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A number of molecular modeling techniques determine molecular properties by identifying the major low-
energy conformations of a molecule or complex and evaluating the configuration integral for each such
conformation. The mode integration (MINTA) technique uses normal-mode analysis in the rigid rotor
approximation to facilitate evaluation of these configuration integrals in all internal degrees of freedom. This
paper analyses the theory underlying MINTA and shows that the method omits numerically important terms
related to the Jacobian matrix for the transformation from Cartesian to translation-rotation-vibration
coordinates. It is shown that the method can be corrected either by including the missing terms or by changing
to a more convenient coordinate system that does not require use of the rigid rotor approximation and hence
is potentially more accurate.

Introduction

Molecular properties can be computed via sums over the most
stable conformations of the system.1-10 “Predominant states”
methods, which use this approach, involve two tasks: identifica-
tion of the most important low-energy conformations and
evaluation of the configuration integral∫e-âE(r ) dr for each
conformation. Interest in predominant states methods has
increased recently, at least in part because of the availability of
solvation models that allow solvent degrees of freedom to be
treated implicitly and that thereby reduce the dimensionality of
the configuration integrals to be evaluated. However, even when
the solvent is treated implicitly, the evaluation of the configu-
ration integral in an energy well can be challenging. One
approach is to use the harmonic approximation, but this can
produce errors if the energy well deviates much from quadratic.
“Mining minima” evaluates the configurational integral in each
energy well via numerical quadrature,7 approximating bond
lengths and angles as fixed. More recently, a very interesting
method that aims to compute the molecular configuration
integral in all degrees of freedom has been introduced. This
method, “mode integration” (MINTA),8,9 uses harmonic-biased
sampling to speed the numerical evaluation of configuration
integral.

We implemented MINTA but found that it did not agree with
analytic configuration integrals for simple model systems. The
trouble proved to lie in a subtlety of the rigid-rotor coordinate
system used in MINTA. The present note describes two ways
to solve this problem, one within the rigid-rotor approximation
and the other more general. To support this analysis and because
similar issues continue to arise in the general literature, the
Appendix derives expressions for the standard chemical potential
of a molecule in solution in two relevant coordinate systems.

Theory and Results

In MINTA, the full configuration integral for a given energy
well i is written as an integral over the 3n - 6 vibrational normal

modes of a molecule withn atoms, calculated with a nonmass-
weighted second-derivative matrix (Hessian), i.e., as if all atomic
masses equalled unity (see eq 5 of ref 8). The integral for energy
well i will here be termedzi

vib. As in other predominant states
methods, the configuration integrals of the most stable energy
wells (conformations) are computed and summed to yield the
overall configuration integral of the molecule:Zvib ) ∑izi

vib.
For simplicity, we assume henceforth that only one energy
minimum contributes significantly to the overall configuration
integral, but generalization to multiple energy wells is straight-
forward.

That the MINTA method for calculating the configuration
integral is incomplete can be appreciated by considering the
full expression for the standard chemical potential of a molecule
in the same coordinate system used by MINTA (eq 9 in the
Appendix). Clearly, the chemical potential includes integrals
not only over vibrational but also over the translational and
rotational coordinates that MINTA omits. These external
integrals do not cancel when computing quantities of interest,
such as the free energy changes associated with conformational
changes and binding. Thus, if a molecule can adopt two different
conformations, 1 and 2, which might, for example, represent
the two anomers of a carbohydrate, then MINTA gives the ratio
of the probability of state 2 to state 1 as

whereµ°i is the standard chemical potential of statei. However,
the correct expression derived from eq 9 (Appendix) is

whereIi,a, Ii,b, and Ii,c are the principal moments of inertia of
conformationi, and the ratio of moments in this expression does
not equal unity except in special cases. It should be emphasized
that MINTA’s use of a non-mass-weighted Hessian matrix does
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not eliminate this term, which is related to the Jacobian
determinant for the transformation from Cartesian coordinates
to translational-rotational-vibrational coordinates, as previ-
ously noted.11,12Rather, when the Hessian is not mass-weighted,
the inertial term in eq 2 is calculated as if all atoms had unit
mass. The magnitude of the resulting correction term depends
on the molecule involved and the nature of its conformational
change. Thus, the value is only 1.005 for the boat-chair
transition of cyclohexane (0.992 with unit atomic masses) but
rises to 218 (224 with unit atomic masses) when the enzyme
chorismate mutase expands from its native conformation to a
fully extended form. Thus, the rotational term favors the
expanded form of chorismate mutase by about-3.2 kcal/mol
at room temperature. This correction is large relative to the
claimed accuracy of MINTA and is therefore significant.

An additional term, derived from the translational degrees
of freedom, appears when eq 9 is used to write the standard
binding free energy of moleculesA andB:

(See Appendix for symbols.) The first two terms in brackets
can be interpreted, respectively, as translational and rotational
contributions to the binding constant. Again, if a non-mass-
weighted Hessian is used in evaluatingZX

vib, as in MINTA,
then the translational and rotational terms must be evaluated
with all masses set to unity.

The translational and rotational terms in eq 3 can be
substantial, as illustrated by the association of a synthetic
adenine receptor13,14(receptor C in ref 15) with methyladenine.
We focus on only the single lowest-energy conformation of the
free and bound molecules and compute energy with the
CHARMM16 force field as implemented in Quanta.17 With unit
atomic masses, the first two bracketed terms contribute-89.6
and -90.2 kcal/mol, respectively, to the binding free energy.
The third term contributes 167.5 kcal/mol, for a net binding
free energyin Vacuoof -12.3 kcal/mol. Using actual atomic
masses changes the individual terms but not the final result.
Including a Generalized Born model18 of electrostatic solvation
does not change the translational term at all and changes
rotational term by less than 0.1 kcal/mol, though it significantly
weakens binding by increasing the vibrational term, since this
includes the difference in potential energy of the free and bound
conformations. Note that, although the individual bracketed
terms in eq 3 have units, their product is dimensionless. The
binding free energy can be written equivalently as the product
of dimensionless translational, rotational, and vibrational terms
by allowing each term to retain its factors of 2πkT/h2, rather
than canceling them as has been done on going from eq 9 to eq
3. These dimensionless terms remain numerically significant:
for the synthetic adenine receptor discussed above, the trans-
lational, rotational, and vibrational terms are 6.7, 6.1, and-25.1
kcal/mol, respectively. Note that the overall binding free energy
is still -12.3 kcal/mol.

Although the rotational and translational terms that MINTA
neglects can be large, the published applications of MINTA8,9

are not likely to have incurred large numerical errors, due to
cancellation of errors. Thus, the conformational changes that

were studied would not have markedly altered the rotational
moments of inertia; only relative free energies of binding were
computed, and these involved binding of pairs of enantiomers
to one type of molecular host. However, most applications will
not yield such a high degree of cancellation. Fortunately, it is
straightforward to evaluate the missing terms when they are
expected to be important, thus correcting MINTA and extending
its range of applicability.

Alternatively, it is possible to compute configuration integrals
in a coordinate system for which the apparently mass-dependent
Jacobian terms do not appear at all. The key is the method for
separating internal from external coordinates. MINTA in effect
uses the Eckart-Sayvetz (ES) conditions19-23 that external
motions of the molecule not affect its internalkinetic energy
(see Appendix). The resulting separation holds only when the
vibrational motions do not change the rotational moments of
inertia significantly, i.e., when the rigid-rotor approximation is
a good one. The ES conditions simplify dynamical study of
molecules because they yield an approximate separation between
internal and external momenta. However when dynamics are
not at issue, it is simpler, more accurate, and more natural to
separate internal from external coordinates by applying the
condition that motion along the external coordinates does not
affect thepotentialenergy of the molecule. (Note that a finite
motion along the external rotations obtained from the ES
conditions distorts the molecule and thus changes its potential
energy.)

The Appendix reviews how such a coordinate system can be
set up by defining six coordinates, associated with three atoms,
as external coordinates, and it provides an expression for the
standard chemical potential in these coordinates. These internal
coordinates are termed “anchored” because six atomic coordi-
nates are held fixed while the internal integral is evaluated. Note
that no rigid-rotor approximation is now required because the
potential energy is now completely independent of the external
coordinates. The resulting expression for the standard chemical
potential of a molecule in solution is given in the Appendix,
and conformational ratios and binding free energies are given
by:

where Zanc is the internal configuration integral in anchored
coordinates. Given an energy model,Zanc can be evaluated by
computing the Hessian in only the 3n - 6 internal coordinates
and then using either the harmonic approximation or MINTA-
like harmonic-biased sampling to evaluate the configuration
integral. Although no mass-dependent terms appear in eqs 4
and 5, they yield results numerically equal to those in eqs 2
and 3 so long as the rigid-rotor approximation holds; when the
rigid rotor approximation does not hold, then the anchored
coordinates are clearly preferable. We have confirmed the
agreement of the two methods with numerical tests, including
simple cases for which analytic results can be obtained; a
subsequent report will discuss numerical aspects of MINTA and
related methods.

Conclusions

In summary, MINTA uses the rigid rotor approximation but
equates the full configuration integral to the integral over only

e-â∆G° ≡ e-â(µAB°-µA°-µB°)

) [C°( MAB

MAMB
)3/2][ 1
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vibrational coordinates, where the vibrational integral is evalu-
ated by a harmonic-biased sampling algorithm. The method is
incomplete because it omits numerically significant integrals
over rotational and translational coordinates, but it can be
completed by inclusion of these terms. Alternatively, the
configuration integral can be evaluated in a coordinate system
that does not require the rigid rotor approximation, resulting in
a simpler and more general method that will be presented in
more detail in a separate publication.

Before concluding, it is worth remarking upon the three
bracketed terms in eq 3. These have been linked respectively
with changes in translational, rotational, and internal free energy
upon binding, and a number of papers have examined this
partitioning. However, although these terms individually depend
on the atomic masses, the binding affinity on the left-hand side
of the equation does not depend on mass so long as classical
statistical thermodynamics holds. Moreover, the equally valid
eq 5 does not partition the affinity into translational, rotational,
and vibrational contributions and is explicitly independent of
the atomic masses. Arguably, then, the common practice of
partitioning binding free energies into translational, rotational
and vibrational contributions is not particularly meaningful.

Appendix

The standard chemical potential of species X can be written
as24-26

HereQN,X(VN,X) is the canonical partition function for a system
at volumeVN,X and containing a large number,N, of solvent
molecules and one solute moleculeX. C° is the standard
concentrationstypically 1 mol/Lsand VN,X is adjusted to
establish standard pressure of 1 atm. Similarly,QN,0(VN,0) is the
canonical partition function for theN solvent molecules without
the solute, now at a slightly different equilibrium volumeVN,0

that also corresponds to standard pressure. (A pressure-volume
term that is usually negligible for aqueous systems has been
omitted.26) The quantity µ°X can be derived by separating
external (translational and rotational) from internal (conforma-
tional) coordinates. The integrals over external degrees of
freedom are then carried out analytically, leaving the difficult
integral over the internal degrees of freedom to be determined
by numerical methods. The following subsections derive the
standard chemical potential with two methods of separating
internal from external coordinates: the familiar rigid rotor
approximation and “anchored” coordinates. For simplicity, it
is assumed that only one energy well contributes significantly
to the chemical potential, but generalization to multiple energy
wells is straightforward.

Rigid-Rotor Approximation. MINTA uses the rigid rotor
approximation to separate internal from external coordinates.
In the rigid rotor approximation, the separation of the external
coordinates of molecule X from its internal coordinates is based
upon the Eckart-Sayvetz (or Eckart) conditions.19-23 Intuitively,
the Eckart-Sayvetz conditions are that displacements along
mass-weighted internal coordinates contribute to neither the
translational nor the angular momenta of the molecule. These
conditions approach exactness only for infinitesimal vibrations.
The external coordinates are associated with the motion of the
center of mass and with rotations about the principle moments
of inertia. The internal coordinates are associated with 3n - 6
vibrational modes.23

The Hamiltonian of one molecule of X in solution withN
molecules of solventsneeded forQN,X in eq 6smay be written
as23

HerePx, Py, andPz are the momenta of molecule X associated
with motion of its center of mass along the lab-framex, y, and
z coordinates andMX is its total mass;Pa, Pb, andPc are the
angular momenta of the molecule around its principal axesa,
b, andc with associated moments of inertiaIX,a, IX,b, and IX,c;
Pi is the momentum associated with theith internal coordinate,
wherenX is the number of atoms in moleculeX; px,j, py,j, and
pz,j are the lab-frame Cartesian momenta of solvent atomsj,
wherenS is the number of atoms per solvent molecule andmj

is the mass of atomj; andU is the potential energy as a function
of the position and orientation of X (x,y,z,úa,úb,úc), the internal
coordinates ofX (q), and the positions of all the solvent atoms
(rS). Masses do not appear explicitly in the internal kinetic
energy term because the internal coordinates are mass-
weighted.23 Note that no assumption has been made regarding
regarding the harmonicity of the potential energy. The Hamil-
tonian forN solvent molecules, needed forQN,0, is

Equations 6-8 are now combined with the classical expression
for the partition function,27 the momentum integrals of X are
evaluated, the momentum integrals of the solvent are evaluated
and canceled, and a solvation term26 W is derived, allowing the
standard chemical potential ofX in solution to be written as

where

Here ZX
vib is the molecular configuration integral over the

mass-weighted internal coordinates appropriate to the rigid rotor
approximation;U(q) andW(q) are, respectively, the gas-phase
potential energy and the solvation energy of X as a function of
conformation; andh is Planck’s constant. Each bracketed
quantity is dimensionless.

Anchored Coordinates.The rigid rotor approximation ap-
plies only in the limit where the vibrational motions are
infinitesimal. For classical statistical thermodynamics, this
approximation can be eliminated by using a different separation
between internal and external coordinates. To begin, lab-frame

µ°X ) -RT ln( 1
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C°(2πMXkT

h2 )3/2][8π2(2πkT

h2 )3/2
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1/2] ×

[(2πkT
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2 ZX
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ZX
vib ≡ ∫e-â(U(q)+W(q)) dq

W(q) ≡ -RT ln(∫ drS e-â∆U(q,rS)e-âU(rS)

∫ drS e-âU(rS) )
∆U(q,rS) ≡ U(q,rS) - U(q) - U(rS) (10)
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Cartesian coordinates are used to write the Hamiltonian of a
molecule of species X, along withN solvent molecules:

The first sum contains the kinetic energies of the atoms of the
solute; the second sum contains the kinetic energies of theN
solvent atoms; andU is the potential energy, which depends
on all the atomic coordinates. Combining this expression with
eq 8, integrating over momenta, canceling the solvent momen-
tum integrals, and encapsulating solvent effects in a solvation
energy term26 yield an expression for the ratio of partition
functions found in eq 6:

We now define external coordinates that do not affect the
conformation and hence the potential energy of the molecule.28

This is accomplished by setting up a molecular frame of
reference that moves and rotates with the molecule and
expressing the internal coordinates of the molecule with respect
to this frame. An atom, indexed as 1, is chosen as the origin of
coordinates of the molecular frame. The conformational energy
of the molecule does not depend on the three lab-frame Cartesian
coordinates of this origin, so the integral over this position can
be factored out and evaluated as the volume of the container
(VN,X). Thez axis of the molecular frame is then defined as the
unit vector directed from atom 1 toward an atom 2 that is bonded
to atom 1. The conformational energy does not depend on the
2 spherical coordinates (θext,φext) that specify the lab-frame
orientation of this axis, but only upon the distance of atom 2
from atom 1 (b2). Therefore,θext,φext are external coordinates,
and one can immediately integrate over them to obtain a
contribution of 4πb2

2 to the integral in eq 12. Given an atom 3
bonded to atom 2, the plane formed by atoms 1, 2, and 3 defines
thex-z plane of the molecular frame, and the moleculary axis
is directed along the cross-product of axes 1-2 and 2-3. The
energy of the molecule is independent of the orientation of the
x-z plane, so the rotation angle about the 1-2 bond (úext) is
the sixth external coordinate. The spatial integral over this
coordinate is 2πb3 sin θ3, whereθ3 is the bond angle defined
by atoms 1, 2, and 3. For a bimolecular complex, the internal
frame of reference is defined with one molecule and then used
for the entire complex.

The conformation of the molecule is now specified via 3nX

- 6 internal Cartesian coordinatesr int in the molecular frame
just defined. Combining eqs 6 and 12 yields

HereZX
anc is the internal configuration integral of molecule X

in the present “anchored” internal coordinates. The factor of
b2

2b3 sin θ3 depends on the internal coordinatesr int and hence
belongs within the integral. However, because the integrand is
sharply peaked at the equilibrium values of these bond lengths
and angles, the factor can to good approximation be assumed
constant and removed from the integral. Also, the integral over
internal Cartesian coordinates can, if so desired, be rewritten
in the more familiar form of an integral over bond-lengths, bond-
angles, and torsional rotations.28-30
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