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Multiconfiguration Time-Dependent Hartree Dynamics on an ab Initio Reaction Surface:
Ultrafast Laser-Driven Proton Motion in Phthalic Acid Monomethylester
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The intramolecular nuclear wave packet dynamics of carboxy-deuterated phthalic acid monomethylester
following excitation of the OD stretching vibration in the hydrogen bond is investigated. When one starts
from a Cartesian reaction surface Hamiltonian, a nine-dimensional model is identified, which comprises the
most strongly coupled degrees of freedom. The anharmonic coupling is demonstrated to lead, in particular,
to low-frequency modulations of the OD dynamics. Partial vibrational energy randomization takes place on
a time scale of 2 ps, which was not seen in earlier single configuration calculations.

1. Introduction

The dynamics of protons in intra- or intermolecular hydrogen
bonds or hydrogen-bonded networks not only is of high
relevance in many biological and chemical processes but also
continues to be a challenge for theoretical models of interaction
potentials and many particle dynamics.1,2,3 Recently, there has
been considerable progress in quantum chemistry, and in
particular, the density functional method supplemented with
modern exchange-correlation functionals has paved the road to
study equilibrium structures and reaction pathways for intramo-
lecular proton transfer in fairly large molecules. More flexibility
concerning the exploration of the potential energy surface (PES)
away from minimum energy pathways is provided by “on the
fly” molecular dynamics methods.4 This approach is nevertheless
only suitable, at modest effort, in the limit of classical nuclear
dynamics. An extension that includes quantum effects via
imaginary time path integrals has been given for the calculation
of statistical properties.4

Nonequilibrium quantum dynamics in real time, however,
requires a priori knowledge of the underlying PES. There is
little hope that the exact PES for more than three to four atomic
molecules will routinely become available. This necessitates
approximate schemes, the most successful being the reaction
surface approach.5,6 Here, full dimensionality is retained, but
only selected reaction coordinates are treated exactly. For the
case of an A-H‚‚‚B hydrogen bond, for instance, this could be
the A-H bond length. The majority of degrees of freedom
(DOF) such as the A‚‚‚B distance, however, are considered
within the harmonic approximation. In fact, the reaction surface
idea can be viewed as an extension of the reaction path (i.e.,
minimum energy path) concept.7,8,9It is more suitable, however,

for heavy-light-heavy reactions in which the minimum energy
path can be sharply curved.

There has been a long discussion about the nature of the
normally broad and often structured linear absorption bands of
A-H stretching vibrations in solution after formation of an
A-H‚‚‚B hydrogen bond. It is well accepted that the anharmonic
coupling between the high-frequency A-H and the low-
frequency A‚‚‚B bridge vibration is important. Whether the
solvent couples dominantly to the A-H or the A‚‚‚B vibration
as well as the strength of this interaction compared to the
anharmonic coupling determines the band shape. Strong anhar-
monicities in particular can lead to vibrational combination
transitions (Franck-Condon like progressions) with respect to
the low-frequency mode, which might be hidden underneath a
broad band.10-13 Experimentally, this issue can be addressed
by time-resolved nonlinear spectroscopy. Recently, Stenger et
al.14,15 used ultrafast IR pump-probe spectroscopy to demon-
strate coherent vibrational dynamics upon excitation of the O-D
band of carboxy-deuterated phthalic acid monomethyl ester
(PMME-D) shown in Figure 1. The observed periodic modula-
tions of the signals have been assigned to a low-frequency
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Figure 1. Various conformations of PMME. Numbers refer to relative
energies in cm-1 obtained at the MP2 (DFT/B3LYP) level of theory
with a Gaussian 6-31+(d,p) basis set.

719J. Phys. Chem. A2002,106,719-724

10.1021/jp013652y CCC: $22.00 © 2002 American Chemical Society
Published on Web 01/12/2002



normal mode, which by virtue of the anharmonicity of the PES
influences the O-O distance across the hydrogen bond. In ref
16, we gave support for this experimental suggestion by
combining a full-dimensional ab initio reaction surface Hamil-
tonian with a time-dependent self-consistent field (TDSCF)17,18

dynamics simulation. In particular, it has been found that two
vibrational modes are strongly coupled to the O-D dynamics;
that is, besides a low-frequency (∼70 cm-1) mode, we identified
an important high-frequency (∼1000 cm-1) mode of which the
dynamical signatures, however, cannot be resolved at the present
experimental time resolution. On the basis of the TDSCF
dynamics, it had been concluded in ref 16 that the experimen-
tally observedT1 relaxation time of 400 fs cannot be due to
intramolecular energy randomization.

In the present contribution, we will use the Cartesian reaction
surface (CRS) Hamiltonian together with multiconfiguration
time-dependent Hartree (MCTDH) wave packet propagation21

to study the dynamics of PMME-D excited by an ultrafast laser
pulse. The CRS Hamiltonian is ideal for combination with the
MCTDH method, and together, they provide a powerful tool
for the study of quantum dynamics of molecular systems. In
section 2, we introduce the model system PMME-D and give
details of the reaction surface Hamiltonian. In section 3, the
MCTDH method is briefly reviewed putting emphasis on the
implementation of explicitly time-dependent Hamiltonians.
Numerical results extending our previous studies16 are discussed
in section 4, and the paper is summarized in section 5.

2. Reaction Surface Hamiltonian

Several stable configurations of PMME-D can be identified
by geometry optimization (all quantum chemistry calculations
have been performed using the Gaussian 98 program package22);
only the lowest energetic ones are shown in Figure 1. The most
stable geometry obtained with second-order Møller-Plesset
perturbation theory (MP2) and a Gaussian 6-31+(d,p) basis set
is denotedE1 in Figure 1. There is an isoenergetic enantiomer
(E2) separated by a barrier of 819 cm-1 atT from E1, to which
it is related by reflection through the plane of the ring. Out of
the higher energetic isomers, the most notable is the rotamerR
with respect to the ester group. We have also performed
geometry optimizations using density functional theory with the
B3LYP exchange-correlation functional and the respective
energy differences are also given in Figure 1. Density functional
theory predictsE1 to be more planar than the MP2 structure
(for a more detailed comparison, see also ref 16), which is
responsible for the remarkable differences in the energies of
the R andT configurations.

ConfigurationE1 will be the starting point for the construction
of a reaction surface for the dynamics of the intramolecular
hydrogen bond, O1-D‚‚‚O2. The position of the deuterium
within the molecular frame can, in principle, be described either
in internal5,6 or in Cartesian23 coordinates. A CRS Hamiltonian
has the numerical advantage that the couplings between the
different DOF are part of the potential energy operator. This
implies that, in contrast to internal-coordinate-based reaction
surfaces, there is no numerical reason to invoke an adiabatic
approximation.6 The CRS Hamiltonian can be established by
identifying relevant Cartesian reaction coordinates as well as a
suitable reference geometry for the substrate atoms. In the
present case, the choice is obvious, that is, the anharmonicity
of the deuterium’s motion along the O1-D bond (here, thex
direction) needs to be accounted for while the remaining atoms
are treated in harmonic approximation with respect to the
geometry ofE1. To follow refs 16 and 23, the CRS Hamiltonian

will be expressed in terms of a zeroth-order part,

which describes the one-dimensional reaction coordinatex and
the uncoupled set of harmonic mass-weighted substrate modes
{Qn}, and an interaction part,

Note that the zeroth-order substrate Hamiltonian has been
defined with respect to the frequencies at the reference config-
uration, that is,ωn

2 ) Knn(xeq). Equation 2 contains two types
of couplings, linear and quadratic, in the substrate coordinates.
The former derives from the fact that on a CRS one does not
necessarily move on a minimum energy path, that is, then-th
mode is shifted by a reorganization energy,∆En(x) ) fn2(x)/
(2ωn

2(x)) (neglecting the mode-mode coupling). As discussed
in ref 24, the reorganization energy gives a convenient means
for identification of those substrate modes that have the strongest
impact on the reaction coordinate dynamics. The quadratic term
in eq 2 leads to a mixing between different substrate normal
modes, if the character of the normal modes changes along the
reaction coordinate.

We will consider the dynamics of the O1-D stretching
vibration as triggered by the interaction with an external laser
field. When the dipole approximation is invoked, eqs 1 and 2
are supplemented by the time-dependent Hamiltonian

whered(x) is the dipole moment operator along the reaction
coordinate. For the classical electric field, we will use the form

with E0, τ, andΩ being the amplitude, the duration, and the
center frequency, respectively. The quantum chemistry input
for the CRS Hamiltonian, eqs 1, 2, and 3, thus consists of the
reference potential, the forces, the Hessian, and the dipole
moment as a function of the reaction coordinate.

3. MCTDH with a Time-Dependent Hamiltonian

The theory and implementation of the MCTDH method for
wave packet propagation have been detailed in a recent review,21

and only an outline will be provided here. The basis of the
method is to use a wave function expanded in a set of time-
dependent single-particle functions (SPFs),{æj

(κ)}:

The second line defines the multi-indexJ and the configurations
φJ. As written here, the SPFs are functions of a single DOF. In
general, this does not need to be the case, and for large systems,
such as the model studied here, it is more efficient to treat DOFs
combined together using multidimensional SPFs. Note that each
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“particle” may have different numbers of functions, which
makes this ansatz very flexible.

Optimizing the time evolution of this wave function ansatz,
using the Dirac-Frenkel variational principle,25,26leads to a set
of coupled equations for the SPFs and wave function coefficients

whereP(κ) ) ∑j)1
nκ |æj

(κ)〉〈æj
(κ)| is a projector that preserves the

orthonormality of the single-mode functions,H (κ) is a mean
field operator matrix accounting for the other modes, andF(κ)

is the reduced density matrix related to the populations of the
SPFs. The last two terms can be best represented by introducing
the single-hole functions,ψj

(κ) ) 〈æj
(κ)|Ψ〉, which is simply all

of the terms in the wave function with a particular SPF projected
out. The mean-field operator matrix elements can now be written
as H jk

(κ) ) 〈ψj
(κ)|H|ψk

(κ)〉, and the density matrices becomeFjk
(κ)

) 〈ψj
(κ)|ψk

(κ)〉, which is in fact the sum of the squared coef-
ficients for a combination of SPFs.

To implement the method, the SPFs are typically expanded
in a time-independent basis set, such as a discrete variable
representation (DVR),27,28although any suitable set may be used.
If N DVR functions are used for the representation of then
SPFs of a particle, then whenN ) n, the standard numerically
exact solution of the time-dependent Schro¨dinger equation is
obtained. The variational basis of the MCTDH method, however,
means that in generaln , N, and this basis set contraction leads
to a reduction of the computational effort, which can amount
to several orders of magnitude for large systems. An important
feature of the method is that at the lower limit ofn ) 1 the
TDSCF method (also known as time-dependent Hartree)17,18,25

is obtained. Thus, by varyingn, the quality of a calculation can
be varied from cheap and qualitative to accurate depending on
needs and computer resources.

As written above, the method requires the evaluation of
multidimensional integrals both for the time-derivative of the
expansion coefficients and for building the mean-field operator
matrices. Writing the operator as products of single-particle
operators,

allows these integrals to be written as products of one-
dimensional integrals, enabling very efficient routines to be used
for this evaluation. The functionses(t) define the time-
dependence of the Hamiltonian, that is,E(t) in eq 3. Note that
an important feature of the CRS Hamiltonian, eqs 1 and 2, is
that it comes in the desired product form, as does the time-
dependent operator describing the interaction with the electric
field, eq 3. The latter property has been used here to include
the time-dependence of the driving laser field with minimal
overheadsonly the Hamiltonian expansion coefficients need to
be recalculated at each step. The main problem introduced by
the time-dependence of the Hamiltonian is that the efficient
constant mean-field integration scheme19 for propagating an
MCTDH wave packet cannot be used. In this study, the
equations of motion were integrated using a general purpose
sixth order predictor-corrector scheme. Note, however, that the
small step sizes required by the time-dependent operator are
less of a disadvantage for the MCTDH method, which inherently

requires small step sizes because of the nonlinear equations of
motion, than it is to the standard methods, which rely on large
step sizes for their efficiency. All wave packet calculations have
been made using the Heidelberg MCTDH package.20

4. Numerical Results
In Figure 2A, the potential energy,V(x), for the motion along

the reaction coordinate and frozen substrate coordinates is shown
together with the respective wave functions for the three lowest
states,νOD ) 0, 1, 2, following from the solution ofHsys|a〉 )
Ea|a〉 on a grid as specified in Table 1. According to the shape
of the rather anharmonic potential, the hydrogen bond can be
classified to be of medium strength, that is, there will beno
proton transfer. The importance of the different substrate normal
modes for the hydrogen bond dynamics has been estimated by
calculating their contribution to the reorganization energy at the
representative positionxeq + 0.2Ȧ where its total value is 0.24
eV. In Figure 2B,C, we characterize two strongly coupled
substrate modes,ν1 and ν23, by means of their vibrationally
diabatic (VD) PES and displacement vectors. The VD PESs,
Vaa(Qn), have been obtained from

that is, the mode coupling (∝Kmn(x)) has been neglected.
Equation 9 is the well-known shifted oscillator Hamiltonian.30

The two modes in Figure 2B,C are of low (ω1/(2πc) ) 67 cm-1)
and high (ω23/(2πc) ) 986 cm-1) frequency and represent
motions that modify the hydrogen bond geometry. While these
modes correspond to extreme cases (ν23, strongest coupling;ν1,
lowest frequency), six more modes with reorganization energies
greater than 6 meV (about 50 cm-1) can be identified that also
influence the hydrogen bond. These eight substrate modes
comprise about 85% of the reorganization energy atxeq + 0.2Ȧ,
see also Table 1. Together with the reaction coordinate, they
constitute a nine-dimensional (9D) model, which will be used
in the subsequent quantum dynamics calculations. The coupling
between this 9D model and the remaining substrate modes is
weak enough to be neglected on the time scale of 1-2 ps
considered below.

In the wave packet simulations, we have made use of the
mode combination method to increase the efficiency by reducing
the size of the SPF basis set required because correlations within
the combined modes are treated explicitly.29 The reaction
coordinatex has been combined with the strongest coupled mode
ν23 using seven SPFs; the combinations for the other modes
have been chosen on the basis of frequency matching,ν1, (ν3,ν5),
(ν7,ν9), (ν13,ν24), and using five SPFs for each of these MCTDH
particles. Thus, we have five MCTDH particles and a total of
4375 configurations for the MCTDH propagation. For numerical
parameters, see also Table 1.

The number of SPFs per mode that need to be included
depends on the propagation time as well as on the strength of
the external field. For the field, we used the form given in eq
4 with Ω/(2πc) ) 2430 cm-1 (fundamentalνOD transition in
the 9D potential),τ ) 300 fs, andE0 ) 5 × 10-4 Eh/eaB. The
dipole gradient atx ) xeq was calculated to 1.55 D/aB. For these
parameters only, the fundamental transition of the reaction
coordinate will be appreciably excited.
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In Figure 3, the time-dependence of the expectation values
for the reaction coordinate and the substrate modesν1 andν23

is shown. For the reaction coordinate (panel B), we observe a
rapid oscillation triggered by the driving field (panel A). The
oscillation frequency corresponds to that of theνOD ) 0 f 1
transition. It is interesting to note that initially we have〈x〉 )
0.04aB, that is, a deviation from zero due to quantum description
of the anharmonic PES. The dynamics of〈x〉 covers the range

between 0 and 0.1aB, that is, the coupling to the substrate
oscillators will be minimum/maximum at the inner/outer turning
point. In Figure 3B, we also show the variance of the wave
packet with respect to the reaction coordinate. On average, it
amounts to 0.125aB, showing that the quantum dynamics takes
places in the vicinity of the potential minimum.

As a consequence of the anharmonic couplings inVCRS, the
fast oscillations of〈x〉 are imposed on the dynamics of〈Q23〉 as
shown in Figure 3C. The forcef23(x) is acting in a way that
〈Q23〉 is pushed into the negative direction if〈x〉 is at the outer
turning point. Overall, the excitation ofν23 is rather small
because of the large frequency mismatch between these two
coordinates.

The fast oscillations of〈x〉 are low-frequency-modulated most
notably with a period of about 500 fs. The latter is a consequence
of the anharmonic coupling to the substrate modeν1 of which
the dynamics is shown in Figure 3D. When panels B and D are
compared, it becomes clear that an increase of〈Q1〉, causing a
compressionof the hydrogen bond, is reflected in a decreased
amplitude of〈x〉.

A more detailed view of the dynamics is provided by
inspection of the populations of zeroth-order states. We have
chosen the VD picture of Figure 2 and defined zeroth-order
states for the substrate modes according to the shifted oscillator
Hamiltonian eq 9, that is, for thenth mode we have the basis
set {|Nn

(a)〉}. On the basis of these states, one can address the
substrate mode interstate and intrastate coupling mediated by
the constants〈a|Kmn(x)|b〉 and〈a|Kmn(x)|a〉, respectively, as well
as the state coupling along a certain normal mode coordinate
Qn having the strength〈a|fn(x)|b〉. It turns out that the coupling
linear in Qn dominates the short-time dynamics.

To illustrate the possible transitions, we neglect the rather
small change in frequency for the moment, that is, we set

Figure 2. Potential energyV(x) along the reaction coordinate (O1-D
bond) and for a frozen substrate as obtained at the MP2 level of theory
with a Gaussian 6-31+(d,p) basis set (A). Also shown are the wave
functions for the three lowest eigenstates. In panels B and C, the VD
potential for the motion of theν1 andν23 mode, respectively, is shown
together with the respective normal mode displacements (cf. eq 9).

TABLE 1: Parameters of the 9D Model Used in the
MCTDH Simulationsa

mode ωi/(2πc) (cm-1) ∆En (eV) SPF grid DVR

νOD 2370 7 -0.8/1.1 40
ν23 985 1.273× 10-1 -100/100 40
ν1 67 9.469× 10-3 5 -250/250 40
ν3 147 8.572× 10-3 5 -205/225 32
ν5 201 8.925× 10-3 -175/200 32
ν7 263 1.758× 10-2 5 -175/175 32
ν9 306 9.143× 10-3 -175/175 32
ν13 507 1.216× 10-2 5 -150/150 32
ν24 1011 7.537× 10-3 -125/125 32

a In the different rows, the DOF combined in each MCTDH particle
are given. The grid dimensions are given in atomic units (mass-scaled
for the substrate modes), and the last column shows the number of
harmonic oscillator DVR functions used. (The grid for the reaction
coordinate is given with respect toxeq ) 1.85 aB. ∆En is the
reorganization energy atx ) xeq + 0.2Ȧ.) Note that in the dynamics
simulations the potential energy terms in eqs 1 and 2 as well as the
dipole moment have been fitted to polynomials and powers of
exponentials.

Figure 3. Time-dependence of the external driving field (A) in eq 4
(Ω/(2πc) ) 2430 cm-1, τ ) 300 fs, andE0 ) 5 × 10-4 Eh/eaB). In the
lower panels, the time evolution of the coordinate expectation values
for (B) the reaction coordinate (as well as its variance (upper curve)),
(C) modeν23, and (D) modeν1 is shown (normal mode coordinates
given in units ofaBxamu).
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〈a|Knn(x)|a〉 ) ωn. The substrate mode matrix elements for the
state coupling〈Mn

(a)|Qn|Nn
(b)〉 can be calculated straightfor-

wardly using, for instance, the shift-operator method.30 It follows
that

Here, we introduced the dimensionless shift between the VD
potential curves asgn(a) ) -Qn

(a)xωn/2p with Qn
(a) being the

shifted minimum position in state|a〉. Further, FC(Mn,Kn,∆gab)
is the Franck-Condon overlap integral between two harmonic
oscillators displaced by∆gab ) gn(a) - gn(b) with respect to
each other. Because the relative shift of the VD potentials is
rather small the Franck-Condon integral will take its maximum
value forMn ) Kn. This implies that the linear coupling will
cause mostly transitions with∆N ) (1.

In Figure 4, we show the populations,Pa,N23..., for various
VD zeroth-order states. Here, the subscript labels the VD state
|a〉 and the respective vibrational quantum number of the most
strongly coupled modeν23. The quantum numbers of the other
substrate modes are taken to be zero. In Figure 4A,B, we
compare the population dynamics of the vibrational ground
states in the two VD states. Here, the state coupling is reflected
in the rapid out-of-phase oscillations ofP00... and P10....
Simultaneously,P01... increases, for example, via an interstate
∆N23 ) -1 transition as shown in Figure 4C such that its fast
oscillations are out-of-phase with the dynamics ofP10.... The
influence of the remaining modes on the OD dynamics leads
to low-frequency modulations of the populations shown in
Figure 4. In principle, in the VD representation, all substrate
modes are vibrationally excited in both VD states. This obscures
a clear interpretation of the low-frequency oscillations in, for
instance,P10.... It should be noted that in terms of the dynamics
the population of these vibrationally excited VD states reflects
nuclear waVe packet motionin the different VD potentials of
Figure 2B. However, the present situation appears to be more

complex than the case of simple vibronic excitation due to the
relatively strong interstate coupling.

As an important observation, we notice that the average
populationP10... in Figure 4A is decreasing with time. At the
same time,P00... is increasing. But, both processes take place at
a different rate with the decay ofP10...being faster. This indicates
a complex pattern of vibrational energy redistribution for which
the substrate mode-mode coupling terms are also of importance.
This view is supported by the behavior of the expectation values
〈Ei)x,n〉 of the uncoupled Hamiltonians eq 1 for the different
DOFs. For the reaction coordinate,〈Ex〉 in Figure 5A shows an
initial increase due to laser excitation and a subsequent slow
decay. The fast oscillations are again due to the coupling to the
ν23 mode as can be seen by comparison with〈E23〉 in Figure
5B. The slower modulations apparent in〈Ex〉 and〈E23〉 are due
to the interaction with the remaining seven modes of which the
combined total energy〈Erest〉 is shown in Figure 5C. The
dynamics of〈Erest〉 is dominated by the modeν1 as can be seen
from its slow modulation with a period of about 500 fs. Both
〈E23〉 and 〈Erest〉 increase with time as a consequence of
intramolecular energy randomization.

It should be stressed that this is clearly amulticonfiguration
effect, that is, no relaxation-type behavior had been observed
in the TDSCF treatment.16 However, inspecting the natural
orbital populations21 of the different modes, one finds that the
leading configurations contribute typically about 90%, thus
giving justification for a single configuration treatment of the
short-time dynamics.

5. Summary

Combining an ab initio CRS Hamiltonian with MCTDH wave
packet propagation, we have investigated the laser-driven
dynamics of the medium strength hydrogen bond in PMME-D.
The CRS method was demonstrated to have several advan-
tages: (i) A full-dimensional potential surface can be generated,
which allows the identification of relevant DOF without prior
inspection of all normal modes. While the accuracy of the
potential depends on the quality of the Hessian, the mode
selection could serve as a starting point for more accurate

Figure 4. Time evolution of the populationsPaN230... of vibrational
ground states in the VD potentialsVaa({Qn}) with a ) 1 (A) anda )
0 (B). Panel C shows the respective first excited state along the strongly
coupled modeν23. Pulse parameters are as described in Figure 3.

〈Mn
(a)|Qn|Nn

(b)〉 ) ∑
Kn x p

2ωn

FC(Mn,Kn,∆gab) ×

(xNn + 1δKn,Nn+1 + xNnδKn,Nn-1 - 2gn(a)δKn,Nn
) (10)

Figure 5. Expectation values for the uncoupled single mode Hamil-
tonians according to eq 1: (A) reaction coordinate; (B) modeν23; and
(C) remaining seven substrate modes. Pulse parameters are as described
in Figure 3.
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calculations in which, for instance, the single-point energies
along the normal mode displacements are calculated explicitly.31

(ii) The CRS Hamiltonian contains all couplings in the potential
energy operator. Its factorized form is extremely useful in
combination with MCTDH wave packet propagation.

As an application, the intramolecular vibrational dynamics
of PMME-D has been treated incorporating the nine most
strongly coupled DOF. The anharmonic coupling was shown
to trigger vibrational motion of substrate modes after laser pulse
excitation of the OD-stretching mode. In view of the recent
experiments performed by the Elsaesser group,14,15 it is most
notable that the OD dynamics is modulated by a low-frequency
vibration of the hydrogen bond. In refs 14-16, this type of mode
was made responsible for the observed oscillations in the IR
pump-probe signal. We have analyzed the dynamics in terms
of a vibrationally diabatic representation and found a decay
behavior of the population in theνOD ) 1 state accompanied
by a slow recovery of theνOD ) 0 state population. This is a
genuine multiconfiguration effect not seen in the TDSCF
calculations. It can be interpreted in terms of intramolecular
energy randomization and is also seen in the expectation values
for the uncoupled mode Hamiltonians. However, the relaxation
time scale for the OD vibration is much longer than the
measuredT1 time of 400 fs pointing to the influence of the
solvent environment. Preliminary classical dynamics simulations
based on the linear response approach30 support this conclu-
sion.32 Within the present approach, the effect of the solvent
could be modeled using the MCTDH extension to the propaga-
tion of density matrices proposed in refs 33 and 34.
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