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Generalized-born surface-area (GBSA) models have proved to be effective tools for estimating rapidly and
with reasonable accuracy the solvation energies of molecular and macromolecular systems, and they have
been employed in conjunction with both molecular mechanical (MM) and quantum mechanical (QM) potentials.
In this article, we present our work to develop a GBSA model for calculations on macromolecules using
hybrid potentials in which part of the system is treated with a semiempirical QM potential and the remaining
atoms with a MM potential. Our efforts have centered principally on finding an approach for the calculation
of the Born radii which is appropriate for MM and QM potentials and for small and large molecules, but
inevitably, the competing requirements of these goals have meant a compromise in the design and
parametrization of the model. We have, however, produced a scheme that we feel is suitable for macromolecular
hybrid potential studies of processes, such as protein-ligand binding.

1. Introduction

The accurate description of solvation effects is a major
challenge for theoretical and computational chemistry and
biochemistry. The importance of such a goal is obvious, as many
chemical phenomena of interest, and most of those in biology,
occur in an at least a partially aqueous environment and
solvation can have a powerful influence on the properties of
molecular systems and the types of processes that they can
undergo.

Arguably the most accurate way of simulating solvent effects
is to handle the solute, which is the molecular system of interest,
and the solvent at the same level of approximation. This is the
basis behind explicit solvent models in which the solute is
immersed in a bath of explicitly treated solvent molecules.1

Although precise, calculations with explicit solvent models are
expensive because proper solvation of the solute usually requires
that the number of solvent atoms far exceeds those of the solute.

An alternative to the explicit solvent models are the implicit
models in which an atomic-level representation of the solvent
molecules is replaced by a much simpler description (for nice
reviews, see refs 2 and 3). One of the most powerful implicit
solvent models is based upon the Poisson-Boltzmann (PB)
equation in which the solvent is represented by a continuum
with dielectric constant and ionic strength of appropriate value
and the solute occupies a cavity of the correct shape within the
continuum. The electrostatic solvation energy within this model
is obtained by solving the PB equation for the electrostatic
potential throughout the system. PB-type models have given
results of great utility, but unfortunately, algorithms for the
solution of the PB equation and the accurate calculation of the
derivatives of the electrostatic solvation energy are slow, which
means that PB methods have found limited application in
macromolecular geometry optimization and molecular dynamics
calculations.

To speed up calculations, a number of approximate implicit-
solvent methods have been proposed; one of the most successful

of which has been the generalized-born surface-area (GBSA)
approach. The use of the GB approximation for the estimation
of solvation effects has a relatively long history in quantum
chemistry, particularly for semiempirical quantum mechanical
(QM) potentials (see, for example, refs 4 and 5 and references
therein), but it appears to have been first applied to simulations
with molecular mechanical (MM) potentials by Still and co-
workers.6 The appeal of the GBSA-type approach is that it can
give results of a quality that compare favorably with those
obtained by solving the PB equation but at a fraction of the
cost.7 It is also relatively easy to construct GBSA models that
are differentiable and so can be used with simulation techniques
that require derivatives.

GBSA methods are still the subject of active research. Apart
from applications, recent work has concerned the introduction
of analytic methods for the calculation of Born radii8 and the
parametrization of models for different force fields,9 to account
for salt effects10 and improve the applicability of the models to
macromolecular calculations.11 Also notable is the extensive
work of Cramer, Truhlar, and co-workers on a series of solvation
models, related to the GBSA approach, that they have developed
for use with semiempirical and ab initio QM potentials.12

One of the main interests in our laboratory has been the
development of hybrid QM/MM potentials which we employ
to study such processes as enzymatic reactions.13 The concept
underlying hybrid potentials is that they treat different portions
of a system with potentials of differing accuracy and compu-
tational cost.14,15 Thus, for example, a study of an enzyme
reaction could treat the substrate and active site with a QM
method and the rest of the system with a simpler MM potential.
The aim of the work presented in this paper has been to come
up with a GBSA model that is compatible with the range of
hybrid QM/MM potentials that we have developed16 and that
is applicable to both small molecule and macromolecular
systems. The outline of this paper is as follows. Section 2
describes our formulation of the GBSA model, section 3 presents
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the results of the parametrization of our models, and section 4
summarizes the paper.

2. Methods

In this section, we outline briefly the GBSA method and then
go on to describe our treatment of the electrostatic part of the
solvation energy.

2.1. GBSA Method.Following Still et al.,6 the total solvation
free energy in a GBSA model is written as the sum of three
terms:

whereGcav is the energy required to create a cavity for the solute
in the solvent,GvdW is the energy of the solute-solvent van
der Waals interactions, andGpol is the solute-solvent electro-
static polarization energy.

The first two terms are normally grouped together to form
the SA part of the GBSA model,GSA, and are expressed as

whereAi is the solvent accessible surface of atomi, σi is an
empirical atomic solvation parameter, andNatomsis the number
of atoms in the system.

The polarization energy is approximated by a generalized-
born equation of the form

whereεI andεO are the solute and solvent dielectric constants,
respectively,qi is the fixed partial charge on atomi, fij is a
function dependent upon the distancerij between the atomsi
and j, and γ is a unit conversion factor. There is no unique
form for the functionfij, but Still et al. proposed the following:6

whereRij ) xRiRj.
Ri is the Born radius for atomi, and it indicates how shielded

the atom is from solvent. It can take values that range from the
normal atomic radius, for atoms that are completely exposed
to solvent, right up to the “radius” of the molecule of which
the atom forms a part, for atoms that are buried at the center of
the molecule. The efficient calculation of accurate Born radii
is a crucial aspect of the GBSA method. In the original approach
of Still et al.,6 the computation was done numerically by
determining the polarization energy,Gpol,i, for each atom in the
system, assuming that that atom had a unit charge and that all
the other atoms were neutral but still displaced the solvent. The
radii were then determined from the formula

The numerical evaluation of the radii (by a finite-difference
method) is accurate but slow and does not readily provide the
derivatives of the radii with respect to atomic positions which
are needed for geometry optimizations and molecular dynamics
simulations. This led to a number of workers, including Still et

al.8 and Hawkins et al.,17 to seek approximate, analytic formulas
to the Born radii that could be differentiated and rapidly
evaluated.

The GBSA method as detailed by Still et al. was for use with
MM potentials. Similar models have, however, been used in
conjunction with QM potentials. Early work was done by
Constanciel and Contreras4 and by Kozaki et al.,18 who
combined GB models with semiempirical QM methods. More
recent work has been done by Cramer, Truhlar, and co-workers,
who have developed an extensive series of GB solvation models
for use with both semiempirical and ab initio MO and density
functional theory QM methods.12

The difference between applying a GBSA model to MM and
QM potentials is that the charge or electron density of the
quantum atoms changes in response to the surrounding dielectric
medium. To see this explicitly, let us consider a solvated closed
shell molecule being treated with a semiempirical QM method
of the AM1, MNDO or PM3 type19,20,21. The energy,EQM, of
such a system is given by

whereVnuc is the repulsion energy between the nuclei of the
quantum atoms andGpol andGSA are the GBSA energy terms
of eqs 3 and 2, respectively.Pµν, Hµν, and Fµν refer to the
electronic density matrix, the one-electron matrix and the Fock
matrix of the quantum atoms and the indicesµ and ν to the
basis functions used to expand the system’s molecular orbitals.

The optimum orbitals and, hence, wave function and electron
density are obtained by optimizing the energy expression (eq
6) with respect to the electronic variables, in this case the MO
coefficients. In a vacuum, this leads to an eigenvalue equation
of the form

whereF is the Fock matrix,εs is the energy of the orbitals and
cs is the vector of MO coefficients. In solution, the situation is
a little more complicated, as the polarization energy,Gpol, is a
function of the charges of the QM atoms and, hence, of the
MO coefficients. As is well-known, there is no unique way of
decomposing the electronic density of a quantum system into
atomic contributions, and so a variety of schemes are employed.
However, the simplest is a Mulliken analysis which, for the
semiempirical methods used here, relates the charge,qi, of the
atom to the atom’s nuclear chargeZi and to its diagonal density
matrix elements through

With this definition of the atomic charges, optimization of
the polarization energy,Gpol, with respect to the MO coefficients
produces an equation similar to eq 7 except that the diagonal
elements of the vacuum Fock matrix must be modified by adding
terms of the form

Solution of eq 7, with the extra term 9, proceeds in exactly the
same way as in the vacuum case and is usually carried out using
an iterative self-consistent field (SCF) algorithm.
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2.2. GBSA Models and Hybrid Potentials.The implemen-
tation of a GBSA method for use with a hybrid QM/MM
potential poses no problems of principle. The hybrid potentials
that we treat in this paper divide the atoms of the system into
two regionssone of which is treated with a semiempirical QM
method and the other with a standard MM force fieldsbut
extension to more complicated hybrid potential schemes is
straightforward.

As there is now a large literature concerning hybrid potentials,
description of them here will be cursory, and so interested
readers are referred to references14,15 for further details. The
potential energy,E, of a two-region hybrid potential can be
written as the sum of three terms, one for the energy of the
QM region,EQM, one for the energy of the MM region,EMM,
and one for the energy of interaction between the two,EQM/MM.
Use of the GBSA model adds the two extra terms,Gpol and
GSA, where

The GBSA terms necessitate little modification of a standard
hybrid potential calculation (which is described, for example,
in ref 16). The surface area termGSA is independent of the nature
of the atoms, whether QM or MM, and so can be evaluated
independently. The polarization term is not so simple but, for
the QM/MM case, can be rewritten as

The polarization energy can be calculated easily from this
expression, once the charges on the QM atoms have been
determined, whereas the presence of interactions between the
charges on the QM and MM atoms (the second term in brackets
on the right-hand side of eq 11) means that the expression for
the Fock matrix terms arising from the polarization energy, eq
9, must be modified by extending the sum to include all atoms,
both QM and MM, in the system. The presence of bonds
between atoms of the QM and MM regions does not introduce
any complications, and so they can be handled in the normal
way.

To finish this section, we note that for calculations on
macromolecular systems with MM potentials, the solute dielec-
tric constant is often taken to be different from one. Thus, for
example, values ranging from 4 to 20 are common for
calculations on proteins. For macromolecular calculations with
hybrid potentials, it may, in certain cases, be advantageous to
do the same thing, but as a high internal dielectric constant
would not necessarily be appropriate for the QM region, it would
mean that two solute regions with different dielectrics would
be required. We do not explore this point here but leave it for
future work.

2.3. Calculating the Born Radii. Once the basic GBSA
model that we are going to use and its extension to hybrid
potentials have been defined, it remains to be specified how
the Born radii are to be calculated. In particular, we seek a
method that is analytic, so that the expression can be differenti-
ated, that is reasonably inexpensive computationally and that
can be used, without change, for calculations with QM, MM,
and QM/MM potentials and on both molecular and macromo-
lecular systems.

We investigated a number of different routes and approaches,
including that of Hawkins et al.,17 but in the end, we obtained
the best results by starting with the analytic expression
introduced by Still and co-workers8 for the polarization energies
of the individual atoms,Gpol,i, that is used to define the Born
radii (see eq 5). Their expression has the form

whereFi is the van der Waals radius of atomi andφ, P1, P2,
P3, andP4 are parameters. The three sums on the right-hand
side of the equation run over the atoms that are bonded directly
to atom i (the 1-2 interactions), those that are separated by
two bonds (the 1-3 interactions) and those that are separated
by three or more bonds (the 1-4 and higher interactions),
respectively.C(rij) is a function whose form need not concern
us here, andVj is the effective atomic volume of atomj which
is given by

where the sum runs over all atomsk that are bonded to atomj
and the functionhjk is defined as

Although we used eq 12 as our starting point, we extensively
modified it. After much trial and error we arrived at our final
expression which differs from the original one in three major
ways:
(1) The expression 12 was developed for MM potentials, but it
is not ideal for use with QM potentials, as the sums on the right-
hand side of the equation require the definition of the bonds in
the molecule, information which is unnecessary when perform-
ing QM calculations. Instead, therefore, we chose a form which
replaced the sums over 1-2, 1-3, and 1-4 and higher
interactions by sums which involved interactions defined by
distance.
(2) Quite often, particularly for large molecules, the approximate
formulas forGpol,i, eq 12, and for the atomic volume, eq 13,
give values that are of the wrong signspositive for Gpol,i,
implying a negative Born radius from eq 5, and negative for
the atomic volume. This we cured by introducing functions that
ensured thatGpol,i was always negative and the atomic volume
always remained positive.
(3) It is known (see, for example, ref 8 and the work of Onufriev
et al.11) that the approximate analytic formulas forGpol,i often
give values which are much too negative and, hence, radii that
are much too small, for atoms that are buried inside a
macromolecule. We were therefore forced to add terms which
corrected for this.

We describe in more detail the changes that we made below,
but the formulas that define our final model are as follows:
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where

In this equation, the sums in eq 12 over different classes of
interactions have been replaced by sums over atoms, the atoms
to include in which are determined by the values of two distance
parametersD1 andD2. Likewise, the parameterP3 in the original
formulation has been replaced by a functionP3(rij) which
interpolates smoothly between the constantsP2 andP4 in the
range [D1,D2]. It has the form

We have modified the expression for the atomic volume such
that

with V′j having a similar form to eq 13 except for the
introduction of a switching functionWjk which permits the sum
to be over all atoms that are less than a distance cutoffDs:

Wjk has the form

The introduction of the different cases in eqs 15, 18, and 20
ensures that the polarization energy of an atom remains negative
and that its effective volume stays positive.

The last two functions,Hi andSj, were introduced to improve
Born radii when performing calculations on macromolecules.
They are defined as

and

In summary, eqs 15-22 complete the specification of our
calculation of the Born radii. The parameters that need to be
determined areD1, D2, Ds, Gmax, G0, P1, P2, P4, Vmin, V0, AH,
AS, H0, and Smax. It should be noted that all the parameters,
except the last four (namely those that occur in eqs 21 and 22),
are independent of the type of atom involved in the interactions.
In contrast, it proved beneficial to consider different values for
different atom types for the parametersAH, AS, H0, andSmax.

2.4. Technical Details.The GBSA model as described above
was implemented for semiempirical QM, MM, and hybrid
semiempirical QM/MM potentials in the molecular simulation
program DYNAMO.22,23 For the MM calculations, the OPLS-
AA force field of Jorgensen et al.24 was employed, whereas,
for the QM potential, we always used the AM1 semiempirical
method,19 although the MNDO20 and PM3 [21] methods gave
results of similar quality. For the GBSA calculations, the atomic
radii were taken to be half the values of the Lennard-Jones
σ-parameters used in the OPLS-AA force field except for
hydrogens where we used a value of 1.15 Å. The solvent
accessible surface areas for the atoms and their derivatives were
calculated using the algorithm of Wesson and Eisenberg25 with
a solvent probe radius of 1.4 Å. The cavity and van der Waals
contributions to the solvation energy were obtained from eq 2
with the same value ofσk of 0.0072 kcal mol-1Å-2 for all atoms.
Two different types of charge population analyses were tried
in our QM and hybrid potential calculationssthe Mulliken
scheme of eq 8 and the class IV charge scheme developed by
Cramer, Truhlar, and co-workers26 for the AM1 potential.19 The
class IV scheme is more complex than the Mulliken approach
but gives point charges that better reproduce molecular dipole
moments. The solute and solvent dielectric constants were taken
to have values of 1 and 80, respectively.

3. Results and Discussion

In this section, we discuss the results of calculations on a set
of small molecules and on a set of proteins that we used to
parametrize and test our GBSA model. Although the small
molecule results are presented first and the macromolecular
results second, several cycles of calculations on both sets of
molecules were necessary before we obtained our optimum
parameter set.

3.1. Small Molecules.The set of small molecules that we
tested consisted of 73 molecules with a range of functional
groupssalcohol, aliphatic, amine, aromatic, carbonyl, carboxyl-
atesthat cover many of those that are biologically important.
For each of the molecules, the experimental solvation free
energies are available.8,9,27 The complete list of molecules is
not given here but can be found in the tables contained in the
Supporting Information.

To test the flexibility of our model, we performed five
different types of parametrization which were as follows:
(i) MM. The calculations with this model were performed with
a MM potential. The OPLS-AA force field was used to param-
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etrize the molecules, but for those molecules where charge
parameters were unavailable, we obtained point charges from
the electrostatic potential-fitting procedure in the Jaguar ab initio
program.28 All calculations were done with the Hartree-Fock
method and the 6-31G** basis set.

(ii) QM(Mull.) consisted of calculations using the AM1 QM
potential with the charges on the quantum atoms obtained by a
Mulliken population analysis.
(iii) QM(IV) was the same as model QM(Mull.) except that a
class IV population analysis was done to obtain QM atom
charges.
(iv) Hybrid(Mull.) consisted of a simultaneous parametrization
of two copies of our set of 73 molecules. One set was treated
with a MM potential and the other with a QM potential and a
Mulliken population analysis.
(v) Hybrid(IV) was similar to model Hybrid (Mull.) but with a
class IV population analysis.

In each case, the parametrization was performed by minimiz-
ing the root-mean-square (RMS) deviation between the calcu-
lated and experimental solvation free energies with respect to
the parameters in our GBSA model. For the MM, QM(Mull.),

TABLE 1: Values of the ParametersP1, P2, P4, D1, D2 and Ds in the Various Optimized Models. The Model Names and
Parameter Meanings Are Defined in the Text.P1, D1, D2 and Ds Have Units of Å, P2 and P4 of kcal mol-1Å, and R1 and R2 of
kcal mol-1.

model P1 P2 P4 D1 D2 Ds R1 R2

MM 0.0002 1.9296 14.3298 1.5015 1.9038 3.9811 2.8
QM(Mull.) 0.0001 1.6555 13.4871 1.5009 1.9211 3.9766 3.8
QM(IV) 0.1555 1.0026 13.2668 1.5259 2.0322 3.9601 3.2
Hybrid(Mull.) 0.0273 1.4588 14.1609 1.4756 2.1272 3.9624 2.9 (MM) 3.4

3.9 (QM)
Hybrid(IV) 0.0764 1.6396 15.3168 1.5424 2.0928 3.8850 3.0 (MM) 3.2

3.3 (QM)
MBest 0.0999 1.0053 9.5973 1.5533 2.7991 1.7477

Figure 1. Plots of calculated vs experimental solvation energies for
the small molecules in our test set: (a) the model MM; (b) the model
Hybrid(Mull.), with MM values represented by triangles and QM values
by squares. All energies are in kcal mol-1.

TABLE 2: Table Showing the Values of theR1 Function (in
kcal mol-1) Obtained When Different Sets of Reference
Structures Are Used to Calculate the Small Molecule
Solvation Free Energiesa

parameter set/structures vacuum QM(Mull.) QM(IV)

MM 2.8 2.8 2.8
QM(Mull.) 3.9 3.8 4.0
QM(IV) 3.3 3.3 3.3

a A full explanation of how the structures were prepared is given in
the text. The diagonal elements represent the best fitted values for each
of the models.

TABLE 3: PDB Codes and Corresponding Names of the
Protein Structures Used for Parametrization of the GBSA
Model

PDB code protein name

1CRN crambin
1STP streptavidin
2IFB intestinal fatty acid binding protein (I-FABP)
1MNC neutrophil collagenase
4DFR dihydrofolate reductase
1RBP retinol binding protein
3PTB â-trypsin
1DKX substrate binding domain of DNAk
1ULB purine nucleoside phosphorylase
1EED endothiapepsin
1ABE L-arabinose binding protein
2GBP D-glucose binding protein
1THL thermolysin
1CBX carboxypeptidase A
1IVG neuraminidase
1NSD neuraminidase
2UAG UDPN-acetylmuramoylL-alanine

D-glutamate ligase (MurD)
MurE UDPN-acetylmuramoylL-alanine

D-glutamateL-lysine ligase
1YVE acetohydroxy acid isomeroreductase

1320 J. Phys. Chem. A, Vol. 106, No. 7, 2002 Pellegrini and Field



and QM(IV) models, the fitting function was

whereas for the Hybrid models, it was

In these equations,Nmol is the number of molecules in the dataset
(in our case 73) and∆Gsolv,m

exp , ∆Gsolv,m
MM , and ∆Gsolv,m

QM are the
experimental, the calculated MM, and the calculated QM free
energies of solvation for moleculem, respectively.

The solvation free energies of the molecules were calculated
as the differences between their energies in solution (i.e., with
the GBSA model) and in a vacuum. In principle, the solution
structure of each molecule needs to be reoptimized whenever
the GBSA parameters change, but as this adds considerably to
the cost of the parametrization, we used reference solution and
vacuum structures for most of our calculations. This meant that
only a single energy calculation needed to be done per molecule

Figure 2. Plots of atomic polarization energies calculated with the Hybrid(IV) model vs reference values calculated using the UHBD program:
(a) the points for each atom are colored according to their solvent accessible area (the color scale is in Å2); (b) the points are colored according to
atom type. All energies are in kcal mol-1.

R1 ) x∑m ) 1
Nmol (∆Gsolv,m

MM or QM - ∆Gsolv,m
exp )2

Nmol
(23)

R2 )
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to obtain their solvation free energies (as the vacuum energies
were constant and could be calculated once and stored). We
did, however, test the validity of this assumption and found only
small changes when different structures were used. Some results
to illustrate this will be presented below.

The parameters that we found necessary to optimize for small
molecules wereD1, D2, Ds, P1, P2, andP4. The other parameters,
which enter into eqs 15, 18, 21, and 22, were found to be
significant only for macromolecules and so will be discussed
in the next section. The optimizations were carried out by
minimizing the functionsR1 and R2 with respect to the six
free parameters using a genetic algorithm developed in our
laboratory for various optimization tasks. The parameters

resulting from the optimizations and the corresponding values
of the fitting functions are shown in Table 1, whereas Figure 1
shows schematically the results of some of the fits. Tables
containing the complete results for each molecule are provided
in the Supporting Information.

Table 1 shows that the MM parametrization gives the lowest
value of theR1 function, and hence the best fit, for the solvation
energies. There is no reason a priori to suppose that the AM1
QM potential would give worse results than the MM potentials
although it may be sosbut it is clear that we performed a much
more in-depth optimization for the MM models than for the
QM and Hybrid models as calculations with the MM potentials
were faster than the QM calculations by at least 1 order of

Figure 3. Plots of atomic polarization energies calculated with the MHybrid(IV) model vs reference values calculated using the UHBD program:
(a) the points for each atom are colored according to their solvent accessible area (the color scale is in Å2); (b) the points are colored according to
atom type. All energies are in kcal mol-1.
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magnitude. This enabled us to include larger numbers of
chromosomes and propagate them for more generations when
running the genetic algorithm. A more detailed analysis of the
solvation energies for the individual molecules shows that the
MM and both QM models reproduce well the energies for
hydrocarbon species but that the QM models are less accurate,
in general, for groups containing heteroatom speciessespecially
amino and hydroxyl groups for which the calculated solvation
energies are systematically underestimated. As for the QM
models, the QM(IV) parametrization gives results that are
significantly better than QM(Mull.). This is reasonable given
the more accurate charge distributions generated by a class IV
than by a Mulliken population analysis. The results for the
Hybrid models mirror those for the two QM models, with the
Hybrid(IV) parametrization giving a better fit than Hybrid-
(Mull.). As the hybrid models use a single set of parameters to
fit both MM and QM solvation energies, they will not provide
fits that are as good as those that result when the MM and QM
solvation energies are fit individually. This is indeed the case
as can be seen by comparing the values of theR1 functions for
the different models in Table 1. Finally, we note that the values
of the parameters obtained for the different models are quite
similar with the parametersP1 andP2 showing proportionately
the most variation.

To finish this subsection, we present results to show how
altering the reference structures employed for the evaluation of
the solvation free energies in the optimization procedure changes
the value of theR1 function that is obtained. Thus, we
recalculated theR1 function for the MM and QM models using
three different sets of structuressa set obtained by minimizing
the molecules with the AM1 potential in a vacuum and two
other sets obtained by minimizing in solvent with the QM(Mull.)
and QM(IV) GBSA parametrizations. The results are listed in
Table 2, from which it can be seen that the differences for the
MM and QM(IV) models are minor and for the QM(Mull.)
model are of, at most, 0.2 kcal mol-1.

3.2. Macromolecules.Our macromolecular tests were per-
formed on a set of 19 proteins, which are listed in Table 3. The
structures of 18 of these proteins were taken from the protein
data bank (PDB,)29 whereas the coordinates of the 19th were
provided by O. Dideberg30 (see Table 3). The same protocol to
prepare the structures was followed for all the proteins. This
involved determining the positions of the hydrogens using the
INSIGHTII visualization program31 and then performing a short
conjugate-gradient energy minimization with respect to the
positions of all atoms to remove any bad contacts using the
CHARMM modeling program.32

In contrast to the small molecule tests, we did not fit to the
solvation free energies of the proteins, as these are unavailable
experimentally and, in any case, do not provide sufficient data
for a fit, but took atomic polarization energies,Gpol,i, as data.
The reference values we obtained by performing finite-difference
Poisson-Boltzmann calculations with the UHBD program33 and
using the procedure defined by Still et al..6 Thus, for each atom,
we calculated the polarization energy assuming that the atom
in question had a unit charge and all the others were neutral
but displaced the dielectric. All calculations were done with
zero ionic strength, and the frontier between the protein and
solvent was defined by the solvent accessible surface with a
probe sphere radius of 1.4 Å. Resolution of the finite-difference
equations was done with grid-focusing, employing a coarse grid
of size 413 and a spacing of 2.5 Å centered at the protein’s
center and a fine grid of size 213 and a spacing of 0.3 Å centered
on the atom in question.

The fits were done in a way similar to the small molecule
case, by minimizing the RMS deviation between the atomic
polarization energies calculated with our GB model and the
UHBD reference values. The optimization was performed, as
before, using a genetic algorithm and the RMS function was

Before discussing the results of our optimizations, we present
in Figure 2 plots of the atomic polarization energies calculated
with our small molecule Hybrid(IV) parametrization versus the
UHBD reference values for the whole protein set (∼80000
atoms). For these calculations, we took the values of theH and
S functions of eqs 21 and 22 to be one for all atoms. It can be
seen that there is good agreement for atoms with very negative
polarization energies (i.e., those that are exposed to solvent and
so have small Born radii), but for buried atoms with low solvent
accessible areas, the GB model severely overestimates the
magnitude of the polarization energy. A closer examination
shows that different atom types display deviations of differing
magnitude. Thus, hydrogens deviate significantly more than
oxygens which, in turn, show larger deviations than either
carbons or nitrogens. This behavior is typical no matter which
small molecule model is used.

It was due to results of the type shown in Figure 2 that we
introduced theH andS functions, with the parametersAH, AS,
H0, andSmax, and the parametersGmax, G0, Vmin, andV0. In an
initial parametrization of these functions, we took the small
molecule Hybrid(Mull.) and Hybrid(IV) models and then
optimized only the parameters of theH andS functions. The
parametersAH andH0 were optimized only for hydrogens and
theH function was not fitted for other atom types. By contrast,
the parametersAS andSmax were applied to all atoms although
they were assumed to have the same value, irrespective of atom
type. The parametersGmax, G0, Vmin, andV0 were not optimized
but were assigned the values-5 kcal mol-1, -20 kcal mol-1,
Vfull /7 Å3, andVfull /5 Å3, respectively, whereVfull ≡ 4πFi

3/3,
i.e., the uncorrected volume for atomi with radiusFi. These
values were not optimized so as to reduce the complexity of
the optimization procedure but were chosen after inspection of
the various cases in which positive atom polarization energies
or negative atom volumes were found. The optimizations were
performed for streptavidin, as this protein is of a reasonable
size but not so large that calculations become too expensive.

The results of these parametrizations, termed models MHy-
brid(Mull.) and MHybrid(IV), are shown in Figure 3, Table 4,
and Table 5, respectively. Compared to Figure 2, Figure 3 shows
that agreement between the GB and UHBD polarization energies
has been greatly improved for all atoms, no matter what their
type or their position within the protein. This supports our
reasoning behind the introduction of the correction factors, i.e.,
using theS function to correct the radii for all buried atoms
and then theH function for the correction of the hydrogen radii
which deviate the most. Application of these two models,
MHybrid(Mull.) and MHybrid(IV), to the other proteins in our
test set showed that the parameters were transposable to larger
proteins without a noticeable degradation in the quality of the
results (see, for example, theRM values for these models in
Table 4).

Although our parametrizations in this section were done to
reproduce the macromolecular atomic polarization energies, we
are ultimately interested in the ability of the Born radii
determined from these energies to reproduce macromolecular

RM ) x∑i)1
Natoms(Gpol, i - Gpol,i

UHBD)2

Natoms
(25)
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solvation energies. To test this, we determined the polarization
energies for the protein test set using the radii obtained from
the UHBD calculations and those from our Mhybrid(Mull.)
model. These results are plotted in Figure 4 along with the
energy componentsG1 and G2 which were obtained by
decomposing the solvation energy into one-body and two-body
terms, i.e.

From Figure 4, it is apparent that the radii obtained from the
model Mhybrid(Mull.) give solvation energies that are in poor
agreement with those obtained with the UHBD radii. The
differences are due to the two-body terms,G2, as the one-body
contributions to the energy,G1, match reasonably well.

The failure of the MHybrid models caused us to examine
systematically the reasons why, despite the good agreement for
the Born radii, the solvation energies were not well produced.
A number of problems became clear. First, the parametersGmax

andG0 were shown to be inadequate as the value ofGmax was
too large, resulting in the radii of some atoms being too small,
and the value ofG0 was too small, meaning that the polarization
energies of too many atoms were being modified from their

natural values (see eq 15). Second, it became clear that while
the value of the parameterDs was fine for small molecules, it
was too large for macromolecules, as the atoms are more densely
packed and so too many atoms were being included in the
calculation of the effective atomic volumes. As a result of these
observations, we decided to reoptimize all the parameters in
our model including those optimized with the small molecule
set of data. We also decided to relax our restrictions on theAH,
AS, H0, andSmax parameters and optimize all of them separately
for each atom type. The parameters that we obtained as a result
of the optimization form the set that we call MBest and are
listed in Tables 1 and 4. The parametersGmax, G0, Vmin, andV0

were found to be-12 kcal mol-1, -13 kcal mol-1, Vfull /6 Å3,
andVfull /5 Å3, respectively. Some of the results with the new
model are given in Figure 3 and in Table 4, where it can be
seen that the MBest model is now able to reproduce the UHBD
polarization energies and that the values of theRM function
are much better for all the proteins tested than those given by
the other macromolecular models.

Having reoptimized the parameter set for the macromolecular
case, we wanted to verify its performance on the small molecule
test cases by recalculating theR1 andR2 functions using the
MBest parameter set. Just for interest, we also did the calcula-
tions with the MBest parameter set but in which the macromo-
lecular parameters were excluded (i.e., using only those listed
in Table 1). The results are listed in Table 6. Not unexpectedly,
the results are less good than those given by parameter sets
specifically optimized for the small molecule test set. The effect
is also more pronounced for the QM results than for the MM
results. However, although less good for small molecules, the
MBest parameter set has the great advantage that it can be
employed with reasonable accuracy for both macromolecular
and small molecule calculations using either MM or QM
potentials, the latter with either a Mulliken or, preferably, a class
IV-type population analysis. In any case, the availability of the
other parameter sets means that one of these can be used if
higher precision is needed in specific circumstances.

Conclusions
We have constructed and parametrized several GBSA implicit

solvation models for use with MM, QM and hybrid QM/MM
potentials and for calculations on molecular and macromolecular
systems. All our models are continuous and differentiable, and
so they can be employed straightforwardly for geometry

TABLE 4: Values of the RM Fitting Function (in kcal mol -1) Obtained for the Test Set of 19 Proteins with Various Parameter
Modelsa

protein Natoms Hybrid(Mull.) Hybrid(IV) MHybrid(Mull.) MHybrid(IV) MBest

1CRN 642 33.4 27.1 8.4 8.5 6.5
1STP 1744 39.3 32.7 8.7 8.4 6.5
2IFB 2113 43.6 36.7 9.6 9.6 7.8
1MNC 2367 43.8 37.0 9.4 9.4 7.4
4DFR 2486 42.7 35.8 9.1 8.9 6.8
1RBP 2754 44.1 37.3 10.2 9.9 7.8
3PTB 3221 46.7 39.6 9.2 9.1 6.7
1DKX 3342 40.3 33.4 9.1 8.9 6.7
1ULB 4504 47.3 40.1 9.4 9.2 7.4
1EED 4669 47.7 40.7 9.7 9.4 7.1
1ABE 4672 47.2 40.1 9.2 9.1 6.8
2GBP 4698 47.6 40.4 9.4 9.1 6.9
1THL 4705 47.6 40.6 9.9 9.7 7.7
1CBX 4790 49.2 41.9 9.4 9.4 7.4
1IVG 5882 48.6 41.4 9.9 9.9 7.5
1NSD 5964 48.4 41.2 9.4 9.3 6.9
2UAG 6535 47.0 39.9 10.1 9.7 7.7
MurE 7418 48.2 41.1 10.0 9.7 7.7
1YVE 7833 49.1 41.9 10.3 10.1 8.2

a The models are defined in the text.

TABLE 5: Values of the ParametersAH (Å2), AS (Å2), H0,
and Smax in the Various Optimized Modelsa

model parameter H C N O X

MHybrid(Mull.) AS 1.0222 1.0222 1.0222 1.0222 1.0222
AH 2.7000 unused unused unused unused
Smax 1.49081 1.49081 1.49081 1.49081 1.49081
H0 0.8009 1.0 1.0 1.0 1.0

MHybrid(IV) AS 0.0139 0.0139 0.0139 0.0139 0.0139
AH 2.0875 unused unused unused unused
Smax 1.31515 1.31515 1.31515 1.31515 1.31515
H0 0.8124 1.0 1.0 1.0 1.0

MBest AS 0.5667 0.2625 0.0653 0.0542 0.5333
AH 3.9486 1.4167 0.0653 1.8500 3.5972
Smax 1.0984 1.1967 0.9002 1.3014 0.6235
H0 0.2690 0.0431 0.0387 0.1552 0.0174

a The model names and parameter meanings are defined in the text.
Atom type X refers to atoms other than H, C, N, and O.

Gpol ) G1 + G2

) -
1
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optimization and molecular dynamics simulations. The models
differ in accuracy, depending upon how they were parametrized,
but our most general model gives a good description of
macromolecular atomic Born radii and solvation energies and
yet also reproduces reasonably the MM and QM solvation
energies of our test set of small molecules.

Our original aim in developing hybrid potential GBSA models
was to have a method capable of quickly estimating the solvation
energies in simulations of processes, such as enzyme reactions
and protein-ligand binding, in which the substrate and part of
the protein were treated quantum mechanically and the remain-
der of the system with a MM potential. We have already tested
our GBSA models in some applications of this type, with
encouraging results, and will report on these calculations and
possible enhancements to the method in due course.
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