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A theoretical method is developed for examining the intermolecular vibrational motions that are responsible
for modulating the external electric field at the position of the solute in solution. The derivation is done in the
context of the instantaneous normal mode theory by using an algebraic property of the interaction formula,
in the same way as in the intensity-carrying mode theory of intramolecular vibrations developed in our previous
studies. The vibrational motions derived by the present method are called field-modulating modes (FMMs).
These modes play an essential role in electrostatic intermolecular vibrational interactions in solution. As an
example of application of the present method, the case of an acetonitrile solution of the nitrate ion (NO3

-) is
studied. Various characteristics of the FMMs, which are important for vibrational polarization of the solute,
are examined in detail. The relation of the present picture to vibrational relaxation theories is also discussed.

1. Introduction

Molecules in polar solutions are affected more or less by
intermolecular electrostatic interactions. In addition to the (usual)
electronic polarization, molecules are polarized to some extent
due to distortion of molecular structures. The so-called vibra-
tional polarizability describes such polarization. Recent studies
on the vibrational spectra of some molecular ions (cyanine dyes,
I3

-, and NO3
-) in solution1-8 have shown that the effects of

the structural distortion are clearly seen in those vibrational
spectra.

The formula for the vibrational polarizability may be derived
as follows. Within the harmonic approximation and to the first
order in the external electric field, the potential energy (V) of
the solute in a polar solution is expressed as9

whereqp is thepth (mass-weighted) intramolecular normal mode
of the solute,ωp is its vibrational angular frequency,µk is the
molecular dipole moment (µk

(0) is the value atqp ) 0), andEk

is the external electric field. Because of the existence of the
second part in the parentheses in eq 1, the position of the
potential energy minimum is displaced as

The molecule is polarized according toδµi ) Σp(∂µi/∂qp)δqp.
The vibrational polarizability is therefore expressed as10,11

It is clear from the above equations that dipole derivatives
(∂µk/∂qp) play an important role in describing electrostatic
intermolecular vibrational interactions. In our previous
studies,4-6,12-16 the vibrational motions responsible for generat-
ing dipole derivatives and other electrical property derivatives
(polarizability derivatives and first hyperpolarizability deriva-
tives) have been analyzed for molecules with conjugated
π-electron systems. As a method of extracting the vibrational
degrees of freedom responsible for generating the electrical
property derivatives, the theory of intensity-carrying modes
(ICMs) has been developed.14,16By using this theory, the nature
of the vibrational motions generating electrical property deriva-
tives and their relation to the electronic structure have been
clarified.

In relation to the above problem, another important type of
vibrational motions that should be clarified are the intermo-
lecular vibrations in solution that give rise to significant changes
in the electric fieldEk. In the instantaneous normal mode (INM)
picture17,18 and to the first order inEk, the potential energy of
the solution may be expanded as

whereQr is therth (mass-weighted) intermolecular normal mode
of the solution,Ωr is its vibrational angular frequency,Fr is
the force along this normal mode at the instantaneous config-
uration of liquid structure (Qr ) 0), andEk

(0) is the external
electric field (at the position where the solute molecule is
located) atQr ) 0.19 The modes with large values of∂Ek/∂Qr

induce large changes inEk. It is therefore important to clarify
the nature of such modes to understand the electrostatic
intermolecular vibrational interactions operating in solution.

One problem that should be considered at this point is that
there are many intermolecular normal modesQr (too many to
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examine the nature of each), and a large number of them are
expected to have large values of∂Ek/∂Qr. This problem is related
in part to the delocalized nature of the intermolecular normal
modes. It is therefore preferable to develop a method for
extracting the intermolecular vibrational motions (which may
be different fromnormalmodes) that are really responsible for
the changes inEk. By using such a method, the nature of the
electrostatic intermolecular vibrational interactions obscured in
the normal mode picture may be elucidated.

In the present study, we develop such a method by using an
algebraic property of the interaction formula, in a way similar
to the development of the ICM theory14,16 of intramolecular
vibrations. As an example of application of the method, we show
the results of the calculations carried out for an acetonitrile
solution of the nitrate ion (NO3-). The relation of the present
picture to vibrational relaxation theories is also discussed.

2. Theory

In our previous studies,14,16 the vibrational motions respon-
sible for generating dipole derivatives have been derived by
using an algebraic property20 of the expansion of∂µk/∂qp. The
vibrational modes thus obtained (in general not equal to
intramolecular normal modes) are called infrared (IR) ICMs,
since the IR intensity of a given mode is proportional to the
square of its dipole derivative. By looking at eq 4 shown above,
it is noticed that (µk, qp) and (Ek, Qr) appear in a symmetric
way. It is therefore expected that the vibrational motions
inducing large changes inEk may be obtained in the same way
as in the derivation of the IR ICMs. We call such vibrational
motions field-modulating modes (FMMs), since they modulate
electric field at the position where the solute molecule is located.

For the purpose of deriving FMMs, we take the set of mass-
weighted translational and librational (rotational) coordinates
of the molecules in solution, denoted byRl,m (1e l e 3 for
translations and 4e l e 6 for librations,21 m denoting the
molecule number).∂Ek/∂Qr may be expanded by{Rl,m}1ele6,1emeN

as

whereN is the number of molecules.

The summation overl andm in eq 5 may be regarded as a
scalar product of two 6N-dimensional vectorsek andqr, defined
as (ek)u ) ∂Ek/∂Rl,m and (qr)u ) ∂Rl,m/∂Qr with u ) 6m + l.
Since{Rl,m}1ele6,1emeN is a set of mass-weighted coordinates,
the vectorsqr are normalized and orthogonal to each other by
definition. We consider an orthogonal transformation from
{qr}1eren to another set of 6N-dimensional vectors{st}1eten.
(We denote the number of normal modes included in the
derivation of FMMs byn.) Since{ek}1eke3 generates a three-
dimensional subspace in the 6N-dimensional space of intermo-
lecular vibrational motions, we can take{st}1eten such thattek

st ) 0 (1 e k e 3; 4 e t e n) is satisfied. We then define a set
of vibrational coordinatesSt as (st)u ) ∂Rl,m/∂St (with u ) 6m
+ l). Since∂Ek/∂St ) 0 for 4 e t e n by definition, and since
{St}1eten is related to{Qr}1eren by an orthogonal transformation,
we may regard{St}1ete3 as representing the intermolecular
vibrational modes responsible for modulating electric field at
the position where the solute molecule is located, i.e., the FMMs.

To obtain the explicit forms of the FMMs, we diagonalize
an n × n matrix M defined as

It is easily derived from the algebraic property of the vectors
explained in the last paragraph that there are at most three
nonzero eigenvalues forM. The rest of the eigenvalues are zero.
The eigenvectors for the nonzero eigenvalues represent the
FMMs. Each nonzero eigenvalue is equal to the square of the
electric field modulated by the corresponding FMM.

The above derivation shows that it is possible to represent
the intermolecular vibrational motions that modulate electric
field at the position of the solute only by three mutually
orthogonal vibrational modes for a given configuration of liquid
structure. Although the derivation is done in the context of the
INM theory, the three vibrational modes thus obtained (the
FMMs) are not equal in general to any normal modes. The
dimensionality of the vector space of FMMs comes from the
fact that{ek}1eke3 generates a three-dimensional space, or in
other words, there are three independent elements of∂Ek/∂Rl,m

for eachRl,m. As a result, if we confine ourselves to only two
components of the electric field (e.g., the electric field along
the x andy directions of the nitrate ion in the example shown
below), we obtain only two FMMs.

As in the derivation of the IR ICMs, any orthogonal set of
vibrational coordinates may be taken instead of{Qr}1eren to
derive FMMs. For example, we may include only the motions
of the solvent molecules in the derivation of the FMMs and
consider the (translational and librational) motions of the solute
molecule separately. We take this option in most part of the
example shown below.

3. Example of Application: Acetonitrile Solution of the
Nitrate Ion

In this section, we show the results of the calculations carried
out for an acetonitrile solution of the nitrate ion (NO3

-). It has
been shown in a previous study7 that this ion is distorted in
polar solutions along the NO asymmetric stretching modes,
which are strongly IR active and hence give rise to large
vibrational polarizabilities. We examine the extent to which this
ion is distorted due to intermolecular electrostatic interactions
and the nature of the intermolecular vibrational motions
responsible for those interactions by using the theoretical picture
developed in the present study.

A. Computational Procedure. The liquid structures of the
solution were calculated by the molecular dynamics (MD)
simulation method. The six-site model of acetonitrile developed
by Böhm et al.,22 which involves electrostatic interactions
between fixed partial charges and Lennard-Jones (12-6)
interactions, was used. For the nitrate ion, the four-site
(electrostatic and exp-6) model developed by Signorini et al.23

was used after fitting its exp-6 part by the 12-6 form (ε )
0.338 kJ mol-1 andσ ) 3.09 Å for N;ε ) 0.613 kJ mol-1 and
σ ) 2.80 Å for O). Only intermolecular degrees of freedom
were considered in the MD simulations. Four-dimensional
vectors (quaternions) were used to represent molecular orienta-
tions in solving the equations of motion,24,25 in combination
with the leapfrog integration method.25 215 molecules of
acetonitrile and 1 nitrate ion were contained in a cubic cell.
The periodic boundary condition was employed. The side of
the cubic cell was fixed to 26.7 Å, taking into account the
molecular volume of acetonitrile (87.8 Å3).26 The temperature
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was kept at 298 K by adjusting the total kinetic energy every
200 fs. The time step was set to 2 fs. The system was
equilibrated for more than 320 ps, after which a production run
of 1 ns was carried out.

From the MD simulations, 50 configurations of liquid
structure were taken to calculate INMs. Force constant matrices
(F matrices) were constructed in the mass-weighted intermo-
lecular vibrational coordinate system,{Rl,m}1ele6,1emeN defined
in section 2. The molecular axes were defined so that thex and
y axes were the degenerate axes of theC3V (for acetonitrile) or
D3h (for the nitrate ion) point group. INMs were obtained by
diagonalization of theF matrices thus constructed. For each
configuration of liquid structure, there were three modes with
zero frequencies that correspond to overall translation of the
system. The other 6N-3 modes had nonzero (real or imaginary)
frequencies.

The electric field at the center of the solute molecule due to
the partial charges on solvent molecules is expressed as

whereqj,m is the partial charge of thejth atom in themth solvent
molecule,r j,m denotes the position of this atom relative to the
center of the solute molecule, andrj,m is the length of this vector.
We therefore have

whereI is a 3× 3 unit tensor. The coordinate system used for
this tensor was then transformed to obtain∂Ek/∂Rl,m that appears
in eq 5. The FMMs were then calculated by using this tensor
as shown in section 2.

All the above calculations were carried out with our original
programs on a Fujitsu VPP5000 supercomputer at the Research
Center for Computational Science of the Okazaki National
Research Institutes.

To estimate the extent to which the nitrate ion is distorted
due to intermolecular electrostatic interactions, it is also
necessary to calculate its vibrational polarization properties. The
vibrational frequencies and the dipole derivatives for the
intramolecular normal modes of this ion were calculated at the
third-order Møller-Plesset perturbation27 (MP3) level of the
ab initio molecular orbital (MO) theory with the 6-31+G(2d,p)
basis set.28-30 The Gaussian 98 program31 was used for the ab
initio MO calculations on an NEC SX-5 supercomputer at the
Research Center for Computational Science of the Okazaki
National Research Institutes. From the quantities thus obtained,
the vibrational polarization properties were calculated by using
our original programs on a Compaq XP 1000 workstation in
our laboratory.

B. Properties of the FMMs. An example of the vibrational
patterns of FMMs is shown in Figure 1. Here we adopt a
“covariant” representation of the vibrational patterns, expressed
asxIl,m ∂Rl,m/∂St, whereIl,m is the total mass of the molecule
(for translations) or the moment of inertia (for librations). Figure
1 shows the atomic motions in this representation.

The rational for adopting such a representation is as follows.
∂Qr/∂St is expanded by{Rl,m}1ele6,1emeN as

Since {Qr}1ere6N and {Rl,m}1ele6,1emeN are related by an
orthogonal transformation, we have

Since{Rl,m}1ele6,1emeN is a set of mass-weighted coordinates,
a natural contravariant representation of the vibrational patterns
of normal modes should be in the form (∂Rl,m/∂Qr) × (1/xIl,m).
The corresponding covariant representation of the tensor∂Rl,m/
∂St is therefore in the formxIl,m∂Rl,m/∂St. It is necessary to
introduce this representation becauseIl,m for the libration around
the z axis of acetonitrile is much smaller than the other types
of motions, and its contribution to the FMMs will be unneces-
sarily exaggerated without the factor ofxIl,m.

It is seen in Figure 1 that the amplitudes of the motions are
large only for the solvent molecules just around the solute
molecule (located at the center). This localized nature of the
vibration holds also for the other two FMMs. This result
demonstrates that the motions of the molecules in the first
solvation shell are primarily responsible for modulation of the
electric field at the position of the solute. The motions of the
solvent molecules outside this region have only small effects
on the field modulation.

The localized nature of the FMMs is more clearly seen by
plotting the contribution of the molecular motions to the FMMs
as a function of the solute-solvent intermolecular distance. The
function defined as

represents the contribution of each type of motions to the field
modulation, whererm is the distance between the solute molecule
and the mth solvent molecule, and〈...〉 denotes statistical

Figure 1. An example of the vibrational patterns of FMMs in a
covariant representation (see text) calculated for an acetonitrile solution
of the nitrate ion. The nitrate ion is located at the center. The atomic
motions are shown by arrows.
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average. The result is shown in Figure 2. The following points
are noteworthy. (1) Most of the field modulation originates from
the motions of the solvent molecules within about 5 Å from
the solute. The localized nature of the FMMs seen in Figure 1
is not peculiar to a few configurations of liquid structure but is
common to most (or all) configurations. (2) The contribution
to the FMMs is especially large for the librations around thex
and y axes. This result is reasonable because the molecular
dipole moment changes its direction when the molecule rotates
around itsx or y axis. A tail of the functionCl(r) in the r > 6
Å region is noticeable only for this type of motion, indicating
that the contribution to the FMMs is slightly longer-ranged than
the other types of motions. (3) Since we are using a six-site
(not three-site) model for acetonitrile, in which hydrogen atoms
are treated explicitly, the libration around thez axis also
contributes to the FMMs. However, the contribution is short-
ranged because the molecular dipole moment does not change
its direction or location by this type of motion.

Since intermolecular normal modes are delocalized, the
localized nature of the contribution to the field modulation is
obscured in the normal mode picture. To clarify this point, we
calculate another function defined as

This quantity represents the contribution of each type of
molecular motion to normal modes with the weights of their
effects on field modulation. The result is shown in Figure 3. It
is clearly seen that, except forl ) 6 (the libration around thez
axis), significant values ofDl(r) are calculated over the whole
range of intermolecular distances. This result demonstrates that
the normal modes with large effects on field modulation are
delocalized to the extent that they include molecular motions
in ther > 10 Å region. It may be said, therefore, that the normal
mode picture does not provide sufficiently correct information
on the intermolecular vibrational motions that are really
responsible for field modulation.

The difference in the functional forms ofCl(r) and Dl(r)
shown above suggests that the FMMs are expressed as linear
combinations of many (not only a few) normal modes. To
confirm this point, the frequency distributions of the normal
modes involved in the expansion of FMMs, defined as

are calculated. Here, the FMMs with the largest, medium, and
smallest values ofΣk(∂Ek/∂St)2 calculated for each configuration
of liquid structure are denoted byS1, S2, andS3, respectively.
The result is shown in Figure 4a. As is usually done, imaginary
frequency modes are plotted on the negative frequency side. It
is seen that all the FMMs are made of linear combinations of
normal modes in a wide frequency range.32 The same is true if
we include only the electric field in thex andy directions of
the solute, as shown in Figure 4b.

As references to the functionsGt(Ω) shown above, the
densities of states for the six types of motions (1e l e 6),
defined as

are shown in Figure 5. It is seen that the frequencies of most
normal modes on the real-frequency side, except for those with
large contributions of the librations around thez axis (l ) 6),
are confined in theΩ < 200 cm-1 region. The librations around

Figure 2. Contribution of molecular translations and librations to the
FMMs as a function of the solute-solvent intermolecular distance [Cl-
(r) defined in eq 11]: (solid lines) translations along and librations
around thex and y axes of acetonitrile molecules; (broken lines)
translations along and librations around thez axis.

Figure 3. Contribution of molecular translations and librations to
normal modes, with the weights of their effects on field modulation,
as a function of the solute-solvent intermolecular distance [Dl(r)
defined in eq 12]. See also the caption for Figure 2.
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Figure 4. (a) Frequency distributions of the normal modes involved
in the expansion of the FMMs [Gt(Ω) defined in eq 13] in the case
where all the three components of the modulated field are taken into
account in the calculations of FMMs: (solid line)t ) 1; (broken line)
t ) 2; (dot-dashed line)t ) 3. (b) Those in the case where only the
components of the modulated field in thex and y directions of the
nitrate ion are taken into account in the calculations of FMMs.
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thezaxis appear in a higher-frequency region, probably because
the moment of inertia is very small for this type of motion.

It is noticed from the comparison of Figures 4 and 5 that,
although the librations around thex and y axes contribute
significantly to the FMMs as shown in Figure 2, the functional
forms of Gt(Ω) and Hl(Ω) (l ) 4 and 5) are substantially
different. Especially in the case ofG1(Ω), which is the
component with the largestΣk(∂Ek/∂St)2, large values are
calculated in the 400-200 cm-1 region, where the density of
states is rather small. It may be said that, among the modes
with large amplitudes of the librations around thex andy axes,
those in a higher-frequency region tend to be more effective in
modulating electric field.

C. Vibrational Polarization of the Nitrate Ion in Solution.
As explained in section 1, vibrational polarization of the solute
in solution is determined by the magnitude of external electric
field and the vibrational polarizability of the solute itself.

The magnitude of field modulation in the FMM picture is
obtained from the values of|∂E/∂St| and the vibrational
amplitudes of the FMMs. In the case of the acetonitrile solution
of the nitrate ion shown above, the root-mean-square values of
|∂E/∂St| are in the range of 0.033-0.049 × 10-10 esu Å-3

amu-1/2. The vibrational amplitudes of these FMMs (δSt) at
temperatureT are calculated from their “average” vibrational
angular frequenciesΩh t as

The average vibrational frequencies (wavenumbers) are in the
range of 150-220 cm-1. From these values, the magnitudes of
field modulation are calculated to be∼0.027× 10-10 esu Å-2.

This value is slightly smaller than that obtained directly from
MD simulations, ∼0.043 × 10-10 esu Å-2. This is partly
because the FMMs obtained above do not involve the motions
of the solute molecule, as noted in the last paragraph of section
2. Since the electric field in solution is not uniform, the motions
of the solute molecule induce changes in the electric field at its
center of mass. If we include those motions in the definition of
FMMs, we obtain∼0.034× 10-10 esu Å-2 as the magnitudes
of field modulation in the FMM picture. The remaining
difference is probably due to the anharmonicity of intermolecular
vibrations and the existence of multiple potential energy minima
in the solution.

The vibrational frequencies, the IR intensities, and the
vibrational polarizabilities of the intramolecular normal modes
of the nitrate ion calculated at the MP3/6-31+G(2d,p) level are
shown on the left half of Table 1. The vibrational polarizabilities
are large only for the degenerate pair of the NO asymmetric
stretching modes (q1 and q2). It is therefore reasonable that
distortion of molecular structure occurs particularly along these
modes in polar solutions.

From the vibrational polarizability calculated forq1 andq2

shown in Table 1 and the magnitude of the modulation of
external electric field (∼0.04× 10-10 esu Å-2), it is estimated
that the root-mean-square displacements alongq1 and q2 for
the nitrate ion in acetonitrile are∼0.013 Å amu1/2. The
vibrational frequency shifts calculated for displaced structures
are shown on the right half of Table 1. A frequency splitting of
∼25 cm-1 is obtained between the two NO asymmetric
stretching modes. In a previous study,7 it has been stated that
the accurate value of the frequency splitting is difficult to
determine experimentally for the nitrate ion in acetonitrile and
other polar solvents except for water. However, considering the
frequency splitting of∼60 cm-1 observed in aqueous solution7

and from the expectation that nitrate-water interactions are
stronger than nitrate-acetonitrile interactions, the frequency
splitting of ∼25 cm-1 obtained above may be reasonable.33 It
has also been shown in ref 7 that the structural displacements
along the NO asymmetric stretching modes occurring upon the
π f π* electronic excitation are estimated to be 1.3 in the
dimensionless unit (which corresponds to about 0.2 Å amu1/2)
from the observed resonance Raman intensities. Since this value
is larger than the displacement calculated above for the ion in
the ground electronic state (∼0.013 Å amu1/2), it may be said
that the ion in theππ* excited state is more sensitive to external
electric field.

4. Summary and Outlook

In the present study, we have developed a method for
examining the intermolecular vibrational motions that are
responsible for modulating external electric field at the position
of the solute in solution. Those vibrational motions are called

TABLE 1: Vibrational Frequencies, IR Intensities, and Vibrational Polarizabilities of the Normal Modes for the Optimized
Structure and Frequency Shifts for Displaced Structures of the Nitrate Iona

displaced structures

optimized structure freq shift (cm-1)

normal mode
freq.

/ cm-1
IR int.

/ km mol-1
vib. polar.

/ au
δq1 ) 0.013

Å amu1/2
δq2 ) 0.013

Å amu1/2
δq2 ) -0.013

Å amu1/2

q1 NO asym. str. (0,+,-) 1478.8 717.7 8.89 13.1b 12.8 -12.8
q2 NO asym. str. (2+,-,-) 1478.8 717.7 8.89 -12.5b -12.2 13.3
q3 NO sym. str. 1137.9 0.0 0.00 -0.4 -0.4 -0.4
q4 out-of-plane bend 884.7 9.8 0.34 -0.1 -0.1 -0.1
q5 in-plane bend (0,+, -) 731.0 0.8 0.04 0.3b 0.3 -0.4
q6 in-plane bend (2+,-,-) 731.0 0.8 0.04 -0.4b -0.4 0.4

a Calculated at the MP3/ 6-31+G(2d,p) level.b The vibrational pattern of this normal mode is not exactly similar to that of the corresponding
mode of the optimized structure.

Figure 5. Densities of states for the molecular translations and
librations [Hl(Ω) defined in eq 14]. See also the caption for Figure 2.

〈δSt
2〉 ) p

Ωh t

coth(pΩh t

2kT) (15)
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field-modulating modes (FMMs). The FMMs are derived in the
context of the INM theory by using an algebraic property of
the expansion of∂Ek/∂Qr (eq 5), in the same way as in the ICM
theory of intramolecular vibrations developed in previous
studies.14,16As an example of application of the present method,
FMMs have been calculated for an acetonitrile solution of the
nitrate ion. The vibrational patterns of the FMMs, the magnitude
of the field modulation by the vibrations along the FMMs, and
the structural distortion of the solute induced by the field
modulation are discussed in detail.

Intermolecular vibrational interactions are important in many
situations. When the external electric fieldEk in eq 1 depends
on intramolecular vibrational modes of other molecules in the
liquid, we obtain intermolecular coupling of intramolecular
vibrations. If the intrinsic frequencies of the vibrational modes
involved in the coupling are sufficiently close to each other (the
resonant case), the vibrational modes are delocalized in the
liquid. An example of manifestation of such delocalization of
vibrational modes in vibrational spectral features is the non-
coincidence effect.34-43 Theoretical aspects of this phenomenon
have been discussed.38-43 In the present study, we have
examined the modulation ofEk by intermolecular vibrational
motions. As a result of the field modulation, interactions between
intramolecular and intermolecular vibrations such as those given
in eq 4 are obtained. In addition to the situation analyzed in the
present study, this type of interaction is expected to be important
also in vibrational relaxation. As is well known, one factor that
determines the vibrational relaxation rate is the derivative of
the system Hamiltonian with respect to the vibrational modes
involved in the process. It has been discussed in previous
studies44-46 that electrostatic interactions play an important role
in vibrational relaxation. For example, if we go on to the second
order inEk in eq 4, we obtain

as the second-order term. Since it is first order in intramolecular
and second order in intermolecular modes, this term is expected
to be important in a vibrational relaxation process into two
intermolecular modes. As discussed in section 2,Σr(∂Ek/∂Qr)-
Qr may be replaced by the summation over the FMMs.
Therefore, the nature of the vibrational modes involved in the
vibrational relaxation process may be examined by using the
FMM theory. Discussion on this point will be made further in
future studies.
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