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A number of molecular modeling techniques determine molecular properties by identifying the major low-
energy conformations of a molecule or complex and evaluating the configuration integral for each such
conformation. The mode integration (MINTA) technique uses normal-mode analysis in the rigid rotor
approximation to facilitate evaluation of these configuration integrals in all internal degrees of freedom. This
paper analyses the theory underlying MINTA and shows that the method omits numerically important terms
related to the Jacobian matrix for the transformation from Cartesian to transtatiation—vibration
coordinates. It is shown that the method can be corrected either by including the missing terms or by changing
to a more convenient coordinate system that does not require use of the rigid rotor approximation and hence
is potentially more accurate.

Introduction modes of a molecule with atoms, calculated with a nonmass-
weighted second-derivative matrix (Hessian), i.e., as if all atomic
masses equalled unity (see eq 5 of ref 8). The integral for energy
well i will here be termed™. As in other predominant states
methods, the configuration integrals of the most stable energy
evaluation of the configuration integrale #£0) dr for each wells (conformations) are computed and summed to yield the

. . . o ib
conformation. Interest in predominant states methods hasOVerall configuration integral of the molecul&"™® = 3 z™.
increased recently, at least in part because of the availability of FOr_Simplicity, we assume henceforth that only one energy
solvation models that allow solvent degrees of freedom to be Minimum contributes significantly to the overall configuration
treated implicitly and that thereby reduce the dimensionality of integral, but generalization to multiple energy wells is straight-

the configuration integrals to be evaluated. However, even when forward. , _ _
the solvent is treated implicitly, the evaluation of the configu- . 1 hat the MINTA method for calculating the configuration

ration integral in an energy well can be challenging. One integral is i_ncomplete can be appre_ciated by_considering the
approach is to use the harmonic approximation, but this can full expression for the standard chemical potential of a molecule

produce errors if the energy well deviates much from quadratic. N the same coordinate system used by MINTA (eq 9 in the
“Mining minima” evaluates the configurational integral in each APPendix). Clearly, the chemical potential includes integrals

energy well via numerical quadratuteapproximating bond not only over vibrational but also over the translational and
lengths and angles as fixed. More recently, a very interesting rotational coordinates that MINTA omits. These external

method that aims to compute the molecular configuration integrals do not cancel when computing quantities of interest,
integral in all degrees of freedom has been introduced. This

such as the free energy changes associated with conformational
method, “mode integration” (MINTA§,? uses harmonic-biased changes and binding. Thus, if a molecule can adopt two different

sampling to speed the numerical evaluation of configuration conformations, 1 and 2, which might, for example, represent
the two anomers of a carbohydrate, then MINTA gives the ratio

Molecular properties can be computed via sums over the most
stable conformations of the systémi® “Predominant states”
methods, which use this approach, involve two tasks: identifica-
tion of the most important low-energy conformations and

integral. o
We implemented MINTA but found that it did not agree with  ©f the probability of state 2 to state 1 as
analytic configuration integrals for simple model systems. The vib

trouble proved to lie in a subtlety of the rigid-rotor coordinate
system used in MINTA. The present note describes two ways
to solve this problem, one within the rigid-rotor approximation

and the other more general. To support this analysis and becaus@vhereufis the standard chemical potential of statelowever,

similar issues continue to arise in the general Iltt_arature, th.e the correct expression derived from eq 9 (Appendix) is
Appendix derives expressions for the standard chemical potential
vib
|2,a| 2,bI 2,0)1/2 ZZ

of a molecule in solution in two relevant coordinate systems.
p2/p1: ( ZVib
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vib
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Theory and Results lial1plic

In MINTA, the full configuration integral for a given energy

well i is written as an integral over the3- 6 vibrational normal ~ WNerelia, lip, andlic are the principal moments of inertia of

conformation, and the ratio of moments in this expression does

* Corresponding author. Fax: (301) 738-6255. Tel: (301) 738-6217. Notequal unity except in special cases. It should be emphasized
E-mail: gilson@umbi.umd.edu. that MINTA's use of a non-mass-weighted Hessian matrix does

10.1021/jp0135407 CCC: $22.00 © 2002 American Chemical Society
Published on Web 12/14/2001



564 J. Phys. Chem. A, Vol. 106, No. 3, 2002 Potter and Gilson

not eliminate this term, which is related to the Jacobian were studied would not have markedly altered the rotational
determinant for the transformation from Cartesian coordinates moments of inertia; only relative free energies of binding were
to translationatrotationat-vibrational coordinates, as previ- computed, and these involved binding of pairs of enantiomers
ously noted12Rather, when the Hessian is not mass-weighted, to one type of molecular host. However, most applications will
the inertial term in eq 2 is calculated as if all atoms had unit not yield such a high degree of cancellation. Fortunately, it is
mass. The magnitude of the resulting correction term dependsstraightforward to evaluate the missing terms when they are
on the molecule involved and the nature of its conformational expected to be important, thus correcting MINTA and extending
change. Thus, the value is only 1.005 for the badtair its range of applicability.

transition of cyclohexane (0.992 with unit atomic masses) but  Alternatively, it is possible to compute configuration integrals
rises to 218 (224 with unit atomic masses) when the enzyme in a coordinate system for which the apparently mass-dependent
chorismate mutase expands from its native conformation to a Jacobian terms do not appear at all. The key is the method for
fully extended form. Thus, the rotational term favors the separating internal from external coordinates. MINTA in effect

expanded form of chorismate mutase by abe@t2 kcal/mol uses the EckartSayvetz (ES) conditioA® 23 that external
at room temperature. This correction is large relative to the motions of the molecule not affect its interrdhetic energy
claimed accuracy of MINTA and is therefore significant. (see Appendix). The resulting separation holds only when the

An additional term, derived from the translational degrees vibrational motions do not change the rotational moments of
of freedom, appears when eq 9 is used to write the standardinertia significantly, i.e., when the rigid-rotor approximation is
binding free energy of molecules and B: a good one. The ES conditions simplify dynamical study of
molecules because they yield an approximate separation between

@ PAC" _ o Plune®—ua®—ue?) internal and external momenta. However when dynamics are
not at issue, it is simpler, more accurate, and more natural to

o Mag V2| 1 Ingalagplage |2 separate internal from external coordinates by applying the

- M, Mg gz Lnalavlaclaalsolse x condition that motion along the external coordinates does not

Com T Tl affect thepotentialenergy of the molecule. (Note that a finite
Zﬁg motion along the external rotations obtained from the ES
Zvib vib 3 conditions distorts the molecule and thus changes its potential
A 7B energy.)

] ] ) The Appendix reviews how such a coordinate system can be
(See Appendix for symbols.) The first two terms in brackets get yp by defining six coordinates, associated with three atoms,
can be interpreted, respectively, as translational and rotationalag external coordinates, and it provides an expression for the
contributions to the binding constant. Again, if a non-mass- standard chemical potential in these coordinates. These internal

weighted Hessian is used in evaluatidf’, as in MINTA, coordinates are termed “anchored” because six atomic coordi-
then the translational and rotational terms must be evaluatednates are held fixed while the internal integral is evaluated. Note
with all masses set to unity. that no rigid-rotor approximation is now required because the

The translational and rotational terms in eq 3 can be potential energy is now completely independent of the external
substantial, as illustrated by the association of a synthetic coordinates. The resulting expression for the standard chemical
adenine receptét4(receptor C in ref 15) with methyladenine.  potential of a molecule in solution is given in the Appendix,

We focus on only the single lowest-energy conformation of the and conformational ratios and binding free energies are given
free and bound molecules and compute energy with the py:

CHARMM¢force field as implemented in Quaritawith unit
atomic masses, the first two bracketed terms contribt86.6

__ —~an anc
and —90.2 kcal/mol, respectively, to the binding free energy. Palp, = 2512, )
The third term contributes 167.5 kcal/mol, for a net binding anc
free energyin vacuoof —12.3 kcal/mol. Using actual atomic o FAG — C° ‘a8 ©)
masses changes the individual terms but not the final result. 872 Z,"’_‘\”CZE“C

Including a Generalized Born modgbf electrostatic solvation
does not change the translational term at all and changes anc : : L :
8 . where Z2"¢ is the internal configuration integral in anchored
rotational term by less than 0.1 kcal/mol, though it significantly - . nc
- ; . . . . . coordinates. Given an energy modgi"¢ can be evaluated by
weakens binding by increasing the vibrational term, since this

. . : . computing the Hessian in only theé 3- 6 internal coordinates
includes the difference in potential energy of the free and bound and then using either the harmonic approximation or MINTA-
conformations. Note that, although the individual bracketed g pp

terms in eq 3 have units, their product is dimensionless. The like harmonic-biased sampling to evaluate the configuration

binding free energy can be written equivalently as the product integral. Although no mass-dependent terms appear in €qs 4

. - - ; I and 5, they yield results numerically equal to those in eqgs 2
of dimensionless translational, rotational, and vibrational terms and 3 so long as the rigid-rotor approximation holds: when the
by allowing each term to retain its factors ofl2l/h?, rather 9 g P ’

rigid rotor approximation does not hold, then the anchored

. ) . . L _%oordinates are clearly preferable. We have confirmed the
3. These dimensionless terms remain numerically significant: . . . .
agreement of the two methods with numerical tests, including

for the synthetic adenine receptor discussed above, the trans-sim le cases for which analvtic results can be obtained: a
lational, rotational, and vibrational terms are 6.7, 6.1, a28.1 b y '

kcal/mol, respectively. Note that the overall binding free energy subsequent reportwill discuss numerical aspects of MINTA and

is still —12.3 kcal/mol. related methods.
Although the rotational and translational terms that MINTA
neglects can be large, the published applications of MIKRTA
are not likely to have incurred large numerical errors, due to  In summary, MINTA uses the rigid rotor approximation but
cancellation of errors. Thus, the conformational changes thatequates the full configuration integral to the integral over only

Conclusions
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vibrational coordinates, where the vibrational integral is evalu-  The Hamiltonian of one molecule of X in solution witk
ated by a harmonic-biased sampling algorithm. The method is molecules of solvertneeded foQn x in eq 6—may be written
incomplete because it omits numerically significant integrals as3

over rotational and translational coordinates, but it can be

completed by inclusion of these terms. Alternatively, the Pi+P;+P2 P2 P P q3%6

configuration integral can be evaluated in a coordinate systemHy x ~ + + + + - Pi2 +

that does not require the rigid rotor approximation, resulting in ' 2My Ava 2xp 2xe 2 &

a simpler and more general method that will be presented in Nns p2- + p2- + p2-

more detail in a separate publication. A UyzEL il (7)
Before concluding, it is worth remarking upon the three = 2m, 2 ¢

bracketed terms in eq 3. These have been linked respectively

with changes in translational, rotational, and internal free energy HereP,, Py, andP; are the momenta of molecule X associated
upon binding, and a number of papers have examined thiswith motion of its center of mass along the lab-fraryg, and
partitioning. However, although these terms individually depend z coordinates andx is its total massPa,, Py, andP; are the
on the atomic masses, the binding affinity on the left-hand side angular momenta of the molecule around its principal aes
of the equation does not depend on mass so long as classicab, andc with associated moments of inertig, Ix, andlxg;
statistical thermodynamics holds. Moreover, the equally valid P; is the momentum associated with titke internal coordinate,
eq 5 does not partition the affinity into translational, rotational, wheren is the number of atoms in molecul¢ px;, py;, and
and vibrational contributions and is explicitly independent of p,j are the lab-frame Cartesian momenta of solvent atpms
the atomic masses. Arguably, then, the common practice of wherens is the number of atoms per solvent molecule amd
partitioning binding free energies into translational, rotational is the mass of atorp andU is the potential energy as a function

and vibrational contributions is not particularly meaningful. of the position and orientation of X§/,z,Ca,Cn,Cc), the internal
coordinates oK (), and the positions of all the solvent atoms
Appendix (rs). Masses do not appear explicitly in the internal kinetic
The standard chemical potential of species X can be written energy term because the |ntqrnal coordinates are mass-
ag4-26 weighted?® Note that no assumption has been made regarding

regarding the harmonicity of the potential energy. The Hamil-
tonian forN solvent molecules, needed fQx, is

1 Qux(Vax)
lu = —RTln(V c° V. (6) 5 5 5
nxC” Qno(Vivo) NS Pl PG P
Hyo= Z—+ u(ry (8)
HereQn x(Vn,x) is the canonical partition function for a system = 2m

at volumeVyx and containing a large numbe¥, of solvent _ _ ) ) )
molecules and one solute molecule C° is the standard EquatlonS 6-8 are now combined with the classical expression

concentrationtypically 1 mol/l—and Vnx is adjusted to for the partition functior?’ the momentum integrals of X are

establish standard pressure of 1 atm. Simila®lyo(Vi ) is the evaluated, the momentum integrals of the solvent are evaluated
canonical partition function for thid solvent molecules without ~ and canceled, and a solvation téfw is derived, allowing the
the solute, now at a slightly different equilibrium volurig,o standard chemical potential &fin solution to be written as

that also corresponds to standard pressure. (A pressaleme

term that is usually negligible for aqueous systems has been 4, 312 an a2 | e
omitted?®) The quantityu; can be derived by separating e - ° h2 (Ix,alxolx)
external (translational and rotational) from internal (conforma- g6
tional) coordinates. The integrals over external degrees of 27KT\—— _vib
. . : - — Zy'| (9)

freedom are then carried out analytically, leaving the difficult h
integral over the internal degrees of freedom to be determined,,; .o
by numerical methods. The following subsections derive the
standard chemical potential with two methods of separating Zvib _ fe—ﬂ(u(q)+w(q)) d
internal from external coordinates: the familiar rigid rotor X = q
approximation and “anchored” coordinates. For simplicity, it f dr . e PAV@rd =AU
is assumed that only one energy well contributes significantly W(q) = —RTIn S
to the chemical potential, but generalization to multiple energy o f dr.e Pu0s
wells is straightforward. s

Rigid-Rotor Approximation. MINTA uses the rigid rotor AU(qg,rg) =U(q,rg —U(q) — U(ry) (10)

approximation to separate internal from external coordinates. _

In the rigid rotor approximation, the separation of the external Here Z‘)’('b is the molecular configuration integral over the
coordinates of molecule X from its internal coordinates is based mass-weighted internal coordinates appropriate to the rigid rotor
upon the EckartSayvetz (or Eckart) conditiod8-23 Intuitively, approximationU(q) and\W(q) are, respectively, the gas-phase
the Eckart-Sayvetz conditions are that displacements along potential energy and the solvation energy of X as a function of
mass-weighted internal coordinates contribute to neither the conformation; andh is Planck’s constant. Each bracketed
translational nor the angular momenta of the molecule. Thesequantity is dimensionless.

conditions approach exactness only for infinitesimal vibrations.  Anchored Coordinates. The rigid rotor approximation ap-
The external coordinates are associated with the motion of theplies only in the limit where the vibrational motions are
center of mass and with rotations about the principle moments infinitesimal. For classical statistical thermodynamics, this
of inertia. The internal coordinates are associated with-3% approximation can be eliminated by using a different separation
vibrational modeg3 between internal and external coordinates. To begin, lab-frame
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Cartesian coordinates are used to write the Hamiltonian of a Zane _ szb sin 6. e AU+ Wrn)] (13)
molecule of species X, along witk solvent molecules: X —J e s int
Here Z¥ is the internal configuration integral of molecule X
n P2 2 2 N 2 2 2 in the present “anchored” internal coordinates. The factor of
L X P TR TP N ™ Py TPy TP UG bsbs sin 63 depends on the internal coordinatgs and hence
4 2m £ x belongs within the integral. However, because the integrand is
(11) sharply peaked at the equilibrium values of these bond lengths

and angles, the factor can to good approximation be assumed
The first sum contains the kinetic energies of the atoms of the constant and removed from the integral. Also, the integral over
solute; the second sum contains the kinetic energies oNthe internal Cartesian coordinates can, if so desired, be rewritten
solvent atoms; and is the potential energy, which depends in the more familiar form of an integral over bond-lengths, bond-
on all the atomic coordinates. Combining this expression with angles, and torsional rotatiof%.3°
eq 8, integrating over momenta, canceling the solvent momen-
tum integrals, and encapsulating solvent effects in a solvation
energy terr®® yield an expression for the ratio of partition
functions found in eq 6:
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