.4) and this causes the to be near a confluence. The .results_from an analysis using
derivative coupling to be worst describedRi(2.4). second-order parameters, obtained using a loop centeFé}ﬂ at

Although this discussion leads to the conclusion that higher With # = 0-05a, and solving eq 29 are reported in Table 3.

order effects can lead to differences in energy-based andThe dimension of the seam here is 4 and the dimen_sior_l of Fhe
derivative-coupling-based results, the differences are not IargeIOCUS O.f cpnfluence may be as large as 3 c_orElecatlng its
and they decrease with increasing size of the second order termSQetermlnatlon substanuqlly. .F|rst, (_)bsetr.ve Watl =1 —3
The largest part of the derivative coupling is the first order term are quite Iar_ge contraindicating their utility ;almd that (0, 0,
which gives good agreement. Only when one separates the®: O+ 0. C4) is farther than expected from;. As currently
different contributions one is able to notice the differences. The
analysis presented here based on the intersection adapte
coordinates enables this separation and detection of any differ-

ences. Further, the analysis indicate that the best way to<, . .
eliminate as much as possible the small differenceai? distance from a predicted point of confluence, we construct the

and AE@ is by fitting Cf rather tharf. If very precise values  lIn€ar combinatiore® = (0.26,, 0'1Z§2’ 0.05, 0.574) ‘gh'Ch
for f are required®SF can be added subsequently. yields, azy’ = (0, 0, 2) near Ry Although gh(zy) =
3.3 Locating Confluences.n the pointwise approach the ~ 0.443(109) is too large to represent confluencg can be
vanishing ofh is used to identify a confluence. Using this Used as an improved approximate origin for construckirfy
approach, the point of confluence for Bi¥as located aR® = As in BH; AE is large so a point of conical intersectiar}
(Re, re, y9) = (2.621, 3.182, 99. This point is given more  with AE < 1 cm ! was located nean’z‘2 and used as the origin
precisely than beforéTable 1 illustrates the pointwise search for constructingH®@. In the resulting displacements, two
and considers the range of validity of the linear seam ap- comparatively smal; exist indicating a confluence subspace
proximation. The magnitudgh alongR* is monitored to find of at least dimension 1 (see eq 28). One point of confluence
RS The slope of the seam ling(r;) = dR(r;)/dr = (R4+1 — was located by takingy’ = (0, 0, %) wherez8 = (0&y, 0&,,
R)/(ri+1 — ri) is given in Table 1. Seam curvature is indicated (.55, 0.54) based orH(d)(ff). This point provides an order
by a non constant slope, as measured by the change of the slopgf magnitude improvement igh over the results based a#f
dR(ri)/dr = R(ri+1) — R(r)/(ri+1 — ri) also given in Table 1. and is taken as 2. More points of confluence can be found
It is expected and indeed found that seam curvature limits the ysing different linear combinations &f.
accuracy ofR°P. Figure 5 compares the actual seam with the 3.4 Effect of the Confluencelt was demonstrated in Section
seam predicted using the linear approximation and extrapolating2 6.2 that one of the more interesting aspects of a confluence is
from a previous point. The predicted points are in good the suppression of the geometric phase effect. Figure 3 illustrates
agreement with the actual points. this suppression near the cis confluence in HNCO repofting
The iterative method for locating confluences using eqgs ~ (d/d9)©(R) along a circle of radiup centered aR*s =
28, 29 is illustrated in Table 2. In the following discussion a (R(H — N), 2.67, 2.271, 107, 106, 0.015)f) is approximately
subscript 1 or 2 will be used iR to denote a Bk geometry 0. As a consequend®(27) = ©(0) and there is no geometric
or an HNCO geometry, respectively. Starting from a point phase effect. Note that the small circulation results from the
R}'=(2.434, 2.7, 90) eq 29 was used to predict a point closer sign change iffy nearf = . Approaching the confluence, the
to the confluence. This poinR}, gives agh still too large to magnitude ofh approaches zero and this affects the behavior
represent a confluence but it can be used as an improvedof the derivative coupling. From egs 6,13 the first-order

implemented, thé&; are determined frord which are determined
yithout regard to their role in these equations. It is often
necessary to use linear combinations ofzhte obtaing; which

are small. Seeking the direction of the seam that minimizes the

approximate origin to constru¢i@. BecauseAE for Rf is derivative coupling alond is given by the expression
large we have to move closer to the seam before we use this
point as the origin. This iR} obtained from a single iteration f,0(0) = _gh (35)

of the conical intersection search algorithm, giving = 4.1 a 2q2(9)
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TABLE 3: Points R} on the 1! A — 2! A Seam of Conical Intersection of HNCO Using the Iterative Method to Locate the
Confluence. Energies are Given in cm! and Distances inag. z* = (0.2651, 0.175, 0.0, 0.5Z,), zZ2 = (0, 0, 1/Z3, 1/2,)

R(H—N) R(C—N) R(C—0) OHNC 0 NCO gh AE &li
R 1.936 2.67 2.27 117.3 111.40 0.9278) 0.082
2.063 2.929 2.418 49.7 102.2 1.901
3.666 2.840 2.240 93.2 108.4 1.389
1.822 3.744 0.618 94.8 97.2 1.366
1.912 2.492 2.176 130.8 99.8 0.379
R;z: 1.968 2.644 2.272 104.0 102.2 0.443%) 280 2
R 1.966 2.6617 2.287 103.3 102.4 0.36%) 0.062 #
2.636 2.597 2.227 35.1 104.1 2.284
0.279 2.688 2.327 139.1 103.5 —1.54Q2
2.003 2.708 2.193 99.0 107.1 0.14%) 458 0.1183
2.010 2.540 2.404 103.6 105.8 0.558() 577 0.13p4
Rf: 2.007 2.623 2.298 101.2 106.5 0.40%) 309 2
RS 1.997 2.648 2.313 100.7 106.2 0.375¢) 4.20 vl
The extrema will occur whersfi”/36 = 0) sinf = 0 or co® = a 010
0. At sind = 0 there is a minimum given bﬁgl(zmn (0) = h/i2g
and at co8 = 0 there is a maximum given ljﬁ(max)(n/Z) = —
g/2h. As h approaches zertél(imn)(O) approaches zero, whereas 0.08
fgl(znax)(n/Z) approaches infinity. Thus, close to the confluence I
the largest derivative coupling occurs along tite direction
and the smallest along thg” direction (away from the — 006 =
confluence the difference between the two directions is notso & 3
sharp). Figure 11a,b shows the behaviorf%in) and fél(znax) "—'.i é;
approaching the confluence. Because of the small magnitude € 2
of h, the cone is very flat also in the same direction. These © 0.04 2
changes in the topography and the derivative coupling can affect
the dynamics near the confluence. Transitions from one state
to the other will be more probable alom but less probable
. . 0.02
in the whole space becau@@(e) is small everywhere else and
the probability of being near théV axis is small. To
quantitatively study these effects wave packet calculations are I
needed. 0.00
The small magnitude ofi near the confluence means that 2.4
first-order terms depending on this quantity will be small giving
the opportunity to second-order terms to dominate. This was
seen in the curvature of the PES in Figure 1. For the derivative L, 0.10 rg— ~a 40
coupling, the increased importance of the second-order contribu- I T y 4
tions are reflected in the larger valuesfpfThis is confirmed N / 135
in Figure 11a,b where the maximum absolute valueg along 0.08 i /
the seam coordinate are shown. The minimum valugalbng \ rd 130
0, Qmin) is also shown in these figuregymin) 0ccurs when sifl \”e(max)' < /If/ |
=1 and is equal t¢h|, so it has a minimum at the confluence. — > * Vominy
Because&|min) has a minimum at the confluence and is inversely £ 006 \ / p 25 =
proportional tof, it drives this quantity into extrema. This o / ] 3
behavior was observed also when individual points along the £ \ /‘/ 20 :;
C,, were discussed. We noticed there that the second-order terms == \ / 3
at R¥(3.0) are larger than those Bt(2.4). This observation is 004 s 15 =
in agreement with our initial expectation that second-order terms \ /
become important as one approaches the confluence. //\ 110
4. Conclusions ooz [
. : . : : " ™ — <
Analytical expressions derived from perturbation theory have S Momgol T
been used to represent energies and derivative couplings in the 0.00 =, 0
vicinity of a seam of conical intersection. We have investigated '
the validity of using potential energy-based descriptions to 90 95 1°°(d ) 105 10
¥ (deg

evaluate derivative couplings or using derivative-coupling-based )
approaches to evaluate energies. When the singular derivativeFigure 11. Absolute value of the maximum df andf, along the
coupling terms are subtracted out the remaining second-order©9P- Absolute value of the minimum 64, andgmi, along the seam

. - . coordinate (a) inC,, symmetry (b) inCs symmetry.
terms are given by analytic expressions. Although the errors
appear to be large because they are a significant percentage athe quantities described are the second-order terms which are
the quantities, the absolute errors are small. This is so becausen this case small. The agreement between the two methods
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depends on the magnitude of these terms. As the second-order (2) Varandas, A.; Brown, F. B.; Mead, C. A.; Truhlar, D. &.Chem.
terms become larger the agreement improves. This enables &NYs:1987,86,6258-6269.

o . 3) Thompson, T. C.; Mead, C. Al. Chem. Phys1985 82, 2408.
ood description of the vicinity of the confluence where second- ( b
9 P y (4) Thompson, T. C.; Iznirlian, G., Jr.; Lemon, S. J.; Truhlar, D. G;
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Th . f d-ord . fthe si (9) Weeks, D. E.; Matsika, S.; Yarkony, D., work in progress.
e preeminence of second-order terms is one of the signature (10) Alexander, M.J. Chem. Phys1993 99, 6014-6026.
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the dynamics of the interstate transitions. The sharp difference114.

in £!) between the directiong’ andh" is an illustration of this 20(()13)1 1Tag“6657-?_’g'§702'39“ M.; DeRose, M. E.; Fajardo, MJEChem. Phys.
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