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The recently developed time-averaged normal coordinate analysis method is employed to investigate the
normal modes of polymer nanoparticle dimers. In addition to providing the first accurate calculation of
vibrational frequencies and vibrational displacements in dimerized nanoparticles, the normal mode corre-
sponding to the particle dimer vibration is observed for the first time. It is observed that the nanoparticle
dimer vibration is only minimally coupled to the other internal motions of the particle, showing a true
correspondence to the vibrational motion in diatomic species. Several other characteristic vibrations of the
dimerized species are observed, which correspond to coupled indifferent modes of the monomer particles.

I. Introduction

There has been a great deal of interest in recent years on the
production, analysis, and properties of monodisperse polymer
particles, following experimental techniques that have allowed
for uniform production of polymer particles of arbitrary size
and construction. Much work has gone into experimental
analysis1-9 and theoretical study10-22 of these particles and their
properties.

In recent experimental studies, it has been demonstrated that
large structures composed of individually attached polymer
nanoparticles can be constructed using a particle positioning
tool.23 These structures are persistent for long time scales and
are presently being investigated for novel material properties.
Identifying the properties of these particle systems is of critical
and fundamental importance in understanding the physical
characteristics of the collective systems, and a great deal of effort
has been dedicated to investigation of both individual and
collective nanoparticle properties.

Understanding the vibrational frequencies of large systems
is important for evaluation of thermodynamic properties, infrared
and Raman spectra, and reaction mechanisms. Of particular
importance is the low frequency modes, which are typically
related to conformational changes. Frequently, large molecular
systems, such as proteins, are observed in the presence of
solvent, the motions of which are strongly coupled to the
conformational motion of the molecule. In the present case under
investigation, we simulate polymer spheres in the absence of
solvent, under conditions similar to those under which they are
experimentally observed.1-9

In recent molecular dynamics simulations, we have seen
evidence of collective vibrational motion of polymer particle
dimers;24 however, the vibrational frequencies of the intraparticle
stretching modes must be estimated from the periodicity of the

oscillations of the center of mass separation. Such an estimation
makes the ad hoc assumption that there is, in fact, dimer
vibrational normal mode, without detailed examination of the
vibrational behavior. An understanding of the origins of the
vibrational frequencies and their detailed motion and the
examination of other collective motions of the systems can lead
to a better understanding of the system dynamics. In addition,
there may be other characteristic motions and frequencies that
may aid in characterization of the systems, but that are difficult
to evaluate without computation of the normal modes of the
system.

Essentially, there are two classes of normal modes in a
collection of particles. There are normal modes that roughly
correspond to motion of the individual particles, and there are
normal modes that involve internal elasticity of the particles.
In this simplified classification, however, we ignore a number
of fundamental couplings between the two kinds of motions,
but such a simplification presents a construct to frame the study
of the normal modes. In the present calculations, we seek to
investigate both kinds of normal modes and compare the
frequencies for the interparticle modes to the estimated frequen-
cies from our previous MD simulation. The analysis of the
normal modes of the complete system, however, requires
accurate determination of the eigenvalues (frequencies) and
eigenvectors (normal modes) of a very large system. To
accomplish this feat, we must resort to special techniques.

The process of the computation of normal modes of molecules
is well-known and has been reviewed extensively elsewhere,25-29

so we provide a brief summary here of the results that are
important to the present study. The essence of normal-mode
analysis is the solution of the secular equation,

whereλ are the eigenvalues andF is the force constant matrix

|F - λI | ) 0 (1)

9174 J. Phys. Chem. A2002,106,9174-9180

10.1021/jp013584f CCC: $22.00 © 2002 American Chemical Society
Published on Web 08/17/2002



in mass-weighted Cartesian coordinates. The squares of the
frequencies of vibration are given by the eigenvalues,λ. The
force constant matrix is obtained from the second derivatives
of the potential function,V,

whereM is a diagonal matrix composed of the masses. In a
traditional NCA calculation for a large molecule, there are
numerous negative eigenvalues, which correspond to imaginary
frequencies, which are in contrast to the assumption that the
system is at a local minimum.

Recently, our laboratory has developed a technique for
obtaining the normal modes of large systems composed of
thousands of atoms.15,16,18,21In contrast to previously employed
techniques,25,26 the present method relies on a time-averaging
procedure to smooth positional variations in the Hessian matrix.
The averaging procedure ensures the Hessian matrix to be
positive semidefinite and eliminates the occurrence of negative
eigenvalues. The negative eigenvalues are physically unrealistic
and are at odds with the fundamental assumption of normal-
mode analysis: that the system lies at a harmonic local minimum
of the potential energy surface where all of the second
derivatives must be positive. The eigenvalues obtained from
the diagonalization of the Hessian matrix represent the squares
of vibrational frequencies, and negative eigenvalues represent
unbound motions. When the method has previously been
employed,15,16,18,21it has successfully produced the spectrum
of large systems, faithfully finding six eigenvalues that are
essentially zero, corresponding to the indifferent modes30

(translations and rotations), with the remainder of the modes
being assigned to true vibrations of the system.

The following paper is organized as follows: in section II
we describe the theoretical methods employed in the present
calculations, and the methods by which the calculations were
performed. In section III we present and discuss the results.

II. Computation

The complete calculation occurs in several steps. The first
step is the construction of the particle dimers by molecular
dynamics simulation, followed by annealing of the particle
dimers to a local minimum via a molecular mechanics proce-
dure. The minimized configuration is used to generate a
trajectory-averaged Hessian matrix, which is diagonalized using
sparse matrix techniques to yield the eigenvalues (frequencies)
and eigenvectors (displacements) of the molecular normal
modes. Finally, the eigenvectors are searched to evaluate their
character as consisting largely of inter- or intraparticle motions.
Each of these procedures is discussed in some detail in the
following sections. For the purpose of this study, we have
restricted ourselves to polymer particles of 60 chains of 100
monomer units, with an initial temperature of 5 K.

A. Molecular Dynamics. For the purposes of the present
study, we have examined motions and interaction forces between
individual polymer particles both before and after interactions
take place. The details of the geometric statement function
approach developed in this group are described more fully
elsewhere.31

Polymer particles have been treated with a molecular dynam-
ics approach,32,33 integrating Hamilton’s equations of motion
in time,

whereH is the Hamiltonian of the system and theqi and pi

represent the coordinates and their conjugate momenta. In the
present case, we have treated coordinates and momenta in the
Cartesian frame, where the total kinetic energy is diagonal.
Integration of the equations of motion was accomplished by
use of novel symplectic integrators developed in our labora-
tory.34

As a simplification we have collapsed the CH2 and CH3 units
of the polyethylene chain into a single monomer of mass 14.5
amu. If the internal structure of these groups is neglected, the
number of coordinates and thus the number of equations of
motion for the system are greatly reduced. The model has been
shown to be useful to study the low-temperature behavior of
the system where the effects of the hydrogens have little effect
on the heat capacity and entropy of the system.35

The Hamiltonian for the system is specified as9,35

whereT is the kinetic energy component, expressed in terms
of Cartesian coordinates, the termsV2b, V3b, andV4b represent
the two-, three-, and four-body terms for monomer units in an
individual polymer strand, andVnb is the nonbonded interaction
between individual monomer units separated by four or more
monomer units along the chain, and within a spherical cutoff
of 10 Å. The functional forms of the potentials are given by35-39

with the values of the constant terms given in Table 1. The
distances between the various monomer units,rij are given by
the standard Cartesian relation,

In the present case, initial conditions for the trajectories
comprised the coordinates of individual amorphous polymer
particles, which had previously been obtained by an annealing.14

Momenta were chosen randomly in the radial coordinate so as
not to excite internal angular momentum. The randomly chosen
momenta were rescaled so as to produce the appropriate
temperature for the simulation,

The thermalized particles were then offset in thez-coordinate
so that their minimum edge to edge distance was 5.75 Å. The
molecular dynamics simulation was allowed to run for a
minimum of 100 ps to allow the particles equilibrate and relax
to their final configuration.

B. Potential Minimization. After creation of the particle
dimer, it is necessary to establish suitable equilibrium positions
for each of the monomer units in the structure, finding the local

F ) M-1/2(∇2V)M-1/2 (2)

q̆i ) ∂H
∂pi

(3)

-p̆i ) ∂H
∂qi

(4)

H ) T + ∑V2b + ∑V3b + ∑V4b + ∑Vnb (5)

V2b ) D{1 - exp[-R(rij - re)]} (6)
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2
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potential minimum. The method employed in the present
approach is a hybrid molecular dynamics-molecular mechanics
simulation using the Broyden, Fletcher, Goldfarb, and Shannon
(BFGS) quasi Newton minimization algorithm and simulated
annealing via classical trajectories (a short trajectory in which
the momenta are periodically quenched to zero). The resulting
6000 monomer unit particle dimers are shown in Figure 1.

C. Hessian Matrix Evaluation. The usual method for normal
coordinate analysis is to choose a single configuration and to
evaluate and diagonalize the Hessian matrix for this configu-
ration. Because finding the exact minimum of the potential is
difficult, such an approach invariably leads to obtaining the
Hessian away from the minimum, leading to numerous negative
eigenvalues. In a recent development, it was discovered that
the matrix elements of the Hessian for coordinates obtained by
sampling over a classical trajectory randomly fluctuate about

the average value, which is then employed instead of the Hessian
at a fixed configuration. The accurate integration of the
trajectories is rendered particularly rapidly due to expressions
for analytic derivatives that have evolved in our laboratory.40,41

D. Sparse Matrix Diagonalization.We have used ARPACK
to compute the lowest vibrational modes of the sparse matrix
representing the time-averaged Hessian matrix. The ARPACK

TABLE 1: Potential Parameters for Polyethylene Particle
Systems

Two-Body Bonded Constantsa

D ) 334.72 kJ/mol
re ) 1.53 Å
R ) 199 Å-1

Three-Body Bonded Constantsb

γ ) 130.122 kJ/mol
θe ) 113°

Four-Body Bonded Constantsa

a ) -18.4096 kJ/mol
b ) 26.78 kJ/mol

Two-Body Nonbonded Constantsa

ε ) 0.4937 kJ/mol
σ ) 4.335 Å

a References 38 and 39.b References 36 and 37.

Figure 1. Structure of polymer particle dimer composed of 60-100
monomer unit chains.

Figure 2. First 100 vibrational frequencies (in cm-1) of particle dimer
pair composed of 6000 monomer unit particles.

Figure 3. Dimer stretching modes of 6000 monomer unit particle
dimers, mode 10.
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software is based on a variant of the Arnoldi process and for
symmetric matrixes is equivalent to the Lanczos algorithm. The
details of the computations employed in our computations have
been described and reviewed extensively elsewhere.15,16,18,21

E. Eigenvector Searching.To characterize the vibrational
modes as correlating to particle dimer motion or to internal
motion a simple procedure was developed to screen for
eigenvectors that were composed of large changes in the center
of mass separation of the two particles. For each particle the
Cartesian displacements∆x, ∆y, and∆z were summed over all
of the constituent monomer units. A concerted motion of all of
the monomer units in the nanoparticle in a single direction
results in a large cumulative displacement, whereas nominally
internal motions in an individual particle conserve the particle
center of mass and the displacements sum to zero. Using this
screen as a diagnostic tool allows for rapid evaluation of classes
of eigenvectors involving concerted particle motion for more
detailed inspection.

The eigenvectors corresponding to the lowest 100 frequencies
were explicitly visualized to observe characteristic behaviors.
As expected, the first six modes correspond to the overall
translations and rotations,28,30the next six to “coupled monomer
indifferent modes”, as described below. Modes corresponding
to higher vibrational frequencies did not have any readily
discernible characteristic behavior, with the exception of modes
in which the majority of the motion was restricted to a single
particle (local or “spectator” vibrations).

III. Results and Discussion

It is observed that the molecular dynamics simulation
produces particle dimers very similar in structure to those that
are experimentally observed, Figure 1, although the simulated

particle dimers are smaller in overall size. Experimental
investigation of the interfacial region has not yet been made,
but calculations of the particles in the present system show that
there is not a significant amount of intertwining of the chains
of the individual particles. Essentially, the present configuration
consists of two individual particles in close contact, with a
modest amount of deformation to minimize the exposed surface
area of the particle dimer and subject to the constraint of
minimization of large scale chain migration.

The vibrational frequencies show the usual characteristic
behavior of having six near zero values, corresponding to the
pure translations and vibrations. The remaining eigenvalues
correspond to true vibrations of the dimer pair. The vibrational
frequencies are shown in 2.

The investigation of the structure of the displacements in the
eigenvectors leads to the identification of several normal mode
types that are characteristic of particle structures. First is the
dimer stretching mode represented in Figure 3, which is
analogous to the vibrational stretch of a diatomic molecule,
mode 10 in the 6000 monomer unit dimer, which was identified
through the search algorithm previously described. The normal
modes identified in this way were verified by explicit visualiza-
tion of the eigenvectors of the normal modes, Figure 3.

Correlation of the dimer vibration frequency to the center of
mass separation vibration appears to be reasonable. In a separate
calculation, the dimer vibrational eigenvector for a 3000
monomer unit dimer, was found to have a frequency of about
0.8 cm-1.42 This compares quite favorably with the our previous
simulation studies that estimated the vibrational frequency from
the periodic oscillations of the center of mass separation of the
particles, where the vibrational frequency was found to be
approximately 1 cm-1.24

Figure 4. Bitoroidal modes of 6000 monomer unit particle dimers, mode 8: side view (a) and top view (b).
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There are additional vibrational modes that appear to be
characteristic of the particle dimers that are not found in the
spectrum of diatomic molecules. These characteristic modes are
those which couple the internal motion of the individual particles
making up the dimer. A diatomic molecule has no internal
motion for the constituent atoms, whereas the individual polymer
particles express a wide variety of normal mode types. In
particular, we consider the indifferent normal modes,30 those
which correspond to the overall translations and rotations of
the individual polymer particles, and how they couple to form
new normal modes in the particle dimers. We classify the joint
normal modes by an approximate scheme in which we couple
the indifferent normal modes (specifically those with a zero
frequency, i.e., the translations and rotations) of the same type
for the single particles. For simplicity we apply this scheme to
the particles composed of 60-100 monomer unit chains and
reference the normal mode numbers for that system.

The scheme we establish for the coupling is to essentially
write a basis for the eigenvector of each individual particle,e1

ande2, and to write the symmetric and antisymmetric combina-
tions of the motion,

remembering that the two vectorse1 ande2 belong to orthogonal
vector spaces, andR and â are greater or equal to zero. The
linear combination may be made with arbitrary coefficients, with
the restriction that at least one eigenvector must have a nonzero
component. Under such a scheme, we now classify the overall
motions as approximately coupled motions of individual par-

ticles. Naturally, one could take additional components from
each of the vector spaces, and this corresponds to the true
solutions of the normal modes; however, it appears that for the
lowest frequency modes the contributions come from one
principal component.

Without loss of generality, we can assign a Cartesian
coordinate system to the particles, with thez-axis being aligned
along the line connecting the centers of mass. If we couple the
z translations for the individual particles symmetrically, we find
a overall translation in thez direction (mode 1). The antisym-
metric combination corresponds (approximately) to the pseudodi-
atomic vibrational mode (mode 10). Similar analysis for thex
and y translations produces normal modes that correspond to
overall translations in thex andy directions (modes 2 and 3),
and (approximately) to the “diatomic” rotations about thex and
y axes (modes 4 and 5). The coupling of the individual particle
rotations about thez-axis produces a true rotation about the
z-axis (mode 6) and the lowest frequency vibrational mode,
which we have designated as a “bitoroidal” mode, in which the
two particles have pseudorotations about thez-axis on opposite
directions (mode 8), Figure 4. We note in the figure that the
coupling is not perfectly on axis, likely due to the effect of the
polymer strands making up the structure, but the characteristic
nature of the vibration is clear.

The coupling of thex and y rotational motions produces
characteristic eigenmodes that are unique to structures composed
of particle composites. The two particles can rotate in the same
direction (e.g., clockwise) with respect to thex- or y-axis, which
produces an antisymmetric “gear mode” (modes 11 and 12)
(Figure 6), or in opposite directions to produce a symmetric
“gear mode” (modes 7 and 9) (Figure 5). These motions are
not truly gear rotations, as they are restricted in the extent of

Figure 5. Symmetric “gear mode” of a 6000 monomer unit particle
dimer, mode 7.

es ) (Re1, âe2) (12)

ea ) (Re1, -âe2) (13)

Figure 6. Asymmetric “gear mode” of a 6000 monomer unit particle
dimer, mode 12.
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rotation by the potential force, and they oscillate about the
equilibrium position. Nonetheless, this approximate classification
scheme appears to correctly characterize the classes of motion.

These approximate characterizations are quite likely to be
dependent on the extent of the interparticle coupling of the
interfacial region. Clearly, particles with large surface contact
regions will be more strongly coupled, and this classification
scheme, which essentially amounts to a perturbation treatment
will fail. Nonetheless, this picture does provide significant
physical insight into the nature of the motion.

Normal modes corresponding to higher vibrational frequen-
cies are more difficult to classify and involve large scale motion
of monomer units in both particles. It is likely that these motions
can be considered in terms of coupled vibrational modes of
similar character in the individual particles, at least in the case
of lower frequency vibrations, but we have not attempted to do
so. There are also a number of normal modes, for instance mode
24 in Figure 7, which appear to consist of large displacements
in one particle, with minimal displacements in the other;
essentially, the second particle is reduced to “spectator” status.
Of the remaining 88 of the 100 lowest frequency normal modes
not corresponding to approximate coupled individual motion,
approximately 25% (23 modes) correspond to approximate local
(spectator) vibrational modes.

IV. Conclusion

The vibrational eigenvectors of coupled polymer spheres are
determined for the first time using the time-averaged normal
coordinate analysis method. Several modes are characterized,
including modes that correspond to internal torsion about the
interparticle axis, coupled single particle rotations, and an

approximate dimer stretching vibration. In addition, there appear
to be a large number of modes that correspond, in an ap-
proximate sense, to decoupled particle vibrations, where one
particle undergoes large displacements while the other is
stationary.

We have adopted a simple scheme for classifying the normal
modes of the coupled particle system, based on an extension of
the motions of individual particles. Although the approximate
scheme is not derived within a rigorous group theoretic treatment
(there is no simple point group that can be applied to the coupled
polymer spheres), the scheme appears to correctly predict the
motions of the coupled indifferent (zero frequency) modes of
the individual particles.
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