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Recent work suggests that confluences, intersections between a symmetry-allowed branch and a same-symmetry
branch of a seam of conical intersections are not rare occurrences. Therefore, with the goal of obtaining
generalizable insights, confluences for the 12A′ - 22A′ seam of conical intersection in BH2, and for the
11A - 21A seam in HNCO are examined in detail using a perturbative representation of that region. The
perturbative expressions for the energy and derivative couplings in the adiabatic representation provide a
means for locating confluences and evince the significant effect a confluence has on the local topography
and the derivative coupling. The perturbative representation enables the derivative coupling and energy to be
determined from data for either. The results obtained from the more common energy-based description are
compared with those obtained from a derivative-coupling-based description.

1. Introduction

When the Hamiltonian for two conically intersecting states
is extended beyond the essential linear terms to quadratic order,
additional conical intersections may emerge which can lead to
confluences, intersecting seams, of conical intersection. Recent
work1 suggests that confluences, intersections between a sym-
metry-allowed branch and a same-symmetry branch of a seam
of conical intersection, rather than theoretical oddities, will have
to be considered whenever a symmetry-allowed conical inter-
section exists. The region of the confluence requires special
scrutiny because the conical topography and interstate couplings
are modified in an essential manner by the confluence. Figure
1 (explained in detail below) illustrates how the topography near
this point changes, depicting a point of confluence and compar-
ing it with a standard point of conical intersection. These
changes can have important consequences in the dynamics along
that surface. Motivated by the potential impact of these
confluences, here we consider their location, topography, and
analytic representation.

Confluences are a subspace of a symmetry-allowed seam with
dimension one less than the dimension of this seam. In a
triatomic molecule, the confluence is a point. This point can be
located by using a previously introduced method, which searches
along the symmetry-allowed seam which is a line. In larger
molecules, the confluence is a multidimensional subspace and
such a search becomes cumbersome. An iterative method
discussed here is based on analytic representations of the
potential energy surfaces and derivative couplings, and can
locate multidimensional subspaces of confluences systematically,
unlike the previously noted approach which locates points of
confluence one at a time. The analytic representations are
derived using a previously introduced approach based on second-
order degenerate perturbation theory.

Conical intersections are often thought of as difficult to
describe in the adiabatic representation because the derivative
couplings become singular. An advantage of the present

representation is that the singularities in the adiabatic basis
appear in the first order perturbative terms and can be subtracted
out leaving the well-behaved, second and higher order, terms
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Figure 1. (a) EnergiesE12A′, E22A′ of the two intersecting states in BH2

along r (approximately the seam coordinate in theC2V seam) and
intersection adapted coordinatey close to the confluence. For points
of conical intersection along the seam the first and second-order
parameters were used to calculate the energies on the g-h plane. The
two black lines correspond to the degenerate energies along theC2V
seam and the degenerate energies along theCs seam. The confluence
is where the two lines cross. (b) The energiesE12A′, E22A′ vs (r,x). The
zero of the energy is along the seam atx ) 0 or y ) 0.
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to be described. Although first order terms are generally
predominant near a conical intersection, second order terms may
significantly modify the topography as the distance from the
conical intersection increases. However, near a confluence the
first-order terms become small so the second-order terms may
be preeminent. The perturbative representation is related to a
common method for describing interacting potential energy
surfaces and derivative couplings, the Double Many Body
Expansion (DMBE).2-6 In this approach, the ab initio energy
data are used to determine the DMBE parameters which in turn
are used to calculate derivative couplings. There is little
information on the reliability of the derivative couplings obtained
in this way. Some comparisons have been made for H3.6 In the
present representation, we can both determine, and assess the
reliability of, the representation.

This work will be used to consider the 12A′, 22A′ states in
BH2

7 and 11A, 21A states in cis HNCO8 for which confluences
are known. These systems are shown in Figure 2. For BH2

continuous parametrizations of the potential energy, and the
interstate coupling, surfaces in both the adiabatic and diabatic
representations will be determined and the topography of the
intersecting seams will be carefully analyzed. This analysis
forms part of an ongoing project to provide potential energy,
and derivative coupling, surfaces of the 1, 22A′ and 12A′′ states.9

It will be shown that both first and second order parameters
can be chosen continuous along the branches of the seam and
join smoothly at the confluence. Continuity is an important issue.
Non-continuous parameters would only give analytic representa-
tions at discrete points of the surface with no way of interpolat-
ing between them. Two methods of obtaining the parameters,
the energy-based (e-method) and the derivative-coupling-based
(f-method), will be compared. In the e-method (f-method) energy
data (derivative coupling data) is used to determine the
parameters.

For BH2 (cis-HNCO) the confluence (points on the subspace
of the confluence) will be located using an iterative approach
based on the derivative coupling-based parametrization. The
potential power in this method is evinced in the treatment of
HNCO where the high dimensionality makes the location of
confluences impossible using the pointwise algorithm.

In addition to being valuable tools in the study of intersecting
seams, the above molecules are of practical importance. The
1,22A′ and 12A′′ potential energy surfaces of BH2 are relevant
to the stability of the van der Waals complex B-H2 formed
when B is used as a dopant in a cryogenic H2 and the ultimate
fate of the H2 upon combustion.7,10-14 The portion of the
11A-21A seam of HNCO in a cis configuration is relevant to
the vibronic stability of cis HNCO on S1 which has yet to be
observed.

Section 2 reviews the theoretical approach, whereas section
3 presents the results of the numerical study. Section 4 concludes
and discusses directions for future research.

2. Theory

Conical intersections do not exist as isolated points but as
continuous seams of dimensionNint - 2 for the nonrelativistic
Coulomb Hamiltonian, whereNint is the number of internal
coordinates. Degenerate perturbation theory, originally devel-
oped by Mead to describe X3 systems,15,16 can be used for the
analysis of the vicinity of conical intersections where symmetry
plays no role. Details of this approach have been reported
previously.15,17 Here, it is reviewed and extended.

2.1 g-h Plane and Intersection Adapted Coordinates.The
degeneracy of a conical intersection of statesI, J, atRx is lifted
in a linear manner in the g-h or branching plane,18,19 a plane
perpendicular to the seam defined by the axesx ) gIJ/g (tuning
mode) andy ) hIJ/h (coupling mode)20 whereg ) ||gIJ||, h )
||hIJ||

Here,cI are the expansion coefficients of the adiabatic wave
functionsΨI ) ∑a)1

CSFca
I ψa in the configuration state function

(CSF) basis21 and satisfy the equation [H(R) - EI(R)]cI(R) )
0, whereH(R) is the electronic Hamiltonian in the CSF basis.
The degenerate electronic wave functions have been chosen such
that x ‚ y ) 0. It is particularly convenient to describe the
vicinity of a conical intersection in terms of the orthogonal
intersection adapted coordinates22 defined as the cylindrical polar
coordinatesF, θ, zi wherex ) F cosθ, y ) F sinθ, andzi are
displacements in the directionsx, y, andzi, respectively. The
Nint - 2 mutually orthogonal internal coordinateszi describe
the seam, the orthogonal complement of the g-h plane. In the
following discussion, a point given either in (x, y, zi) or (F, θ,
zi) coordinates will be denoted asτ.

2.2 Adiabatic Energies.The diagonal adiabatic Hamiltonian
is given through second order in perturbation theory by22

whereI is the 2× 2 unit matrix,σz a Pauli matrix and

λ(θ) is given by

andsw ) sIJ ‚ w, w ) x, y, zi. N, A, B, which define the second-
order energy, are given by

where

Figure 2. Jacobi and internal coordinates for the systems BH2 and cis
HNCO, respectively.

2gIJ(R) ) cI(Rx)[∇H(R)]cI(Rx) - cJ(Rx)[∇H(R)]cJ(Rx) (1)

hIJ(R) ) cI(Rx)[∇H(R)]cJ(Rx) (2)

Had,(2)(R) ) (EI(R
x) + sIJ(R) · δR + N(R))I + [-Fq(θ) +

A(R)cosλ - B(R) sinλ]σz (3)

q(θ)2 ) g2 cos2 θ + h2 sin2 θ (4)

2sIJ(R) ) cI(Rx)[∇H(R)]cI(Rx) + cJ(Rx)[∇H(R)]cJ(Rx) (5)

g cosθ ) q(θ) cosλ (θ)

h sinθ ) q(θ) sinλ (θ) (6)

N(R) ) η(F, θ, z; n) + ∑
i,j

n3
(zizj)zizj (7)

η(F, θ, z; n) ) F2N(F)(θ) + F ∑
i

ziN
(zi)(θ)

N(F)(θ) ) n1
(F)cos2θ + n2

(F)sin2θ + n3
(F)cosθ sinθ
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Using the above Hamiltonian the energy difference∆EJI ≡ EJ

- EI at a pointx, y, z away from Rx, the point of conical
intersection of statesI andJ, is given in first and second order
respectively by

In the following discussion, the subscriptsJI in ∆EJI will be
omitted. Note that∆E ) 0 for all τ with x ) y ) 0. This is
referred to as the linear seam approximation and leads to a
piecewise linear approximation to the seam.

2.3 Derivative Couplings. The derivative couplings are
defined as

They consist of two parts, the configuration interaction (CI)
contribution (CIfR

IJ) and the much smaller CSF contribution
(CSFfR

IJ).23 A and B, which are related to∆E(2) by eq 9 are also
related toCIfR

IJ(R) as follows

where

and

Below the superscriptsIJ and CI will be omitted when no
confusion will arise. The advantage of using the orthogonal
intersection adapted coordinates is that the only singular part
of the derivative coupling is (1/F)fθ

(1).
The first order energy difference and derivative coupling can

be obtained from information only atRx, using eqs 1, 2, 3.
Perturbation theory provides explicit expressions for the com-
putation ofA(R), B(R), andN(R).22 However, these expressions
are very costly computationally and simpler, less costly, methods
are desirable.N can be determined only from the energy. On
the other hand,A andB determine, and hence can be determined,
from the energies and derivative couplings. However, identical
results are not expected because (i)CSFfR

IJ is not included in the
A and B, (ii) the second order energy is only known ap-
proximately, and (iii) seam curvature is only included in a
piecewise linear manner. The final effect is specific to the

present perturbative analysis but the first two effects are present
in most common energy based approaches for describing
potential energy surfaces. Thus, their study is of general interest.
To address these issues, here we consider theA and B
determined from both energies and derivative couplings.ai

(F),
bi

(F) can be determined from the energy data whereas alla, b
can be determined from the derivative coupling data.

2.4 Diabatic Representation.From eqs 11 and 13 and the
commutation of the partial derivative operators we have (∂/∂F)
fθ
(2)(F, θ, z) ) (∂/∂θ)(fF

(2)(θ)) and (∂/∂zi)fθ
(2)(F, θ, z) ) (∂/∂θ)

(fzi
(2)(θ)) so that the derivative coupling in eqs 11, 12, 13 is

removable by a rotation by the angle

Rotating the adiabatic HamiltonianHad,(2)in eq 3 gives to second
order22

where

Hd,(2) is in turn diagonalized by a rotation by theΘ′ which
satisfies

Expanding eq 19 to second order inF andzi

Using the approximation for smallε, tan(λ + ε) ≈ tanλ + (ε/
cos2λ), one getsΘ ) -Θ′, to first order inF andzi as expected,
since, as discussed elsewhere, the basis forHd is quasidiabatic.24

From eq 16 the energy difference is given by

which becomes to second order

identical to the adiabatic expression (eqs 8, 9).
2.5 Determining A and B. As noted aboveA(F, θ, z) and

B(F, θ, z) can be determined from either the second-order energy
difference or the derivative coupling. ForR in the g-h plane

The results of the previous section show that eqs 23 and 24 for
w ) F are equivalent through terms of orderF2 in the
perturbation expansion. However, 1/q(θ) andfF can be sharply
peaked and eqs 23 and 24 need not give equivalent results in

N(zi)(θ) ) n1
(zi)cosθ + n2

(zi)sinθ

A(R) ) η(F, θ, z; a), B(R) ) η(F, θ, z; b) and

n ) (n1
(F), ...,n2

(zi))

∆EJI
(1) ) EJ

(1) - EI
(1) ) 2Fq(θ) (8)

∆EJI
(2) ) EJ

(2) - EI
(2) ) -2(A cosλ - B sinλ) (9)

fR
IJ(R) ) 〈ΨI(r ; R)| ∂ΨJ(r ; R)

∂R 〉
r

(10)

CIfF(θ) ≈ fF
(2)(θ) ) -

M(F)(θ)

2q(θ)
, fzi

(2) (θ) ) -
M(zi)(θ)

2q(θ)
(11)

CIfθ(F, θ, z) ≈ fθ
(2′)(F, θ, z) ) fθ

(1)(θ) - fθ
(2)(F, θ, z) (12)

fθ
(1)(θ) ) (∂/∂θ)λ(θ)/2,

fθ
(2)(F, θ, z) ) (∂/∂θ)(FfF

(2)(θ) + ∑
i

zifzi
(2)(θ)) (13)

M(t)(θ) ) A(t)(θ)sinλ(θ) + B(t)cosλ(θ), t ) F, zi (14)

Θ(F, θ, z) ) λ(θ)/2 + ∑
i

ziM(zi)(θ)

2q(θ)
+

FM(F)(θ)

2q(θ)
(15)

Hd,(2)(R) ) (E(Rx) + s(R) · δR + N(R))I +
G(x, y, z)σz + V(x, y, z)σx (16)

G(x, y, z) ) -gF cosθ + η(F, θ, z; a) (17)

V(x, y, z) ) hF sinθ + η(F,θ, z; b) (18)

tan 2Θ′ )
V(x, y, z)

G(x, y, z)
(19)

tan 2Θ′ ≈ -tanλ -

(η (F, θ, z; a)

q(θ)
sinλ +

η(F, θ, z; b)

q(θ)
cosλ) 1

cos2λ
(20)

∆E ) 2[F2q2 + A2 + B2 - 2Fq(A cosλ - B sinλ)]1/2 (21)

∆E ≈ 2(Fq - A cosλ + B sinλ) (22)

q(θ)

(-2F2)
(∆E/q(θ) - 2F) ≈ (A(F) cosλ(θ) - B(F) sinλ(θ)) (23)

-2fwq(θ) ≈ (A(w)(θ) sinλ(θ) + B(w) cosλ(θ)), w ) F, zi (24)
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practical situations. In this work, the second-order coefficients
are obtained from the solution of the linear least squares problem

or the equivalent expression arising from eq 23, along loops in
the g-h plane.n is the number of points collected along the
loop, defined byF ) F0, θ ) θ1, θ2, ...θn. In order for
perturbation theory to be validF0 should be small; if it is too
small, however, numerical problems may result. Because 1/Ffθ
is singular, whereasfF is not, theF direction must be known
with sufficient precision so that contamination offF by 1/Ffθ is
negligible. Thus a balanced value is desired. Here,F0 ) 0.05
a0 was used. The parameters depend also onn. Usingn ) 17,
at equal intervals forθ of 22.5°, provides results that are
converged with respect ton.

2.6 Confluences.2.6.1 Defining Equations. Using the Hamil-
tonian in eq 16 the seam of conical intersections satisfiesG(x,
y, z) ) V(x, y, z) ) 0. However, ifV is factorable,V ) V(1)V(2),
then the seam conditions yield two pairs of equations,G ) V(1)

) 0 andG ) V(2) ) 0, defining two branches of the seam. A
confluence occurs when

We consider the case described in the Introduction in which
there is a different symmetry branch and consider the least
restrictive case, which is the spatial point groupCs with
electronic states carrying irreducible representationsA′ andA′′.
Then on the different symmetry seam we can require, without
loss of generality,x ∼ A′ and y ∼ A′′, where ∼ denotes
“transforms as”. Similarly, the internal coordinates can be
partitioned intoNs A′ or symmetry preserving modes andNa )
Nint - Ns A′′ or symmetry breaking modes. It then follows that
a3

(F) ) b1
(F) ) b2

(F) ) 0 and alla2
(zi), b1

(zi) for which zi ∼ A′ must
vanish, so thatV becomes

This is clearly not factorable unless theb1
(zi) vanish. In aN

atom molecule constrained to planarityNs ) 2N - 3. Thus, for
a tetra atomicNa ) 1, there are nob1

(zi) terms, andV is
factorable. A similar situation occurs in a tri atomic molecule
for C2V symmetry whereNa ) 1 andNs ) 2. For a penta atomic
molecule however there is oneb1

(zi), so thatV is only factorable
in the subspace wherezi ) 0.

WhenV is factorable the solution to eq 26 using eq 27 is

where

Becausezj is an Ns - 1-dimensional vector subject to one
constraint the maximum dimension of the confluence isNs -
2. It can be shown thathIJ(τdx f τc) ‚ hIJ(τsx f τc) ) 0 where
τdx is a point of conical intersection on the different symmetry
seam,τsx is a point of conical intersection on the same symmetry

seam andτc is a point of confluence. Further, becauseG ) 0
on both branches of the seam and∇G ) gIJ, at the confluence
gIJ(τdx f τc) ‚ gIJ(τsx f τc) f g2(τc). Thus, the limiting direction
of gIJ at Rc is the same in the two branches. However, the
limiting directionshIJ(τsx) andhIJ(τdx) are orthogonal. Because
all directions orthogonal tohIJ, apart fromgIJ, arezi directions
it follows thathIJ(τsx) approaches azi direction in the different-
symmetry branch andhIJ(τdx) approaches azi direction in the
same-symmetry branch. Because the maximum dimension of
the branching space is two,|hIJ(τdx f τc)| ) |hIJ(τsx f τc)| )
0. Equivalently,hIJ ) V(1)∇V(2) + V(2)∇V(1) ) 0 whenV )
V(1)V(2) andV(1) ) V(2) ) 0. ∇V(1) and∇ V(2) here arehIJ for the
two different branches of the seam. For a triatomic molecule,
as BH2, there is only onez direction so hIJ and z are
interchanged in the two branches.

It is the vanishing ofh that leads to the unique topography
observed in Figure 1 and discussed further below. Note too that
in the hIJ direction the linear contributions are necessarily
subordinate to the quadratic terms. The implications of this are
discussed in Section 3.

2.6.2 Geometric Phase Effect.An important aspect of a
confluence is its suppression of the geometric phase effect.
Consider a point of conical intersection on the symmetry-
allowed seam,τsx. In general, the circulation of the derivative
coupling along an infinitesimal loop containing that point is
equal toπ. However, whenτsx is near a confluence this need
not be the case. A loop in a plane tilted with respect to the g-h
plane, centered atτsx, can, even for small loops, contain two
points of conical intersection, one on the same symmetry branch
and one on the different symmetry branch (See Figure 3). For
such a loop there is no net geometric phase effect. This can be
understood using the simplifiedHd, with a(F) ) b(F) ) a(zi) )
b(zj) ) 0 for all a(zi) and for all but oneb(zj), so that

Consider a loop in the (x, y′) plane, a plane rotated about the
x-axis of the g-h plane by an angleR, that is

∂

∂R
∑

n

[-2fw(Rn)q(θn) - (A(w)(θn) sinλ(θn) +

B(w)(θn) cosλ(θn))]
2 ) 0, R ) aj

(w), bj
(w), w ) F, zi (25)

G ) V(1) ) V(2) ) 0 (26)

V(x, y, z) ) hy + b3
(F) xy + ∑

i)1

Na-1

b1
(zi)xzi + ∑

j)Na+1

Nint

b2
(zj)yzj (27)

zj ) (dNa+1 úNa+1, ...,dNint úNint) with ∑
i)Na+1

Nint

di ) 1 (28)

úi ) -h/b2
(zi) (29)

Figure 3. Function from eq 33κ(θ) ) (1 - b sinθ(a + cos2θ)) for b
) 1.1 (crosses) and 0.9 (circles). Also for HNCO,fθ along a circle of
radius 0.05a0 centered atRx ) (R(H-N), 2.67, 2.271, 107, 106, 0.015)
is shown, in a plane tilted with respect to the g-h(Rx).

G ) gxandV ) hy + b(z)yz (30)
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Then, in terms of (F, θ), wherex ) F cosθ, y′ ) F sinθ eq 30
becomes

From eq 19Θ satisfies

where

As noted previouslyfθ
(p) ≈ fθ ≡ 〈ΨJ

a|(∂/∂θ)|ΨI
a〉r. For F f 0

(see loop 1 in Figure 3),κ(θ) f 1, fθ
(p) is strictly positive, its

circulation17,25 ø(fθ
(p)) ) ∫0

2π fθ
(p)dθ ) Θ(2π) - Θ(0) ) π. This

infinitesimal circle encloses exactly one point of conical
intersection at the origin, (F, θ) ) (0, θ). However, for
Fb(z) sinR/h > 1 the circle encloses two conical intersections
(see loop 2 in Figure 3), at (0,θ) and (h/(b(z) sinR), π/2); κ(θ)
has two zeros (see Figure 3) so thatfθ

(p) changes sign twice. As
a consequence,Θ(2π) ) Θ(0), and there is no net geometric
phase effect. This point will be illustrated with ab initio
calculations below.

2.7 Locating Confluences.There are two ways the perturba-
tion theory expressions above can be used to locate confluences.
The first approach uses the fact that the coupling matrix element
h becomes zero when the two different branches intersect. For
a tri atomic molecule by plottingh along the symmetry-allowed
seam one can determine whether a confluence exists. The
principal limitation to this approach is that it becomes cumber-
some to use whenNint > 3 owing to the increased dimension
of the symmetry-allowed seam.

An alternative, potentially more powerful, approach for
determining the locus of confluences is based on eqs 28,29.
Although this approach, unlike that based onh, requires
knowledge of the second-order parameters, it can determine the
locus of confluences in its fullNs - 2 dimensionality rather
than a point at a time. However, because eqs 28 and 29 are
based on perturbation theory their validity is limited to a
neighborhood of the conical intersectionRx used as the origin
of the perturbation expansion. WhenM úi are small eqs 28 and
29 yield a locus of confluences of dimensionM - 1. ForM <
Ns - 1, the predicted dimension of the locus of confluences is
less thanNs - 2. This can occur for several reasons. The most
obvious reason is that along some directions we are far from a
confluence. In this situation, eqs 28 and 29 can be used in an
iterative manner as outlined in section 3. On the other hand,
the inadequacy of perturbation theory might reflect a seam that
does not achieve its full dimensionality or the failure of the
linear seam approximation (see section 3).

3. Results and Discussion

In this section, the ideas and methods discussed above are
used to study in detail the vicinity ofRc for BH2 and HNCO.

The multireference configuration interaction descriptions for
BH2 and HNCO have been reported previously.7,8 Geometries
for BH2 are given in terms of Jacobi coordinatesR ) (R, r, γ)
whereR is the distance between B and the center of mass of
H2 in a0, r is the H2 distance ina0, andγ is the acute angle
between the two line segments in degrees (see Figure 2). For
HNCO, the reported geometries are given in internal coordinates
R ) (R(N-H), R(C-N), R(C-O), ∠HNC, ∠NCO,∠HNCO);
all distances are ina0 (see Figure 2).

3.1 Description of the 1,22A′ and 1,22A′′ States of BH2.
The Seam of Conical Intersection.The three states of BH2
that correlate with the asymptotic limit B(2P) + H2 are the
12A′, 22A′, and 12A′′ in Cs symmetry or2A1, 2B2, and2B1 in C2V
symmetry. The ground state of BH2 has2A1 symmetry with a
minimum atRg ) (3.206, 4.059, 90°) and the van der Waals

(y′
z′ )) (cosR -sin R

sin R cosR )(yz) (31)

G ) (gF)cosθ and

V ) (h cosR) F sinθ(1 - (b(z)/h) sinR F sinθ) (32)

2
∂

∂θ
Θ ≡ 2fθ

(p) )

κ(θ)

g cos2θ
h cosR

+ h cosR sin2θ
g (1 - F b(z)

h
sinR sinθ)2

(33)

κ(θ) ) (1 - b(z)

h
sinR F sinθ(1 + cos2θ)) (34)

Figure 4. In BH2 (a) R and the energies of the seam of conical
intersectionEx and the two lower2A′′ states,E12A′′, E22A′′ along r, in
C2V symmetry (b) R, r, and the energies of the seam of conical
intersectionEx and the two lower2A′′ states,E12A′′, E22A′′ alongγ, in Cs

symmetry.

2584 J. Phys. Chem. A, Vol. 106, No. 11, 2002 Matsika and Yarkony



complex has symmetry2B2 with a minimum atRwdV ) (6.082,
1.405, 90°).7 Thus, for C2V symmetry a2A1 - 2B2 seam of
conical intersection is expected and indeed has been found, for
the 12A′ and 22A′ states. Quite unexpected was a seam of conical
intersection of these same two states forCs symmetries which
intersects theC2V seam. Figure 4a and 4b reports for theC2V
andCs branches of the seam respectively the geometryRx,C2V

andRx,Cs, together with energyEx(Rx) ≡ E12A′(Rx) ) E22A′(Rx).
The energiesE12A′′(Rx), E22A′′(Rx) are also plotted in these figures
for a more complete picture of the energetics in this region. In
C2V symmetry for smallerr the 12A′′ state has2A2 symmetry,
and the 22A′′ state has2B1 symmetry but the ordering switches
afterr ) 3.8a0. Here and below, the superscript identifying the
seam branch will be suppressed when the branch is irrelevant
or clear from the context. Figure 5 shows both branches and
the confluence in a 3D plot (r, R, γ). TheC2V branch is in the
(r, R) plane (γ ) 90), whereas theCs branch seam coordinate
is dominated byγ.

3.2 Representing the Vicinity of the Seam.3.2.1 General
Features of a Confluence.Figure 1 shows the potential energy
surfaces for the crossing states in BH2 in the vicinity of the
conical intersections and the confluence, based on the analytic
representations of the adiabatic energies given in eq 3 using
parameters described below. This plot demonstrates the ability
to represent continuously the surfaces along the seam and the
confluence. For the first time, the unique shape of the surfaces
due to the confluence is revealed. Figure 1a is a plot of the two
surfaces alongr (approximately, the seam coordinatez in the
C2V seam) and the intersection adapted coordinatey in the C2V
seam. These two coordinates switch roles for theCs seam
facilitating the depiction of the confluence. Figure 1b is a plot
of the same two surfaces alongr and the intersection adapted
coordinatex. In this coordinates the confluence does not appear
in contrast to the previous plot where it is obvious. In Figure
1b, the two surfaces are always separated forx * 0, whereas in
Figure 1a, the surfaces flatten and at the confluence become
degenerate even fory * 0. Another important observation that
emerges from these figures and will be discussed further below
is that the second-order effects become preeminent near the
confluence. Thus, the cone in Figure 1a is curved, whereas in
Figure 1b, the linear terms are dominant. A detailed discussion
of the first and second-order parameters follows.

3.2.2 First-Order Parameters.The energy and derivative
couplings near a point of conical intersection are well described
by the first and second-order parameters. These parameters in
general will not be continuous along the seam. This lack of
continuity, which is attributable to the invariance of the
degenerate electronic states with respect to a rotation, compli-
cates their use for a global representation of the seam. As
described elsewhere the use of orthogonalgIJ andhIJ circum-
vents this difficulty. These are derived from the “nascent”gIJ

and hIJ by a rotation of the degenerate wave functions that
orthogonalizes them.26 This procedure should be distinguished
from one which merely orthogonalizesgIJ andhIJ. In that case,
the energy in eqs 3 necessarily changes form. Figure 6a and 6b
reports the first-order parametersg, h, andsw,(w ) x, y, z) along
the C2V andCs branches of the seam. ForC2V, symmetrysy )
0. From eq 3, these parameters determine the conical shape of
the energy surface moving away from the seam along the g-h
plane. The topography of the cone is characterized by the

Figure 5. (r, R, γ) for the two branches of the seam near the confluence
in BH2. Points on theC2V branch are squares and on theCs branch are
diamonds.× and+ represent points predicted using the linear-seam
approximation. O represents the predicted point of confluence from
the nearby point (3.15, 2.61, 90) of theC2V branch.

Figure 6. First-order parametersg, h, sx, sy, sz of the seam in BH2
along (a)r in C2V symmetry (b)γ in Cs symmetry.
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magnitude of these parameters.27 In order for the energy to be
continuous along the seam including the confluence, these
parameters have to be continuous also. This is seen in Figure
6a and 6b. Approaching the confluence the parameters deter-
mining the individual branches approach each other. Notice that
the y and z coordinates switch roles at the confluence as
discussed in section 2. Then at the confluenceg(τx,C2V) ) g(τx,Cs),
sx(τx,C2V) ) sx(τx,Cs), h(τx,C2V) ) h(τx,Cs) ) 0, but sy(τx,C2V) )
sz(τx,Cs) andsz(τx,C2V) ) sy(τx,Cs).

3.2.3 Second-Order Parameters.It was seen in Section 2 that
the second order terms are readily described in analytic form
by subtracting out the first-order contributions in the expressions
for the energy and the derivative coupling. Thus, the second-
order parameters are obtained from eqs 23,24 as described in
section 2.5.

The parametersai
(F), bi

(F), obtained by fitting the energy
differences or the derivative couplings along theC2V and Cs

branches respectively are shown in Figure 7a,b. The parameters
ai

(z), bi
(z), obtained by fitting the derivative couplings are shown

in Figure 7c,d. Theai
(z), bi

(z) parameters play an important role
in the existence and location of confluences as described in
section 2.6.1.

To examine the differences between the two fitting procedures
two points along theC2V branch were chosen and studied in
detail. The energy differences and derivative couplings were
plotted using (a) the ab initio values, denoted as∆E(2,ab), f(ab);
(b) the perturbation theory expressions using parameters ob-
tained by fitting the derivative couplingfF, denoted as∆E(2,f),
f(f); and (c) the perturbation theory expressions using parameters
obtained by fitting the second-order energy difference∆E(2),
denoted as∆E(2,e), f(e). These three methods will be denoted
ab, f, e respectively. Note that whenever the methodsf, e will
be specified, the superscripts 2, 2′ will be droped fromf.

Figure 7. Second-order parametersai
(F), bi

(F) obtained by fittingfF (denoted by superscript f) and∆E (denoted by superscript e) along (a)r in C2V

symmetry (b)γ in Cs symmetry. Second-order parametersai
(z), bi

(z), obtained by fittingfF along (c)r in C2V symmetry (d)γ in Cs symmetry.
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It should be mentioned that Figures 8 and 9 below can be
misleading suggesting large discrepancies between the calculated
and fitted energies and derivative coupling because the scale in
these figures is small. Thus, even when differences appear large
the absolute differences are small on the order of tens of
wavenumbers.

The first point is close to the minimum energy point of the
C2V branch, atRx(2.4) ) (2.30, 2.4, 90). For this point, a large
number ofθ values were used to confirm convergence with
respect toθ integrals. Figure 8a reports∆E(2,m), m ) ab, f, e.
In addition, the second-order energy difference∆E(2,ed) was
calculated using the diabatic representation (by subtracting the
first-order energy (eq 8 from eq 21), but with parameters
obtained from fitting the adiabatic energy.∆E(2,f) and ∆E(2,e)

agree with∆E(2,ab), although∆E(2,e) gives better agreement as
expected. The largest discrepancies for∆E(2,f) occur atθ ) 0,
180°. ∆E(2,e) and ∆E(2,ed) are virtually identical which is not

unexpected because the two representations are identical to
second order as shown in eq 22.

Figure 8b reportsfF
(m), m ) ab, f, e. Here, a diabatic

expressionfF
(fd) is given by the derivative of the angle of

rotation Θ from adiabatic to diabatic representation,22 fF
(fd) )

∂Θ/∂F whereΘ is given by eq 15. The parameters are obtained
by fitting fF. The difference betweenfF

(e) and fF
(ab) is relatively

large when compared withfF
(f) which agrees well withfF

(ab). The
largest discrepancies occur atθ ) 90°, 270°. fθ

(m), m ) ab, f, e
are plotted in Figure 8c where good agreement is evinced. The
reason for this is that the largest term infθ is the first-order
contribution which is independent ofai

(F), bi
(F). A more precise

comparison can be made if this term is subtracted from the
derivative coupling and only the second order terms are left.
This is shown in Figure 8d. Here, the differences appear again,
although not so strikingly as infF. This should be expected

Figure 8. At Rx(2.4) for F ) 0.05 and 0< θ < 2π: (a) ∆E(2,m)), m ) ab, f, e, ed, (b) fF
(m), m ) ab, f, e, fd, (c) fθ

(m), m ) ab, f, e, (d) fθ
(2,m), m )

ab, f, e.
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becausefF
(2) andfθ

(2) depend on the same parameters, as seen in
eqs 11,13. In some parts,fθ

(2,f) agrees better withfθ
(2,ab) but in

other partsfθ
(2,e) works better.

The other point studied is chosen close to the confluence and
is Rx (3.0) ) (2.55,3.0,90). For this point only the energy and
fF plots will be shown since thefθ plots do not include additional
information. The corresponding plots forRx (3.0) are shown in
Figures 9a,b. The fits are quite different than before.∆E(2,f)

differs from∆E(2,ab) substantially. The derivative couplings are
described well independently of the origin of the parameters.
The second-order contributions to the derivative coupling at this
point, measured byfF, are much larger than those at the previous
point Rx (2.4). This is a consequence of being near the
confluence and will be discussed further in Section 3.4. The
larger magnitude of these terms, however, makes them easier
to describe as the good agreement in Figure 9b shows.

Although the differences discussed above are small, it is
useful to try to understand their origin. As was discussed in
Section 2, the derivative coupling consists of two terms but the

perturbation theory expressions describe only the CI part. If the
CSF part is non negligible, the perturbation theory will be
inadequate to describe the derivative coupling. This could cause
the observed discrepancy between the parameters obtained from
fitting the derivative coupling or the energy difference. At
Rx(2.4)a andb were determined usingCIfF. Figure 10a,b shows
∆E(2) andfF from the calculations and the fitting. In Figure 10a
∆E(2,CIf) calculated using parameters from fittingCIfF agrees
much better with∆E(2,ab), than∆E(2,f). There is no improvement
however in the agreement betweenfF(e), and CIfF(ab). To the
contrary, it becomes worse, indicating that higher order effects
contribute to the energy that cannot be eliminated here.

It is interesting to note that in general the discrepancies are
larger at the pointsθ ) 0, 90, 180, 270°. In this regard, note
that the energy difference becomes zero atθ ) 90°, 270° and

Figure 9. (a, b) Same as 9a, b atRx(3.0)

Figure 10. At Rx(2.4) for F ) 0.05 and 0< θ < 2π: (a) ∆E(2,m), m
) ab, CIf, f (b) fF

(ab), fF
(f), CIfF

(ab), CIfF
(f).
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has the value of∆E(2) ) 2a1
(F) at θ ) 0°, 180°. fF vanishes atθ

) 0°, 180° and is given byfF ) -a2
(F)/2q at θ ) 90°, 270°.

These expressions show that∆E(2) and fF depend on only one
parameter at these extreme points, so they will be particularly
sensitive to the fitting procedure.a1

(F) obtained from the two
fits differ the most atRx(3.0), and this will lead to the energy
difference being worst described atRx(3.0); a2

(F) andb3
(F) differ

the most between the two fits atRx(2.4) and this causes the
derivative coupling to be worst described atRx(2.4).

Although this discussion leads to the conclusion that higher
order effects can lead to differences in energy-based and
derivative-coupling-based results, the differences are not large
and they decrease with increasing size of the second order terms.
The largest part of the derivative coupling is the first order term
which gives good agreement. Only when one separates the
different contributions one is able to notice the differences. The
analysis presented here based on the intersection adapted
coordinates enables this separation and detection of any differ-
ences. Further, the analysis indicate that the best way to
eliminate as much as possible the small differences in∆E(2,e)

and∆E(2,f) is by fitting CIf rather thanf. If very precise values
for f are requiredCSFf can be added subsequently.

3.3 Locating Confluences.In the pointwise approach the
vanishing ofh is used to identify a confluence. Using this
approach, the point of confluence for BH2 was located atRc ≡
(Rc, rc, γc) ) (2.621, 3.182, 90°). This point is given more
precisely than before.7 Table 1 illustrates the pointwise search
and considers the range of validity of the linear seam ap-
proximation. The magnitudegh alongRx is monitored to find
Rc. The slope of the seam lineR′(ri) ≡ dR(ri)/dr ) (Ri+1 -
Ri)/(ri+1 - ri) is given in Table 1. Seam curvature is indicated
by a non constant slope, as measured by the change of the slope
dR′(ri)/dri ) R′(ri+1) - R′(ri)/(ri+1 - ri) also given in Table 1.
It is expected and indeed found that seam curvature limits the
accuracy ofRc,p. Figure 5 compares the actual seam with the
seam predicted using the linear approximation and extrapolating
from a previous point. The predicted points are in good
agreement with the actual points.

The iterative method for locating confluences using eqs
28, 29 is illustrated in Table 2. In the following discussion a
subscript 1 or 2 will be used inR to denote a BH2 geometry
or an HNCO geometry, respectively. Starting from a point
R1

x1)(2.434, 2.7, 90) eq 29 was used to predict a point closer
to the confluence. This point,R1

x2, gives agh still too large to
represent a confluence but it can be used as an improved
approximate origin to constructH(d). Because∆E for R1

x2 is
large we have to move closer to the seam before we use this
point as the origin. This isR1

x2r obtained from a single iteration
of the conical intersection search algorithm, giving∆E ) 4.1

cm-1. Here, the superscriptr will be added to indicate that a
point has been relaxed to come closer to the seam. Starting from
R1

x2r eq 29 is used to predictR1
x3 which givesgh an order of

magnitude smaller. One more iteration gives a pointR1
x4 that

can be considered as the confluence. Comparing Tables 1 and
2 illustrates the potential utility of the iterative method.

HNCO being a larger system benefits more from this method.
Confluences for cis nuclear configurations of HNCO were
considered starting fromR2

x1 ) (1.936, 2.67, 2.27, 117.3,
111.40, 180), which based on the results of Ref. 26 is expected
to be near a confluence. The results from an analysis using
second-order parameters, obtained using a loop centered atR2

x1

with F ) 0.05 a0, and solving eq 29 are reported in Table 3.
The dimension of the seam here is 4 and the dimension of the
locus of confluence may be as large as 3 complicating its
determination substantially. First, observe thatúi, i ) 1 - 3
are quite large contraindicating their utility and thatτ ) (0, 0,
0, 0, 0, ú4) is farther than expected fromR2

x1. As currently
implemented, theúi are determined fromzi which are determined
without regard to their role in these equations. It is often
necessary to use linear combinations of thezi to obtainúi which
are small. Seeking the direction of the seam that minimizes the
distance from a predicted point of confluence, we construct the
linear combinationzA ) (0.26ú1, 0.17ú2, 0.0ú3, 0.57ú4) which
yields, a τ2

x2 ) (0, 0, zA) near R2
x1. Although gh(τ2

x2) )
0.443(10-3) is too large to represent confluence,τ2

x2 can be
used as an improved approximate origin for constructingH(d).
As in BH2 ∆E is large so a point of conical intersection,τ2

x2r

with ∆E < 1 cm-1 was located nearτ2
x2 and used as the origin

for constructing H(d). In the resulting displacements, two
comparatively smallúi exist indicating a confluence subspace
of at least dimension 1 (see eq 28). One point of confluence
was located by takingτ2

x3 ) (0, 0, zB) wherezB ) (0ú1, 0ú2,
0.5ú3, 0.5ú4) based onH(d)(τ2

x3). This point provides an order
of magnitude improvement ingh over the results based onτ2

x2

and is taken as aτc. More points of confluence can be found
using different linear combinations ofúi.

3.4 Effect of the Confluence.It was demonstrated in Section
2.6.2 that one of the more interesting aspects of a confluence is
the suppression of the geometric phase effect. Figure 3 illustrates
this suppression near the cis confluence in HNCO reportingfθ
≈ (d/dθ)Θ(R) along a circle of radiusF centered atRxs )
(R(H - N), 2.67, 2.271, 107, 106, 0.015).ø(fθ) is approximately
0. As a consequenceΘ(2π) ) Θ(0) and there is no geometric
phase effect. Note that the small circulation results from the
sign change infθ nearθ ) π. Approaching the confluence, the
magnitude ofh approaches zero and this affects the behavior
of the derivative coupling. From eqs 6,13 the first-order
derivative coupling alongθ is given by the expression

TABLE 1: For a Point on the Seam (Rx, rx, 90) gh, ∆E, the
Slope of the Seam Expressed asR′(ri) ) (Ri+1 - Ri)/(ri+1 -
ri), and the Change in the Sloped(R′(ri))/dr ) R′(ri+1) -
R′(ri)/(ri+1 - ri) are Given. Energies are Given in cm-1 and
Distances ina0

Rx rx gh ∆E R′ dR′(r)/dr

2.4769 2.8 0.6837(-3) 0.01 0.402 0.16
2.5171 2.9 0.4951(-3) 0.04 0.386 0.16
2.5557 3.0 0.3205(-3) 0.22 0.370 0.12
2.5927 3.1 0.1333(-3) 0.44 0.358 0.12
2.6106 3.15 0.5264(-4) 0.006 0.352 0.34
2.6282 3.2 -0.2805(-4) 0.88 0.335 0.03
2.6618 3.3 -0.1740(-3) 6.58 0.332 0.17
2.6950 3.4 -0.3175(-3) 0.04 0.315 0.12
2.7265 3.5 -0.4666(-3) 0.006 0.303
2.7568 3.6 0.5537(-3) 0.01

TABLE 2: Points R1
x on the 12 A′ - 22 A′ Seam of Conical

Intersection of BH2 Using the Iterative Method to Locate the
Confluence. Energies are Given in cm-1 and Distances ina0

R r gh ∆E z

R1
x1: 2.434 2.70 0.8655(-3) 0.012 0.524

R1
x2: 2.721 3.364 0.2647(-3) 810

R1
x2r: 2.695 3.399 0.3169(-3) 4.1 0.151

R1
x3: 2.630 3.199 0.2732(-4) 62.17

R1
x3r: 2.629 3.202 0.3184(-4) 0.014 0.0154

R1
x4: 2.622 3.1815 0.6015(-5) 0.56

fθ
(1)(θ) ) gh

2q2(θ)
(35)
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The extrema will occur when (∂fθ
(1)/∂θ ) 0) sinθ ) 0 or cosθ )

0. At sinθ ) 0 there is a minimum given byfθ(min)
(1) (0) ) h/2g

and at cosθ ) 0 there is a maximum given byfθ(max)
(1) (π/2) )

g/2h. As h approaches zerofθ(min)
(1) (0) approaches zero, whereas

fθ(max)
(1) (π/2) approaches infinity. Thus, close to the confluence

the largest derivative coupling occurs along thehIJ direction
and the smallest along thegIJ direction (away from the
confluence the difference between the two directions is not so
sharp). Figure 11a,b shows the behavior offθ(min)

(1) and fθ(max)
(1)

approaching the confluence. Because of the small magnitude
of h, the cone is very flat also in the same direction. These
changes in the topography and the derivative coupling can affect
the dynamics near the confluence. Transitions from one state
to the other will be more probable alonghIJ but less probable
in the whole space becausefθ

(1)(θ) is small everywhere else and
the probability of being near thehIJ axis is small. To
quantitatively study these effects wave packet calculations are
needed.

The small magnitude ofh near the confluence means that
first-order terms depending on this quantity will be small giving
the opportunity to second-order terms to dominate. This was
seen in the curvature of the PES in Figure 1. For the derivative
coupling, the increased importance of the second-order contribu-
tions are reflected in the larger values offF. This is confirmed
in Figure 11a,b where the maximum absolute values offF along
the seam coordinate are shown. The minimum value ofq along
θ, q(min) is also shown in these figures.q(min) occurs when sinθ
) 1 and is equal to|h|, so it has a minimum at the confluence.
Becauseq(min) has a minimum at the confluence and is inversely
proportional to fF it drives this quantity into extrema. This
behavior was observed also when individual points along the
C2V were discussed. We noticed there that the second-order terms
at Rx(3.0) are larger than those atRx(2.4). This observation is
in agreement with our initial expectation that second-order terms
become important as one approaches the confluence.

4. Conclusions

Analytical expressions derived from perturbation theory have
been used to represent energies and derivative couplings in the
vicinity of a seam of conical intersection. We have investigated
the validity of using potential energy-based descriptions to
evaluate derivative couplings or using derivative-coupling-based
approaches to evaluate energies. When the singular derivative
coupling terms are subtracted out the remaining second-order
terms are given by analytic expressions. Although the errors
appear to be large because they are a significant percentage of
the quantities, the absolute errors are small. This is so because

the quantities described are the second-order terms which are
in this case small. The agreement between the two methods

TABLE 3: Points R2
x on the 11 A - 21 A Seam of Conical Intersection of HNCO Using the Iterative Method to Locate the

Confluence. Energies are Given in cm-1 and Distances ina0. zA ) (0.26ú1, 0.17ú2, 0.0, 0.57ú4), zB ) (0, 0, 1/2ú3, 1/2ú4)

R(H-N) R(C-N) R(C-O) ∠HNC ∠ NCO gh ∆E úi|i
R2

x1: 1.936 2.67 2.27 117.3 111.40 0.927(-3) 0.082
2.063 2.929 2.418 49.7 102.2 1.901|1
3.666 2.840 2.240 93.2 108.4 1.369|2
1.822 3.744 0.618 94.8 97.2 1.306|3
1.912 2.492 2.176 130.8 99.8 0.379|4

R2
x2: 1.968 2.644 2.272 104.0 102.2 0.443(-3) 280 zA

R2
x2r: 1.966 2.6617 2.287 103.3 102.4 0.362(-3) 0.062 zAr

2.636 2.597 2.227 35.1 104.1 2.234|1
0.279 2.688 2.327 139.1 103.5 -1.540|2
2.003 2.708 2.193 99.0 107.1 0.141(-4) 458 0.119|3
2.010 2.540 2.404 103.6 105.8 0.556(-4) 577 0.135|4

R2
x3: 2.007 2.623 2.298 101.2 106.5 0.409(-4) 309 zB

R2
x3r: 1.997 2.648 2.313 100.7 106.2 0.375(-4) 4.20 zBr

Figure 11. Absolute value of the maximum offθ and fF along the
loop. Absolute value of the minimum offθ, andq(min) along the seam
coordinate (a) inC2V symmetry (b) inCs symmetry.
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depends on the magnitude of these terms. As the second-order
terms become larger the agreement improves. This enables a
good description of the vicinity of the confluence where second-
order terms are important.

The CSF part of the derivative coupling is negligible
compared to the singular term which is isolated in a single
component of the derivative coupling when the intersection
adapted coordinates are used. However, the CSF part may
contribute to the remaining components of the derivative
coupling and this contribution has been investigated in this work.

The preeminence of second-order terms is one of the signature
properties of a confluence. Derivative couplings show special
behavior in the vicinity of the confluence, which may affect
the dynamics of the interstate transitions. The sharp difference
in fθ

(1) between the directionsgIJ andhIJ is an illustration of this
special behavior. To be able to answer this question with more
certainty, nuclear dynamics calculations should be performed.
We are planning on studying the dynamics in the vicinity of
confluences in the future.

An iterative method for locating confluences of conical
intersection seams in systems with many atoms, using informa-
tion at a point in the seam and the above analytical representa-
tions has been derived. This method has been tested using the
known confluences on BH2 and on the higher dimension system
HNCO. It has been demonstrated to be a valuable tool for
locating confluences.
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