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This study considers a scheme for sampling phase space in large molecules based on Car-Parrinello ab
initio molecular dynamics. The scheme makes use of a combined quantum mechanics and molecular mechanics
(QM/MM) method augmented with a multiple-time-step technique. This scheme makes it possible to oversample
the computationally less expensive MM region relative to the QM domain. The goal here is to provide better
ensemble averaging in the MM region that is usually larger in size and therefore typically has a higher degree
of configurational variability. It is shown that the multiple-time-step integrator will generate the same trajectory
as a standard molecular dynamics integrator. Moreover, with a gradual rescaling of masses, the energy
conservation of a multiple-time-step simulation can be satisfied to the same extent as a standard simulation.
Finally, it is demonstrated that the multiple-time-step QM/MM method can accelerate the equilibration and
configurational sampling of a molecular dynamics simulation as it is used in thermodynamic integration. The
scheme is not intended as a tool for generating trajectories in actual dynamics.

1. Introduction
The Car-Parrinello1 based ab initio molecular dynamics

method (CP-AIMD) has over the past 15 years emerged as a
powerful tool in chemical and physical research. The CP-AIMD
scheme is still computationally demanding for larger molecules,
and there has, as a consequence, been several attempts to
improve the way in which the required computational time scales
with size. The improvements include linear scaling methods2,3

and sophisticated techniques for integrating the equations of
motion.4

Taking a different route toward improved scaling with size,
we have in a previous study implemented5 the combined
quantum mechanics and molecular mechanics (QM/MM) method6

into the Car-Parrinello ab initio molecular dynamics frame-
work. In the present investigation we report on the implementa-
tion of a multiple-time-step scheme4 such that phase space can
be sampled at a faster rate than the quantum mechanics domain,
thereby providing better ensemble averaging during the calcula-
tion of the free energy barriers. The method is intended for
sampling phase space, but not for generating trajectories in real
dynamics. Section 2 will deal with details of the QM/MM
implementation,5 whereas section 3 describes our multiple-time-
step scheme.

2. Outline of the Combined QM/MM Car -Parrinello Ab
Initio Molecular Dynamics Implementation

We shall in this section deal briefly with details of the QM/
MM implementation5 not reported previously.

Partitioning of the Real System into QM and MM
Domains. In the combined QM/MM method the molecular
system is divided into a smaller part described by a quantum
mechanical method and a larger part accounted for by molecular
mechanics. This partitioning is illustrated in Figure 1 where the
complete system is represented by 3-methylhexane (1a). This
system is divided into a quantum mechanical ethane core (1b)
and three molecular mechanics regions represented respectively
by two methyl and one propyl group (1b). The partitioning into
the QM and MM domains crosses through three C-C bonds.
We denote the carbons that remain in the QM region the C*
link atoms (1c), whereas the carbons residing in the MM domain
are denoted the C# link atoms (1c). Finally, hydrogen capping
atoms (H′) are added to the QM region in order to satisfy the
valence (1c) in this domain. The capping atoms are not part of
the real system.5 As described elsewhere,5b the bond angle and
dihedral angle used to define the link atom are set equal to the
bond angle and dihedral angle used to define the capping atom,
respectively. Also the bond distance used to define the link atom
is equal to the bond distance defining the capping atom except
for a constant∆R. This is required in order not to introduce
redundant degrees of freedom.5b The present investigation did
not consider any electrostatic coupling between the QM and
MM atoms. However, such a coupling can be introduced.5c

The combined QM/MM total energy in this framework can
be defined5b as

whereEQM is simply the energy of the QM model system with
the capping atom included, andEMM is the sum of all the MM
energy terms of the real system that contain at least one MM
atom (for example, the bond stretching potential between the
QM link atom and the MM link atom is handled by the
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appropriate MM stretching potential). We note that most authors
define the total combined QM/MM energy expression with a
component that express the interaction energy between QM and
MM regions. In eq 1EQM and EMM include these interaction
energies.5

Verlet Integration Scheme. In a molecular dynamics
simulation, the motion of the nuclei is determined by integrating
Newton’s second-order differential equation to obtain the
position of all atoms as a function of time. Generally, there is
no analytical solution to the problem for molecular systems,
and numerical methods have to be utilized. In other words, given
the velocities and positions at a timet, one determines the same
quantities with reasonable accuracy at a later timet + ∆t using
the calculated forces on the nuclei. Consider the motion of an
atom along a coordinatex. If one knows the positionx(t) at
time t, the position at timet + ∆t is given by a standard Taylor
expansion, as shown in eq 2.

There are a variety of integration schemes for solving the
above problem. The most common methods truncate after the
quadratic term and therefore are of third-order accuracy in the
time step∆t. One such method is the Verlet7 integration scheme
that is commonly used in ab initio molecular dynamics. In Verlet
dynamics, the position of the system at the at a timet + ∆t is
given by a function of the position at the current time step,
xi(t), previous time step,xi(t-∆t), and the forces,

at the current time step, as related in eq 3b.

With each new time step, a new geometry is generated and
therefore the forces on the nuclei have to be recalculated. To
simulate molecular vibrations, the time step∆t must be at least
a third smaller than the period of the fastest vibration.

Combined QM/MM Lagrangian. The combined QM/MM
methodology has been implemented within the PAW ab initio
molecular dynamics package of Blo¨chl8 by extending the Car-
Parrinello Lagrangian1 to include the molecular mechanics
subsystem:

The first three terms of eq 4 are equivalent to the ordinary
quantum mechanical terms in the CP scheme,1 whereas the last
two terms in eq 4 refer to the kinetic energy of the MM nuclei
and the potential energy derived from the MM force field.
Equation 4 essentially describes the coupled equations of motion
of three subsystems: the QM nuclei, the QM wave function
and the MM nuclei. In this way, the first three terms of eq 4
refer to the kinetic and potential energy of the “capped” QM
model system.

Thermostating. When the nuclei of a molecular simulation
follow Newton’s equations of motion, the total energy of the
system is conserved. Furthermore, when the volume is held
constant (cell size fixed), then the simulation will generate a
microcanonical (NVE) ensemble. When chemical reactions are
studied, this type of dynamics may be undesirable because the
excess heat that is dissipated or absorbed during a reaction could
alter the temperature of the system to unwanted values. For this
reason the temperature of a molecular dynamics simulation is
often controlled, or thermostated, such that a canonical or NVT
ensemble is generated. A common thermostating procedure is
to couple the molecular system to a heat bath through the method
of Nosé. 9a In this method, an extra degree of freedom
corresponding to the heat bath is added to the existing degrees
of freedom of the molecular system. A kinetic energy and a
potential energy term representing the heat bath are added to
the Hamiltonian, which allows energy to flow dynamically back
and forth between the system and the heat bath. The method
was subsequently reformulated by Hoover,9b and so this
technique is also referred to as a Nose´-Hoover thermostat. The
Nosé thermostat effects the nuclear motion via a velocity
dependent friction term in the equations of motion as expressed
in

The friction term is governed by the variableú, which obeys
its own equation of motion as given by

Figure 1. Partitioning scheme used in QM/MM method. (a) Complete
system represented by 3-methylhexane. (b) Partitioning into MM part
(dotted line) and QM part represented by ethane molecule. (c) Position
of link atoms and capping-atoms.
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In this way, the kinetic energy of the nuclei fluctuates about
the mean value (1/2)gkBT, whereg is the number of degrees of
freedom of the nuclear system,kB is the Boltzmann constant,
andT is the desired physical temperature of the simulation.Q
in eq 6 is an inertial parameter that controls the time scale of
the thermal fluctations. It should be noted that a simulation that
is Noséthermostated also conserves energy if the thermostat
potential,gkBTú, and kinetic energy, (1/2)Qú̇2, are added to the
total energy.

It has recently been shown by Blo¨chl and Parrinello10 that
the Nose´ thermostating method for maintaining constant tem-
perature molecular dynamics can be extended to the fictitious
kinetic energy of the wave function in the Car-Parrinello
methodology. In this context the thermostat acts to prevent the
electronic wave function from slowly drifting away from the
Born-Oppenheimer potential surface. The thermostating of the
wave function in this way allows stable Car-Parrinello mo-
lecular dynamics to be performed for long periods of time
without the need of perioidically quenching the wave function
to the Born-Oppenheimer potential surface.

A separate Nose´ thermostat for the molecular mechanics
subsystem has been implemented. Since the MM and QM
regions are strongly coupled, there will be energy flux between
the two subsystems and their thermostats during a simulation.
To prevent strong coupling between the thermostats themselves,
the inertial parametersQ (eq 6) are chosen to maintain a large
disparity in the time scales of the heat bath fluctuations in the
QM and MM regions (approximately 5 times difference). A
single Nose´ thermostat for the whole QM/MM nuclear system
was not implemented because of the complications that would
arise with the QM/MM multiple-time-step methodology to be
described later.

Equilibration. To properly sample the canonical ensemble,
the system must be thermally equilibrated. Thermal equilibration
is often done by instantly exciting the system to the desired
temperature with a random excitation vector. This is followed
by thermostated dynamics for at least a few picoseconds, thereby
ensuring that all vibrational modes are excited to an equal extent.
There are two problems with this approach in the Car-Parrinello
scheme. First, an immediate pulse of kinetic energy in order to
excite the nuclei to the desired temperature is likely to dislodge
the wave function from the Born-Oppenheimer surface. Second,
long periods of equilibration are expensive with ab initio
molecular dynamics. For these reasons we take a modified
approach to equilbration. First, the nuclei are excited by a series
of slowly growing pulses. Each of the excitation vectors is
chosen to be orthogonal to the already excited modes, thereby
ensuring an evenly distributed thermal excitation. This is
followed by a short period of thermostated dynamics. We have
found this approach more efficiently achieves a thermally
equilibrated system than the convention method. Again, the QM
and MM regions are strongly coupled, the MM region cannot
be instantly heated to a desired simulation temperature without
abruptly dislocating the wave function of the QM region from
the Born-Oppenheimer surface. For this reason, the slow warm-
up procedure described above has been implemented for the
MM subsystem as well.

Mass Rescaling. Since the configurational averages in
classical molecular dynamics do not depend on the masses of
the nuclei,11 a common technique to increase the sampling rate
involves replacing the true masses with more convenient ones.
Since nuclear velocities scale withm-1/2, smaller masses move
faster and therefore potentially sample configuration space faster.
As a result, the masses of the heavy atoms can be scaled down

in order to increase sampling. For example, we commonly
rescale the masses of C, N, and O in our simulations from 12,
14, and 16 amu, respectively, to 2 amu. There is a limit to the
mass reduction, because at some point the nuclei move so fast
that the simulation time step has to be reduced. At this point
there is no gain in reducing the masses further because if the
time step has to be shortened, we have to perform more time
steps to achieve the same amount of sampling. It is for this
reason we generally scale our hydrogen masses up from 1 to
1.5 amu or higher in order to use a larger time step.

Periodicity. The periodicity of the plane basis sets method
may be thought to inhibit the practical application of the QM/
MM method within the Car-Parrinello framework. It is often
assumed that the simulation cell of the Car-Parrinello simula-
tion must be large enough to encapsulate both the QM and MM
regions. If this were true, a larger MM region would then require
a larger simulation cell and greater computational effort even
though the QM model system may remain the same. This is so
since the computational effort of the Car-Parrinello method
with plane wave basis scales in part with the dimensions of the
simulation cell. Fortunately, this is not true and the size of the
molecular mechanics region is inconsequential to the choice of
the QM cell size. Even when true electrostatic coupling between
the QM and MM regions is invoked, the size of the MM system
does not effect the cell size of the QM model system as
demonstrated in elsewhere.5 Furthermore, the molecular me-
chanics region can itself have periodic boundary conditions with
a cell size and type that is independent of the cell size of the
QM calculation. The addition of periodic boundary conditions
in the MM region is necessary for QM/MM solvent simulations.

QM/MM Features. The molecular mechanics code has been
completely written in FORTRAN90, and the core components
of the code are shared with the QM/MM implementation within
the Amsterdam Density Functional (ADF) program package.5,12

Thus, all of the features of the ADF QM/MM implementation
are shared with the PAW QM/MM implementation. Detailed
explanation of the features and the usage of the implementation
are described in the PAW QM/MM user’s manual.13

3. QM/MM Multiple Time Step

Interest in the linear scaling of electronic structure calculations
has surged with the recent developments from the groups of
Yang,14 Head-Gordon,15 and Scuseria.16 Although these tech-
niques allow the time of an electronic structure calculation to
scale linearly with the size of the system, they do not address
the problem of nonlinear scaling of the geometry optimization
or sampling of configuration space. In this section, we address
the issue within the framework of the QM/MM ab initio
molecular dynamics methodology. Our goal is to increase the
configurational sampling of the MM region without significantly
increasing the computational effort put into the QM region.

A QM/MM simulation will most often involve a small QM
region embedded within a much larger MM domain, such as
with the simulation of the active site chemistry within an
enzyme. Associated with the larger size of the MM region is a
potential energy surface that is more complex and one that is
likely to possess a higher degree of configurational variability.
This necessitates an increased degree of sampling in the MM
region in order to obtain meaningful ensemble averages from a
simulation. In principle, increased sampling of the MM region
can be achieved by the technique of mass rescaling. In classical
molecular dynamics, configurational averages do not depend
on the masses of the nuclei, and therefore the true nuclear masses
can be replaced with more convenient values.11,17Rescaling of
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nuclear masses to smaller values, which allows the particles to
move faster, increases the rate of configurational sampling,
which is proportional to the inverse square root of the mass,
m-1/2, of the particles. Therefore, by decreasing the masses of
the MM nuclei relative to those in the QM region, one can
differentially sample the configuration space of the two regions.
However, if the same time step is used for both regions, a limit
to the practical over sampling is quickly reached. This is
because, as we rescale the masses and increase the speed of the
MM nuclei, a smaller time step is required in order to accurately
integrate the equations of motion of the fast moving system.
Thus, when the QM and MM regions are propagated simulta-
neously, the “slow” QM region will be propagated with
unnecessarily small time steps. This is undesirable because the
QM derived forces will be changing slowly and much time will
be wasted recalculating these forces at each of the small time
steps.

One way to overcome this problem is to propagate the two
regions asynchronously with what has been termed multiple-
time-step molecular dynamics.18 The multiple-time-step method
in the Car-Parrinello QM/MM framework is represented in
Figure 2, where the wave function and the QM nuclei are
propagated with a large time step,∆t, while the less computa-
tionally demanding MM region is oversampled with a time step
of ∆t/n n times. Thus, the multiple-time-step method in
combination with mass rescaling can be applied to the QM/
MM molecular dynamics methodology as to differentially
sample the QM and MM regions, thereby increasing the
sampling of the MM domain without increasing the computa-
tional expenditure in the QM region.

The multiple-time-step techniques have been developed since
197818 to treat systems with high- and low-frequency motion
and/or short- and long-range forces more efficiently. However,
the simple algorithm often used (as depicted in Figure 2) has
no rigorous basis in theory.19 Recently, Tuckerman and co-
workers4b,20,21have pioneered the development of multiple-time-
step methods where there is a rigorous separation of time scales.
We have adopted the reversible multiple-time-step algorithm
of Tuckerman et al.,4 which allows for numerically stable,
energy conserving, multiple-time-step molecular dynamics to
be performed. In our implementation, the original formalism,
which was based on the velocity Verlet propagation algorithm,
has been modified to accommodate the standard Verlet algo-
rithm of eq 3b used in the PAW program.

Displayed in Figure 3 is a schematic representation of the
reversible multiple-time-step procedure. Consider the system
at a time T ) to, where we are propagating the slow QM
subsystem with a long time step∆t and the faster MM
subsystem with a short time step∆t/n. First, the faster MM
subsystem is propagatedn/2 times for half of the long interval,
∆t/2, as shown in Figure 3a. Now the slow QM degrees of
freedom are propagated for a full long time step, as shown in
Figure 3b. It is crucial to point out that the forces used to
propagate the slow QM system are the average of the forces
evaluated at the half-interval (T ) to - ∆t/2 andto + ∆/2) values
of the MM degrees of freedom. Thus, the new positions of the
QM degrees of freedom (both nuclear and electronic) are

expressed in

where the forces on the QM nuclei are defined in eq 8, where
c(t) denotes the expansion coefficients of the Kohn-Sham wave
function. Following the propagation of the slow QM system

with the large time step, the second half of the small time steps
involving the MM subsystem is executed. In this interval, the
forces on the MM subsystem at timeT ) to + ∆t/2 are evaluated
using the updated values of the QM degrees of freedom atto +
∆t averaged with the same values at timeto. This is expressed
in

The forces on the MM subsystem for the remainder of the
interval are given by

We reiterate that the slow QM degrees of freedom are
propagated with forces derived from the MM degrees of freedom
at T ) to + ∆t/2 and notT ) to. Conversely, the faster MM
degrees of freedom are half propagated with forces derived from
the QM degrees of freedom atT ) to and half with forces
derived from the QM degrees of freedom atT ) to + ∆t. For
both the QM degrees of freedom and the MM degrees of
freedom, this gives a better or more “averaged” representation
of the complementary degrees of freedom over the entire large
time step.

Generally, when the “trick” of mass rescaling is used in
classical molecular dynamics simulations, the masses of light
atoms such as hydrogen are scaled up to make them heavier.17

This allows for larger time steps to be used during the integration
of the equations of motion and therefore effectively increases
the simulation times. Conversely, when masses are rescaled to
smaller values, the particles move faster and are able to sample
configuration space faster. When the masses of the MM atoms

Figure 2. Representation of a simple multiple-time-step scheme within
the Car-Parrinello framework. The wave function and the QM
subsystems are propagated with a time step∆t, while the MM
subsystem is over sampled with a smaller time step∆t/n.

Figure 3. Schematic representation of a Tuckerman’s reversible
multiple-time-step procedure implemented within the PAW QM/MM
method: (a) propagation of the first half of the MM subsystem starting
at T ) to; (b) propagation of the slow QM subsystem that occurs atT
) to + ∆t/2; (c) propagation of the second half of the MM subsystem.
The dashed arrows in (b) and (c) illustrate what forces are used to
propagate the systems in these intervals (see text for more details).

xQM(to+∆t) ) 2xQM(to) - xQM(to-∆t) + ∆t2

MQM
FQM (7)

FQM(to) ) 1
2
FQM{xQM(to),c(to),xMM(to-∆t

2 )} +

FQM{xQM(to),c(to),xMM(to+∆t
2 )} (8)

FMM(to+∆t

2 ) ) 1
2
FMM{xQM(to),c(to),xMM(to+∆t

2 )} +

FMM{xQM(to+∆t),c(to+∆t),xMM(t)} (9)

FMM ) FMM{xQM(to+∆t),c(to+∆t),xMM(t)} (10)
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are scaled to smaller values, the multiple-time-step procedure
allows for the proper integration of the faster moving atoms
without increasing the number of force evaluations from the
electronic structure calculation of the QM model system. Thus,
in the combined QM/MM molecular dynamics framework, this
unique combination of techniques allows for oversampling of
the MM partition of the system, without increasing the
computational expense of the QM subsystem. Since we are the
first to develop the multiple-time-step method in this way, the
next section will be devoted to testing the validity of the
combined QM/MM multiple-time-step dynamics approach.

Test Results of the Multiple-Time-Step QM/MM Ap-
proach. Test results of the multiple-time-step QM/MM meth-
odology with mass rescaling will be presented in this section.
The method will first be showcased in order to establish how
the methodology is intended to be applied. This will be followed
by a more systematic validation of the methodology.

Test of Energy Conservation.A combined QM/MM multiple-
time-step dynamics simulation of 4-ethylnonane (Figure 4) has
been performed. The QM/MM partitioning of the system is
shown in Figure 4b, where the link bonds are denoted with
asterisks. The calculation involved ethane as the model QM
system for which the electronic structure was calculated at the
gradient-corrected BP86 DFT level.22-25 A time step of 3.0 au
(∼0.07 fs) was used for the QM system, whereas the MM
subsystem was oversampled by a ratio of 20:1 such that a small
time step of 3.0/20) 0.15 au was utilized for the MM region.
The simulation involved 10 000 QM time steps (720 fs) and
200 000 MM time steps. The rescaling of the masses is depicted
in Figure 4b. Masses of 12.0 and 1.5 amu were used for the C
and H atoms, respectively, in the QM system, whereas the
masses in the MM region were rescaled 400-fold to enhance
the sampling rate by a factor of approximately 20. The rescaling
of the masses is detailed in Figure 4b.

Plotted at the top of Figure 4a is the kinetic energy of the
MM and QM subsystems. The disparity in the frequency of
QM and MM kinetic energies reveals how differential sampling
of the two regions is achieved with the method. In this
simulation, an average temperature of 300 K is maintained

throughout the simulation for both the QM and MM regions.
However, as a result of the mass rescaling in the MM region,
the MM kinetic energy oscillates much more rapidly than the
QM kinetic energy. This is the goal of the methodology since
the faster fluctuations in the MM kinetic energy implies a faster
motion of the MM subsystem and ultimately a more rapid
sampling of the configuration space. This will be further
illustrated later.

Figure 4a also displays total energy of the system plotted at
the same energy scale as the QM and MM kinetic energies.
This illustrates the stability of the multiple-time-step method,
which displays no significant drift in the total energy over the
period of the whole simulation. There is also no drift in either
the kinetic energies of the MM or QM nuclei shown in Figure
4a. This is notable because it points out that there is no
significant energy flux between the nuclear kinetic energies and
the fictitious kinetic energy of the QM wave function. It is
conceivable that the rapidly fluctuating kinetic energy of the
MM subsystem might couple with the fictitious kinetic energy
of the QM wave function. This would lead to an eventual
dislodging of the wave function from the Born-Oppenheimer
surface and unphysical dynamics in the QM subsystem. The
stability in the nuclear kinetic energies during the course of this
simulation reveals that this is not occurring. We note here that
no thermostating was applied to any of the subsystems during
the dynamics. Drift can also result from net energy flux between
the kinetic energies of the QM and MM nuclei, a real physical
effect in a nonequilibrium state. However, in this simulation,
the dynamics shown in Figure 4a was preequilibrated.

Comparison of Trajectories from Multiple-Time-Step and
Standard Verlet Propagators.We now turn our attention to a
systematic validation of the method and implementation. First,
we intend to demonstrate that starting from the exact same
system (structure and masses), the multiple-time-step propagator
generates the same trajectory as the standard Verlet propagator.
For this we have performed three simulations of 4-ethylnonane,
starting from the same structure with no initial velocities. That
is, for these simulations the dynamics was initiated from a frozen
structure and the resulting temperature of the system was

Figure 4. (a) Kinetic energy of the QM and MM nuclei for a multiple-time-step QM/MM dynamics simulation of 4-ethylnonane with the rescaling
of the masses depicted in (b). To demonstrate energy conservation of the dynamics, the total energy of the system is shown at the same scale as
the kinetic energies. (b) QM/MM partitioning of 4-ethylnonane where the shaded regions represent the QM region. Covalent bonds labeled with
asterisks denote the QM/MM link bonds. All of the link bonds have been capped with hydrogen atoms such that the QM model system is ethane.
The rescaling of the atomic masses of carbon are depicted in atomic mass units.
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approximately 100 K. Acting as our control is a simulation
performed with the standard Verlet propagator with a time step
of 3.0 au for both the QM and MM subsystems. Two QM/MM
multiple-time-step simulations were performed with oversam-
pling ratios of 10:1 and 20:1 such that the time steps in the
MM region are 0.3 and 0.15 au, respectively. In all three
simulations, the QM/MM partitioning is the same as that
depicted in Figure 4b such that ethane constitutes the QM model
system. However, unlike the simulation depicted in Figure 4,
the masses in these simulations were not rescaled.

Small structural changes in the backbone of the 4-ethylnonane
system are likely to be magnified at the extremities of the alkane.
Thus, a geometric parameter that is likely to be sensitive to
differences in the trajectories is the distance between the two
terminal carbons (C1 and C9) of 4-ethylnonane system. Plotted
in Figure 5 is the deviation in this distance between the standard
Verlet trajectory and the two multiple-time-step trajectories. The
difference in this parameter throughout the simulation remains
exceptionally small (of the order of 10-4 Å).

Stability of QM Energy to Sampling Procedures in MM
Region.Another property that is highly sensitive to geometric
differences in the trajectory is the electronic energy of the QM
model system. Figure 6a plots the total DFT energy of the QM
model system for all three trajectories. At the scale of the
oscillations in this energy, the three trajectories cannot be
distinguished over the course of the simulation (∼500 fs). Shown
in Figure 6b is the magnitude at which the electronic energy of
the two trajectories generated from the multiple-time-step
method (10:1 and 20:1) and the standard Verlet propagator
deviate. The deviation in the DFT energy is of the order of
10-5 Hartrees with no progressive increase during the 500 fs
simulation. We conclude that, well within chemical accuracy,
the multiple-time-step propagator generates the same trajectory
as the standard Verlet propagator.

Energy Conservation with Both Oversampling and Mass
Rescaling in MM Region. We now turn our attention to the
energy conservation of the multiple-time-step QM/MM molec-
ular dynamics. To determine the limitations of the multiple-
time-step QM/MM method, we will compare the energy
conservation of a series of molecular dynamics simulations of
4-ethylnonane where various mass rescaling schemes and
multiple-time-step oversampling ratios have been adopted.
Acting as our control is the standard Verlet simulation of the
system where the masses have not been rescaled. Compared in
Figure 7 is the energy conservation of a series of simulations
where the masses in the MM region have been rescaled by a
factor of 1/400 as to oversample the MM region by a ratio of
20:1. The atomic masses of the alkane have been rescaled in
an abrupt manner and a gradual manner. The abrupt rescaling
of the masses is shown in Figure 8a and corresponds to what is

labeled rescaling scheme a. In this rescaling scheme, the atomic
masses are immediately rescaled by a factor of1/400 as we move
from the QM region to the MM region. In this way, a carbon
atom that has a mass of 12.0 amu will be bonded to a carbon
atom with a rescaled mass of 0.03 amu. A more gradual
rescaling of the masses is adopted in scheme b, as depicted in
Figure 8b. Here the masses of atoms adjacent in connectivity
to the MM link atom are first rescaled by a factor of1/10. We
have used the modified IMOMM coupling scheme.5 In this
coupling scheme the MM link corresponds to the nuclear degree

Figure 5. Deviation in the C1-C9 distance of 4-ethylnonane between
the standard Verlet trajectory and multiple-time-step trajectories.

Figure 6. (a) Potential energy of the QM model system for the standard
Verlet and the multiple-time-step Verlet 20:1 and 10:1 oversampled.
In the scale shown, the potential energy of the various trajectories cannot
be differentiated. (b) deviation in the potential energy between the
standard Verlet algorithm and the multiple-time-step Verlet algorithm
10:1 (solid) and 20:1 (dashed) oversampled. The plots illustrate the
similarity between the standard Verlet and multiple-time-step Verlet
trajectories that were initiated from the same structure.

Figure 7. Comparison of the energy conservation during simulations
of 4-ethylnonane. Plotted are the total (conserved) energies of the
simulations relative to the initial value. The schemes referred to in the
plot legend correspond to the mass rescaling schemes depicted in Figure
8. The temperature in these simulations was 300 K.
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of freedom of the QM dummy atom. Since the QM dummy
atom is propagated by the large time step, its mass is not
rescaled. All other MM atoms further away in connectivity are
rescaled by a factor of1/400. Thus, there is a gradual rescaling
of the masses as we pass from the QM region to the MM region.

The total energy of the systems relative to the initial value is
plotted in Figure 7. The control system (standard Verlet and no
mass rescaling) exhibits a slow linear drift of approximately
+6 × 10-7 Hartrees for each femtosecond of simulation time.
The energy conservation of the simulation with the gradual mass
rescaling scheme matches that of the control simulation.
However, with the abrupt rescaling scheme the drift rate is
double that of the control, indicating a loss of integration
accuracy compared to the control. With an abrupt rescaling,
the high-frequency motions of the light MM atoms are
propagated into the QM region. This degrades the energy
conservation because the larger time step used for the QM
subsystem is unable to properly integrate this high-frequency
motion. This effect is minimized when the masses are gradually
rescaled since the high-frequency motions of the MM subsystem
are dampened by the progressively heavier masses. We conclude
that in order to apply the multiple-time-step QM/MM method,
there must be a graduated rescaling of the masses.

Also shown in Figure 7 is the energy conservation when the
masses are rescaled (scheme b of Figure 8b) but the multiple-
time-step method is not used. In this simulation, the same large
time step is used to integrate both the fast MM and slow QM
subsystems. It is apparent from the large fluctuations and the
rapid drift of the total energy during this simulation, that the
large time step is unable to properly capture the fast motion of
the light MM atoms. Thus, to effectively rescale the masses as
to increase the sampling in the MM region, a multiple-time-
step integrator is necessary.

Energy Conservation for Different Oversampling Schemes
in MM Region. Next, we investigate the amount of oversam-
pling that can be effectively applied to our 4-ethylnonane
complex. Figure 9 compares the energy conservation of the
control to a pair of simulations were the MM masses have been
rescaled by a factor of1/1000 and a multiple-time-step ratio of
100:1 has been applied. The rescaling schemes of the two
simulations are shown in Figure 8c,d. The rescaling schemes

are both gradual, but the step sizes in scheme c are greater than
in scheme d. With rescaling scheme c, the energy conservation
is diminished from the control as evidenced by the faster drift
in the total energy. With scheme d, the more gradual rescaling,
the level of energy conservation of the control is matched.
Although the integration accuracy with scheme d is excellent,
the amount of oversampling at the 100:1 level is minimal since
only one carbon atom (terminal C9) is rescaled by the1/1000

factor. The results suggest that, to attain the level of energy
conservation of the control, the masses can be graduated by no
more than an order of magnitude for each level of connectivity
away from the QM subsystem. Therefore, the necessity of using
a gradual rescaling of the masses imposes a practical limit to
the amount of oversampling that can be achieved with this
technique.

Acceleration of the Equilibration Process. Finally, we
demonstrate how the multiple-time-step QM/MM technique can
accelerate the equilibration process and ultimately configura-
tional sampling compared to a standard simulation in which
there is no mass rescaling. Two simulations of normal undecane
(C11) have been performed where the terminal methyl groups
make up the QM region as illustrated in Figure 10. That is, the
calculation of the QM model system involved two methane
molecules contained within a 8.5 Å cubic cell. One simulation
was performed with the standard Verlet propagator where
“standard” masses for the whole system were utilized (12.0 amu
for C and 1.5 amu for H). In the other simulation, the standard
masses were rescaled in the MM region by a factor of1/400 and
the multiple-time-step algorithm was used with an oversampling
ratio of 20:1. The masses used in the multiple-time-step
simulation are detailed in Figure 10 for the carbon atoms of
the backbone (hydrogen atoms were similarly rescaled). A high-
energy conformation of the hydrocarbon chain was selected as
the initial structure. Thus, with the QM subsystems frozen, the
global minimum energy structure of the MM backbone was
determined from fully optimizing structures sampled every 1
ps from a 50 ps dynamics simulation run at 800 K. From the
same simulation, a high-energy structure of the MM backbone
was selected that was conformationally distinct from the global
minimum structure. For both simulations, the free, unthermo-
stated dynamics was commenced from this structure with no

Figure 8. Mass rescaling schemes used for the QM/MM dynamics
simulations of 4-ethylnonane shown in Figures 7 and 9. The values
next to the backbone carbon atoms reflect the fraction that the standard
masses were rescaled. Thus,1/400 means that the 12.0 amu mass of
carbon was rescaled to a value of 0.03 amu. Masses of the hydrogen
atoms were similarly rescaled.

Figure 9. Comparison of the energy conservation of the multiple-
time-step simulations of 4-ethylnonane. Oversampling ratios of 100:1
were utilized with rescaling of the masses shown in Figure 8. Plotted
are the total (conserved) energies of the simulations relative to the initial
value. The energy conservation of the multiple-time-step simulations
are compared to that of the standard Verlet simulation with no mass
rescaling. The temperature in these simulations was 300 K.
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initial velocities. Additionally, the constraint shown in Figure
10 was applied to the system. Here the distance between one
of the terminal carbon atoms and a proton of the other terminal
carbon atom was constrained to a distance of 4 Å throughout
the dynamics (The reason for applying the constraint will be
explained later)

The temperature evolution of the QM and MM subsystems
for both the standard and the multiple-time-step simulation is
shown in Figure 11. Since the dynamics was initiated from a
high-energy conformation, there is a steep rise in the temperature
of both the QM and MM systems in the first 100 fs of the
simulation. When the whole system is properly equilibrated,
both the QM and MM systems should be at the same
temperature. For the multiple-time-step simulation the temper-
ature evolution plotted in Figure 10b reveals that the QM and
MM systems both attain a steady state temperature of ap-
proximately 400 K. The temperature of the two systems is well
equilibrated at about the 800 fs mark of the simulation. In
contrast, for the standard Verlet simulation with no mass
rescaling, equilibration does not occur in the first 1400 fs of
the simulation. Even at the 1400 fs mark, the fluctuations are
large and the disparity between the QM and MM temperatures
is still considerable. The continuation of the temperature
evolution for the standard time-step simulation is plotted in
Figure 12. The plot reveals that equilbration does not begin to
occur until the 5500 fs mark, where an equilibrium temperature
of 400 K is being established. However, even after 8000 fs
temperature equilbration has not been fully established.

It is apparent from Figures 11 and 12 that temperature
equilibration of the system occurs much more rapidly with
multiple-time-step simulation than it does with the standard
simulation. The light masses in the MM region allow this
subsystem to equilibrate itself rapidly to the slowly changing
QM subsystem. Figure 11b reveals that within the first 20 fs of
the simulation a steady temperature of approximately 500 K is
attained in the MM region. Following the initial equilibration
of the MM subsystem, there is the steady transfer of energy
into the QM subsystem. This results in the slow cooling of the
MM subsystem as the whole QM/MM system equilibrates to a
final temperature of just under 400 K. Thus, the rescaling of
the masses in the MM subsystem, which allows for the rapid
equilibration of the MM system, facilitates the equilibration of
the whole system. In the standard simulation, both subsystems

are “heavy” and slow to equilibrate, which delays the process
for the whole system.

Convergence of a Constraint Force.The distance constraint
was imposed during the dynamics of undecane in order to
evaluate if the multiple-time-step method would be effective
in accelerating the convergence of the constraint force. The
convergence of the force is important since the slow growth
simulations we perform to map out reaction free energy profiles
involve the integration of the constraint force. A faster
convergence of the constraint force would then correspond to

Figure 10. QM/MM partitioning, mass rescaling scheme and constraint
definition for the molecular dynamics simulations ofn-undecane. The
shaded regions represent the QM region. The two link bonds, which
are labeled with asterisks, have been capped with hydrogen atoms, such
that the QM model system consists of two methane molecules. The
rescaling of the masses in the multiple-time-step simulation is shown
in atomic mass units. Hydrogen atoms are similarly rescaled.

Figure 11. Temperatures of the QM and MM subsystems of the
dynamics simulation undecane with (a) standard masses and (b) rescaled
masses, as depicted in Figure 9. In simulation (b), where the masses
have been rescaled, the multiple-time-step method was used with an
oversampling ration of 20:1 (i.e., 20 small time steps for each large
one).

Figure 12. Temperature evolution of the QM and MM subsystems of
the dynamics simulation undecane with standard masses and the
standard Verlet propagator. This plot is a continuation of Figure 11a.
The solid lines are the temperature and its running average (with a
window of 100 fs) for the QM subsystem, and the dashed lines are the
same quantities for the MM subsystem.
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an acceleration in the configurational averaging in these
simulations and also smaller errors. Although the undecane
system does not correspond to a real reaction, the simulation
does imitate the condition where the structure of the MM
subsystem strongly influences the force on the reaction coor-
dinate. In the undecane simulation, the constraint force involving
the distance between the terminal methyl groups will be
regulated by the structure of the hydrocarbon backbone. Thus,
the faster the structure of the backbone equilibrates, the faster
the constraint should converge. Since most of the backbone
resides in the MM partition, we expect that the QM/MM
multiple-time-step procedure will accelerate the convergence
of the force compared to the standard simulation.

The evolution of the average constraint force,〈F〉 , during
the two undecane simulations is plotted in Figure 13. Since a
high-energy starting structure of the backbone was selected, the
force on the constraint is initially high. As the backbone structure
equilibrates, the force on the constraint should relax to a steady
state value. The average constraint force decays much more
rapidly in the multiple-time-step simulation than in the standard
simulation. This is because the heavier MM subsystem in the
standard simulation is slower to settle into an equilibrium
conformation. Figure 13 shows that the constraint force in the
multiple-time-step simulation acheives a steady state value
within approximately 4000 fs. The constraint force in the
standard simulation, which should converge to the same value,
is slow to decay and convergence is not observed in the first
8000 fs of the simulation. The simulation was stopped after
50 000 time steps, since it was evident that there is an
accelerated relaxation of the average force with the multiple-
time-step method. Furthermore, since temperature equilibration
in the standard simulation does not begin to arise until the end
of the 8 ps simulation, the convergence of the constraint force
will not occur for some time later.

When the slow growth techique is used to map out free energy
surfaces, it is actually the ensemble averaged force on the
constraint that is the ideal force used in the integration. Thus,
the evolution of the averaged force plotted in Figure 13 emphasis
that the multiple-time-step QM/MM method can provide for
better sampling and smaller errors. Uncertainty estimates in a
slow growth simulation are determined by the amplitude of the
fluctuations in the constraint force.26 The larger the fluctuations,
the larger the uncertainies are in the calculated relative free
energies. Examination of the unaveraged forces on the constraint
(not plotted) show the amplitude of the fluctations is ap-
proximately 50% smaller in the multiple-time-step simulation

compared to the standard simulation. This corresponds to
roughly 20% smaller error bars in the multiple-time-step
simulation.

The undecane simulation was designed such that the structure
of the MM system strongly influenced the constraint force.
Therefore, a significant acceleration in the convergence of the
constraint force was observed with the multiple-time-step
method. However, most systems are more balanced in that the
QM system has a stronger influence on the constraint force.
Thus, the benefit of the multiple-time-step method will be less
pronounced for most simulations. On the other hand, even if
the improvement is small, the additional computational effort
is minimal (assuming that the computational expense of the MM
system is negligible compared to the QM system). In the Car-
Parrinello QM/MM simulation,27 the calculation of the MM
forces amounts typically to less than 0.01% of the total
computational effort. Therefore, if the multiple-time-step tech-
nique were to be applied to the system with a high oversampling
ratio of 100:1, the 100-fold increase in computing the MM forces
would still be negligible. Therefore, in these cases where the
computational expense of the MM subsystem is negligible and
where time-dependent properties are not being investigated, there
is no reason not to apply the mutltiple-time-step procedure.

4. Conclusions

A new implementation to carry out Car-Parrinello ab initio
molecular dynamics simulations of extended systems using a
combined quantum mechanics and molecular mechanics po-
tential is presented. Our implementation allows the QM/MM
boundary to cross covalent bonds such that the potential surface
of a single molecular system is described by a hybrid potential.
Since the potential surface of the molecular mechanics region
is usually much less computationally demanding to calculate
than that in the QM region, we have implemented a multiple-
time-step technique to oversample the MM region relative to
the QM region. The goal here is to provide better ensemble
averaging in the MM region, which is usually larger in size
and therefore usually has a higher degree of configurational
variability. We have demonstrated the multiple-time-step inte-
grator will generate the same trajectory as a standard molecular
dynamics integrator. Moreover, with a gradual rescaling of
masses the energy conservation of a multiple-time-step simula-
tion can be brought to the same level as a standard simulation.
Finally, we have demonstrated that the multiple-time-step QM/
MM method can accelerate the equilibration and configurational
sampling of a molecular dynamics simulation.
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